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Abstract—NoSQL databases like Redis, Cassandra, and Mon-
goDB are increasingly popular because they are flexible,
lightweight, and easy to work with. Applications that use these
databases will evolve over time, sometimes necessitating (or
preferring) a change to the format or organization of the data.
The problem we address in this paper is: How can we support
the evolution of high-availability applications and their NoSQL
data online, without excessive delays or interruptions, even in the
presence of backward-incompatible data format changes?

We present KVolve, an extension to the popular Redis NoSQL
database, as a solution to this problem. KVolve permits a
developer to submit an upgrade specification that defines how
to transform existing data to the newest version. This trans-
formation is applied lazily as applications interact with the
database, thus avoiding long pause times. We demonstrate that
KVolve is expressive enough to support substantial practical
updates, including format changes to RedisFS, a Redis-backed
file system, while imposing essentially no overhead in general use
and minimal pause times during updates.

I. INTRODUCTION

NoSQL databases, such Redis [1], Cassandra [2], and
MongoDB [3], are increasingly the go-to choice for storing
persistent data, dominating traditional SQL-based database
management systems [4], [5]. NoSQL databases are often or-
ganized as key-value stores, in that they provide a simple key-
based lookup and update service (i.e., with “no SQL”). While
these databases typically lack a formal schema specification,
applications attach meaning to the format of the keys and
values stored in the database. Keys are typically structured
strings, and values store objects represented according to
various formats [6], e.g., as Protocol Buffers (“Protobufs”) [7],
Thrift [8], Avro [9], or JSON [10] objects.

Database schemas change frequently when applications
must support new features and business needs. For example,
multiple schema changes are applied every week to Google’s
AdWords database [11]. Applications that use NoSQL data-
bases also evolve data formats over time, and may require
modifying objects to add or delete fields, splitting objects so
they are mapped to by multiple keys rather than a single key,
renaming of keys or value fields [12]. (These changes are
similar in concept to relational database schema changes, but
the lack of a formal schema allows for a wide variety of less
strictly specified changes.) When changes are not compatible
with the old version of an application, a straightforward way
to deploy them in the field would be to shut down the running
applications, migrate each affected object in the database from
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the old format to the new format, and then start the new version
of the application.

High availability applications would prefer to avoid the
downtime of shutdown-and-restart upgrades, but evolving a
database on-line is challenging. Thrift, Protobufs, and Avro
provide some support for format changes by allowing alter-
ation of the data encoding itself or by tracking the version of
an object’s “schema” [13], [14], but there is still the task of
updating each object in the database (e.g., by iterating over all
of its keys [15]). For large amounts of data, this can create an
unacceptably long pause. As an extreme example, Wikipedia
was locked for editing during the upgrade to MediaWiki 1.5,
and the schema was converted to the new version in about
22 hours [16]. Developers could avoid shutting down the
application by making the new format backward-compatible
with the old format, but this could impose a significant
constraint on the future evolution of the application. It may
also be possible to grant applications read-only access to the
old database while the migration takes place, but applications
that have even occasional writes will suffer.

A more general approach to evolve the database online is
to migrate data lazily. When the updated application accesses
an object in the old format, the object is converted to the
new format on-the-fly. Thus, the long pause due to migrating
the data is now amortized over the updated application’s
execution, causing slower queries immediately after the update
but no full stoppage. Currently, the task of implementing lazy
data migration falls on the developer: applications are rewritten
to expect data in both old and new formats and to migrate from
to the new format when the old one is encountered [12], [17],
[18], [19]. This approach results in code that mixes application
and format-maintenance logic. Since there is no guarantee
that all data will ultimately be migrated, the migration code
expands with each format change, becoming more confusing
and harder to maintain.

To address these problems, this paper presents KVolve,1

a NoSQL database that provides automatic support for on-
line upgrades using lazy data migration. KVolve presents the
logical view to applications that data is at the newest version
of the format. Rather than convert all data at once, keys and
values are converted as they are accessed by the application.
Pleasantly, to use KVolve requires almost no changes to
application code—they simply indicate the data version they
expect when they connect to the database, and they are

1KVolve stands for Key-Value store evolution.



permitted to proceed if their expected version and the logical
version match. When a data upgrade is installed, applications
with an incompatible version must update themselves. They
can do this with dynamic software updating (DSU) [20],
[21], [22], [23], or by concurrent application switching (as
in parallel AppEngine [24]) to avoid lost application state
and/or shorten pause times, or by simple stop-and-restart (to
the new application version). This is straightforward, in our
experience, and need not be disruptive to end users. For ex-
ample, customer-facing clients in web browsers can maintain
session-permanence even as the backend servers, i.e., those
connected to a KVolve DB, are upgraded. Such update patterns
are common with load-balancing stateless servers [25].

KVolve triggers conversions automatically as data is ac-
cessed. To track its progress, KVolve attaches a version
identifier to the value of each entry, converting only those
keys/values that are out of date. Conversions are written by
the developer. KVolve ensures updates are installed atomically
in a way that supports fault tolerance. KVolve also automati-
cally ensures that conversions take place atomically with the
triggering database action; as such, KVolve avoids races that
could clobber concurrent accesses. KVolve requires a conver-
sion function to only access the corresponding old value/key,
not several old key/values; to allow otherwise could violate
logical consistency depending on the order that conversions
are triggered. To support laziness, transformations to keys
must be reversible and unambiguous. Examination of open-
source software histories, and our own experience, suggests
that realistic conversions typically satisfy these restrictions.

We describe a proof-of-concept implementation of KVolve
as an extension to the popular Redis key-value store. We
evaluate this implementation extensively, using both micro-
benchmarks (the standard Redis performance benchmark) and
macro-benchmarks (two feature-rich applications, redisfs and
Amico). Our experiments suggest that KVolve imposes essen-
tially no overhead during normal operation and that complex
applications can be upgraded with zero downtime. In partic-
ular, when upgrading redisfs we used KVolve to upgrade the
filesystem data, and Kitsune [20], a whole-program updating
framework for C, to dynamically update the redisfs driver. As
a result, we could seamlessly maintain the file system mount
point during the upgrade, resulting in zero downtime.

In summary, we make three contributions:

• We identify the challenges for evolving NoSQL databases
without downtime (Section II) and, to our knowledge, we
propose the first general-purpose, automatic solution to
this problem (Section III).

• We describe a proof-of-concept implementation as an
extension of the Redis key-value store (Section IV).

• We evaluate this implementation extensively, and we
show how to combine KVolve with a dynamic program
updating tool for zero-downtime upgrades (Section V).

II. THE PROBLEM WITH ON-LINE UPGRADES

This section details the problem of updating a NoSQL
database on-line, and the drawbacks of prior solutions. Our
approach, KVolve, is detailed in the next two sections.

A. NoSQL DBs and KV stores

NoSQL databases distinguish themselves from traditional
relational database management systems (RDBMSs), by sup-
porting a simple, lightweight interface. Our focus is on a
NoSQL variant referred to as a key-value (KV) store which,
as the name implies, focuses on mapping keys to values.
There are two core operations: GET k, which returns the value
v to which k maps in the database (or “none” if none is
present); and SET k v, which adds (or overwrites) the mapping
k → v in the database. Example KV stores include Redis
(the most popular [1], and the target of our proof-of-concept
implementation), Project Voldemort [26], Berkeley DB [27],
and many others [28].

While a KV store may place no formatting requirements on
values (i.e., treating them as bytearrays), applications typically
store values adhering to formats such as JSON [10], Avro [9],
or Protobufs [7]. Some KV stores do expect a specific value
format; e.g., Cassandra defines typed “rows” in “tables,” and
MongoDB employs “documents.” Likewise, key formats may
be unstructured (i.e., just strings) or have some structure added
by the system (e.g., a notion of prefix, or namespace).

B. Example application and update

As an example (adapted from Sadalage and Fowler [12]),
consider an on-line store which keeps track of purchase orders.
The application stores these orders in a KV store, using keys
of the form order:n, where n is a unique invoice number, and
values formatted as JSON records describing the purchasing
customer and what was ordered. In this key, order is a prefix
to assist in key grouping, e.g., as part of the encoding of a
table. An example JSON record is shown in Figure 1(a).2

Suppose we wish to upgrade the application to support
differentiated pricing, which necessitates changing the data
format in the KV store. Keys remain the same, but values
change: we rename the field price to fullprice, and insert a
new field named discountedPrice that is a possible reduction
of the original price. The updated orderItems array (the last
element of the JSON object) is shown in Figure 1(b).

C. Past approaches to on-line data upgrades

Eager, stop-the-world data upgrades: One approach for
implementing the data upgrade described above is to simply
halt all client applications and use a script to convert all the
data in the KV store that is out of date. Once all the data
is updated, the clients can be restarted. For our example, the
conversion script would get each purchase order value, modify

2JSON defines four primitive types: numbers, strings, booleans, and null.
It also defines two container types: arrays, which are an ordered list of values
of the same JSON type; and objects, which are an unordered collection of
values of any JSON type, with field labels. We use JSON as an example only;
other formats are also supported by KVolve.



{ ” id” : ”4BD8AE97C47016442AF4A580”,
”customerid”: 99999,
”name”: ”Foo Sushi Inc”,
”since”: ”12/12/2012”,
”order” : {

”orderid” : ”UXWE−122012”,
”orderdate”: ”12/12/2001”,
”orderItems”: [
{ ”product”: ”Cookies”,

”price” : 19.99 }
]

”orderItems”: [
{ ”product”: ”Cookies”,

” fullPrice ” : 19.99,
”discountedPrice”: 16.99 }

]
} }

(a) original format (b) updated format

Fig. 1: JSON object, and update

it, and store back the updated result. In particular, for each
existing purchase order value, the script would replace the
existing elements of the orderItems array with new elements
whose price field is renamed fullPrice, and which contain with
a new discountedPrice field initialized to the old price value.

While simple, the downside of this deployment strategy is
the disruption in service while the database is being upgraded.
Our experiments show that for even modest-sized databases
(hundreds of thousands of keys), this disruption can be on
the order of several minutes. On a larger scale, Twitter has
deployed 6,000 instances of Redis at each of many data
centers, with instances using 40TB heaps [29]. Any update
to that data of that size will be very time consuming.

Manual, lazy data upgrades: Rather than pause service
while the database is being eagerly upgraded, Sadalage and
Fowler suggest that the programmer can modify the new
version’s code to handle old and new formats, and migrate
old data lazily, when it is encountered. For this example,
the application could try to access the fullPrice field of a
purchase order’s orderItems array. If that field is not present,
the application can update the value as described above, and
then try again.

This approach works but adds a greater burden on the
programmer, who must add the version checking code, and
code to upgrade out-of-date values. Such upgrades imply that
what once was a GET may now involve an additional SET
to the updated format. As we explain in the next subsec-
tion, this added operation could result in data-corrupting race
conditions. Worse, version checking/updating code will grow
over time, as mentioned in Section I, and will become more
complex as applications expand to deal with a variety of data
values. The end result is a significant maintenance headache.

III. KVOLVE

KVolve aims to solve the on-line upgrade problem in a way
that enjoys the best features of lazy and eager data upgrades.
In particular, KVolve migrates data lazily, as it is accessed by
applications, thus eliminating any long, disruptive pause. But
KVolve presents a logically consistent view to applications,
providing the appearance that all the data is instantly upgraded
to the new version. As a result, programmers do not need to
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Fig. 2: KVolve architecture.

add any version-management code to their applications; they
simply write the application assuming the most recent data
version. Because the lazy migration is handled by KVolve, it
can ensure there are no errors due to concurrent interactions.

A. KVolve design

Our approach is characterized by three techniques.
Versioned data: We associate logical version identifiers

with the database content. Rather than having a global data
version, we track separate versions for data associated with
different key prefixes. E.g., data mapped from keys p1:x (for
all x) has a separate version ID space than data mapped from
keys p2:x (for all x). A version tag is stored with each data
item indicating its actual version, which might be earlier than
its logical one (i.e., if the data item has not been migrated
yet). Version tags are invisible to applications accessing the
database. When the application connects to the database, it
indicates the version IDs of the key prefixes it will use,
and KVolve compares them to the logical versions of those
prefixes. If the two IDs match, KVolve accepts the connection.

Update specifications and state transformer functions:
When the database is to be upgraded, the operator installs
a specification describing the mechanics. In particular, the
specification defines the new logical prefix versions, and
provides state transformer functions to be used to upgrade
particular values. Each transformer function f is associated
with a key prefix p. If a key of the form p:x (for some x) maps
to a value v, then p:x will be updated to map to f(v). KVolve
can handle key format changes, too, as discussed below.

On-demand (lazy) transformation: Once the update speci-
fication is installed, applications connected to the database that
are out of date must be disconnected. They will reconnect
at the new code version (mirroring the situation with eager
upgrades). Doing this is not onerous for most applications as
discussed in Section IV-B.

Once a new application version starts running, it will submit
GETs and SETs to KVolve for handling. If a GET accesses
a value that is out of date, KVolve first updates the stale
item using the appropriate transformer function. If a data item



is several versions out-of-date, transformer functions will be
composed and applied automatically.

We illustrate these three techniques in Figure 2. Here,
ClientX initially connects at version v0, and is able to access
the value mapped to from k:x safely, since it is also at
v0. Then, ClientU updates the database to version v1, and
includes a state transformer function for prefix k. This function
concatenates the string “upd” to an existing key’s value. This
update causes ClientX to be disconnected because its version
v0 is now inconsistent with the database’s logical version v1.
Finally, ClientY connects to the database at version v1. It
performs a GET on key k:y. This key maps to a stale value,
having version v0. Therefore, KVolve remaps the key to a the
value produced by running the transformer function on the old
value. Then it returns the updated value to ClientY.

B. Ensuring logical consistency

KVolve’s goal is to provide a logically consistent view to
applications. That is, any sequence of commands issued by
up-to-date clients should produce the same results whether
interacting with a fully (i.e., eagerly) updated database or with
one whose data is being migrated lazily, as it is accessed. This
goal imposes three requirements on KVolve’s implementation.
First, state transformations must occur atomically with the
operation that induced them. Second, transformer functions
may only reference the old version of the to-be-updated
key/value, and key changes are restricted. Third, the update
specification must persist once it is installed, so that logical
consistency is maintained following recovery from a fault.

Atomicity: Upgrading data atomically ensures that clients
accessing the data concurrently with the lazy transformations
will not cause anomalies that cannot occur with eager upgrades
or during normal operation. To see how an anomaly could be
introduced, consider a trace with a GET k:x by client A and
a SET k:x w by client B. Suppose that k:x maps to v in the
old database, and the update’s transformer function f operates
on a key’s old value to produce the new one.

In an eager update, k:x’s value v is updated to be f(v). Then
there are two possible execution schedules: client A could
retrieve f(v) and client B could set k:x to w, or client B
could do the set, in which case A returns w (which is already
up to date). In both cases, the final database maps k:x to w.

In a lazy update, a transformer must be invoked before
returning the value to A. One way to implement this would be
to convert client A’s GET into two commands when dealing
with an out-of-date value: SET k:x f(v) (i.e., set it to the
updated value) and then GET k:x (i.e., return that transformed
value f(v) to the client). But in this case, client B’s SET
could be scheduled in between client A’s SET and GET. This
would result in A’s GET returning the w SET by B, but
then A’s SET overwriting w with f(v). This final state would
never be possible in the eager case. Effectively, improperly
implemented lazy updates could cause client B’s operations to
fail silently, without notifying B of the failure. This anomaly
violates logical consistency. In contrast, this scheduling is not
possible if client A’s read and update must always be atomic.

One of KVolve’s benefits, over by-hand modification of code
to support lazy migration, is that it can ensure atomicity
automatically.

Limited domain of transformer function: KVolve restricts
transformer functions f in two ways. First, the transformer
may only operate over the old version of the key/value it is
updating, and not any other items in the database. Second, the
transformer may not change keys arbitrarily; instead it only
supports unambiguous bijections on a key’s prefix.

The first restriction ensures that when f runs, it will operate
on the same keys/values it would have if run when the update
was installed. This is because only the first GET of a key could
possibly see a stale value, and it will immediately update it. As
such, it ensures a logically consistent view. On the other hand,
if we allowed f to access other data items, it is easy to see
how logical consistency is broken. For example, suppose the
function f to update a key k:x’s value also examined m:x’s
value v. If the new-version code executed a SET m:x w prior
to a GET k:x, then f would read w, not v.

The second restriction ensures that lazy key updates can be
implemented safely and efficiently. After an update is initiated,
the new application version will issue commands using the new
keys. For example, suppose an update changes the prefix from
k to m:j, so that keys k:n would become m:j:n (for all n). After
the update, applications will submit commands like GET m:j:n.
If the key is present, we need to be sure that it is a new-
version key, not an old one that has yet to be transformed; as
such transformations may not map to key prefixes that are also
present in the old database version. On the other hand, if the
key m:j:n is not present, KVolve should look for the old version
of the key, in case it is there and thus needs to be updated. To
do this, KVolve will have to run the transformation backwards,
i.e., on m:j:n to produce k:n. Limiting transformations to key
prefixes helps make backward transformation efficient, since
KVolve can match keys against (new-version) prefixes directly.

Restricting transformation functions in this way is concep-
tually limiting, but not practically so, we believe. We analyzed
18 of the most active projects on GitHub that used Redis to
store program data, and none of the programs contained value
changes that were dependent on other value changes, and key
changes were limited to prefix changes.

Fault tolerance: Many KV stores provide fault tolerance
guarantees; i.e., there is a way to checkpoint the database
so that it can be recovered after a crash. As such, if the
database crashes during a lazy upgrade, KVolve’s implemen-
tation should ensure the logical view is retained following
recovery. KVolve ensures this by (a) storing per-data version
tags in the database, so they are made persistent; and (b)
storing the update specification (and logical version) in the
database, atomically, when the update is installed. This way,
if the database crashes before the update is fully installed, then
on recovery the database will still appear (correctly) to be at
the old version. But once the update is fully installed, then the
database identifies as being at the next logical version, and lazy
migration can pick up where it left off after recovering from
a failure.
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void processInputBuffer(redisClient *c){
  processInlineBuffer(c);
  kvProcessCmd(c);
  processCmd(c);
}

kvProcessCmd(c){
 robj *v = c->arg[2];
 v->vers = 1;

}

robj * v
type : string
ptr : “my_val”
encoding : 0
vers : 1

1
2

processCmd(c){
 c->cmd->proc(c);
 addReply(c)
}
procSet(c){
 robj *k = c->arg[1];
 robj *v = c->arg[2];
 setKey(k,v);
 c->reply = “OK”;
}

KVolve3

4

Fig. 3: Workflow for Redis and KVolve

IV. IMPLEMENTATION

This section describes our implementation of KVolve as a
modular extension to the popular Redis key-value store.

A. KVolve implementation overview

KVolve is implemented as a separate library compiled into
Redis. It works by preprocessing commands coming in from
the client before passing them along to Redis, as depicted
in Figure 3. In Step 1, the client issues the command, e.g.,
SET Kx my val. In Step 2, kvProcessCmd, KVolve’s hook, is
called to preprocess the command (the dashed green box is the
KVolve library). Once the KVolve preprocessing is complete
(which might involve changes to data’s contents and version
field), control returns to normal Redis. In Step 3, Redis’s
processCmd function calls the function pointer shown in blue
(which depends on the choice of command—here it is procSet
because the client requested SET), and this adds the affected
object to the database, including any changes to the version
field set during KVolve’s processing. Finally, in Step 4 Redis
responds to the client’s request, acknowledging to the client
that it successfully executed the SET command.

All of this is sure to be atomic because Redis is single-
threaded: it processes each command it receives in its entirety
before moving to the next. Redis provides commands, such as
multi, that can be used to execute a group of commands atomi-
cally; KVolve’s design works in concert with such commands.
We also believe that KVolve’s basic “interceptor” architecture
would work in multi-threaded KV store implementations by
employing appropriate synchronization.

B. Describing and installing updates

An update consists of transformer functions that will convert
the old version of a key and/or value to the new version.
The programmer compiles the transformer functions into a
shared object file that she can direct KVolve to install (using
a repurposed Redis command). After installation, the shared
object and metadata about it are stored persistently in Redis,
meaning that the specification is restored in case of a crash.

There are two kinds of updates: key/value updates and key
updates (only). As an example of the former, Figure 4 shows

1 void test fun updval(char ** key, void ** value, size t * val len){
2 json t *root = json loads(*value);
3 json t *arr = json get(json get(root, ”order” ), ”orderItems”);
4 // iterate over the {product: ... , price : ... } array entries
5 for( i = 0; i < json array size(arr); i++){
6 // Set discountedPrice to (price − 3)
7 // Set fullPrice to price , then delete price
8 }
9 *value = json dumps(root); // Set the updated value

10 *val len = strlen (*value); // Set the updated val length
11 }

Fig. 4: Example pseudocode transformer function for JSON

a transformer for the example from Figure 1. The old key
(a string) and value (binary data) are passed in by reference,
and the function will update them to the new versions via
these references. In this case, the body of the function uses the
Jansson library [30] to implement the change to the purchase
order example from Figure 1 described in Section II-B; the last
two lines update the value (the key is not changed). Writing
this code is a bit tedious. As done in our prior work [20], [31],
[32], we could easily implement a domain-specific language
to simplify the process.

Along with the transformer functions, an update specifica-
tion contains a function that is invoked when the shared object
is loaded as part of an update. This function consists of a series
of calls to install transformer functions. Our example above is
installed by the following call:

kvolve upd spec(”order”,”order”, 0, 1, 1,test fun updval);

This call indicates that the order prefix doesn’t change, from
version 0 to version 1, while the test fun updval should be
called for each key with the prefix order.

Key prefixes can be changed without requiring a transformer
function. For example, in the Amico program described in Sec-
tion V-C, the keys are renamed from the prefix amico:followers
to the prefix amico:followers:default. To describe this update,
the initialization function would include the call:

kvolve upd spec(”amico:followers”, ”amico:followers:default” ,1, 2, 0);

where the version numbers are 1 and 2, and the final 0
indicates that there are no functions to manipulate the value.

KVolve will close the connection to all clients using the old
version of updated prefix(es). A disconnected client will not
be allowed to reconnect until it is upgraded to the new version.
Clients not using updated prefix(es) will not be affected. To
use KVolve, therefore, processes connecting to KVolve must
be coded to support disconnection, upgrade, and restart.

KVolve stores update specifications indefinitely. We find that
the transformer functions take up a small amount of space
relative to the rest of the data. However, if program updates are
very large or very frequent, one could employ a background
client or similar thread to force updates to outdated data by
GETting them all; once done, all update information could be
freed for that version. (This would essentially be a hybrid of
the lazy and eager approach.)



C. Key lookup

After an update is installed, the database’s logical version is
advanced. Because the new version might transform the format
of keys, KVolve may need to look up the old version of a
key specified in an application’s GET or SET commands, so
that it can update that key (as per Section III-B). To support
this, we use a update information hash table (UIHT). This
table maps a key prefix to a record which contains both that
same prefix and pointers to records that describe the next
and/or previous versions of the prefix. For example, after a
key update from foo: to foo:bar:, the table would map prefix
foo: to a record q whose next pointer would be to a record
r for foo:bar:, which points back to q; the table would also
map prefix foo:bar: to r. As such KVolve can trace through all
current and former versions of a prefix for applying updates.
The table’s records also contain transformation functions for
moving forward between versions, and track the IDs of client
connections that are using a particular prefix version, so they
can be disconnected on an update to it.

After a key update, client queries will use the new key for-
mat; e.g., after updating prefix foo: foo:bar:, client commands
will refer to keys foo:bar:n. KVolve will first look to see if a
key exists under the issued name. If it is not there, an old, non-
updated version of the key may be present. As such, KVolve
looks up foo:bar: in the UIHT to see if a record is present
that maps to an old prefix. In this case, KVolve will see that
prefix foo:bar: points back to prefix foo:, so it reissues the client
command with key foo:n instead. If it finds it, it updates the
key name to foo:bar:n and returns the value to the client. If
no match is found, it will continue to follow backpointers in
the UIHT if prior versions should be considered. If none are
found, meaning that no key is present, KVolve returns control
to Redis without further action.

Looking for keys under previous prefixes adds additional
lookups only once (during the update) when the key is present
under an old version. However, the case where there is no
key present under any prefix version will add unnecessary
additional lookups each time the non-present key is queried.
An application that frequently queries keys that are not present
where there has been a prefix change could negatively impact
performance. In previous work [32], we experimented with
adding a sentinel value to mark the key as absent, skipping
the step of checking for the key under previous prefixes, thus
saving on lookup time but adding a bit extra storage.

D. Getting and setting values

In the simplest case, keys map to string values. We consider
this case first. Our implementation currently supports 36
Redis commands and all of the main Redis data structures
(string, set, list, hash, sorted set); we discuss containers in the
next subsection. We focused on implementing commands that
modify data. The majority of Redis’ commands that we did not
implement do not impact updating the data (e.g. commands
related to networking such as the pub/sub functionality or
connectivity).

robj * string
type : STRING
ptr : 
encoding : 0
lru : 234234
refcount : 1
vers : 1

robj * set
type : SET
ptr : 
encoding : 0
lru: 234234
refcount : 0
vers : 1

robj * set
type : SET
ptr : 
encoding : 6
lru : 234234
refcount : 1
vers : 1

“my val”

robj * set
type : SET
ptr : 
encoding : 0
lru: 234234
refcount : 0
vers : 1

robj * hash
type : HASH
ptr : 
encoding : 2
lru : 234234
refcount : 1
vers : 1

intset * i
encod: 2
length: 10
int contents[1,
   2, 3, ...];

dict * d
ht: {“val1”,
      “val2”,...}
size: 4
iterator: 0
….

Vals:

Keys:  “key1:string_str”  “key2:string_hash”     “key3:int_set”

Fig. 5: Storing different data types

GET: If the client request involves getting a string, KVolve
must first prelookup the existing robj value structure in the
database to get the version information. An example of the
key-value pair for string types is shown for key1:string str in
the first column of Figure 5. This action retrieves a pointer
to the actual object structure that is stored in the database,
so any modifications that KVolve makes to this object will
be automatically stored in Redis. Note that this requires an
additional database lookup by KVolve, on top of the one that
Redis will do later when it does its own lookup to handle the
client request. However, this is an O(1) operation and does not
incur excessive overhead relative to the other operations that
KVolve must already perform.

If the version field of the robj (in this example the version
is 1 shown in red for key1:string str in Figure 5) is current
for the prefix of the key, or if the key is not present under
the current or any former prefix (and therefore no robj exists
for the key), then KVolve returns control to Redis and does
no further processing. If the version is not current, either in
the current prefix or a former prefix, KVolve will update the
key and value, as specified. All of the necessary information to
perform the update (the transformer functions themselves, and
the meta-data about which prefixes and versions the updates
apply to) is stored in the update information hash table, and
KVolve uses that information to apply the update as follows:

• In the case of a key prefix change, KVolve uses the
update information from the hash table to perform the
key rename, leaving the value untouched.

• In the case of a value change, KVolve calls any applicable
user-supplied functions and applies them to the value,
starting from the oldest needed update and working
forward to the current version. After all of the transformer
functions have been applied, KVolve stores the updated
value in the robj (which is a pointer to the actual structure
stored in the database) and updates the version string to
match the current version by setting the field in the robj.

If both actions (key prefix and value change) are necessary,
KVolve will perform both. KVolve then returns control flow to
Redis, and when Redis performs its own GET, it will retrieve
and return the newly updated key to the client.



SET: If the client request involves setting a string, KVolve
first checks to see if the request has any flags that would
prevent the value from getting set. These flags, XX or NX,
respectively specify to only set the key if it already exists,
or only set the key if it does not already exist. If necessary,
KVolve does a lookup in the database to determine if the key
exists, indicating if the value will be set for the requested key.
(As described in Section IV-A, if the prefix changes, KVolve
will search for the key under the old prefix to see if it exists.)
If the value will not be set due to the flags, KVolve does
nothing and returns control to Redis. In this SET command,
or any such command where Redis will be adding the robj to
the database, Redis deletes the old robj and replaces it with the
new one from the client’s request. Therefore, all that KVolve
must do is set the most current version string in the robj for the
prefix of the key. (Remember that there is no need to attempt
to update the value in the key, because the client’s provided
value is guaranteed to be at the up-to-date version.)

If this set occurs after a key prefix change, KVolve must
delete the old value for the key to ensure that deprecated key
versions are not unnecessarily bloating Redis. For example,
in a change to redisfs (presented in Section V-B), an old key
prefix was named skx:/ but after an update, the new name
postfixes DIR such that the key is now named skx:DIR:/. If
the user were to set the key skx:DIR:/root before getting (and
updating) it, this would leave the old key skx:/root still in the
database. Therefore, KVolve must check to see if the existing
version under the old key prefix exists, and if it does, delete
it. It does this by first checking if the prefix had any previous
changes. If not, it does nothing. If so, it checks and deletes
the old key if necessary. At this point, KVolve returns control
to Redis, and Redis adds the robj structure to the database,
which also contains the updated version string to be retrieved
later if necessary.

E. Sets, hashes, lists, and sorted sets

The other Redis value data structures are containers of sub-
values. The base of Redis containers are all robj structures, and
they store the actual data. Figure 5 shows examples in columns
two and three of robjs that contain a hash of strings and a set of
integers, respectively. KVolve stores version information in the
container, not in the contained values (to avoid more pervasive
changes to Redis), so updates to containers happen all at once.

The process for doing a GET or SET on one of the container
elements is the same as for the string type described in
Section IV-D, except that if an update is necessary then all
sub-elements are updated using a Redis-provided iterator.

V. EXPERIMENTAL RESULTS

This section considers the performance impact of KVolve,
during normal operation and during an update. Our experi-
mental results are summarized as follows:

• Using the standard benchmark that is included with Redis,
we found that KVolve adds essentially no overhead during
normal operation, and we determined that storing the

version and update information in Redis adds only about
a 15% overhead in space.

• We updated the redisfs file system which included renam-
ing some keys and compressing some data stored in keys,
and found the operating overhead to be in noise, and the
pause time to be close to zero as opposed to 12 seconds
for an offline data migration.

• We updated the Amico social network system and found
no added overhead, with a pause time of close to zero as
opposed to 87 seconds for an offline data migration.

In our experiments, we worked with read loads because they
are the worst case, as is this the case where the lazy update
takes place. In the write case, the old data is simply replaced
by the new data, which is guaranteed to be already up-to-date
due to version checking.

All experiments were performed on a computer with 24
processors (Intel(R) Xeon(R) CPU E5-2430 0 @ 2.20GHz)
and 32 GB RAM with GCC 4.4.7 on Red Hat Enterprise Linux
Server release 6.5. All tests report the median of 11 trials, and
communication was via localhost with ∼.03 ms latency.

A. Steady state overhead

First we report the steady state overhead for KVolve re-
ported by Redis’s included benchmark, Redis-bench. Redis-
bench acts as a client that repeatedly issues commands to
Redis. The default settings for Redis-bench are with 50 clients,
with 10,000 repetitions of a single operation at a time (only 1
request per round trip), and with a single key (getting or setting
a single key multiple times). However, Redis-bench allows
many different configurations. For a longer benchmark, we
increased the number of operations to 5 million operations and
for a more realistic benchmark we performed these operations
over 1 million keys, leaving the rest of the default settings
alone. We ran this experiment over localhost which had a
latency of ∼.03ms. We chose three types of GET operations
(string gets, set pops, and list pops) and three types of SET
operations (string sets, set adds, and list pushes), as these were
part of the default benchmark operations test suite.

Table I shows the steady state overhead of this experiment.
We show unmodified Redis in column 3 for comparison and
broke the overhead into separate categories: KVolve with
no prefixes to update declared (causing KVolve to return
immediately for each key) in column 4, KVolve with a single
prefix declared (causing a hash lookup and a version check
for each key) in column 5, and KVolve with a previous prefix
declared but no previous keys with the old prefix (causing
a hash lookup, a version check, and a string concatenation
to look for a non-existent previous key) in column 6. Each
sub-column of Table I shows the total time for the test, the
siqr (Semi-Interquartile Range) to show the variance, and
the overhead as a comparison against unmodified Redis. We
ran this benchmark many times with various configurations
(multiple key prefixes to track, less or fewer keys, less or
fewer clients, etc) and found that the overhead varied generally
around ±3%, with no consistent pattern between any of the
tests, even repeated tests with the exact same setup. The



TABLE I: Redis-bench for Redis vs KVolve (times in seconds, median of 11 trials)

Redis No NS, KVolve With NS, KVolve &Prev NS, KVolve
time siqr time siqr OH time siqr OH time siqr OH

With single String Get 58.83 (0.25) 58.08 (0.11) -0.77% 58.46 (0.26) -0.12% 59.51 (0.85) 1.67%
instructions String Set 63.52 (1.04) 63.66 (0.70) 0.22% 65.39 (1.49) 2.49% 64.82 (0.35) 2.05%

List Pop 58.47 (0.41) 58.93 (0.68) 0.79% 58.71 (0.15) 0.41% 59.34 (0.47) 1.49%
List Push 59.49 (0.66) 59.55 (0.56) 0.10% 60.02 (0.74) 0.89% 60.87 (0.94) 2.32%

With 10 String Get 9.73 (0.30) 9.75 (0.27) 0.21% 9.96 (0.25) 2.36% 9.93 (0.20) 2.06%
pipelined String Set 13.77 (0.26) 14.56 (0.18) 5.74% 14.56 (0.32) 5.74% 14.48 (0.33) 5.16%
instructions List Pop 9.60 (0.32) 9.71 (0.25) 1.15% 9.55 (0.43) -0.52% 9.63 (0.27) 0.31%

List Push 14.22 (0.39) 14.38 (0.25) 1.13% 14.40 (0.41) 1.27% 14.48 (0.36) 1.83%

TABLE II: Max resident set size (RSS)

Program Max RSS
Redis, empty 7.7MB
Redis, 1M 10-byte values 112.1MB
KVolve, empty 7.7MB
KVolve, 5 prefixes, 1M 10-byte values 128.6MB

numbers presented in the table show some negative and some
positive overhead, reflecting this variation. Notice that the siqr
numbers show that the variance is relatively high, as high as
1.49s for setting strings with KVolve and a prefix, shown in
the fourth row of the fifth column.

The bottom half of Table I shows a modification of the
original overhead experiment, using a pipeline to feed 10
instructions into each round trip to Redis-bench over localhost.
This reduced the I/O overhead, putting more emphasis on
KVolve operations. We found that these numbers showed a
bit more overhead, and allowed us to bound the overhead
at 5.74% for 10 subsequent pipelined instructions. This test
demonstrated that although there is some overhead added by
KVolve, for the non-pipelined version and most commonly-
used scenario (Table I), the overhead is mostly buried in I/O
and very low overall. (In our test programs, described next,
Amico pipelined at most 3 instructions per round trip, and
redisfs did not use pipelineing.)

In addition to time overhead, KVolve incurs some additional
memory overhead due to tracking the version information.
Table II shows the maximum resident set size as reported by
ps. Empty, Redis and KVolve take up about the same amount
of size in memory. With 1 million keys each mapping to 10-
byte values and with 5 separate prefixes declared, KVolve
takes up about 16.5MB (∼15%) more memory than unmodified
Redis. This includes the extra version field (4 bytes) on each
value structure, the amount of space it takes to store the version
lookup information and hash table, and any extra padding that
may be automatically added to the additional structures.

B. Redisfs

Redisfs [33] uses Redis as the backend to the FUSE [34]
file system. The inode information, directory information, and
all file system data are stored in Redis. On startup, FUSE
mounts a directory with Redis as the backend, and a user
can perform all of the normal operations of a file system,
with the data silently being stored in Redis. Redisfs has 8
releases, ∼2.2K lines of C code each. In redisfs.5, released
March 4th, 2011, file data is stored in a Redis as a binary
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Fig. 6: Lazy vs. eager updates for RedisFS

string with no compression, and the directory keys have the
format skx:/path/todir. In redisfs.7, released March 11th, 2011,
file data is compressed using zlib, and directory keys have the
format skx:DIR:/path/todir. (Note that redisfs.6 contained an
error and was retracted, so we use versions .5 and .7.) This
change makes it impossible to view the directories or any of
the files using redisfs.7 for any files created using redisfs.5.

In all versions, the inode data is stored across 12 Redis
keys including meta information such as modification time and
file size. All file system information is represented in redisfs
with four prefixes: the skx:/ prefix for directories (which is
updated to skx:DIR/ in redisfs.7), the skx:NODE prefix for
inodes (some of which is updated to add compression in
redisfs.7), skx:PATH for paths to directories, and skx:GLOBAL
to track internal structure; the last two are not updated. To
make redisfs compatible with KVolve, we added only 6 lines
of code in both versions which consisted of an additional call
to Redis on start-up to declare that we would be using those 4
prefixes at either version .5 or .7, along with a few additional
lines of error handling.

We performed an update from redisfs.5 to redisfs.7, both by
migrating the keys offline (referred to as the Eager version),
and with KVolve to automatically rename the directory keys as
they are accessed and to add compression to the files as they
are accessed. In addition to updating redisfs with KVolve, we
also used Kitsune [20], whole-program update software for C,
to allow us to also dynamically update redisfs along with the
data so that the users experience no downtime; the switchover
from .5 to .7 is completely seamless. Normally, killing red-
isfs.5 and restarting at redisfs.7 also causes the mount point
to be unmounted then remounted (causing the user to have to



switch back into the mounted directory after remount), but
with Kitsune, the mount point is not disrupted during the
switchover. We used the file system benchmark PostMark [35]
to generate a workload for redisfs, creating an initial 10,000
files ranging from 4-1024 bytes in 250 subdirectories plus the
root directory, for a total of 251 directories. We ran PostMark
outside the root directory mount point, accessing the files via
full path name to avoid having to change directories due to
the restart for the Eager (non-KVolve/Kitsune) version.

Figure 6 shows the results of the redisfs experiment. After
about 60 seconds, PostMark switched from creating the new
files to reading from or appending to existing files. As shown
on the left y-axis, both KVolve and the Eager version had a
very similar average Queries Per Seconds (QPS), displayed
by the solid and finely dashed lines. At 80 seconds, we killed
redisfs.5. For KVolve, we used Kitsune to dynamically update
to redisfs.7 without pause, maintaining the mount point so that
the benchmark never lost access to the files or the directory
structure, and KVolve continued to process queries throughout
the update. For the Eager version, we halted all traffic to
Redis and migrated the data, performing the renames and
compression as necessary. In this update, not all of the keys
needed to be updated, only the 251 directory keys that needed
to be renamed and the 10,000 data keys that needed to be
compressed. However, the database contained 123,002 total
keys, and the to-be-updated keys were searched for in the
database, adding to the pause time. This offline update process
took about 12 seconds, as shown in Table III.

In addition to showing the QPS lines, the green widely-
dashed line in Figure 6 shows the number of lazy updates
per second for KVolve, corresponding to the right y-axis.
Immediately after the update, this number burst to ∼3K keys
per second, and quickly trailed off as keys were lazily updated.
KVolve renamed the 251 directory keys, updated the version
on all 112,752 keys in the skx:INODE prefix, and compressed
the data for the 10K keys in that prefix that contained file data.

Overall the impact on the update experienced by redisfs was
minimal, as the QPS dipped only slightly right after the update
before it quickly returned to full speed around the 120 second
mark of the experiment. After the update, the overall QPS was
slower for both KVolve and redisfs because the files must be
compressed and decompressed as they were accessed.

C. Amico

Amico [36] maps relationships in the style of a social
network, defining a set of users and the relationships between
them. Amico provides an API that allows queries over a data
set of users: a user may be following or be followed by any
number of other users. Amico is backed by Redis, has 10 ver-
sions created between 2012-2013, and is written in ∼200 lines
of Ruby code. Amico version 1.2.0, released Feb 22, 2012,
stores these relationships in 5 different types of Redis keys
with the following prefixes: amico:followers, amico:following,
amico:blocked, amico:reciprocated, and amico:pending. In ver-
sion 2.0.0, released Feb 28, 2012 (the next consecutive
version after 1.2.0), the developers added the concept of a
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“scope” so that there could be different graphs stored in
Redis with prefixes to keep them separate, such as “school”
network and a “home” network. The default name for the
scope is “default”, such that all of the keys are prefixed
with amico:followers:default for example. This change makes
databases created with Amico 1.2.0 incompatible with Amico
2.0.0. To make Amico work with KVolve, we only changed
the same 4 lines of code in each version to declare the prefixes
right after Amico connects to Redis.

For this experiment, we used the LiveJournal data set from
the SNAP [37] library. The LiveJournal data set has 4,847,571
nodes and 68,993,773 directed edges defined by ordered node
id numbers A follows B such as 186032 2345471, which we
shuffled into two separate files for reading in a random order.
To create a workload, we started two programs with calls to
Amico 1.2.0: one program to read from the first random file
and add nodes to the Amico network, and one program to read
from the second random file and perform queries over nodes in
the network such as querying if USER A followed USER B or
querying the number of followers of USER A. After letting the
programs run for 900 seconds (15 minutes), the Redis database
was filed with 792,711 keys containing nodes and edge data.

At the 900 second mark, as shown in Figure 7, we stopped
both of the Amico 1.2.0 programs. For the Eager case (finely
dashed line), we then updated all 792,711 keys, renaming them
to have the default scope prefix in all of the key names. This
migration took ∼87 seconds as shown in Table III. In addition
to the pause, the Eager case shows a continued disruption
until around the 1,000 second mark. After the migration was
complete, we started the same writer/reader programs, this
time using Amico 2.0.0. For the KVolve case (solid line),
we immediately started the two Amico 2.0.0 programs after
the update so that the keys could be lazily migrated. Right
at the update point, there is a ∼2K drop in the QPS (left y-
axis), before a brief spike and a return to the original rate. The
widely-dashed green line corresponds to the right y-axis and
shows the number of lazy updates that take place each second.
Because this is a very large data set, many of the keys are
not accessed immediately, taking full advantage of laziness.
Although the lazy updates continue at a rate of about 500 per
second at the 1,100 second mark, this does not significantly



TABLE III: Offline update pause times

Pause (s) Update Events
Amico 87s 792,711 : rename
redisfs 12s 10,000 : compress, 251 : rename

(123,002 total keys in database)

impact overall queries per second, as shown by the solid line
maintaining a similar QPS before and after the update.

VI. RELATED WORK

In the realm of relational databases, the evolution of an
application’s schema is characterized by the changes to the
CREATE TABLE statements used to instantiate the schema in
subsequent versions of the application. In practice, complex
schema changes often require taking the application offline or
locking the database tables, such as the update to Wikipedia
that held a write lock for 22 hours [16]. Prior research
has proposed supporting non-blocking schema changes by
accepting out of date copies of database objects [38] or
by implementing changes on-the-fly using triggers [39] or
log redo [40]. Additionally, several professional tools can
perform ALTER TABLE operations in a non-blocking manner
[41], [42], [43], [44], [45]. Because these tools focus only
on the database, the changes implemented must be backward
compatible to avoid breaking the application logic. To avoid
this limitation, the Imago system [46] proposed installing the
new version in a parallel universe, with dedicated application
servers and databases, which allowed it to perform an end-to-
end upgrade atomically. This can be achieved in practice by
deploying parallel AppEngine [24] applications, at multiple
versions. However, this approach duplicates resources and
exposes the new version to the live workload only after the
data migration was completed.

In contrast, the F1 database from Google implemented an
asynchronous protocol [11] for adding and removing tables,
columns and indexes, which allows the servers in a distributed
database system to access and update all the data during
a schema change and to transition to the new schema at
different times. This is achieved by having stateless database
servers with temporal schema leases, by identifying which
schema-change operations may cause inconsistencies, and
by breaking these into a sequence of schema changes that
preserve database consistency as long as servers are no more
than one schema version behind. Google’s Spanner distributed
key-value store [47] (which provides F1’s backend) supports
changes to key formats and values by registering schema-
change transactions at a specific time in the future and by
utilizing globally synchronized clocks to coordinate reads and
writes with these transactions. These systems do not address
changes to the format of Protobufs stored in the F1 columns or
Spanner values [12] or inconsistencies that may be caused by
interactions with (stateful) clients using different schemas [48].

Schema evolution in NoSQL databases is less well un-
derstood, as these databases do not provide a data defini-
tion language for specifying the schema. However, many
applications attach meaning to the format of the keys and
values stored in the database, and these formats may evolve

over time. In particular, the values often correspond to data
structures serialized using JSON [10] or a binary format like
Thrift [8], Protobufs [7], or Avro [9]. The latter formats have
schema-aware parsers, which include some support for schema
changes, e.g. by skipping unknown fields or by attempting
to translate data from the writer schema into the reader
schema [13]. However, orchestrating the actual changes to the
data and the application logic is entirely up to the programmer.

One approach to defining schema changes defines a declar-
ative schema evolution language for NoSQL databases [49].
This language allows specifying more comprehensive schema
changes and enables the automatic generation of database
queries for migrating eagerly to the new schema. (While the
paper also mentions the possibility of performing the migration
in a lazy manner, which is needed for avoiding downtime,
design and implementation details are not provided.) Other
approaches use a domain-specific language (DSL) for de-
scribing data schema migrations for Python [31] and for
Haskell datatypes [50]. Many other approaches [51], [52],
[53], [54] have focused on the problem of synthesizing the
transformation code to migrate from one schema version to the
next, and the transformation is then typically applied offline,
rather than incrementally online. In this paper, we focus on
how to apply a transformation without halting service rather
than synthesizing the transformation code.

In practice, developers are often advised to handle all
the necessary schema changes in custom code, added to the
application logic that may modify the data in the database [12],
[17], [18], [19]. This approach burdens programmers with
complex code that mixes application and schema-maintenance
logic and does not provide a mechanism for reasoning about
the correctness of schema changes performed concurrently
with the live workload.

Our work is also related to the body of research on dynamic
software updates [20], [23], [21], [22], which aim to modify
a running program on-the-fly, without causing downtime.
However, with the exception of a position paper [55], these
approaches focus on changes to code and data structures
loaded in memory, rather than changes to the formats of
persistent data stored in a database.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented KVolve, a general approach to
evolving a NoSQL database without downtime. KVolve adapts
Redis to migrate data as it is accessed, reducing downtime that
would otherwise result during a data upgrade, and minimizing
required changes to applications. We find that KVolve imposes
essentially no overhead when not performing an update, and
minimal overhead when performing an update.

In the future, we would like to expand KVolve to work
with Redis Cluster, a distributed implementation of Redis. We
also would like to add direct support for programmer-specified,
backward-compatible updates, which would support continued
operation without restarting clients. Finally, we would like to
streamline writing the transformation function with a DSL,
simplifying the update planning process.



We plan to release our code and make it freely available.
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