
Languages for Oblivious Computation
Michael Hicks

University of Maryland

1 OBLIVIOUS COMPUTATION
Cloud computing allows users to delegate data storage and comput-

ing needs to cloud service providers. Doing so relieves users from

the need to purchase and maintain their own computing infras-

tructure, but requires sharing potentially sensitive data with the

provider. Researchers have been exploring how to mitigate the risk

of doing so by developing privacy preserving computing technology.

The idea is to employ hardware and/or software that can compute

a function y = f (x1,x2, ...,xn ) obliviously, meaning that despite

producing an answer, the service provider learns nothing about

x1, ...,xn or y in the process. Such technology effectively imple-

ments a secure abstract machine that receives encrypted inputs,

computes the requested function using encrypted memory, and

returns an encrypted result, which the client can decrypt. Such an

abstract machine might employ cryptographic algorithms and/or

secure processors (e.g., FHE [1] or Intel SGX
1
).

While a secure abstract machine stops an attacker from reading

sensitive values directly, it does not defeat an attacker who can

infer such values from a computation’s side channels, such as its

patterns of memory accesses or instruction timings. Indeed, a cloud

provider could easily measure such patterns.

A countermeasure is to augment the abstract machine to store

code and data in oblivious RAM (ORAM) [2]. ORAM is a data struc-

ture that regularly changes the mapping between a data block’s

logical address and its physical address. While the abstract machine

always knows the up-to-date mapping, the adversary does not, and

as a result the address trace is indistinguishable from a random

sequence. While secure against a snooping adversary, ORAM unfor-

tunately incurs a substantial slowdown in practical situations: each

read/write requires additional operations (to update the mapping)

that are polylogarithmic in the size of the memory.

2 COMBINING PL AND ORAM
While naïvely storing all code and data in ORAM is too slow, tech-

niques from the language-based security community can signifi-

cantly improve performance. In particular, notice that ORAM is

only necessary when the address trace depends on the values of

secrets. Code snippets like x[h] are dangerous since the address

observed when reading from array x reveals something about the

secret h. But code like the following is safe:

for (int i=0; i<n; i++) { m = m + x[i]; }

1
https://software.intel.com/en-us/sgx

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

PLAS’17, October 30, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5099-0/17/10.

https://doi.org/10.1145/3139337.3139349

Assuming that n is not a secret, the stream of addresses read is

entirely determined, i.e., it does not depend on any secret. As such,

while it might make sense to put x in encrypted RAM if its contents

are secret, putting x in ORAM is unnecessary.

Obliviousness by typing. In a paper published at CSF’13 [4]

we developed a type system for a language in which arrays can be

stored in either encrypted RAM or oblivious RAM. Type correct-

ness ensures memory trace obliviousness (MTO), meaning that the

address trace does not depend on secret inputs. A program like the

loop above would be type-correct even when x is not in ORAM, but

a program like x[h] requires x to be in ORAM (if h is secret).

Ghostrider.We developed our basic approach into hardware/-

software co-design called Ghostrider [3]. On the hardware side, we

developed a coprocessor to implement a state-of-the-art ORAM al-

gorithm, and a processor for an extension of the RISC-V instruction

set. On the software side, we developed a compiler that uses the

ideas from our basic approach to allocate data to encrypted RAM

or ORAM. We developed a type system for the generated assembly

code, thus ensuring MTO without needing to trust the compiler.

On both the real hardware and a simulator for a more full-featured

architecture we found we could achieve an order-of-magnitude

speedup for many common programs, as compared to putting all

data in ORAM.

3 ONGOINGWORK
Ghostrider treats ORAM as a trusted primitive. In ongoing work

we are developing more fundamental language mechanisms with

which one can implement ORAM, as well as optimized oblivious
data structures (ODSs) [5]. For example, while we could program

an oblivious queue as a queue stored in ORAM, we can improve

performance by applying ideas from general ORAM implemen-

tations to queue implementations, directly. A core idea in ODS

implementations is the controlled use of randomness to obfuscate

the logical-to-physical mapping. We are developing a language

called L_obliv that ensures these mechanisms are used safely. In

particular, type correctness ensures probabilistic MTO, meaning

that the distribution of visible events does not depend on secrets.

L_obliv is expressive: it can type check state-of-the-art ORAM and

ODS implementations.

REFERENCES
[1] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.
[2] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. J. ACM (1996).

[3] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine

Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace Oblivious

Computation. In Proc. of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Best Paper.

[4] Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory Trace Oblivious Program

Execution. In Proc. of the Computer Security Foundations Symposium (CSF). Winner

of the 2014 NSA Best Scientific Cybersecurity Paper competition.

[5] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In Proc. ACMConference
on Computer and Communications Security (CCS).

https://software.intel.com/en-us/sgx
https://doi.org/10.1145/3139337.3139349

	1 Oblivious Computation
	2 Combining PL and Crypto
	3 Ongoing work
	References

