
A Calculus for Dynamic Loading

Michael Hicks
University of Pennsylvania

Stephanie Weirich
Cornell University

February 6, 2001

Abstract

We present the load-calculus, used to model dynamic loading, and prove it
sound. The calculus extends the polymorphic λ-calculus with a load primitive
that dynamically loads terms that are closed, with respect to values. The cal-
culus is meant to approximate the process of dynamic loading in TAL/Load [4],
an version of Typed Assembly Language [7] extending with dynamic linking.
To model the key aspects of TAL, the calculus contains references and facili-
ties for named types. Loadable programs may refer to named types defined by
the running program, and may export new types to code loaded later. Our ap-
proach follows the framework initially outlined by Glew et. al [3]. This calculus
has been implemented in the TALx86 [6] version of Typed Assembly Language,
and is used to implement a full-featured dynamic linking library, DLpop [4].

1 Introduction

The purpose of this report is prove the soundness of a simple calculus for dynamic
loading, designed as a theoretical basis for dynamic linking in Typed Assembly
Language [7, 6, 3]. Dynamic loading is provided by a simple primitive load, which
converts the binary representation of some closed1 term into the term itself. This
calculus is meant to approximate an implementation of dynamic loading in Typed
Assembly Language, and so the language provides references and named types, in
addition to load and lambda-terms.

Here is a small example of the use of load. Consider the following program (using
OCaml-style [5] syntax):

let f f2 =
let x = 1 in
(3, f2 x)
1By closed, we mean that there are no free value variables; there may be free type labels, as we

describe shortly.

1

Assuming f2 has type int→ int, then f has type (int→ int)→ int× int. We
could load this (closed) program in another program. Assuming that the binary
representation of this program is stored in the file “f”:

let g () =
let load_succ f = f (function x -> x + 1) in
let load_fail = (3,4) in
load [(int -> int]) -> int * int] ("f",load_succ,load_fail)

When g is executed, it will call load. If load succeeds, it will call load succ with the
loaded function of type int→ int, in this case the function f. If load fails (because
of either a type or format error), then load fail is executed instead. The result of
evaluating this program, assuming “f” is well-formed, is (3,2).

In order to properly accommodate named types, we define the notion of a type
heap, which maps type labels to types, where the type label corresponds to the named
type and the type it maps to is the implementation of that type. A program has two
type heaps, the current type heap, and the imported type heap. Labels within the
imported type heap correspond to types not defined by the current program. Addi-
tionally, a type label in the imported type heap could be undefined, corresponding
to a type whose representation is defined externally. In the ML terminology, an
imported type whose representation is known essentially corresponds to manifest
type, while one whose representation isn’t known corresponds to an opaque type,
the consequence of which is that values of that type may only be used abstractly.
For example, we can (roughly) modify the two programs above as follows:

extern namedtype t = int * int
let f f2 =
let x = 1 in
roll [t] (3, f2 x)

Here extern is used to approximate a manifest type defined externally, and namedtype
indicates that t is a unique name for the type.

namedtype t = int * int
let g () =
let load_succ f = f (function x -> x + 1) in
let load_fail = roll [t] (3,4) in
let x = load [(int -> int) -> int -> t]
("f",load_succ,load_fail) in

unroll x

2

Here, the running program defines the named type t, which is matched up at load
time with the imported type t defined in the other program. We use roll and
unroll to convert to and from named types.

We could also define opaque named types in both the running program and the
loaded code, and this is well-typed as long as the values of those types are used
abstractly (that is, they are never part of a roll or unroll expression, which would
reveal their representation). For instance, we could modify the loaded program as:

extern namedtype t
let f (f2:t->t) (x:t) =

(f2 x, f2 x)

Now the function f has type (t → t) → t → t × t. The running program could
become:

namedtype t = int * int
let g () =

let load_succ f = f
(function x -> let (y,z) = unroll x in roll [t] (y+1,z+1)) in

let load_fail = (roll [t] (3,4),roll [t] (4,5)) in
let x = load [(t -> t) -> t -> t]

("f",load_succ,load_fail) in
unroll [t] x

The converse is also possible. For instance,

namedtype t = int * int
let f x y =
roll [t] (x,y)

Now the function f has type int→ int→ t. The running program could become:

extern namedtype t
let g () =

let load_succ f = (f 1 2; ()) in
let load_fail = () in
load [int -> int -> t] ("f",load_succ,load_fail)

Note that after the value of type t is created, it is discarded. We could easily have
defined other functions in the loaded code to manipulate values of type t. We could
also combine these two programs to allow recursively defined named types across
modules.

The remainder of this report develops the calculus which allows such programs
to be written in a well-typed manner. We define the syntax, a static and operational
semantics, and finally a type-soundness theorem.

3

i ∈ Z
l ∈ TypeLabs
L ∈ ValueLabs
x ∈ Vars
α ∈ TypeVars

types τ ::= int | l | τ → τ | τ ref
| α | ∀α.τ

type heaps X ::= {l1 = χ1, . . . , ln = χn}
type heap values χ ::= ⊥ | τ
type interfaces Θ ::= (XI , XH)

expressions e ::= i | L | x | λx:τ.e | e1e2

| Λα.e | e[τ] | unroll e
| rolll e | ref e
| assign e1e2 | !e1

| load[τ] e0 e1 e2 e3

values v ::= i | L | x | λx:τ.e | rolll v
value heaps H ::= {L1 = v1, . . . , Ln = vn}

programs P ::= (Θ,H, e)

value heap types Φ ::= {L1 : τ1, . . . , Ln : τn}
type contexts ∆ ::= · |∆, α
contexts Γ ::= · | Γ, x : τ

Figure 1: load-calculus Syntax

2 Syntax

The syntax of the load-calculus is shown in Figure 1. A program P consists of a
type interface Θ, a heap H, and an expression to evaluate e. The heap H stores
reference cell values, and the expression e represents the program’s computation.
The interesting part is the type interface, which consists of two type heaps XI and
XH that defined the named types of the program. XI contains named types imported
by the program (to be resolved later during a linking phase), while XH contains
named types defined by the program, respectively.

A type heap is a finite map; it maps each type label l in its domain to a type heap
value χ, which is either a type τ or ⊥; the latter indicates an undefined (unresolved)
type label. We write X(l) to denote χ in the heap X = {. . . , l = χ, . . .}. For
the heap X = {l1 = χ1, . . . , ln = χn}, dom(X) refers to the set {l1, . . . , ln} and
rng(X) = {χ1, . . . , χn}.

Most types τ are standard, particularly base type int, function types τ → τ ,
reference types τ ref , variable types α and universally-quantified types ∀α.τ . We

4

use the type label l itself to represent a named type defined in the type heap.
Most expressions are standard, particularly integers i, variables x, value ab-

stractions λx:τ.e and applications e1e2, type abstractions Λα.e and applications e[τ],
reference construction ref e, reference assignment assign e1e2, and reference decon-
struction (dereference) !e1. We assume all λ-bound variables are unique. To coerce
an expression e to named type l, we provide a coercion rolll e; unroll performs the
reverse operation. For example, say the type heap XH has the form {filehandle =
int}, indicating that the named type filehandle is defined to have type int. To co-
erce the integer 1 to have type filehandle, we would do rollfilehandle 1. Converting
it back to an integer would simply require an unroll; i.e. unroll (rollfilehandle 1).
Note that named types are also permitted to be abstract, such that this unroll
operation is not permitted; this will be clear in the presentation of the static seman-
tics.

Reference values are stored in the value heap H. Value heaps are finite maps
mapping value labels L to values. We write H(L) to denote v in the heap H =
{. . . , L = v, . . .}. For the heap H = {L1 = v1, . . . , Ln = vn}, dom(H) refers to
the set {L1, . . . , Ln} and rng(H) = {v1, . . . , vn}. If H = {. . . , L = v, . . .}, then let
H[L = v′] be the heap {. . . , L = v′, . . .}; this operation is undefined if L 6∈ H.

3 Dynamic Semantics

In this section we present the rules for the model of computation in the load-calculus.

3.1 Linking

A running program may dynamically link in other programs as it runs using load.
The load expression models the loading of object files in TAL/Load, but varies
slightly from its presentation in [4]. Here, load takes ‘integers’ as its first two argu-
ments (representing the bytes of a program and a type heap mask, explained more
below) and alternative branches for a successful load and failure.

When a running program dynamically loads another program into it, both the
value and type heaps of the two programs must be merged. This process is called
linking. We first define linking for type heaps, and then for value heaps.

Stated informally, linking two type heaps together yields a resulting heap (1)
whose exports are the disjoint union of the source exports, and (2) whose imports
are the merge of the imports minus the exports. Type heap linking is well-formed
if the imports agree with each other (that is, they don’t define any named types
whose definitions conflict), and the exports are disjoint. Using the operations and
predicates on type heaps and type heap values shown in Figure 2, type heap linking
is defined formally as:

5

Type Heap Values
Operators
join χ1 t χ2 ⊥ t χ = χ χ t ⊥ = χ χ t χ = χ
approximates χ1 ≤ χ2 χ ≤ ⊥ χ ≤ χ

Predicates
similar χ1 ∼ χ2 χ1 ≤ χ2 or χ2 ≤ χ1

Type Heaps
Operators
restriction X1 −X2 X1 restricted to labels not in dom(X2)
disjoint union X1]X2 Union of disjoint maps, defined if X1 |X2

merge X1 ⊕X2 Union of similar maps (defined if X1 ∼ X2),
maps l ∈ dom(X1) ∩ dom(X2) to X1(l) tX2(l)

Predicates
disjoint X1 |X2 dom(X1) and dom(X2) are disjoint
link compatible X1 - X2 For l in dom(X1) ∩ dom(X2), X1(l) ≤ X2(l)
similar X1 ∼ X2 For l in dom(X1) ∩ dom(X2), X1(l) ∼ X2(l)
subtype X1 ≤ X2 X1 - X2 and dom(X2) ⊆ dom(X1)

Figure 2: Type heaps and type heap values: operators and predicates

Definition 3.1 (Type Heap Linking)

X1
I ∼ X2

I X1
H - X

2
I X2

H - X
1
I X1

H |X2
H

(X1
I , X

1
H) link (X2

I , X
2
H)⇒ (X3

I , X
3
H)

(
X3
H = X1

H]X2
H

X3
I = ((X1

I ⊕X2
I)−X3

H)

)
Value heap linking is essentially the same as type heap linking, minus the re-

quirements and operations concerning imported values. This is because value heaps
are required to be closed (i.e. self-contained), so there is no import heap and link-
ing them together just becomes disjoint union. This requirement is in contrast to
typical definitions of value heap (or term-level) linking (e.g. [3, 1, 2]); we make it
because we expect value linking to occur in the term language itself.

Definition 3.2 (Value Heap Linking)

H1 |H2

H1 linkH2 ⇒ H3
(H3 = H1]H2)

where H1 |H2 dom(H1) and dom(H2) are disjoint
H1]H2 Union of disjoint maps, defined if H1 |H2

6

3.2 Operational Semantics

We define the operational semantics for the load-calculus using a one-step reduction
operator 7→, following a call-by-value discipline. The most interesting construct is
load; its operational rules appear in Figure 3. The first two (term) arguments to
load are the integers h, specifying the type heap mask to use during linking, and
i, specifying the program to load. We use ·̂ as some function that maps integer
arguments to programs or type heaps, as appropriate, modeling a filesystem. The
argument ĥ is a type heap that is more restrictive than the running program’s type
export heap. It is used by the caller to limit the definitions that may be seen by the
loaded code, if desired; as such, we refer to it as a type heap mask. The second two
arguments to load are the success and failure expressions. If load − success is used,
then the success expression is applied to the loaded program expression e; otherwise
the expression e3 is used (i.e., when using load − failure). The type argument to τ
to load indicates the expected type of the expression in the loaded program.

For load to succeed, three conditions must be met. First, value heap linking
H1 linkH2 ⇒ H3 must succeed, combining the running program’s value heap H1

and the loaded program’s value heap H2 to produce heap H3. Second, X1
H ` î : τ ,

indicating that the program to be loaded î is well-formed in the context of the
running program’s export heap, having type τ , matching the type argument passed
to load. Program well-formedness is presented as part of the ‘static’ semantics in
the next subsection. Finally, type heap linking (X1

I , X) link (X2
I , X

2
H)⇒ (X3

I , X
′)

must succeed. Rather than linking the running program’s type interface (X1
I , X

1
H)

with the loaded program’s interface, we link (X1
I , X) instead, thereby replacing the

export type heap X1
H with X, which is the type heap indicated by ĥ. This type

heap must be the same as or more restrictive than the program’s export type heap,
as required by the conditions X1

H ≤ X and X2
I | (X1

H −X). This linking operation
produces export heap X ′, which is merged with the program export heap in the new
program: X3

H = X ′ ⊕X1
H .

The remaining operational rules for the calculus are shown in Figure 4. We define
e[e′/x] as the capture-avoiding substitution of the term e′ for each occurrence of the
variable x in the term e. These rules are basically standard. In particular, beta
performs function application via substitution; unroll guarantees that a value that
has been coerced to a named type cannot be examined until it has been unrolled;
ref causes the ‘allocation’ of a unique value label L in the value heap and stores
the value v there; deref extracts the value v mapped to by value label L in the
value heap; assign overwrites the existing mapping for value label L in the value
heap with one from L to v (recall that the operation H[L = v] requires that L be
defined in H); tapp performs type application via substitution. The remaining rules
are congruence rules. One oddity is that the success and failure expressions in the

7

(Θ,H, load i1 i2 e1 e2) 7→ (Θ′,H ′, e′)

(X1
I , X) link (X2

I , X
2
H)⇒ (X3

I , X
′)

X1
H ≤ X X2

I | (X1
H −X)

X1
H ` î : τ

H1 linkH2 ⇒ H3

((X1
I , X

1
H),H1, load[τ] h i e2 e3) 7→

((X3
I , X

3
H),H3, e2 e)

 ĥ = X

î = ((X2
I , X

2
H),H2, e)

X3
H = X ′ ⊕X1

H

 (load-success)

(Θ,H, load[τ] h i e2 e3) 7→ (Θ,H, e3) (load − failure)
otherwise

Figure 3: Operational rules for load

congruence rules are not call-by-value; they are left unevaluated until the actual
loading operation takes place. Then only one of them will evaluate, based on the
result. Note that we require a type-passing semantics because the type argument
passed to load is used at runtime; we use type-erasure semantics in TAL/Load by
introducing λR-style term representations for types, as explained in the next section.

4 Static Semantics

As is standard, the static semantics is used to statically check that a program is
well-formed. In addition, the operational rule for load requires that well-formedness
be checked at runtime, before a program can be dynamically loaded into the running
program. Informally, program well-formedness is defined as follows. The program
type interface components XI and XH must be disjoint and well-formed; the value
heap H must be well-typed in the context of the type interface; and the program
expression e must be well-typed in the context of both the type and value heaps. In
the case that the program is being loaded dynamically, its type export heap labels
XH must be disjoint from those of the running program XP . This is stated formally
below.

Definition 4.1 (Program well-formedness)

` XI]XH XI]XH ` Φ
XI]XH ` H : Φ XI]XH ; Φ; ·; · ` e : τ

XP ` ((XI , XH),H, e) : τ
(
XH |XP

)
8

(Θ,H, e) 7→ (Θ′,H ′, e′)

(Θ,H, (λx:τ.e) v) 7→ (Θ,H, e[v/x]) (beta)

(Θ,H, unroll(rolll v)) 7→ (Θ,H, v) (unroll)

(Θ,H, ref v) 7→ (Θ,H] {L = v}, L) (ref)
where L 6∈ dom(H)

(Θ,H, !L) 7→ (Θ,H, v) (deref)
where H(L) = v

(Θ,H, assign L v) 7→ (Θ,H[L = v], v) (assign)

(Θ,H, (Λα.e)[τ]) 7→ (Θ,H, e[τ/α]) (tapp)

(Θ,H, e) 7→ (Θ′,H ′, e′)

(Θ,H, e e2) 7→ (Θ′,H ′, e′ e2)
(Θ,H, v1 e) 7→ (Θ′,H ′, v1 e

′)
(Θ,H, rolll e) 7→ (Θ′,H ′, rolll e′)

(Θ,H, unroll e) 7→ (Θ′,H ′, unroll e′)
(Θ,H, load[τ] e e1 e2 e3) 7→ (Θ′,H ′, load[τ] e′ e1 e2 e3)
(Θ,H, load[τ] v e e2 e3) 7→ (Θ′,H ′, load[τ] v e′ e2 e3)

(Θ,H, ref e) 7→ (Θ′,H ′, ref e′)
(Θ,H, !e) 7→ (Θ′,H ′, !e′)

(Θ,H, assign e e2) 7→ (Θ′,H ′, assign e′ e2)
(Θ,H, assign v e) 7→ (Θ′,H ′, assign v e′)

(Θ,H, e[τ]) 7→ (Θ′,H ′, e′[τ])

(congruence)

Figure 4: Operational rules, excluding load

9

X; ∆ ` τ

X; ∆ ` int α ∈ ∆
X; ∆ ` α

l ∈ dom(X)
X; ∆ ` l

X; ∆ ` τ ′ X; ∆ ` τ
X; ∆ ` τ ′ → τ

X; ∆ ` τ
X; ∆ ` ref τ

X; ∆, α ` τ
X; ∆ ` ∀α.τ (α 6∈ ∆)

` X
X; · ` τ (for each τ ∈ rng(X))

` X

X; ∆ ` Γ

X; ∆ ` · X; ∆ ` Γ X; ∆ ` τ
X; ∆ ` Γ, x:τ

X ` Φ
X; · ` τ (for each τ ∈ rng(Φ))

X ` Φ

X ` H : Φ
X; Φ; ·; · ` H(L) : Φ(L) (for each L ∈ dom(H))

X ` H : Φ

Figure 5: Well-formedness for types, type heaps, contexts, value heap typings, and
value heaps

{} ` (Θ,H, e) : τ
` (Θ,H, e) : τ

Figure 5 presents well-formedness conditions for types, type heaps, contexts,
value heap typings, and value heaps. Types are checked for well-formedness in
relation to a type heap X and a type variable context ∆. The former is used to
make sure that a named type l is present in the type heap, and the latter is used to
make sure a type variable α is properly quantified. A type heap X is well-formed
if all of the types mentioned in its range are well-formed. This rule in combination
with the one for named types allows named types to be mutually recursive. Note
that a well-formed type heap is closed ; all of the labels appearing in its range are
defined in the type heap itself.

Like type heaps, a value heap typing Φ is well-formed if all of the types mentioned
in its range are well-formed. A value heap is well-formed if the values therein may
be typed with a given value heap typing. Value typing is checked via the expression
typing relation, shown in Figure 6.

10

Most of expression typing rules are standard. Noteworthy are the rules for load,
and roll and unroll. As mentioned in the operational semantics, the first two term
arguments, which are mapped at runtime to a type heap ‘context’ and a program,
respectively, must have type int. The type argument τ ′ indicates the expected type
of the loaded program’s term component. The third term argument is the ‘success-
expression’ which is applied to the loaded code, so it must take an argument of type
τ ′, returning a result of type τ . The final term argument is the ‘failure-expression’
which is executed if loading fails; its type must match the return type τ of the
success condition so that the overall type of the load expression will be τ .

We use unroll to coerce an expression e having some named type l. The result
has type τ , where l maps to τ in the type heap X. We use rolll to coerce an
expression e to named type l; if e has type τ then the type heap X must map l to
τ . The semantics allows for named types to be opaque (abstract). In particular, the
expression unrolle : τ is only well-typed if X(l) = τ . To make l abstract, we set
X(l) to ⊥, forbidding the coercion to the implementation type. In practice, label l
is made abstract to loaded code by mapping it to ⊥ in the type heap mask X during
loading.

11

X; Φ; ∆; Γ ` e : τ
X; Φ; ∆; Γ ` e0 : int
X; Φ; ∆; Γ ` e1 : int

X; Φ; ∆; Γ ` e2 : τ ′ → τ
X; Φ; ∆; Γ ` e3 : τ

X; Φ; ∆; Γ ` load[τ ′] e0 e1 e2 e3 : τ

X; Φ; ∆; Γ ` i : int X; Φ; ∆; Γ ` x : Γ(x) X; Φ; ∆; Γ ` L : Φ(L) ref

X; Φ; ∆; Γ ` e : l
X; Φ; ∆; Γ ` unroll e : τ

(X(l) = τ)
X; Φ; ∆; Γ ` e : τ

X; Φ; ∆; Γ ` rolll e : l
(X(l) = τ)

X; Φ; ∆; Γ, x:τ ′ ` e : τ X; ∆ ` τ ′

X; Φ; ∆; Γ ` λx:τ ′.e : τ ′ → τ

X; Φ; ∆; Γ ` e1 : τ ′ → τ X; Φ; ∆; Γ ` e2 : τ ′

X; Φ; ∆; Γ ` e1 e2 : τ

X; Φ; ∆, α; Γ ` e : τ
X; Φ; ∆; Γ ` Λα.e : ∀α.τ

X; Φ; ∆; Γ ` e : ∀α.τ X; ∆ ` τ ′

X; Φ; ∆; Γ ` e[τ ′] : τ [τ ′/α]

X; Φ; ∆; Γ ` e : τ
X; Φ; ∆; Γ ` ref e : τ ref

X; Φ; ∆; Γ ` e : τ ref
X; Φ; ∆; Γ ` !e : τ

X; Φ; ∆; Γ ` e1 : τ ref
X; Φ; ∆; Γ ` e2 : τ

X; Φ; ∆; Γ ` assign e1 e2 : τ

Figure 6: Expression typing

12

5 Properties of the formal system

The important formal property of this system is that it is type-safe (this property is
also called type-soundness). In particular, if a program is well-typed, it will execute
in a well-defined fashion indefinitely, or until it completes with a particular value.
Formally stated:

Theorem 5.1 (Type Safety) If ` (Θ,H, e) : τ and (Θ,H, e) 7→∗ (Θ′,H ′, e′) then
(Θ′,H ′, e′) then either e′ is a value or may be further reduced by some rule of the
operational semantics.

Note that 7→∗ is the multi-step reduction relation, indicating one or more ap-
plications of the single-step relation 7→. Type safety is proven using the standard
technique of showing subject reduction and progress:

Lemma 5.2 (Subject Reduction) If ` (Θ,H, e) : τ and (Θ,H, e) 7→ (Θ′,H ′, e′)
then ` (Θ′,H ′, e′) : τ

Lemma 5.3 (Progress) If ` (Θ,H, e) : τ and e is not a value, then there exists a
(Θ′,H ′, e′) such that (Θ,H, e) 7→ (Θ′,H ′, e′).

Stated informally, subject reduction indicates that if a given program has a type
τ , and it may take (at least) one reduction step, then the resulting program, after
applying the reduction rule, still has type τ . Progress indicates that if a well-typed
program cannot take an evaluation step, then it must be a value having type τ . The
following chapter presents proofs for these properties.

6 Proofs

Our presentation of the proofs of soundness is bottom-up, starting with properties
of the system needed for the final proof. We start with properties of type heaps,
then properties of value heaps, then properties of type derivations, and finally the
proof of type-safety.

6.1 Properties of Type Heaps

All of the Lemmas (and their corollaries) developed in this subsection are for the
purpose of proving the load case of the subject reduction, in Section 6.4.

Lemma 6.1 (Type Heap Equalities) Suppose A,B,C,D are type heaps, then

1. (A⊕B)⊕ C = A⊕ (B ⊕ C)

13

2. (A⊕B) = (B ⊕A)

3. if A |B then A⊕B = A]B

4. if A - C, B - D, A ∼ B and C ∼ D, A |D, B | C, then (A⊕B) - (C ⊕D)

5. if B - A then (A−B)]B = A⊕B.

6. if A ≤ B then A - B

7. if A ≤ B then A⊕B = A

8. if A - B then A ∼ B

9. if B ≤ A and C | (B −A) then C −B = C −A

Proof of 4 This fails if for some l, (A⊕B)(l) = ⊥ and (C ⊕D)(l) = τ . Assume
A(l) = ⊥. Then C(l) = ⊥, if l ∈ dom(C) as A - C. Furthermore l 6∈ dom(D) as
A |D. So (C ⊕D)(l) = ⊥ if anything. Analogous reasoning if B(l) = ⊥.

Proof of 5 If l ∈ A and not in B then trivially (A ⊕ B)(l) = ((A − B)] B)(l),
likewise if l ∈ B and not A, and if A(l) = B(l). Suppose A(l) = ⊥ and B(l) = τ ,
then (A⊕B)(l) = τ and (A−B)(l) is undefined so (A−B)]B(l) = τ . The reverse
case, where A(l) = τ and B(l) = ⊥ cannot happen by assumption.

Proof of 9 As C does not include labels in B that are not in A, then removing
the labels from C that are in B is the same as removing only the ones from A.

Lemma 6.2 (Type Heap Merge) If ` XA and ` XB then ` XA ⊕XB.

Lemma 6.3 (Type Heap Weakening) Suppose X ⊕X ′ is well-defined.

1. If X; ∆ ` τ then (X ⊕X ′); ∆ ` τ

2. If X ` Φ then X ⊕X ′ ` Φ

3. If X; Φ; ∆; Γ ` e : τ then X ⊕X ′; Φ; ∆; Γ ` e : τ .

4. If X ` H : Φ then X ⊕X ′ ` H : Φ

Proof
1. Proof is by induction on X; ∆ ` τ . If τ = α then (X ⊕ X ′); ∆ ` α. If

τ = int then (X ⊕ X ′); ∆ ` int. If τ = l then l is still in the domain of
X⊕X ′ (though its range might change), so (X⊕X ′); ∆ ` l. The remaining
cases follow by induction.

14

2. We are given that for each τ ∈ rng(Φ), X ` τ . It follows by 1 that
X ⊕X ′ ` τ .

3. Proof is by induction on X; Φ; ∆; Γ ` e : τ . This follows trivially or by
induction for every rule except: If e is an abstraction or a type application,
then Part 1 is also needed to verify the type added to the context. If e
is unroll e′ or rolll e

′ then we note that because X(l) = τ , then by the
definition of X ⊕ X ′, (X ⊕ X ′)(l) = τ as well, and the rest follows by
induction.

4. We are given that for each L ∈ dom(H) that X; Φ; ·; · ` H(L) : Φ(L). It
follows by 3 that X ⊕X ′; Φ; · ` H(L) : Φ(L).

Corollary 6.4 Suppose X]X ′ is well-defined.

1. If X; ∆ ` τ then X]X ′; ∆ ` τ

2. If X ` Φ then X]X ′ ` Φ

3. If X; Φ; ∆; Γ ` e : τ then X]X ′; Φ; ∆; Γ ` e : τ .

4. If X ` H : Φ then X]X ′ ` H : Φ

Lemma 6.5 (Type Heap Redundancy Elimination) If X ≤ X ′ and X⊕X ′′ `
τ then X ⊕ (X ′′ −X ′) ` τ

Proof

(Sketch) Any label in X ′′ that is also in X ′ will also be in X as that type heap
contains all of the labels of X ′. Therefore subtracting out the redundant labels
will not interefere with type well-formedness.

6.2 Properties of Value Heaps

The Lemmas (and their corollaries) developed in this subsection are used in the
proof of subject reduction for the load and ref cases.

Lemma 6.6 (Value Heap Weakening) If X ` Φ, X ` H : Φ, X; Φ; ·; · ` e : τ
and given some L′ 6∈ dom(Φ) and some type τ ′ such that X; · ` τ ′, then

1. X ` (Φ] {L′ : τ ′})

2. X ` H : (Φ] {L′ : τ ′})

3. X; (Φ] {L′ : τ ′}); ·; · ` e : τ

Proof

15

1. We must show that for all τ ∈ rng(Φ] {L′ : τ ′}), X ` τ . If τ ∈ rng(Φ),
then this is true by inversion of X ` Φ. If tau 6∈ rng(Φ) then τ = τ ′, and
we are given that X; · ` τ ′.

2. This follows trivially by assumption, since we have not changed the domain
of H.

3. Proof by induction on X; Φ; ·; · ` e : τ . Follows trivially or by induction.
In the abstraction and type application cases, we need to use 1 for the
introduction of the new type, and for e = L, we have Φ(L) = τ = (Φ]{L′ :
τ ′})(L).

Corollary 6.7 If X ` Φ and X ` H : Φ, and given some Φ′ such that X ` Φ′ and
Φ | Φ′, then

1. X ` (Φ] Φ′)

2. X ` H : (Φ] Φ′)

3. X; (Φ] Φ′); ·; · ` e : τ

Lemma 6.8 (Value Heap Redundancy Elimination) If X ` H : Φ, and there
exists some L′ ∈ dom(Φ) s.t. L′ 6∈ dom(H), then X ` H : {L : τ |L : τ ∈ Φ, L 6= L′}.

Proof

We must show that for all L ∈ dom(H),H(L) : ({L : τ |L : τ ∈ Φ, L 6= L′})(L).
But this is obvious, since we have only removed a label from Φ that was not in
H.

6.3 Properties of Type Derivations

Lemma 6.9 (Type in Type Substitution) If X; ∆, α ` τ and X; ∆ ` τ ′ then
X; ∆ ` τ [τ ′/α]

Proof

Proof by induction on X; ∆, α ` τ
Case 1: X; ∆, α ` l or X; ∆, α ` int follows trivially.

Case 2: X; ∆, α ` α since by assumption X; ∆ ` α[τ ′/α].

Remaining cases follow by simple induction.

The following lemma is used in the ref case of subject reduction.

Lemma 6.10 (Regularity)

16

If X; Φ; ∆; Γ ` v : τ , ` X, X; ∆ ` Γ, and X ` Φ, then X; ∆ ` τ .

Proof
The proof proceeds by induction on the derivation X; Φ; ∆; Γ ` e : τ .

Case 1: X; Φ; ∆; Γ ` i : int. Follows directly that X; ∆ ` int.

Case 2: X; Φ; ∆; Γ ` L : Φ(L). By assumption X ` Φ, and by inversion
X; · ` Φ(L).

Case 3: X; Φ; ∆; Γ ` y : Γ(y). By assumption X; ∆ ` Γ, so X; ∆ ` Γ(y).

Case 4: X; Φ; ∆; Γ ` λx:τ ′.e : τ ′ → τ . By inversion X; ∆ ` τ ′. As a result,
X; ∆ ` Γ, x:τ ′, as τ ′ is well-formed. Therefore, by induction X; ∆ ` τ . Thus,
X; ∆ ` τ ′ → τ .

Case 5: X; Φ; ∆; Γ ` e1 e2 : τ . By induction X; ∆ ` τ ′ → τ , and by inversion
X; ∆ ` τ .

Case 6: X; Φ; ∆; Γ ` load[τ ′] e0 e1 e2 e3 : τ . By induction.

Case 7: X; Φ; ∆; Γ ` rolll e : l. By the rule side-condition X(l) = τ , thus
X; ∆ ` l.
Case 8: X; Φ; ∆; Γ ` unroll e : τ . By the rule side-condition X(l) = τ , and
by assumption ` X, so X; · ` τ . By weakening, X; ∆ ` τ .

Case 9: X; Φ; ∆; Γ ` ref e : τ ref . By induction X; ∆ ` τ , so X; ∆ ` τ ref
follows directly.

Case 10: X; Φ; ∆; Γ ` !e : τ . By induction X; ∆ ` τ ref , and by induction
again X; ∆ ` τ .

Case 11: X; Φ; ∆; Γ ` assign e1e2 : τ . By induction.

Case 12: X; Φ; ∆; Γ ` e : ∀α.τ . By induction.

Case 13: X; Φ; ∆; Γ ` e[τ ′] : τ [τ ′/α], so by inversion X; Φ; ∆, α; Γ ` e : τ
and X; ∆ ` τ ′. By induction X; ∆, α ` τ and by type in type substitution,
X; ∆ ` τ [τ ′/α].

The following two lemmas are used in the proof of substitution, also below.

Lemma 6.11 (Weakening) If X; Φ; ∆; Γ ` e : τ and x 6∈ dom(Γ) and α 6∈ dom(∆),
then X; Φ; ∆; Γ, x:τ ′ ` e : τ , and X; Φ; ∆, α; Γ ` e : τ . Moreover, the latter deriva-
tions have the same depth as the former.

Lemma 6.12 (Permutation) If X; Φ; ∆; Γ ` e : τ with Γ′ is a permutation of Γ
and ∆′ is a permutation of ∆, then X; Φ; ∆; Γ′ ` e : τ , and X; Φ; ∆′; Γ ` e : τ .
Moreover, the latter derivations have the same depth as the former.

17

Lemma 6.13 (Substitution) If X; Φ; ∆; Γ, x:τ ′ ` e : τ and X; Φ; ∆; Γ ` e′ : τ ′

then X; Φ; ∆; Γ ` e[e′/x] : τ .

Proof

Proof is by induction on X; Φ; ∆; Γ, x:τ ′ ` e : τ .

Case 1: X; Φ; ∆; Γ, x:τ ′ ` i : int

Therefore e[e′/x] = i, and X; Φ; ∆; Γ ` i : int.

Case 2: X; Φ; ∆; Γ, x:τ ′ ` L : Φ(L).

Therefore e[e′/x] = L, and X; Φ; ∆; Γ ` L : Φ(L).

Case 3: X; Φ; ∆; Γ, x:τ ′ ` y : (Γ, x:τ ′)(y).

If y = x then y[e′/x] = e′. By assumption, X; Φ; ∆; Γ ` e′ : τ ′, and the result
follows from τ = τ ′. Otherwise, y[e′/x] = y and X; Φ; ∆; Γ ` y : Γ(y).

Case 4: X; Φ; ∆; Γ, x:τ ′ ` λy:τ ′′.e : τ ′′ → τ

Follows by induction (with Weakening and Permutation): X; Φ; ∆; Γ, y:τ ′′ `
e[e′/x] : τ . Therefore, X; Φ; ∆; Γ ` (λy:τ ′′.e)[e′/x] : τ ′′ → τ .

Case 5: X; Φ; ∆; Γ, x:τ ′ ` e1 e2 : τ .

Follows by induction: X; Φ; ∆; Γ ` e1[e′/x] : τ ′′ → τ and X; Φ; ∆; Γ ` e2[e′/x] :
τ ′′. Therefore, X; Φ; ∆; Γ ` (e1e2)[e′/x] : τ .

Case 6: X; Φ; ∆; Γ, x:τ ′ ` load[τ ′′] e0 e1 e2 e3 : τ .

Follows by induction: X; Φ; ∆; Γ ` e0[e′/x] : int,X; Φ; ∆; Γ ` e1[e′/x] : int,
X; Φ; ∆; Γ ` e2[e′/x] : τ ′′ → τ , and X; Φ; ∆; Γ ` e3[e′/x] : τ , so therefore
X; Φ; ∆; Γ ` (load[τ ′′] e1 e2 e3)[e′/x] : τ .

Case 7: X; Φ; ∆; Γ, x:τ ′ ` rolll e : l.

Follows by induction: X; Φ; ∆; Γ ` e[e′/x] : τ ′′, so X; Φ; ∆; Γ ` (rolll e)[e′/x] : l

Case 8: X; Φ; ∆; Γ, x:τ ′ ` unroll e : τ .

Follows by induction: X; Φ; ∆; Γ ` e[e′/x] : l, so X; Φ; ∆; Γ ` (unroll e)[e′/x] :
τ .

Case 9: X; Φ; ∆; Γ, x:τ ′ ` ref e : τ ref .

Follows by induction: X; Φ; ∆; Γ ` e[e′/x] : τ , so X; Φ; ∆; Γ ` (ref e)[e′/x] :
τ ref .

Case 10: X; Φ; ∆; Γ, x:τ ′ ` !e : τ .

Follows by induction: X; Φ; ∆; Γ ` e[e′/x] : τ ref , so X; Φ; ∆; Γ ` (!e)[e′/x] : τ .

Case 11: X; Φ; ∆; Γ, x:τ ′ ` assign e1e2 : τ .

18

Follows by induction: X; Φ; ∆; Γ ` e1[e′/x] : τ ref and X; Φ; ∆; Γ ` e2[e′/x] : τ .
Therefore, X; Φ; ∆; Γ ` (assign e1e2)[e′/x] : τ .

Case 12: X; Φ; ∆; Γ, x:τ ′ ` Λα.e : ∀α.τ . Follows by induction (with Weaken-
ing): X; Φ; ∆, α; Γ ` e[e′/x] : τ , so X; Φ; ∆, α; Γ ` Λα.e[e′/x] : ∀α.τ .

Case 13: X; Φ; ∆; Γ, x:τ ′ ` e[τ ′] : τ [τ ′/α]. Follows by induction: X; Φ; ∆, α; Γ `
e[e′/x] : ∀α.τ , so X; Φ; ∆; Γ ` (e[e′/x])[τ ′] : τ [τ ′/α].

Lemma 6.14 (Type Substitution) If ` X and X; Φ; ∆, α; Γ ` e : τ and X; ∆ `
τ ′ then X; Φ; ∆; Γ ` e[τ ′/α] : τ [τ ′/α].

Proof
Proof is by induction on X; Φ; ∆, α; Γ ` e : τ . Most cases are trivial or by
induction. Selected cases:

Case 1: X; Φ; ∆, α; Γ ` load[τ ′′] e1 e2 e3 : τ .

By induction: X; Φ; ∆; Γ ` e0[τ ′/α] : int, X; Φ; ∆; Γ ` e1[τ ′/α] : int, X; Φ; ∆; Γ `
e2[τ ′/α] : (τ ′′ → τ)[τ ′/α], and X; Φ; ∆; Γ ` e3[τ ′/α] : τ [τ ′/α]. By type in type
substitutionX; ∆ ` τ ′′[τ ′/α] so thereforeX; Φ; ∆; Γ ` (load[τ ′′] e0 e1 e2 e3)[τ ′/α] :
τ [τ ′/α].

Case 2: X; Φ; ∆, α; Γ ` rolll e : l.

Follows by induction: X; Φ; ∆; Γ ` e[τ ′/α] : τ ′′[τ ′/α]. As X(l) = τ ′′ and ` X
then X; · ` τ ′′. Therefore X; Φ; ∆; Γ ` (rolll e)[τ ′/α] : l[τ ′/α] since τ ′′ must be
closed.

Case 3: X; Φ; ∆, α; Γ ` unroll e : τ [τ ′/α].

Follows by induction: X; Φ; ∆; Γ ` e[τ ′/α] : l[τ ′/α], soX; Φ; ∆; Γ ` (unroll e)[τ ′/α] :
τ [τ ′/α].

The following lemma is used in the proof of progress, to develop type soundness.

Lemma 6.15 (Canonical Forms) If X; Φ; · ` v : τ and

• τ = int then v = i.

• τ = τ1 → τ2 then v = λx:τ.e.

• τ = l then v = rolll(v′) for some v′.

• τ = τ ref then v = L.

• τ = ∀α.τ then v = Λα.e.
Proof
Proof is by examination of the last step of the typing derivation X; Φ; ·; · ` v : τ .
Most rules either require the expression to be a non-value or require a non-empty
context. The remaining rules produce each of the types at the correct values.

19

6.4 Type Soundness

We establish type soundness in the standard manner, by proof of subject reduction
and progress.

Lemma 6.16 (Subject Reduction) If ` (Θ,H, e) : τ and (Θ,H, e) 7→ (Θ′,H ′, e′)
then ` (Θ′,H ′, e′) : τ

Proof

` (Θ′,H ′, e′) : τ is proven by showing that, for some Φ′

• (Type-heap well-formedness) ` X ′I]X ′H
• (Value-heap typing well-formedness) X ′I]X ′H ` Φ′

• (Value-heap well-formedness) X ′I]X ′H ` H ′ : Φ′

• (Expression well-formedness) X ′I]X ′H ; Φ′; ·; · ` e′ : τ

For brevity, we refer to these points in the proof as THWF, VHTWF, VHWF, and
EWF, respectively, and except when otherwise noted, we assume that Φ′ = Φ and
that THWF, VHTWF, VHWF hold by assumption. The proof is by induction on
the typing derivation ` (Θ,H, e) (for some Φ), and on (Θ,H, e) 7→ (Θ′,H ′, e′).

Case 1: (beta) (Θ,H, (λx:τ.e′′)v) 7→ (Θ,H, e′′[v/x]).

As e is an application, by inversion XI]XH ; Φ;x:τ ′ ` e′′ : τ , and XI]XH ; Φ; ·; · `
v : τ ′. EWF follows by substitution: XI]XH ; Φ; ·; · ` e′′[v/x] : τ .

Case 2: (load-success) ((X1
I , X

1
H),H, load[τ ′]h i e2 e3) 7→ ((X3

I , X
3
H),H3, e2 e)

We must establish each of THWF, VHTWF, VHWF, and EWF. We know the
following facts. From this evaluation rule:

1. ĥ = X

2. î = ((X2
I , X

2
H),H2, e)

3. X1
H ` î : τ ′

4. (X1
I , X) link (X2

I , X
2
H)⇒ (X3

I , X
′)

5. X3
I = X ′ ⊕X1

H

6. H1 linkH2 ⇒ H3

7. X1
H ≤ X

8. X2
I | (X1

H −X)
As linking is well-formed for both value heaps (by 6) and type heaps (by
4):

20

9. X1
I ∼ X2

I

10. X |X2
H

11. X2
H - X

1
I

12. X - X2
I

13. H1 |H2

As the loaded program is well-formed (by 3), for some Φ2:

14. ` X2
I]X2

H

15. X2
I]X2

H ` Φ2

16. X2
I]X2

H ` H2 : Φ2

17. X2
I]X2

H ; Φ2; ·; · ` e : τ ′

18. X2
H |X1

H

Since the running program is well-formed, for some Φ1:

19. ` X1
I]X1

H

20. X1
I]X1

H ` Φ1

21. X1
I]X1

H ` H1 : Φ1

22. X1
I]X1

H ; Φ1; ·; · ` load[τ ′]ie2e3 : τ
By inversion of this last expression’s typing judgement:

23. X1
I]X1

H ; Φ1; ·; · ` i : int

24. X1
I]X1

H ; Φ1; ·; · ` e2 : τ ′ → τ

25. X1
I]X1

H ; Φ1; ·; · ` e3 : τ

We define Φ1 as the least Φ1 that satisfies 21, and Φ2 as the least Φ2 that
satisfies 16. Finally, we define Φ3 as Φ1]Φ2, which is well-defined as dom(H1) =
dom(Φ1), dom(H2) = dom(Φ2), and ` H1 |H2 by 19.

To prove well-formedness of the new program we must establish:

• (THWF): ` X3
I]X3

H

By definition, this is ((X1
I ⊕ X2

I) − (X] X2
H))] ((X] X2

H) ⊕ X1
H). The

expression (X1
I ⊕X2

I) is well-defined by 9, (X]X2
H) is well-defined by 10.

As X1
H ≤ X and X |X2

H then ((X]X2
H)⊕X1

H) is well-defined, and equal
to X2

H ⊕ X1
H . Finally, the whole thing is well-defined if there is no label

defined in X1
I ⊕X2

I , not defined in X but defined in X1
H . However, 8 and 19

guarantee that fact.
Therefore, X3

I]X3
H

21

= ((X1
I⊕X2

I)−(X]X2
H))](X2

H⊕X1
H) by reasoning above

= ((X1
I ⊕X2

I)− (X1
H ⊕X2

H))] (X2
H ⊕

X1
H)

as X2
I | (X1

H − X) and X1
I | X1

H

the restriction from type mask X
can’t remove more labels

= (X1
I ⊕X2

I)⊕ (X1
H ⊕X2

H) by Lemma 6.1 (5), since (X1
H ⊕

X2
H) - (X2

I ⊕X1
I) by 11, 12, and

Lemma 6.1 (4) = (X1
H ⊕ X2

H) -
(X1

I ⊕X2
I) by commutativity

= (X1
I ⊕X1

H)⊕ (X2
I ⊕X2

H) by associativity and commutivity
By 19, ` (X1

I ⊕X1
H), and by 14, ` (X2

I ⊕X2
H). So by lemma 6.2, the whole

thing is well formed.
• (VHTWF): X3

I]X3
H ` Φ3

This is equivalent to X3
I]X3

H ` (Φ1]Φ2). Consider some L : τ ∈ Φ3; there
are two possibilities:

1. L : τ ∈ Φ1. By 20, X1
I] X1

H ` Φ1, so X1
I] X1

H ` τ . As X1
I | X1

H ,
this is equivalently X1

I ⊕ X1
H ` τ . By 6.3 (type heap weakening),

(X1
I ⊕ X1

H) ⊕ (X2
I ⊕ X2

H) ` τ , which we have shown in the proof of
THWF is equivalent to X3

I]X3
H ` τ .

2. L : τ ∈ Φ2. By 15, X2
I] X2

H ` Φ2, so X2
I] X2

H ` τ . By similar
weakening as above we may conclude X3

I]X3
H ` τ .

• (VHWF): X3
I]X3

H ` H3 : Φ3 This is equivalent to X3
I]X3

H ` (H1]H2) :
(Φ1] Φ2). Consider some L ∈ H3; there are two possibilities:

1. (L = v) ∈ H1. By 21, X1
I] X1

H ` H1 : Φ1, so X1
I] X1

H ; Φ1; ·; · `
v : τ , where Φ1(L) = τ . By 6.3 as in VHTWF, (X1

I ⊕ X1
H) ⊕ (X2

I ⊕
X2
H); Φ1; ·; · ` v : τ .

2. (L = v) ∈ H2. X3
I]X3

H ; Φ3; ·; · ` v : Φ3(L) follows by similar reasoning.
• (EWF): X3

I]X3
H ; Φ3; ·; · ` e2 e : τ

We know X1
I]X1

H ; Φ1; ·; · ` e2 : τ ′ → τ and X1
I]X1

H ; Φ1; ·; · ` e3 : τ . By
the same weakening argument as above, X3

I]X3
H ; Φ3; ·; · ` e2 : τ ′ → τ , and

X3
I]X3

H ; Φ3; ·; · ` e3 : τ . Therefore, we may conclude our well-formedness
result.

Case 3: (load-failure) ((XI , XH),H1, load[τ ′] h i e2 e3) 7→ ((XI , XH),H1, e3)

EWF follows directly as XI]XH ; Φ; ·; · ` e3 : τ .

Case 4: (unroll) ((XI , XH),H, unroll(rolll v)) 7→ ((XI , XH),H, v)

We must have concluded (during the typing derivation of XI] XH ; Φ; ·; · `
unroll(rolll v) : τ) that XI]XH ; Φ; ·; · ` rolll v : l (where (XI]XH)(l) = τ),
and again XI]XH ; Φ; ·; · ` v : τ , which proves EWF.

22

Case 5: (ref) ((XI , XH),H, ref v) 7→ ((XI , XH),H] {L = v}, L)

THWF follows by assumption. We show VHTWF and VHWF as follows. Con-
sider the typing derivation of XI]XH ; Φ; ·; · ` ref v : τ : by inversion τ = τ ′ ref
and XI] XH ; Φ; ·; · ` v : τ ′, for some Φ. We may assume that L 6∈ dom(Φ) by
value-heap redundancy elimination since L 6∈ H (by the side-condition on the
evaluation rule). Therefore we choose Φ′ = Φ] {L : τ ′}.
To show VHTWF, we must show that XI] XH ` Φ′. Consider an arbitrary
L′ ∈ dom(Φ′):

• if L′ ∈ dom(Φ) then XI] XH ` (Φ] {L : τ ′})(L′) by assumption and
value-heap weakening.

• if L′ = L then to show XI]XH ` (Φ]{L : τ ′})(L′), we must show that XI]
XH ` τ ′. This follows because by the typing derivation of XI]XH ; Φ; ·; · `
ref v : τ we must have previously concluded that XI]XH ; Φ; ·; · ` v : τ ′.
By Lemma 6.10, XI]XH ` τ ′.

To show VHWF, we must show that XI]XH ` (H] {L = v}) : Φ′. Consider
an arbitrary L′ ∈ dom(H] {L = v}):

• if L′ ∈ dom(H) then XI]XH ` H(L′) : (Φ] {L : τ ′})(L′) by assumption
and value-heap weakening.

• if L′ = L then to show XI]XH ` H(L) : (Φ] {L : τ ′})(L′), we must show
that XI]XH ` v : τ ′. But this follows by assumption, as noted above.

Finally, to show EWF, we note that XI]XH ; (Φ] {L : τ ′});H] {L = v} ` L :
τ ′ ref .

Case 6: (deref) ((XI , XH),H, !L) 7→ ((XI , XH),H,H(L)).

By inversion, XI]XH ; Φ; ·; · ` L : τ ref , and furthermore that Φ(L) = τ . By
program well-formedness, XI]XH ` H : Φ, which implies that XI]XH ; Φ; ·; · `
H(L) : Φ(L) = τ , which is the desired result.

Case 7: (assign) ((XI , XH),H, assign L v) 7→ ((XI , XH),H[L = v], v).

THWF and VHTWF follow by assumption for Φ′ = Φ. To show VHWF, we
must show that X]XH ` H[L = v] : Φ′. Consider some L′ ∈ H[L = v]:

• if L′ 6= L, then XI]XH ` (H[L = v])(L′) : Φ′(L′) follows by assumption
(since H has not changed at these labels).

• if L′ = L, then we must show that XI]XH ` v : Φ′(L). But by inversion
XI]XH ; Φ; ·; · ` L : τ ref which implies (again by inversion) that Φ′(L) =
τ . Also by inversion XI]XH ; Φ; ·; · ` v : τ , which gives the desired result.

23

Finally, for EWF we must show that XI] XH ; Φ′; ·; · ` v : τ . This follows
trivially by inversion.

Case 8: (tapp) (Θ,H, (Λα.e)[τ]) 7→ (Θ,H, e[τ/α]), of type τ ′[τ/α].

By inversion, XI]XH ; Φ; ·; · ` (Λα.e) : ∀α.τ and XI]XH ; ·; · ` τ ′. Doing this
again we get XI]XH ; Φ;α; ·; · ` e : τ . We may now apply type substitution to
conclude XI]XH ; Φ; ·; · ` e[τ ′/α] : τ [τ ′/α]

Case 9: (congruence rules) Follow by induction of (Θ,H, e) 7→ (Θ′,H ′, e′).

Lemma 6.17 If XI]XH , XI]XH ` Φ, XI]XH ` H : Φ, XI]XH ; Φ; ·; · ` e : τ ,
and e is not a value, then there exists an ((X ′I , X

′
H),H ′, e′) such that ((XI , XH),H, e) 7→

((X ′I , X
′
H),H ′, e′).

Proof

Proof is by induction on XI] XH ; Φ; ·; · ` e : τ and on ((XI , XH),H, e) 7→
((X ′I , X

′
H),H ′, e′). We will only consider the expression typing rules in which e

is not a value:

Case 1: (app) e = e1 e2

Three cases:

• e1 is not a value
By induction, there exists an ((X ′I , X

′
H),H ′, e′1) such that ((XI , XH),H, e1) 7→

((X ′I , X
′
H),H ′, e′1). By congruence, ((XI , XH),H, e1 e2) 7→ ((X ′I , X

′
H),H ′, e′1 e2).

• e2 is not a value
By induction, there exists an ((X ′I , X

′
H),H ′, e′2) such that ((XI , XH),H, e2) 7→

((X ′I , X
′
H),H ′, e′2). By congruence, ((XI , XH),H, e1 e2) 7→ ((X ′I , X

′
H),H ′, e1 e

′
2).

• e1 and e2 are values.
By canonical forms, e1 = λx : τ ′.e. Therefore, by beta reduction, ((XI , XH),H, e1 e2)
steps to ((XI , XH),H ′, e[e2/x]).

Case 2: (load) e = load[τ ′] e0 e1 e2 e3

If either of the first two arguments is not a value, then by induction there exists a
((X ′I , X

′
H),H ′, e′i) such that ((XI , XH),H, e1) 7→ ((X ′I , X

′
H),H ′, e′i). Therefore,

by congruence, load can take a step.

Otherwise, e0 and e1 are values and by canonical forms, some integers h, i. If the
conditions for load-success hold (i.e. h is the representation of a type heap and i
is the representation of well-typed program that is link-compatible with ĥ and the
current type heap) then ((XI , XH),H, load[τ ′] e1 e2 e3) 7→ ((X ′I , X

′
H),H ′, e2 e).

24

If not, the load-fail step rule applies and ((XI , XH),H, load[τ ′] e0 e1 e2 e3) 7→
((XI , XH),H, e3).

Case 3: (unroll) e = unroll e1.

If e1 is not a value, congruence rule applies. Otherwise e1 must be a value
of type l, so by canonical forms, e1 = rolll(v). By the unroll reduction,
((XI , XH),H, unroll(rolllv)) 7→ ((XI , XH),H, v).

Case 4: (ref) e = ref e1.

If e1 is not a value, congruence rule applies. Otherwise, by the ref reduction,
((XI , XH),H, ref v) 7→ ((XI , XH),H] {L = v}, L).

Case 5: (deref) e = !e1.

If e1 is not a value, congruence rule applies. Otherwise e1 must be a value of
type τ ′ref , so by canonical forms, e1 = L. By inversion, L ∈ dom(H), and by
the deref reduction, ((XI , XH),H, !L) 7→ ((XI , XH),H,H(L)).

Case 6: (assign) e = assign e1 e2.

If e1 and/or e2 are not values, congruence rule applies. Otherwise, e1 is a value
of type τ ′ref , so by canonical forms, e1 = L. By inversion, L ∈ dom(H), and
by the assign reduction, (Θ,H, assign Lv) 7→ (Θ,H[L = v], v).

Case 7: (tapp) e = e1[τ].

If e1 is not a value, congruence rule applies. Otherwise e1 is of type ∀α.τ , so by
canonical forms, e1 = Λα.e′, so by tapp reduction (Θ,H, e1[τ]) 7→ (Θ,H.e′[τ/α]).

Corollary 6.18 (Progress) If ` (Θ,H, e) : τ and e is not a value, then there
exists a (Θ′,H ′, e′) such that (Θ,H, e) 7→ (Θ′,H ′, e′).

We say that a term is stuck if it is not a value and if no rule of the operational
semantics applies to it. Type safety requires that no well-typed term can become
stuck:

Theorem 6.19 (Type Safety) If ` (Θ,H, e) : τ and (Θ,H, e) 7→∗ (Θ′,H ′, e′)
then (Θ′,H ′, e′) is not stuck.

Proof

Proof is by induction on the number of steps of execution ((Θ,H, e) 7→∗ (Θ′,H ′, e′))
using Progress to show there is a new state and Subject Reduction to show that
that new state is well typed.

25

References

[1] Luca Cardelli. Program fragments, linking, and modularization. In Proceedings
of the ACM SIGPLAN Symposium on the Principles of Programming Languages,
pages 266–277. ACM, January 1997.

[2] Dominic Duggan. Sharing in Typed Module Assembly Language. In Preliminary
Proceedings of the Third ACM SIGPLAN Workshop on Types in Compilation,
Technical Report CMU-CS-00-161. Carnegie Mellon University, September 2000.

[3] Neal Glew and Greg Morrisett. Type-safe linking and modular assembly lan-
guage. In Proceedings of the ACM SIGPLAN Symposium on the Principles of
Programming Languages, pages 250–261. ACM, January 1999.

[4] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible dynamic
linking of native code. In Preliminary Proceedings of the ACM SIGPLAN Work-
shop on Types in Compilation, Technical Report CMU-CS-00-161. Carnegie Mel-
lon University, September 2000.

[5] Xavier Leroy. The Objective Caml System, Release 3.00. Institut National de
Recherche en Informatique et Automatique (INRIA), 2000. Available at http:
//caml.inria.fr.

[6] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86:
A realistic typed assembly language. In Second Workshop on Compiler Support
for System Software, Atlanta, May 1999.

[7] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527–568, May 1999.

26

