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This paper presents Proteus, a core calculus that models dynamic software updating, a service for
fixing bugs and adding features to a running program. Proteus permits a program’s type structure
to change dynamically but guarantees the updated program remains type-correct by ensuring a
property we call “con-freeness.” We show how con-freeness can be enforced dynamically, and

how it can be approximated via a novel static analysis. This analysis can be used to assess the
implications of a program’s structure on future updates, to make update success more predictable.
We have implemented Proteus for C, and briefly discuss our implementation, which we have tested
on several well-known programs.
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1. INTRODUCTION

Dynamic software updating (DSU) is a technique by which a running program can
be updated with new code and data without interrupting its execution. DSU is crit-
ical for non-stop systems such as air-traffic control systems, financial transaction
processors, enterprise applications, and networks, all of which must provide contin-
uous service but nonetheless must be updated to fix bugs and add new features.
DSU is also useful for avoiding the need to stop and start a non-critical system
(e.g., reboot a personal operating system) every time it must be patched. In a large
enterprise, such reboots can be costly [Zorn 2005; Oppenheimer et al. 2002].

Providing general-purpose DSU is particularly challenging because of the com-
peting concerns of flexibility and safety. On the one hand, the form of dynamic
updates should be as unrestricted as possible, since the purpose of DSU is to fix
bugs or add features not necessarily anticipated in the initial design. On the other
hand, supporting completely arbitrary updates (e.g., binary patches to the exist-
ing program) makes reasoning about safety impossible, which is unacceptable for
mission-critical software.
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In this paper we present Proteus, a calculus for modeling dynamic updates in
imperative programs. Proteus carefully balances the concerns of safety and flexi-
blity, and adds assurances of predictability. Proteus programs consist of function
and data definitions, together with definitions of named types. In the scope of a
named type declaration t = τ the programmer can use the name t and represen-
tation type τ interchangeably but, as we shall see, the distinction lets us control
updates. Dynamic updates can add new types and new definitions, and can also
provide replacements for existing ones, where the type of a replacement may be
different from the original. Functions can be updated even while they are on the
call-stack: the current version will continue (or be returned to), and the new version
is activated on the next call. Permitting the update of active functions is important
for making programs more available to dynamic updates [Armstrong and Virding
1991; Hicks 2001; Buck and Hollingsworth 2000]. We also support updating function
pointers.

When updating a named type t from its old representation τ to a new one τ ′, the
user provides a type transformer function c with type τ → τ ′. This is used to convert
existing t values in the program to the new representation. To ensure an intuitive
semantics, we require that at no time can different parts of the program expect
different representations of a type t; a concept we call representation consistency.
The alternative would be to allow new and old definitions of a type t be valid
simultaneously. Then, we could copy values when transforming them, where only
new code sees the copies [Gupta 1994; Hicks 2001], or else provide a backward
type transformer to convert new values back to an older representation should they
reappear in old code [Duggan 2001]. While these approaches are type safe, the
first permits old and new code to manipulate different copies of the same logical
data, which is likely to be disastrous in a language with side-effects; the second may
result in information loss when converting a value backwards and then forwards
again, since most type changes add information (§2).

To ensure type safety and representation consistency, we must guarantee the fol-
lowing property: after a dynamic update to some type t, no updated values v′ of
type t will ever be manipulated concretely by code that relies on the old represen-
tation. We call this property “con-t-freeness” (or simply “con-freeness” when not
referring to a particular type). The notion of con-freeness is easily extended to
functions and global variables—where a concrete usage is a function call or derefer-
nce, respectively—to ensure that updates with types different than the original pose
no threat to type safety. The fact that we are only concerned about subsequent
concrete uses is important: if old code simply passes data around without relying
on its representation, then updating that data poses no problem. Indeed, for our
purposes the notion of con-freeness generalizes notions of encapsulation and type
abstraction in object-oriented and functional languages. This is because data can
be used concretely or abstractly at any program point and, moreover, neither use is
denoted by syntax. Moreover, con-freeness is a flow-sensitive property, since a func-
tion might manipulate a t value concretely at its outset, but not for the remainder
of its execution.

As a simple example of the need for con-freeness, imagine that the running pro-
gram is evaluating some function f, and that function is just about to access the
second field of some record type t. At that moment, a dynamic update occurs which
changes t to have only a single field, and correspondingly changes f to use only that
field. While the update is type-correct in itself (the new f is compatible with the

2



new t), it is not con-free at the current program point, since the updated type t

is about to be manipulated concretely by code that expects the old representation:
the old f will attempt to access the second field of the t value after the update (the
new f will only execute the next time f is called). But this t value will have been
transformed by the user-provided type transformer function ct to have but a single
field, leading to a type error. The flexibility of updates is partially to blame for this
situation: if we were not allowed to change the definitions of types, or we were not
allowed to change actively running code, we would not have this problem. However,
as we argue in §2, these features are crucial to updating programs in practice, so
we must deal with them.

To enforce con-freeness, Proteus programs are automatically annotated with
explicit type coercions : abst e converts e to type t (assuming e has the proper con-
crete type τ), and cont e does the reverse at points where t is used concretely. Thus,
when some type t is updated, we could dynamically analyze the active program to
check for the presence of coercions cont, taking into account that subsequent calls
to updated functions will always be to their new versions. If any cont occurrences
are discovered, then the update is rejected. Once an update is accepted, the occur-
rences of expressions abst indicate where values of type t exist in the program, so
that the proper type transformer can be applied.

While illuminating theoretically, the con-free check as defined above is prob-
lematic for a practical implementation, for two reasons. First, it is non-trivial
to implement, since it must examine the entire run-time execution context of the
program—the code, stack, and heap. Second, and more importantly, the results
of the check are unpredictable. It may be hard to tell whether an update failure
is transient—the update is not valid for this program state—or permanent—the
update is invalid for all program states. This is because the dynamic check is with
respect to a particular program state. Rather, one would prefer to reason about
update behavior statically, covering all possible program states, to (among other
things) assess whether there are sufficient update points. Therefore, we have de-
veloped a novel static updateability analysis. We introduce an update expression
to label program points at which updates could be applied. For each of these, we
estimate those types t for which the program may not be con-t-free. We annotate
the update with those types, and at run time ensure that any dynamic update
at that point does not change them. This is simpler than the con-free dynamic
check, and more predictable. For example, we can automatically infer those points
at which the program is con-free for all types t, precluding dynamic failure for any
well-formed update at those points.

We have built a compiler and run-time system to support dynamic updating
of C programs based on Proteus, and we have used it to dynamically update
three open source programs: OpenSSH’s sshd daemon, the “Very Secure” FTP
daemon, vsftpd, and the GNU zebra routing daemon. Proteus’s updating model
is powerful enough that we were able to construct and apply dynamic updates for
more than three years of releases for each program. Indeed, without the flexibility
to update active code—needed to update the main event loops—and to change the
program’s type structure, we would not have been able to update these programs
over such a long stretch. Based on a brief study of the evolution of these and other
software programs, we believe these needs are not atypical. As such, the notion of
con-freeness we present in this paper is crucial to ensuring that dynamic updates
are both type-safe and representation consistent. The updateability analysis ensures
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that updates can be applied predictably.
This work focuses on updating a single-threaded process, as opposed to multi-

threaded or distributed programs. To support these systems requires some level
of coordination. For example, to update a distributed system to use a new (non-
backwards-compatible) communication protocol would require coordination to pre-
vent an updated program from sending a confusing message to a not-as-yet-updated
one. As a step in this direction, we have sketched how we could adapt our current
work to support multi-threaded programs by treating update as a synchronization
point between threads when an update is available (§6). This makes our analysis
sound, but could allow an update to be unduly delayed, or worse, could cause the
system to deadlock. We are exploring these issues in our current research.

In summary, this paper makes the following contributions:

—We present Proteus, a simple and flexible calculus for reasoning about type-safe,
representation-consistent dynamic software updating in single-threaded, impera-
tive languages (§3 and §4), with various extensions (§6). We motivate our DSU
support in Proteus with a brief study of the changes over time to some large C
programs, taking these as indicative of dynamic updates that we have to support
(§2). Crucially, Proteus permits updating active code, and changing the type
structure of programs.

—We formally define the notion of con-freeness, and prove that it is sufficient to
establish type safety in updated programs (§4.4). We believe this notion is useful
beyond DSU. For example, we have applied it to the problem of ensuring that a
dynamic update of a security policy does not impact the security properties of a
running program that uses it [Hicks et al. 2005].

—We present a novel updateability analysis that statically infers the types for which
a given update point is not con-free (§5). While space constraints preclude a full
description, we present some preliminary experience with our dynamic updating
implementation that applies our analysis to C programs (§5.4).

In §8 and §9 we discuss related work and conclude. This is a revised and extended
version of a paper presented at the 2005 ACM SIGPLAN Symposium on Principles
of Programming Languages [Stoyle et al. 2005].

2. SOFTWARE EVOLUTION IN PRACTICE

The goal of a dynamic software updating system is to be able to modify a program
to fix bugs and add new features without shutting it down. For each dynamic up-
date, modifications are collected into a dynamic patch that is applied to the running
system. There are a number of ways that dynamic patches could be constructed.
For example, if a bug is discovered, a special-purpose dynamic patch could be con-
structed that fixes just that bug by replacing the offending function or functions
with new versions. More generally, a dynamic patch could consist of all of the
changes that occurred between two different releases of a software system. In this
case, a new version of the software could ship with a dynamic patch to the prior ver-
sion, for those users who wish to dynamically upgrade their running systems. This
would permit on-line software evolution. We would not expect users to dynamically
upgrade their programs in perpetuity; rather, DSU would allow programs to con-
tinue to run until some other, non-dynamically updateable part of the system, like
the hardware, needed to be changed, thus extending the availability of the system.

To enable on-line evolution we must support the kinds of software changes that
typically occur between releases. To characterize these changes, we studied how
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Total functions: Vsftpd (14 releases) OpenSSH (27 releases) Zebra (6 releases)

Initial 384 56 767

Added 107 955 134

Deleted 16 162 44

Changed Body 332 2673 321

Changed Type 11 195 13

Fig. 1. Function evolution in Vsftpd, OpenSSH, and Zebra

the source code has changed over time in some long-running C programs. We
built a tool that parses two versions of a program, compares their abstract syntax
trees, and reports the differences [Neamtiu et al. 2005]. In particular, it reports the
definitions that are different between versions; that is, those function definitions,
type definitions, or global variable definitions that have been added, deleted, or
changed. For definitions that have changed, the tool also reports changes in type
structure. For example, it might report that a function has an additional argument,
or that a struct definition has two new fields.

We used the tool to compare increasing versions of a few large C programs. These
include Linux, version 2.4.17 (Dec. 2001) to 2.4.21 (Jun. 2003); BIND, versions 9.2.1
(May 2002) to 9.2.3 (Oct. 2003); Apache, version 1.2.6 (Feb. 1998) to 1.3.29 (Oct.
2003); Vsftpd version 1.0.1 (Nov. 2001) to 2.0.3 (March 2005); OpenSSH, version
1.2 (Oct. 1999) to 4.2 (Sept. 2005), and GNU Zebra, version 0.92a (Aug. 2001) to
0.95a (Sept. 2005). These programs are in wide use. Linux is now quite common;
Apache, BIND and Vsftpd are the de-facto web server, name server and FTP server,
respectively, in major Unix distributions; the OpenSSH suite is the standard open-
source release of the widely-used secure shell protocols; and many Linux/BSD-based
dedicated BGP routers are built using Zebra or its spin-off, Quagga.

In what follows, we focus on Vsftpd, OpenSSH, and Zebra, as we have used
them as test applications for our implementation (§7). We chose them because
each maintains state that should be preserved by an update to maintain service
(the same is true for BIND and Linux). Stopping and restarting the FTP daemon
would abruptly end all the active file transfer sessions, rendering the clients with
incomplete transfers. Taking a machine’s SSH server down for update would close
all the SSH connections, hence terminating all the remote shell sessions clients had
on that particular machine. Terminating the zebra daemon on a machine used as a
router would disable the routing functionality, and, upon restart, the daemon would
need to re-learn all the routes it has amassed prior to termination. For these three
programs, we analyzed versions as far back as possible; older versions need older
compilers and headers. The changes followed a few key trends.

Functions. By far the most common form of version changes consist of added
functions, or changes to existing functions which do not involve a changed type
signature. Function deletions and body changes which involved a changed type
signature occur significantly less often, but regularly. These trends are illustrated
in Figure 1, which shows the evolution of functions in Vsftpd, OpenSSH, and Zebra
for the span we measured. The parenthesized numbers in the heading indicate the
number of individual releases measured. These trends are similar for the shorter
spans we measured for BIND and Linux as well.

Global Variables. The number of global variables tends to be fairly static, adding
a few and deleting a few with each change, but growing over time. For example,
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the numbers of global variables for Vsftpd, OpenSSH, and Zebra grew, respectively,
from 141 to 226, from 51 to 264, and 235 to 280. In Vsftpd, deletions were ex-
tremely rare, with 8 in total across 14 releases, while at the other extreme, a total
of 82 variables were deleted for OpenSSH over the measured span of 27 releases.
Global variables change their static initializers fairly often; for the entire period
we analyzed, there were 18 static initializer changes for Vsftpd, 63 for OpenSSH,
and 11 for Zebra. However, global variable types change less frequently: 1 case for
Vsftpd, 29 for OpenSSH and 18 for Zebra.

Type Definitions. Data representations, which is to say type definitions, do change
between versions, though rarely. In C, types are defined with struct and union

declarations (aggregates), typedefs, and enums. Very often, the changes are to
aggregates and involve adding or removing a field. For example, moving from Linux
2.4.20 to 2.4.21 resulted in 36 changes to struct definitions (out of 1214 total), of
which 21 were the addition or removal of fields, while the remaining 15 were changes
to the types of some fields. This ratio was similar to that of the other programs we
measured. Typedefs rarely changed.

Given this information, a DSU system must, at the least, support the addition
of new definitions, and the replacement of existing definitions at the same type,
since these changes comprise the majority of version changes. Implementing a
system that supports these changes is fairly straightforward. Indeed, Altekar et
al. [Altekar et al. 2005] found that many security patches satisfy these criteria, and
thus can be applied through a simple DSU system. However, to support on-line
software evolution, we must be able to change the types of definitions, and to delete
definitions. Supporting these changes while preserving program type safety is more
challenging.

Our initial presentation of Proteus, in the next section, permits changes to
type definitions, and we sketch extensions to this system to support changes to
function and global variable types, and to support deleting definitions, in §6. We
have developed a prototype implementation that supports all of these changes.

3. PROTEUS

In what follows we define two core calculi—Proteussrc and Proteuscon—that
formalize our approach to dynamic software updating. In this section we present
Proteussrc, the language used by programmers for writing updateable programs.
We define how dynamic updates are specified and show how the timing of an up-
date could violate type safety. Section 4 presents Proteuscon, an extension of
Proteussrc that makes the usage of named types manifest in program by intro-
ducing type coercions ; these are used to support the operational semantics of dy-
namic updating and to ensure that the process is type-safe by ensuring con-freeness.
Section 5 presents Proteus∆, an extension to Proteuscon, for which con-freeness
can be determined statically.

3.1 Proteussrc Syntax

Proteussrc models a type safe, imperative language augmented with dynamic
updating; its syntax is given in Figure 2. Programs P are a series of top-level
definitions followed by an expression return e. A fun z . . . defines a top-level
recursive function, and var z : τ . . . defines a top-level mutable variable (i.e., it has
type τ ref). We allow the extension of function definitions to a mutually recursive
block of function definitions using the keyword and. A type t = τ . . . defines the
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Integers n ∈ Int
Local variables x, y, z ∈ IVar
Top-level identifiers x, y, z ∈ XVar
Record labels l ∈ Lab
References r ∈ Ref
Type names t, s ∈ NT
Variables Var = IVar ⊎ XVar ⊎ NT

Types τ ∈ Typ ::= t | int | {l1 : τ1, . . . , ln : τn} | τ ref

| τ1 → τ2

Expressions e ∈ Exp ::= n integers
| x variables
| z top-level identifiers
| r heap reference
| {l1 = e1, . . . , ln = en} records
| e.l projection
| e1 e2 application
| let z : τ = e1 in e2 let bindings
| ref e ref. creation
| e1 := e2 assignment
| !e dereference
| if e1 = e2 then e3 else e4 conditional
| update dynamic update

Values v ∈ Val ::= z | n | {l1 = v1, . . . , ln = vn} | r | abst v

Programs P ∈ Prog ::= var z : τ = v in P
| fun z1(x : τ1) : τ ′

1 = e1

. . .
and zn(x : τn) : τ ′

n = en in P
| type t = τ in P

| return e

Fig. 2. Syntax for Proteussrc

type t. Top-level identifiers z must be unique within P , and are not subject to
α-conversion, so they can be unambiguously updated at run-time. Expressions e
are largely standard. We abuse notation and write multi-argument functions

fun f(x1 : τ1, . . . , xn : τn) : τ = e

which are really functions that take a record argument, thus having type {x1 :
τ1, . . . , xn : τn} → τ . We similarly sugar calls to such functions.

Proteussrc also includes an update expression which permits a dynamic update
to take place, if one is available. That is, at run-time a user signals that an update is
ready, and the next time update is reached in the program, that update is applied.
The update expression is integer-valued; it returns 0 when an update is available
and successfully applied, and returns 1 if no update is available, or if an update
is available but cannot be applied successfully. Providing update in the language
makes issues of timing more manifest. At one extreme, update could be inserted by
the programmer in a few places, and at another the compiler could insert update

at all program points, simulating the situation in which a dynamic update could
occur at any moment. We discuss an algorithm for automatically inserting updates
in §5.

The typing rules and operational semantics for the non-updating part
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type handResult = int in

type sockhandler = {sock : sock, buf : buf, sflags : sflags} → handResult in

fun udp read(sock : sock, buf : buf, sflags : sflags) : handResult = ... in

fun udp write(sock : sock, buf : buf, sflags : sflags) : handResult = ... in

type req = {op : op, fd : int, buf : buf, rest : blob} in

type fdtype = File | Socket | Unknown in

fun dispatch (s : req) : handResult =
let t : fdtype = decode (s.fd) in

let u1 : int = update in

if (t = Socket) then

let k : sock = getsock (s.fd) in

let flags : sflags = decode sockopargs (s.rest, s.op) in

let h : sockhandler = getsockhandler (s.fd, s.op) in

let u2 : int = update in

let res : handResult = h (k, s.buf, flags) in

let u3 : int = update in res
else if (t = File) then ...

else −1 in

fun post (r : handResult) : int = ... in

fun loop (i : int) : int =
let req : req = getreq (i) in

let i : handResult = post (dispatch req) in

loop i in

return (loop 0)

Fig. 3. A simple kernel for files and socket I/O

Proteussrc are essentially standard, and they are considered in more detail when
considering compilation to Proteuscon in §4.

Example. Figure 3 shows a simple kernel, which one might want to dynamically
update, for handling read and write requests on files or sockets. Some functions and
type definitions have been elided for simplicity. Reading from the bottom, the func-
tion loop is an infinite loop that repeatedly gets req objects (e.g., system calls) and
then dispatches them to an appropriate handler using the dispatch function. This
function first calls decode to determine whether a given file descriptor is a network
channel or an open file (e.g., by looking in a table).1 If it is a network channel,
dispatch calls getsock to get a sock object based on the given file descriptor (e.g.,
indexed in an array). Next, it decodes the remaining portion of the req to acquire
the transmission flags. Finally, it finds an appropriate sockhandler object to handle
the request and calls that handler. Handlers are needed to support different kinds of
network channel, e.g., for datagram communications (UDP) and streaming connec-
tions (TCP). Different handlers are implemented for each kind, and getsockhandler

chooses the right one. A similar set of operations and types would be in place for

1To aid readability we have defined fdtype using a union type—which is not in the core language
we formalize—but it could have been defined as an integer.
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UN : sockhandler 7→
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int, sockh coer)

sock 7→ ({daddr : int, . . . }, sock coer)
AN : sockhandler 7→ (cookie, int)
UB : dispatch 7→

(req → handResult,
λ(s).. . . h(k, s.buf, flags, (security info ()) . . . )

AB : udp read′ 7→
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int, λ(x).... )

udp write′ 7→
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int, λ(x).... )

sockh coer 7→ (({sock : sock, buf : buf, sflags : sflags} → int) →
({sock : sock, buf : buf, sflags : sflags, cookie : cookie} → int),
λ(f).if f = udp read then udp read′ else if f = udp write then udp write′ )

sock coer 7→ . . .

security info 7→ (int → cookie, λ(x).. . . )

Fig. 4. A sample update to the I/O kernel

files. After dispatch completes, its result is posted to the user, and the loop contin-
ues. The dispatch function defines three update points at which a dynamic update
is permitted to occur, if one is available.

3.2 Specifying Dynamic Updates

A dynamic update is a specification to modify the running program with new and
replacement definitions. Formally, a dynamic update, upd, consists of four partial
maps, written as a record with the labels UN, UB, AN, and AB:

—UN (Updated Named types) is a map from type names to pairs of a type and
an expression. Each entry, t 7→ (τ, c), specifies a named type to be replaced (t),
its new representation type (τ), and a type transformer function c from the old
representation type to the new.

—AN (Added Named types) is a map from type names t to type environments Ω,
which are lists of type definitions. This is used to define new named types. Each
entry t 7→ Ω specifies a type t in the existing program, and the new definitions
are inserted just above t in the updated program.

—UB (Updated Bindings) is a map from top-level identifiers to pairs of a type and a
binding value bv, which is either a function, written as λ(x).e or a value v. These
specify replacement fun and var definitions. Each entry z 7→ (τ, bv) contains the
binding to replace (z), the type of the new binding as it appears in the source
program (τ) and the new binding (bv). For now, we require updated bindings
to have the same type of the definitions they replace. In §6.1 we show how this
restriction can be relaxed by extending our technique for supporting changes to
named types.

—AB (Added Bindings) is a map from top-level identifiers z to pairs of types and
binding values. These are used to specify new fun and var definitions. All added
functions are assumed to be mutually recursive, for simplicity.

We consider how to extend specifications to support deletion of bindings, and up-
dating functions and data at new types in §6.
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As an example, say we wish to modify socket handling in Figure 3 to include a
cookie argument for tracking security information (this was done at one point in
Linux). This requires four changes: (1) we modify the definition of sockhandler to
add the additional argument; (2) we modify the sock type to add new information
(such as a destination address for which the cookie is relevant); (3) we modify
existing handlers, like udp read, to add the new functionality, and (4) we modify
the dispatch routine to call the handler with the new argument. We then must
provide transformer functions to convert existing sock and sockhandler objects.

The update is shown in Figure 4. The UN component specifies the new defini-
tions of sock and sockhandler, along with type transformer functions sock coer and
sockh coer, which are defined in AB. The AN component defines the new type
cookie = int, and that it should be inserted above the definition of sockhandler

(which refers to it). Next, UB specifies a replacement dispatch function that calls
the socket handler with the extra security cookie, which is acquired by calling a
new function security info.

The AB component specifies the definitions to add. First, it specifies new handler
functions udp read′ and udp write′ to be used in place of the existing udp read and
udp write functions. The reason they are defined here, and not in UB, is that the
new versions of these functions have a different type than the old versions (they
take an additional argument). So that code will properly call the new versions
from now on, the sockh coer maps between the old ones and the new ones. Thus,
existing datastructures that contain handler objects (such as the table used by
getsockhandler) will be updated to refer to the new versions. If any code in the
program called udp read or udp write directly, we could replace them with stub
functions [Frieder and Segal 1991; Hicks 2001], forwarding calls to the new version,
and filling in the added argument. In Section 6 we explain how our approach can
be easily extended to support updating bindings at new types with the same safety
guarantees, making stubs unnecessary.

It is not necessary for programmers to write update specifications manually.
Rather, it is straightforward for a tool to examine the old and new versions of a pro-
gram to determine which bindings have changed, and which have been added [Hicks
2001]. Type transformers can be generated automatically [Hicks 2001] for simple
changes, but generally require a programmer’s attention.

3.3 Update Timing

let i : int = post (
let u2 : int = update in

let res : handResult = udp read{sock = vsock, buf = vreq.buf, sflags = vsflags} in

let u3 : int = update in res
) in loop i

Fig. 5. Example active expression

Because update specifications permit type definitions to change, to preserve type
safety an update must only be applied at certain times during a program’s execution.
For example, Figure 5 shows the expression fragment of our example program after
some evaluation steps (the outer let i = . . . binding comes from loop and the
argument to post is the partially-evaluated dispatch function; we are assuming a
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substitution-style semantics for function application). The let u2 = update . . . is
in redex position, and suppose that the update described in §3.2 is available, which
updates sockhandler to have an additional cookie argument, amongst other things.
If this update were applied then the user’s type transformer sockh coer would be
inserted to convert udp read, to be called next. Evaluating the transformer replaces
udp read with udp read′ yielding the expression udp read′(vsock, vreq.buf, vsflags). But
this would be type-incorrect! The function udp read′ expects four arguments (more
precisely, a record with four fields), but the existing call only passes three arguments.

The problem is that at the time of the update the program is evaluating the old
version of dispatch, which expects sockhandler values to take only three arguments.
That is, this point in the program is not “con-t-free” since it will manipulate t values
concretely. A value is used concretely when it is destructed, e.g., dereferencing a
reference, calling a function, or extracting a field from a record, because these
operations rely on the type of the value. If this type were to change, the operations
would be type-incorrect.

4. PROTEUSCON

To prevent updates to named types from violating type safety, we define the lan-
guage Proteuscon which extends Proteussrc with explicit type coercions to make
manifest the concrete usage of named types. Ensuring proper update timing then
reduces to ensuring that, roughly speaking, no type coercions that indicate a con-
crete usage for types to be updated appear in the active program. Type coercions
also are handy for implementing dynamic updates operationally.

In this section, we present the syntax of Proteuscon and show how Proteussrc

programs can be compiled to Proteuscon programs. Then we present the oper-
ational semantics of Proteuscon, and define con-freeness as a predicate on the
running program’s state at the time of the update. We then prove that this predi-
cate is sufficient to ensure that updates preserve type safety.

4.1 Syntax and Typing

Prior to evaluation, Proteussrc programs (as well as program fragments appearing
in update specifications) are compiled to the language Proteuscon, which extends
Proteussrc with type coercions:

e ::= . . . | abst e | cont e
v ::= . . . | abst v

Given a type definition type t = τ , the Proteussrc typing rules effectively allow
values of type t and type τ to be used interchangeably, as is typical. (We present
the Proteussrc typing rules when describing compilation to Proteuscon in §4.2.)
For example, in Figure 3, the expression h (k, s.buf, flags) in dispatch uses h,
which has type sockhandler, as a function. In this case, we say that the named type
sockhandler is being used concretely. However, there are also parts of the program
that treat data of named type abstractly, i.e., they do not rely on its representation.
For example, the getsockhandler function simply returns a sockhandler value; that
the value is a function is incidental.

In Proteuscon all uses of a named type definition t = τ must be explicit, using
type coercions: abst e converts e to type t (assuming e has the proper type τ), and
cont e does the reverse. Figure 6 illustrates the dispatch function from Figure 3
with these coercions inserted. As examples, we can see that a handResult value is
constructed in the last line from −1 via the coercion (abshandResult −1). Conversely,
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let dispatch(s : req) : handResult =
let t : fdtype = decode((conreq s).fd) in

let u1 : int = update in

if (confdtype t) = Socket then

let k : sock = getsock((conreq s).fd) in

let flags : sflags = decode sockopargs((conreq s).rest, (conreq s).op) in

let h : sockhandler = getsockhandler((conreq s).fd, (conreq s).op) in

let u2 : int = update in

let res : handResult = (consockhandler h)(k, (conreq s).buf, flags) in

let u3 : int = update in res
else if (confdtype t) = File then . . .

else (abshandResult −1)

Fig. 6. dispatch with explicit type coercions

to invoke h (in the expression for res), it must be converted from type sockhandler

via the coercion (consockhandler h) (. . .).
Type coercions serve two purposes operationally. First, they are used to prevent

updates to some type t from occurring at a time when existing code still relies on
the old representation. In particular, the presence of cont clearly indicates where
the concrete representation of t is relied upon, and therefore can be used as part of
a static or dynamic analysis to avoid an invalid update (§4.4).

Second, coercions are used to “tag” abstract data so it can be converted to a
new representation should its type be updated. In particular, all instances of type
t occurring in the program will have the form abst e. Therefore, given a user-
provided transformer function ct which converts from the old representation of t to
the new, we can rewrite each instance at update-time to be abst (ct e). This leads
to a natural call-by-value evaluation strategy for transformers in conjunction with
the rest of the program (§4.3).

The Proteuscon typing rules for coercions are simple:

Γ ⊢ e : t Γ(t) = τ
Γ ⊢ cont e : τ

Γ ⊢ e : τ Γ(t) = τ
Γ ⊢ abst e : t

4.2 Compiling Proteussrc to Proteuscon

Compiling a Proteussrc program to a Proteuscon program requires inserting
type coercions to make explicit the implicit uses of the type equality in the source
program. Our methodology is based on coercive subtyping [Breazu-Tannen et al.
1991]. As is usual for coercive subtyping systems, we define our translation induc-
tively over source language typing derivations. In particular, we define a judgement
Γ ⊢ P : τ  P ′ by which a Proteussrc program P is translated to Proteuscon

program P ′. (The typing environment Γ is a finite mapping from variables to types
and from type names to types. As is usual we will sometimes write a mapping us-
ing a list notation, e.g., Γ ≡ x : τ, t = τ ′.) Our primary aim is that the translation
be deterministic, so that where coercions are inserted is intuitive to the program-
mer. Secondarily, we wish the resulting Proteuscon program to be efficient, with
a minimal number of inserted coercions and other computational machinery.

The remainder of this subsection proceeds as follows. First, we show how abstrac-
tion and concretion of values having named type can be represented with subtyping.
Second, we show how to derive an algorithmic subtyping relation. Finally, we show
how to derive an algorithmic typing relation for expressions and use this to present
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the full translation rules. The reader not interested in the details of the transla-
tion can safely skip this subsection and proceed to the operational semantics of
Proteuscon in §4.3.

4.2.1 Abstraction and Concretion as Subtyping. To properly insert cont and
abst coercions in the source program P , we must identify where P uses values of type
t concretely and abstractly. We do this by defining a mostly-standard subtyping
judgement for Proteussrc, written Γ ⊢ τ <: τ ′, with two key rules. First, given a
value of type τ it can be abstracted as having type t under the assumption t = τ :

Γ, t = τ ⊢ τ <: t

Conversely a value of type t can be treated concretely as having type τ :

Γ, t = τ ⊢ t <: τ

These two rules, along with subtyping transitivity, allow a named type to be treated
as equal to its definition.

The basic compilation strategy is to relate a subtyping derivation to a coercion
context C using the judgement Γ ⊢ τ <: τ ′

 C. This context is applied to the
relevant program fragment e as part of the derivation Γ ⊢ e : τ  e′ using the
expression subtyping rule:

Γ ⊢ e : τ  e′ Γ ⊢ τ <: τ ′
 C

Γ ⊢ e : τ ′
 C[e′]

Here, a coercion context C is defined by the following grammar:

C ::= | abst C | cont C | let x : τ = C in e | e C

The syntax C[e] defines context application, where e fills the “hole” (written )
present in the context. For the abstraction and concretion subtyping rules, the
translation rules are:

Γ, t = τ ⊢ τ <: t  abst

Γ, t = τ ⊢ t <: τ  cont

To see how this works, here is an example translation derivation using the above
rules, where Γ ≡ t = int → int, f : t:

Γ ⊢ f : t  f Γ ⊢ t <: τ  cont

Γ ⊢ f : int → int  cont f Γ ⊢ 1 : int  1

Γ ⊢ f 1 : int  (cont f) 1

Notice how on the left-hand side of the derivation we apply coercion context cont

to f to get cont f. Standard coercive subtyping relates subtyping judgements to
functions, rather than contexts, so that this application would occur at run-time,
rather than during compilation.

4.2.2 Making Subtyping Algorithmic. Unfortunately, the strategy described
above is not directly suitable for implementation. The problem is that neither
the typing relation for expressions nor the subtyping relation are syntax directed,
meaning that many derivations are possible. This is not a merely theoretical con-
cern: we can observe the difference between these derivations due to the effect of
inserted cont coercions on run-time updates.
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For example, assuming Γ ≡ t = τ, x : τ , we could translate the Proteussrc term
x using the following derivation:

Γ ⊢ x : τ  x

We could also use the following derivation which uses subsumption twice:

Γ ⊢ x : τ  x Γ ⊢ τ <: t  abst

Γ ⊢ x : τ  abst x Γ ⊢ t <: τ  cont

Γ ⊢ x : τ  cont (abst x)

Because cont coercions may impede a proposed dynamic update to the type t, an
update to the first program may succeed while the second fails. Moreover, because
coercions perform computation at run time, the second program is less efficient than
the first.

To remedy these problems, we make both the subtyping relation and the typing
relation deterministic. Ignoring contexts C for the moment, here is our initial
subtyping relation for Proteussrc:

[REFL]
Γ ⊢ τ <: τ

Γ, t = τ ⊢ τ <: τ ′

[CON]
Γ, t = τ ⊢ t <: τ ′

Γ, t = τ ⊢ τ ′ <: τ
[ABS]

Γ, t = τ ⊢ τ ′ <: t

Γ ⊢ τ ′
1 <: τ1 Γ ⊢ τ2 <: τ ′

2
[FUN]

Γ ⊢ τ1 → τ2 <: τ ′
1 → τ ′

2

Γ ⊢ τ1 <: τ ′
1 · · · Γ ⊢ τk <: τ ′

k k ≤ n
[REC]

Γ ⊢ {l1 : τ1, . . . , ln : τn} <: {l1 : τ ′
1, . . . , lk : τk}

We have made the standard first step of removing the transitivity rule and em-
bedding its action into the other rules (in this case, the abstraction and concretion
rules). Two other things are worthy of note. First, the [REFL] rule imposes an
invariance restriction on reference types (i.e., τ ref <: τ ′ ref if and only if τ and
τ ′ are identical). While such an invariance is standard, it usually does not apply
when considering named types as equal to their definition. For example, if we had
Γ ≡ t = int, we might expect that Γ ⊢ t ref <: int ref . However, when subtyping
is used to add coercions, this approach will not work: there is no way to coerce a
term having the former type to one having the latter. We have not found this to
be a problem in practice.

Second, we can see that the rules [CON] and [ABS] are not syntax-directed. For
example, consider the context Γ ≡ t = int, s = t, u = s, v = t. Here are two different
derivations of the judgement Γ ⊢ u <: v, with the preferred on the left:
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Γ ⊢ t <: t

Γ ⊢ t <: v

Γ ⊢ s <: v

Γ ⊢ u <: v

Γ ⊢ t <: t

Γ ⊢ t <: int

Γ ⊢ s <: int

Γ ⊢ s <: t

Γ ⊢ u <: t

Γ ⊢ u <: v

The problem with rightmost derivation is the pointless concretion/abstraction of
type t. As we explained above this will be compiled to a coercion that will possibly
inhibit future updates and add unnecessary computation.

The [CON] and [ABS] rules capture the cases of τ <: τ ′ where one or both of τ and
τ ′ is a name. The essence of our solution to the above problem is to break down these
cases into separate rules and also to avoid unnecessary concretions/abstractions. We
replace the [CON] and [ABS] rules with the following four rules:

NotNameType(τ ′) Γ, t = τ ⊢ τ <: τ ′

[CONc]
Γ, t = τ ⊢ t <: τ ′

NotNameType(τ ′) Γ, t = τ ⊢ τ ′ <: τ
[ABSc]

Γ, t = τ ⊢ τ ′ <: t

Γ(t) = τ Γ(s) = τ ′ Height(t, Γ) ≥ Height(s, Γ) Γ ⊢ τ <: s
[CONn]

Γ ⊢ t <: s

Γ(t) = τ Γ(s) = τ ′ Height(s, Γ) > Height(t, Γ) Γ ⊢ t <: τ ′

[ABSn]
Γ ⊢ t <: s

The predicate NotNameType(τ) returns false if τ is a name and true otherwise.
[CONc] and [ABSc] deal with the case τ <: τ ′ where only one of τ and τ ′ is a
name. However, we still need to handle the case when they are both names, e.g.
Γ, t = τ, t′ = τ ′ ⊢ t <: t′. Should we unfold the name t, or t′? To break this
symmetry we make use of a function Height , which is defined as follows:

Height(t, Γ) = 1 if Γ(t) = τ and NotNameType(τ)
Height(t, Γ) = 1 + h if Γ(t) = s and h = Height(s, Γ)

Given a typing context Γ and name t, Height(t, Γ) returns the number of “unfold-
ings” we need to make to the name until we get a type constructor. For example,
given Γ ≡ t = int, s = t, u = s, v = t then

Height(u, Γ) = 3,
Height(s, Γ) = 2,
Height(t, Γ) = 1, and
Height(v, Γ) = 2.

We can use this algorithmic subtyping relation to generate coercion contexts as
shown in Figure 7. As an example, we show how the derivation of u <: v from
earlier would be translated (assuming that Γ ≡ t = int, s = t, u = s, v = t).
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Γ ⊢ τ <: τ ′
; C

[REFLcoer]
Γ ⊢ τ <: τ ;

NotNameType(τ ′) Γ, t = τ ⊢ τ <: τ ′
; C

[CONccoer]
Γ, t = τ ⊢ t <: τ ′

; C[cont ]

NotNameType(τ ′) Γ, t = τ ⊢ τ ′ <: τ ; C

[ABSccoer]
Γ, t = τ ⊢ τ ′ <: t ; (abst )[C]

Γ(t) = τ Γ(s) = τ ′ Height(t, Γ) ≥ Height(s,Γ) Γ ⊢ τ <: s ; C

[CONncoer]
Γ ⊢ t <: s ; C[cont ]

Γ(t) = τ Γ(s) = τ ′ Height(s, Γ) > Height(t, Γ) Γ ⊢ t <: τ ′
; C

[ABSncoer]
Γ ⊢ t <: s ; (abst )[C]

Γ ⊢ τ ′
1 <: τ1 ; C1 Γ ⊢ τ2 <: τ ′

2 ; C2
[FUNcoer]

Γ ⊢ τ1 → τ2 <: τ ′
1 → τ ′

2 ; λ(f : τ1 → τ2).λ(x : τ ′
1).C2[f (C1[x])]

Γ ⊢ τ1 <: τ ′
1 ; C1 · · · Γ ⊢ τk <: τ ′

k ; C2 k ≤ n
[RECcoer]

Γ ⊢ {l1 : τ1, . . . , ln : τn} <: {l1 : τ ′
1, . . . , lk : τk} ;

let x : {l1 : τ1, . . . , ln : τn} = in {l1 = C1[x.l1], . . . ln = Cn[x.ln]}

Fig. 7. Coercion generation via the subtyping relation

[REFLcoer]
Γ ⊢ t <: t ; Height(v, Γ) > Height(t, Γ)

[ABSncoer]
Γ ⊢ t <: v ; absv Height(s, Γ) ≥ Height(v, Γ)

[CONncoer]
Γ ⊢ s <: v ; absv cons Height(u, Γ) ≥ Height(v, Γ)

[CONncoer]
Γ ⊢ u <: v ; absv cons conu

It is relatively routine to show that whilst this system limits the number of deriva-
tions, it still encodes the same subtyping relation.

Theorem 4.1. We refer to the subtyping relation with [CON] and [ABS] as ⊢nd

and the relation that replaces these with [CONn], [ABSn], [CONc], [ABSc] as ⊢alg .
Then Γ ⊢nd τ <: τ ′ if and only if Γ ⊢alg τ <: τ ′.

Proof. This is proved by relatively straightforward proof-theoretic techniques.

4.2.3 Algorithmic expression typing. The final step toward a deterministic algo-
rithm is to apply subtyping algorithmically within the typing relation. The stan-
dard approach is to remove the subsumption rule and incorporate it directly into the
other rules, allowing subsumption only at the argument for application and for the
right-most expression of an assignment. However, in the presence of named types,
this approach is insufficient for maintaining a tight correspondence with the non-
algorithmic relation. Consider an application e1 e2. The problem occurs when e1

has a named type, because subsumption is not available to expand the definition to
a function type. While we cannot allow subsumption at both e1 and e2 as it would
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not be algorithmic, we only require unfolding, a weaker form of subsumption, at e1.
2

To this end, we introduce an unfolding judgement Γ ⊢ t � τ , that relates t and τ
if the definition t = τ holds directly or transitively, inserting an explicit concretion
every time it unfolds a named type to its definition. The unfolding judgement is
then used whenever a specific type is required in the typing judgement, i.e., in the
application, dereference, assignment, and projection rules. This relation is defined
as follows:

Γ ⊢ τ � τ ;

Γ(t) = τ ′ Γ ⊢ τ ′
� τ ; C

Γ ⊢ t � τ ; C[cont ]

The complete rules for the translation are given in Figures 7, 8 and 9. (The normal
typing rules for Proteussrc can be read from these figures by simply ignoring the
 C parts.)

4.3 Operational Semantics

The operational semantics is defined using a single-step reduction relation between
configurations, which are triples consisting of a type environment Ω, a heap H and
an expression e, as shown in Figure 11. We use evaluation contexts to encode the
(call-by-value) evaluation strategy.

The type environment Ω defines a configuration’s named types. Each type in
dom(Ω) maps to a single representation τ ; some related approaches [Duggan 2001;
Hicks 2001] would permit t to map to a set of representations indexed by a version.
We refer to our non-versioned approach as being representation consistent since a
running program has but one definition of a type at any given time.

The heap H is a map from heap addresses ρ to pairs (ω, b), where ω is a type
tag and b is a binding. We use the heap to store both mutable references created
with ref and top-level bindings created with var and fun; therefore ρ ranges over
locations r and top-level identifiers z. For locations, the type tag ω is simply ·,
indicating the absence of a type, and for identifiers, e.g. z, it is the type τ which
appeared in the definition of z in the program. Type tags are used to type check
new and replacement definitions provided by a dynamic update.

Normal configuration evaluation is defined by a relation between configurations,
written Ω; H ; e −→ Ω; H ′; e′, and is given in Figure 12. This relation consists of
a series of computations, the order of which is determined by evaluation contexts.
All expressions e can be uniquely decomposed into E[e′] for some evaluation con-
text E and expression e′, so the choice of computation rule is unambiguous. The
computation rules are mostly standard; we will elaborate on the interesting rules
below. We use the notation e[v/x] to denote the capture-avoiding substitution of v
for x within e.

2The alert reader may have noticed that the subtype relation is in fact sufficient to get algorithmic
behaviour at application, provided we drop the notion of applying subsumption to the arguments
of functions, and instead apply it to the function type. Although theoretically simpler, in practice
we want to avoid coercing functions, which is expensive. Moreover, we need the unfolding at
projection and dereference in any case, thus it seems a more general concept to apply unfolding
at destruct positions — points where the top-level structure of a value is deconstructed [Bierman
et al. 2003].
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Γ ⊢ e : τ  e′

Γ ⊢ n : int  n

Γ(x) = τ
Γ ⊢ x : τ  x

Γ(z) = τ
Γ ⊢ z : τ  z

Γ ⊢ ei : τi  e′i (i ∈ 1..n)

Γ ⊢ {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}  {l1 = e′1, . . . , ln = e′n}

Γ ⊢ e : τ  e′ Γ ⊢ τ � {l1 : τ1, . . . , ln : τn} C

Γ ⊢ e.li : τi  C[e′].li

Γ ⊢ e1 : τ  e′1 Γ ⊢ e2 : τ ′
1  e′2

Γ ⊢ τ � τ1 → τ2  C1 Γ ⊢ τ ′
1 <: τ1  C1

Γ ⊢ e1 e2 : τ2  C1[e′1] C2[e′2]

Γ ⊢ e1 : τ ′
1  e′1 Γ ⊢ τ ′

1 <: τ1  C Γ, x : τ1 ⊢ e2 : τ2  e′2
Γ ⊢ let x : τ1 = e1 in e2 : τ2  let x : τ1 = C[e′1] in e′2

Γ ⊢ e : τ  e′

Γ ⊢ ref e : τ ref  ref e′

Γ ⊢ e : τ ′
 e′ Γ ⊢ τ ′

� τ ref  C

Γ ⊢ !e : τ  !C[e′]

Γ ⊢ e1 : τ ′
 e′1 Γ ⊢ e2 : τ ′′

 e′2
Γ ⊢ τ ′

� τ ref  C1 Γ ⊢ τ ′′ <: τ  C2

Γ ⊢ e1 := e2 : τ  C1[e
′
1] := C2[e

′
2]

Γ ⊢ update : int update

Fig. 8. Con/abs insertion for compiling Proteussrc expressions

Γ ⊢ P : τ  P ′

Γ ⊢ τ OK Γ, t = τ ⊢ P : τ  P ′

Γ ⊢ type t = τ in P : τ  type t = τ in P ′

Γ′ = Γ, z : τ1 → τ2 Γ′, x : τ1 ⊢ e : τ ′
 e′

Γ′ ⊢ τ ′ <: τ2  C Γ′ ⊢ P : τ  P ′

Γ ⊢ fun z(x : τ1) : τ2 = e in P : τ  fun z(x : τ1) : τ2 = C[e′] in P ′

Γ ⊢ v : τ ′′
 e′ Γ ⊢ τ ′′ <: τ ′

 C

Γ, z : τ ′ ref ⊢ P : τ  P ′

Γ ⊢ var z : τ ′ = v in P : τ  var z : τ ′ = C[e′] in P ′

Γ ⊢ e : τ  e′

Γ ⊢ return e : τ  e′

Fig. 9. Con/abs insertion for compiling Proteussrc programs
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Γ ⊢ τ OK

Γ ⊢ int
t ∈ dom(Γ)

Γ ⊢ t

Γ ⊢ τ
Γ ⊢ τ ref

Γ ⊢ τi i ∈ 1..n

Γ ⊢ {l1 : τ1, ..., ln : τn}
Γ ⊢ τ1 Γ ⊢ τ2

Γ ⊢ τ1 → τ2

Fig. 10. Type well-formedness

Syntax

Heap (binding) expressions b ∈ HExp ::= e | λ(x).e
Heap (binding) values bv ∈ HVal ::= v | λ(x).e
Heaps H ∈ Heap ::= ∅ | r 7→ (·, b), H | z 7→ (τ, b), H
Type environment Ω ∈ TEnv ::= ∅ | t 7→ τ, Ω
Configurations cfg ∈ CFG ::= Ω; H; e

Evaluation context E ::= | {l1 = v1, . . . , li = E, . . . , ln = en}
| E.l | E e | v E | let z = E in e
| ref E | !E | E := e | r := E

| cont E | abst E

| if E = e then e else e
| if v = E then e else e

Updates

Updates U ∈ Upd ::= {UN = un, AN = an,UB = ub,AB = ab}
Updated Named Types un ∈ NT ⇀ Typ × XVar
Additional Named Types an ∈ NT ⇀ TEnv
Additional Bindings ab ∈ XVar ⇀ Typ × HVal
Updated Bindings ub ∈ XVar ⇀ Typ × HVal

Fig. 11. Syntax for dynamic semantics of Proteuscon

A program P is compiled into a configuration Ω;H ; e = C(∅; ∅; P ), as shown in
the bottom of Figure 12. Type defintions type t = τ in the program are added to
the configuration’s type environment Ω. Function definitions fun f(x : τ1) : τ = e
are stored in the heap as lambda terms λ(x).e indexed by their identifier f. The
operational rules will never permit these lambda terms from appearing in the active
expression. Finally, top-level identifier definitions var z : τ = v are stored in the
heap as we would expect.

Next, we consider how our semantics expresses the interesting operations of dy-
namic updating: (1) updating top-level identifiers z with new definitions, and (2)
updating type definitions t to have a different representation.

Replacing Top-level Identifiers. A top-level identifier z from the source program
is essentially a statically-allocated reference cell. As a result, at update-time we can
change z’s binding in the heap; afterwards any code that accesses (dereferences) z

will see the new version. However, our treatment of references differs somewhat
from the standard one to facilitate dynamic updates.

First, since all functions are defined at the top-level, they are all references.
However, rather than give top-level functions the type (τ1 → τ2) ref , we simply
give them type τ1 → τ2, and perform the dereference as part of the (call) rule.
This has the pleasant side effect of rendering top-level functions immutable during
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Computation: H; e −→ H′; e′

H; {l1 = v1, . . . , ln = vn}.li −→ H; vi (proj)

H; cont (abst v) −→ H; v (conabs)

(H, z 7→ (τ, λ(x).e )); z v −→ (H, z 7→ (τ, λ(x).e )); e[v/x] (call)

H; let x : τ = v in e −→ H; e[v/x] (let)

H; ref v −→ (H, r 7→ (·, v)); r (ref)

(H, ρ 7→ (ω, e)); !ρ −→ (H, ρ 7→ (ω, e)); ρ := e (deref)

(H, ρ 7→ (ω, e)); ρ := v −→ (H, ρ 7→ (ω, v)); v (assign)

H; if v1 = v2 then e1 else e2 −→ H; e1 (where v1 = v2) (if-t)

H; if v1 = v2 then e1 else e2 −→ H; e2 (where v1 6= v2) (if-f)

H;update −→ H; 1 (no-update)

Configuration Evaluation: Ω; H; e −→ Ω′; H′; e′

H; e −→ H′; e′

Ω; H; E[e] −→ Ω; H′; E[e′]
(cong)

updateOK(upd,Ω, H, E[0])

Ω; H; E[update]
upd
−−−→ U [ Ω ]upd;U [ H ]upd;U [ E[0] ]upd

otherwise: Ω; H; E[update]
upd
−−−→ E[1]

(update)

Compilation: C(Ω; H; P ) = Ω; H; e

C(Ω; H; e) = Ω; H; e
C(Ω; H; type t = τ in P ) = C(Ω, t = τ ;H;P )

C

„

Ω; H;

„

fun f1(x : τ1) : τ ′
1 = e1 . . .

and fn(x : τn) : τ ′
n = en in P

««

=

C(Ω; H, f1 7→ (τ → τ ′, λ(x).e1 ), . . . , fn 7→ (τ → τ ′, λ(x).en ); P )

C(Ω; H;var z : τ = v in P ) = C(Ω; H, z 7→ (τ, v); P )

Fig. 12. Dynamic semantics for Proteuscon

normal execution, as is typical, while still allowing them to be dynamically updated.
Second, as we have explained already, top-level bindings stored in the heap are

paired with their type τ to be able to type check new and replacement bindings.
Some formulations of dynamic linking define a heap interface, which maps variables
z to types τ [Hicks et al. 2000], but we find it more convenient to merge this interface
into the heap itself.

Updating Data of Named Type. As mentioned in §4.2, Proteuscon uses coercions
to identify where data of a type t is being used abstractly and concretely. The
(conabs) rule allows an abstract value abst v to be used concretely when it is
provided to cont; this annihilates both coercions so that v can be used directly.

At update time, given a type transformation function c for an updated type t, we
rewrite each occurrence abst e to be abst (c e) using the U [−]

upd
transformation,

explained next. Although only values can be stored in the heap initially, heap values
of the form abst v will be rewritten to be abst (c v), which is no longer a value.
Therefore, !r can potentially dereference an expression from the heap, and our
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U [H]upd

U [ z = (τ, b), H ]upd =

8

>

>

<

>

>

:

z = (τ ′, b′),U [H ]upd

if upd.UB(z) = (τ ′, b′)

z = (τ,U [ b ]upd),U [H ]upd

otherwise

U [r = (·, b), H]upd = (r = (·,U [b]upd)),U [H]upd

U [∅]upd = upd.AB

U [b]upd

U [n]upd = n U [x]upd = x U [r]upd = r U [z]upd = z

U [abst e]upd =

8

>

>

<

>

>

:

abst (c U [e]upd)
if upd.UN(t) = (τ ′, c)

abst U [e]upd

otherwise

For remaining b containing subterms e1, . . . , en: U [b]upd = b with U [e1]upd . . .U [en]upd

U [Ω]upd

U [∅]upd = ∅

U [t = τ,Ω]upd =



upd.AN(t), Ω′ if t ∈ dom(upd.AN)
Ω′ otherwise

where Ω′ =

8

>

>

>

<

>

>

>

:

t = τ ′,U [Ω]upd

if upd.UN(t) = (τ ′, )

t = τ,U [Ω]upd

otherwise

U [Γ]upd

U [∅]upd = types(upd.AB)

U [x : τ,Γ]upd = x : τ,U [Γ]upd

U [r : τ,Γ]upd = r : τ,U [Γ]upd

U [z : τ,Γ]upd =

(

z : heapType(τ ′, bv),U [Γ]upd if upd.UB(z) = (τ ′, bv)

z : τ,U [Γ]upd otherwise

U [t = τ,Γ]upd =



upd.AN(t), Γ′ if t ∈ dom(upd.AN)
Γ′ otherwise

where Γ′ =

8

>

>

>

<

>

>

>

:

t = τ ′,U [Γ]upd

if upd.UN(t) = (τ ′, )

t = τ,U [Γ]upd

otherwise

Fig. 13. Dynamically updating a program: U [−]upd

(deref) rule evaluates the contents of the reference and then writes back the result
before proceeding. Whether the coercions are in the heap or the program, when
they are executed is (for all intents and purposes) unpredictable. Indeed, in our
implementation (§7), we take a lazy approach to updating typed values, delaying
the evaluation of the coercion function until the value is actually used, in the style
of Duggan [Duggan 2001]. As a result, coercions should be written to act locally
and avoid side-effecting computation. One could imagine enforcing this, but we do
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Configuration typing: ⊢ Ω; H, e : τ

⊢ Ω Ω; Φ ⊢ H Ω,Φ ⊢U e : τ
⊢ Ω; H; e : τ

Heap typing: Ω;Φ ⊢ H

dom(Φ) = dom(H)
∀z 7→ (τ → τ ′, λ(x).e ) ∈ H. Ω,Φ, x : τ ⊢ e : τ ′ ∧ Φ(z) = τ → τ ′

∀z 7→ (τ, e) ∈ H. Ω,Φ ⊢ e : τ ∧ Φ(z) = τ ref

∀r 7→ (·, e) ∈ H. Ω,Φ ⊢ e : τ ∧ Φ(r) = τ ref

Ω; Φ ⊢ H

Type Environment Well-formedness: Ω ⊢ Ω

Ω ⊢ ∅
Ω, t = τ ⊢ Ω′ Ω ⊢ τ OK

Ω ⊢ t = τ,Ω′

Fig. 14. Proteuscon Configuration typing

not do so here.

Update Semantics. When no dynamic update is available, an update expression
simply evaluates normally to 1, by (no-update). An available dynamic update upd
is modeled with a labeled transition, where upd labels the arrow. Rule (update)
specifies that if upd is well-formed (by updateOK(−), described in the next section),
the update evaluates to 0, and the program is updated by transforming the current
type environment Ω, heap H , and expression e according to U [−]

upd
, defined in

Figure 13; otherwise the update expression evaluates to 1. To ensure representation
consistency, U [−]upd applies type transformation functions to all abst e expressions
of a named type t that is being updated. When transforming the heap, it replaces
top-level identifier definitions with their new versions, and adds all of the new
bindings. When transforming Ω, it replaces type definitions with their new versions,
and inserts new definitions into specified places in the list. Also shown in the figure
is the definition for updating a typing context Γ; this is used in the definition of
updateOK(−), described in the next two sections.

Typing. We define typing rules for the well-formedness of configurations in Fig-
ure 14; these will be used in the proof of type soundness presented in §4.5. The
judgement ⊢ Ω; H ; e : τ indicates that a configuration is well-formed. Config-
uration well-formedness is predicated on the existence of some Φ, called the heap
interface, that properly maps top-level identifiers z and references r to types τ . That
is, a configuration is well-formed as long as there exists some Φ sufficient to type
check the heap (Ω; Φ ⊢ H) and to type check the active expression. Note that we
write Ω, Φ to denote the concatenation of the heap interface and the configuration
type environment, which defines the Γ used to type check the active expression e.

The heap typing judgement establishes two facts: (1) each of the types in Φ
accurately represents the types of the bindings found in H ; (2) each of the bindings
in the heap type checks under Φ and the current type environment Ω. Assuming
the existence of a Φ permits cycles in the reference graph.

The type environment Ω must be consistent, which we establish with the judge-
ment Ω ⊢ Ω. This is particularly important when an update is applied as we must
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ensure that the resulting type environment is valid. The rules in the figure ensure
this by requiring all types mentioned in other types to be both defined and linearly
orderable (non-recursive). However, it is not hard to treat types t as iso-recursive
since cont e and abst e correspond precisely to the mediating coercions foldt e and
unfoldt e of iso-recursive types [Gapeyev et al. 2000]. Therefore, all of our types
could be considered implicitly recursive.

4.4 Update Safety

The conditions for ensuring that updates are type-safe are formally expressed in the
definition of the updateOK(−) predicate that is a precondition to the (update) rule
in Figure 12. In particular, if updateOK(−) holds, then applying the update will
yield a type-correct program.

The definition of updateOK(−) has two components: (1) it ensures that the
update is compatible with the program’s definitions, and (2) that it is compatible
with the current state of the program, i.e., the return e part and the heap H .
The former is a static property, in the sense that the information to perform it is
available provided one has the original source and the updates previously applied.
The interesting part is the latter component, since satisfying it depends on the
timing of the update.

let i = post (
let u2 = update in

let res = (consockhandler abssockhandler udp read)
{sock = vsock, buf = (conreq vreq).buf, sflags = vsflags} in

let u3 = update in res
) in loop i

Fig. 15. Example active expression

To ensure that an update is well-timed, it must be applied at a program point
that is con-free. To understand what this means, consider again the example from
§3.3. Figure 15 illustrates the active expression in Proteuscon equivalent to the
Proteussrc epxression shown in Figure 5 of that section. Notice that now the
call to udp read as a concrete usage of type sockhandler is made manifest by type
coercions. We can clearly see that this point in the program is not “con-t-free” since
it will manipulate t values concretely immediately following the update. In general,
we say a configuration Ω; H ; e is con-free for an update upd if for all named types t

that the update will change, cont is not a subexpression of (1) the active expression
e or (2) any of the bindings in the heap that are not replaced by the update. We

write this as conFree[− ]upd; the definition is given in Figure 16. Part (2) is captured
by the first rule in the figure: functions to be replaced (i.e., those in upd.UB) are
not checked. The existence of a cont in some other part of the program P will
cause conFree[ P ]upd to fail as exemplified by the rule for conFree[ cont e ]upd.

The conditions for update well-formedness in updateOK(−) aim to ensure that
type-safety is maintained following the addition or replacement of code and types.
The types(H) predicate extracts all of the type tags from H and constructs a
suitable Γ for typechecking the new or replacement bindings. Since heap objects
are stored with their declared type τ , if they are not functions then in Γ they are
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updateOK(upd, Ω, H, e)

updateOK(upd,Ω, H, e) =

conFree[ H ]upd∧

conFree[ e ]upd∧
Γ = types(H)∧

⊢ U [Ω]upd∧

∀t 7→ (τ, c) ∈ upd.UN. U [Ω, Γ]upd ⊢ c : Ω(t) → τ∧

∀z 7→ (τ, bv) ∈ upd.UB. U [Ω,Γ]upd ⊢ bv : τ∧
heapType(τ, bv) = Γ(z)∧

∀z 7→ (τ, bv) ∈ upd.AB. U [Ω,Γ]upd ⊢ bv : τ ∧ z /∈ dom(H)

conFree[− ]upd = tt | ff

conFree[ z = (τ, b), H ]upd

= conFree[ H ]upd ∧



tt if z ∈ dom(upd.UB)

conFree[ b ]upd otherwise

conFree[ r = (·, e), H ]upd = conFree[ e ]upd ∧ conFree[ H ]upd

conFree[ n ]upd = tt conFree[ x ]upd = tt

conFree[ cont e ]upd =



ff if t ∈ dom(upd.UN)
tt otherwise

For remaining b containing subterms e1, . . . , en:

conFree[ e ]upd =
V

i conFree[ ei ]upd

types(H) = Φ

types(∅) = ∅
types(z 7→ (τ → τ ′, λ(x).e ), H′) = z : τ → τ ′, types(H′)
types(z 7→ (τ, e), H′) = z : τ ref , types(H′)

heapType(τ, bv) = tt | ff

heapType(τ1 → τ2) = τ1 → τ2
heapType(τ) = τ ref where τ 6= τ1 → τ2

Fig. 16. updateOK(−) predicate for defining legal updates, and supporting definitions

given type τ ref . Next, the updated type environment U [Ω]
upd

is checked for well-
formedness. Then, using the updated Ω and Γ, we check that the type transformer
functions, replacement bindings and new bindings are all well-typed. These type-
checks apply only to expressions contained in the update—none of the existing code
must be rechecked (though its types, as stored in the heap, are needed to check the
new code).

A natural question is “how likely is it in practice that a given dynamic update
will occur at an update that is con-free?” This depends on the placement of the
update in the program text. If the update is at a program point for which there
will be a fairly shallow call stack (corresponding to a small active expression e
in configuration Ω;H ; e), then there is less possibility that some cont exists that
will prevent the update. The contents of the heap will not play a significant role
in update timing, assuming that the new update indeed replaces functions that
use a type whose definition has changed. For a program like our example that is
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structured around a top-level event loop, placing update just prior to the recursive
call of that loop yields the fewest restrictions: it is the top-level loop, so there is
no call stack, and moreover the current invocation of the function that implements
the loop has finished. An update at that point will be accepted even if the loop
function has changed, because the next call to that function will be to the newest
version, which is checked to be compatible with any changed type definitions at
update-time. All single-threaded, long-running programs we have encountered have
such update-friendly points in them [Hicks 2001].

4.5 Properties

Our main theorem is that Proteuscon is type safe.

Theorem 4.2 (Type Soundness). If ⊢ Ω; H ; e : τ then either

(i) there exists Ω′, H ′, e′ such that Ω; H ; e → Ω′; H ′; e′ and ⊢ Ω′; H ′; e′ : τ or

(ii) e is a value

This theorem states that a well-typed program is either a value, or is able to
reduce (and remain well-typed). The most interesting case in proving type preser-
vation is the (Update) rule, for which we must prove a lemma that well-formed
and well-timed updates lead to well-typed programs:

Lemma 4.3 (U [− ]− preserves type-safety). Given ⊢ Ω; H ; e and an update, upd,

for which we have updateOK(upd, Ω, H, e), then ⊢ U [ Ω ]upd;U [ H ]upd,U [ e ]upd : τ .

Proof sketches appear in Appendix A.2.

5. STATIC UPDATE SAFETY

The updateOK(−) predicate determines the legality of an update upd’s form and its
timing when applied to program P . Well-formedness is based only on the substance
of upd and the types of the P ’s definitions ; that is, the bindings z in its heap H and
the type definitions t in its type environment Ω. This type information is invariant
with P ’s execution, and so the well-formedness of upd can be known in advance,
before it is applied, by checking it against the program text. In contrast, the well-
timing of upd is determined by the conFree[− ]

upd
predicate, which relies on the

program’s current state, which is the active expression e and the bindings in the
heap. Implementing this check directly has two drawbacks:

(1) It could be expensive. P ’s active expression e models the stack and program

counter in an actual implementation, and so to implement conFree[ P ]
upd

would
require traversing the stack and code to look for concrete uses of changed types.

(2) More importantly, it could fail if the update is applied at a bad time. While
an easy remedy is to delay the update until an acceptable update location
is reached, there is no assurance that such a location exists. For example,
if all update points in the program P immediately precede the expression
cont e, then any update that includes a change to t will always fail because
conFree[ cont e ]

upd
will fail for all upd. As this is due to the structure of P ,

the programmer would like to learn of this fact before P is deployed, to ensure
that future, unanticipated changes to t may safely take place.

In this section we present a way to statically infer, for each update point in the
program, those named types t for which the program may not be con-t-free at that
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Capabilities ∆ ::= {t1, . . . tn} | ∆ ∩ ∆
Updateability µ ::= U | N

Types τ ::= · · · | τ
µ;∆
−→ τ

Expressions e ::= · · · | update∆

Programs P ::= · · · | fun zµ;∆;∆′

(x : τ1) : τ2 = e in P
Heap expressions b ::= e | λ∆(x).e

Heap values bv ::= v | λ∆(x).e

Fig. 17. Extended syntax for Proteus∆

point. With this information, we can discover which, if any, update points are con-
free for all types, meaning that the update will accept any well-formed update,
whatever it may be. This is the kind of guarantee enjoyed by standard dynamic
linking, which only adds bindings to the program, but does not replace them. In
addition to supporting this kind of reasoning, static inference also permits a simpler,
more efficient implementation of updateOK(−), without need of conFree[− ]. We
call our static inference an updateability analysis, and formulate it as a type and
inference system. This section presents the type rules and shows the analysis to be
sound.

5.1 Capabilities

Our goal is to define and enforce a notion of con-freeness for a program, rather than
a program state. In other words, we wish to determine for a particular update

whether it will be acceptable to update some type t. An update to t will be unac-
ceptable if an occurrence of cont exists in any old code that could be evaluated in
the continuation of the update. If we can discover all possible such occurrences of
cont, we could annotate update with a list of those types t; call this annotation ∆.
Then, (along with its well-formedness checks) updateOK(−) could ascertain con-
freeness by merely checking that for all t ∈ upd.UN, t 6∈ ∆. This is substantially
simpler than conFree[− ].

We call this annotation ∆ a capability, since it serves as a bound on what types
may be used concretely in the continuation of an update. That is, roughly speak-
ing, any code following an update must type check using Γ restricted to those
types listed in the capability. Since an update could change only types not in
the capability, we are certain that existing code will remain type-safe. As a con-
sequence, if we can type-check our program containing only update points with
empty capabilities, we can be sure that no update will fail due to bad timing.

5.2 Typing

We define a type system that tracks the capability at each program point to en-
sure that updates are annotated soundly. To do this, we introduce a new target
language, Proteus∆, that differs from Proteuscon in two ways: (1) functions,
function types, and update are annotated with capabilities; (2) each function and
function type is annotated with an updateability µ, which indicates whether a dy-
namic update may occur as a result of calling the function. The syntax changes
are shown in Figure 17. We must also adjust compilation (Figure 12) in the case of
functions to add the necessary annotation on the generated binding and type (the
and case is obvious and not shown):

C(Ω; H ; fun fµ;∆;∆′

(x : τ) : τ ′ = e in P ) = C(Ω; H, f 7→ (τ
µ;∆′

−→ τ ′, λ∆(x).e ); P )
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Expression Typing: ∆; Γ ⊢µ e : τ ;∆′

∆;Γ ⊢µ n : int;∆ (a.expr.int)

Γ(x) = τ
∆;Γ ⊢µ x : τ ; ∆

(a.expr.var)

Γ(z) = τ
∆;Γ ⊢µ z : τ ;∆

(a.expr.xvar)

∆;Γ, r : τ ref ⊢µ r : τ ref ;∆ (a.expr.loc)

∆i; Γ ⊢µ ei+1 : τi+1;∆i+1 i ∈ 1..(n − 1) n ≥ 0
∆0; Γ ⊢µ {l1 = e1, . . . , 1n = en} : {l1 : τ1, . . . , ln : τn};∆n

(a.expr.record)

∆;Γ ⊢µ e : {l1 : τ1, . . . , ln : τn}; ∆′

∆;Γ ⊢µ e.li : τi;∆
′ (a.expr.proj)

∆;Γ ⊢µ e1 : τ1
µ̂;∆̂
−→ τ2;∆′

∆′; Γ ⊢µ e2 : τ1; ∆′′ ∆′′′ ⊆ ∆′′

(µ̂ = U) ⇒ (µ = U ∧ ∆′′′ ⊆ ∆̂)

∆; Γ ⊢µ e1 e2 : τ2;∆′′′ (a.expr.app)

∆;Γ ⊢µ e : τ ;∆1 ∆1; Γ ⊢µ e′ : τ ; ∆2

∆2; Γ ⊢µ e1 : τ ′; ∆3 ∆2; Γ ⊢µ e2 : τ ′; ∆4

∆;Γ ⊢µ if e = e′ then e1else e2 : τ ′;∆3 ∩ ∆4
(a.expr.if)

∆;Γ ⊢µ e1 : τ ′
1; ∆′

∆′; Γ, x : τ1 ⊢µ e2 : τ2; ∆′′

∆;Γ ⊢µ let x : τ = e1 in e2 : τ2;∆′′ (a.expr.let)

∆;Γ ⊢µ e : τ ;∆′

∆;Γ ⊢µ ref e : τ ref ;∆′ (a.expr.ref)

∆; Γ ⊢µ e : τ ref ; ∆′

∆;Γ ⊢µ !e : τ ; ∆′ (a.expr.deref)

∆;Γ ⊢µ e1 : τ ref ;∆′

∆′; Γ ⊢µ e2 : τ ;∆′′

∆;Γ ⊢µ e1 := e2 : τ ; ∆′′ (a.expr.assign)

Fig. 18. Expression judgements for Proteus∆ (part I)

Here, the ∆ annotation on λ∆(x).e is used in the update-time safety check, as
we show later. For the remainder of this section, we consider the type system for
Proteus∆, covering judgements for expressions, programs, and configurations.

5.2.1 Expression Typing. The rules for typing expressions are given in Figures 18
and 19, defining judgement ∆; Γ ⊢µ e : τ ; ∆′. Here, ∆ is the capability before e is
evaluated, and ∆′ is the capability afterward. Each rule is actually a family of rules
parameterized by an updateability µ: updateability U indicates a dynamic update
may be performed while evaluating the given expression, while N indicates that
no update is permitted. This is used to rule out dynamic updates in undesirable
contexts, as we explain in the next subsection.
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∆′ ⊆ ∆

∆;Γ ⊢U update∆′

: int;∆′
(a.expr.update)

∆′ ⊆ ∆ ∆′; Γ ⊢U e1 : τ ′;∆1 ∆;Γ ⊢U e2 : τ ′; ∆2

∆;Γ ⊢U if update∆′

= 0 then e1else e2 : τ ′;∆1 ∩ ∆2

(a.expr.ifupdate)

∆;Γ ⊢µ e : t; ∆′ Γ(t) = τ t ∈ ∆′

∆;Γ ⊢µ cont e : τ ;∆′ (a.expr.con)

∆;Γ ⊢µ e : τ ;∆′ Γ(t) = τ

∆;Γ ⊢µ abst e : t; ∆′ (a.expr.abs)

∆;Γ ⊢µ e : τ ′; ∆′ Γ ⊢ τ ′ <: τ ∆′′ ⊆ ∆′

∆;Γ ⊢µ e : τ ; ∆′′ (a.expr.sub)

Fig. 19. Expression judgements for Proteus∆ (part II)

let dispatchε;ϕ1;ϕ2(s : req) : handResult = ϕ2 ⊆ ϕ5

let t = decode((conreq s).fd) in req ∈ ϕ1

let u1 = updateϕ3 in ϕ3 ⊆ ϕ1, ε = U

if (confdtype t) = Socket then fdtype ∈ ϕ3

let k = getsock((conreq s).fd) in req ∈ ϕ3

let flags =
decode sockopargs((conreq s).rest, (conreq s).op) in req ∈ ϕ3, req ∈ ϕ3

let h = getsockhandler((conreq s).fd, (conreq s).op) in req ∈ ϕ3, req ∈ ϕ3

let u2 = updateϕ4 in ϕ4 ⊆ ϕ3, ε = U

let res = (consockhandler h)(k, (conreq s).buf, flags) in sockhandler ∈ ϕ4, req ∈ ϕ4

let u3 = updateϕ5 in res ϕ5 ⊆ ϕ4, ε = U

else if (confdtype t) = File then . . . fdtype ∈ ϕ3

else (abshandResult −1 )

where

ε = U

ϕ1 = {req, fdtype, sockhandler}
ϕ2 = ∅
ϕ3 = {req, fdtype, sockhandler}
ϕ4 = {req, sockhandler}
ϕ5 = ∅

Fig. 20. dispatch (from Figure 6) in Proteus∆, with capability and updateability annotations

Typing update and cont e. The capability ∆′ on update∆′

lists those types
that must not change due to a dynamic update. Since any other type could change,
the (a.expr.update) rule assumes that the capability can be at most ∆′ following
the update. The (a.expr.con) rule states that to concretely access a value of type
t, the type t must be defined in Γ, restricted to types listed in capability ∆′.

Figure 20 shows the dispatch function from Figure 6 with capability and update-
ability annotations added. In the figure we put variables for these annotations with
their solutions and constraints on their solutions to the right; we explain this more
in Section 5.4. We can see that the update in let u1 = update in ... is anno-
tated with a capability {fdtype, req, sockhandler}, since these types are used by con

expressions that could be evaluated following that point within dispatch. By the
same reasoning, the annotation on the u2 update is {req, sockhandler}, and the u3
update annotation can be empty. The (a.expr.update) rule requires updateabil-
ity U; updates cannot be performed in a non-updateable (N) context.
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(a.expr.update) assumes that any update could result in an update at run
time. However, we can make our analysis more precise by incorporating the effects
of a dynamic check. In particular, (a.expr.ifupdate) checks a special case of

if with a guard update∆′

= 0, which will be true only if an update successfully
takes effect at run time. Therefore, the input capability of e1 is ∆′, while the input
capability of e2 is ∆, unchanged.

Function calls. Function types have an annotation µ; ∆′, where ∆′ is the output
capability of the function. If calling a function could result in an update, the
updateability µ must be U. Thus, the dispatch function in Figure 20 has type

req
U;∅
−→ handResult.

In the (a.expr.update) rule, the output capability is bounded by the annotation
on the update; in the (a.expr.app) rule, the caller’s output capability ∆′′′ is
bounded by the callee’s output capability ∆̂′ for the same reason. This is expressed
in the conditional constraint (µ̂ = U) ⇒ (µ = U . . .), which also indicates the caller’s
updateability µ must allow the update. If the called function cannot perform an
update, then the caller’s capability and updateability need not be restricted. We will
take advantage of this fact in how we define type transformer functions, described
below.

A perhaps unintuitive effect of (a.expr.app) is that a function f’s output capa-
bility must mention those types used concretely by its callers following their calls
to f. To illustrate, say we modify the type of post in Figure 3 to be int → int rather
than handResult → int. As a result, loop would have to concretize the handResult

returned by dispatch before passing it to post, resulting in the code

let i = post (conhandResult (dispatch req))...

To type check the con would require the output capability of dispatch to include
handResult, which in turn would require that handResult appear in the capabilities
of each of the update points in dispatch, preventing handResult from being updated.

Another unintuitive aspect of (a.expr.app) is that to call a function, we would
expect that the caller’s capability must be compatible with (i.e., must be a superset
of) the function’s input capability, but this condition is not necessary (and hence
function types do not even mention the function’s input capability). Instead, the
type system assumes that all calls will be to a function’s most recent version, which
is guaranteed at update-time to be compatible with the program’s type definitions
(see §5.3). In effect, the type system approximates, for a given update point, the
concretions in code that an updating function could return to, but not code it will
later call, which is guaranteed to be safe. This is critical to avoid unnecessary
conservatism in the analysis.

Other Rules. Unlike cont e expressions, abst e expressions place no constraint
on the capability. This is because a dynamic update that changes the definition of t

from τ to τ ′ requires a well-typed type transformer c to rewrite abst e to abst (c(e)),
which will always be well-typed assuming suitable restrictions on c described in the
next subsection.

The type system permits subtyping via the (a.expr.sub) rule, which also permits
coarsening (making smaller) the output capability ∆. Intuitively, this coarsening is
always sound because it will put a stronger restriction on limits imposed by prior
updates. Allowing subtyping adds flexibility to programs and to their updates.
The interesting rule is (a.sub.fun) for function types. Output capabilities are
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Subtyping: Γ ⊢ τ1 <: τ2

Γ ⊢ int <: int (a.sub.int)

Γ(t) = τ
Γ ⊢ t <: t

(a.sub.nt)

Γ ⊢ τ2 <: τ1 Γ ⊢ τ ′
1 <: τ ′

2

∆2 ⊆ ∆1 (µ2 = U) ⇒ (µ1 = U)

Γ ⊢ τ1
µ1;∆1−→ τ ′

1 <: τ2
µ2;∆2−→ τ ′

2

(a.sub.fun)

Γ ⊢ τ1 <: τ ′
1 i ∈ 1..n

Γ ⊢ {l1 : τ1, . . . , ln : τn} <: {l1 : τ ′
1, . . . , ln : τ ′

n}
(a.sub.record)

Γ ⊢ τ <: τ ′ Γ ⊢ τ ′ <: τ

Γ ⊢ τ ′ ref <: τ ref
(a.sub.ref)

Fig. 21. Subtyping judgement for Proteus∆

Program Typing: Γ ⊢ P : τ

Γ, t = τ ′ ⊢ P : τ
Γ ⊢ τ ′ OK

Γ ⊢ type t = τ ′ in P : τ
(a.prog.type)

Γ′ = Γ, z1 : τ1
µ1;∆′

1−→ τ ′
1, . . . , zn : τ1

µn;∆′

n−→ τ ′
n

∆i; Γ
′, x : τi ⊢µ ei : τi;∆

′
i i ∈ 1..n Γ′ ⊢ P : τ

Γ ⊢
fun z

µ1;∆1;∆′

1

1 (x : τ1) : τ ′
1 = e1 . . .

and z
µn;∆n;∆′

n
n (x : τn) : τ ′

n = en in P : τ

(a.prog.fun)

∅; Γ ⊢N v : τ ′; ∅ Γ, z : τ ′ ref ⊢ P : τ

Γ ⊢ var z : τ ′ = v in P : τ
(a.prog.var)

∆;Γ ⊢U e : τ ;∆′

Γ ⊢ return e : τ
(a.prog.expr)

Fig. 22. Program judgements for Proteus∆

contravariant: if a caller expects a function’s output capability to be ∆, it will be
a conservative approximation if the function’s output capability is actually larger.
A function that performs no updates can be a subtype of one that does, assuming
they have compatible capabilities.

5.2.2 Program Typing. The rules for typing programs are given in Figure 22,
defining judgement Γ ⊢ P : τ . The (a.prog.type) rule adds a new type definition
to the global environment, and the (a.prog.fun) rule simply checks the function’s
body using the capabilities and updateability defined by its type. Since v is a
value and cannot effect an update, the (a.prog.var) rule checks it with an empty
capability ∆ and updateability N. Finally, the (a.prog.expr) rule type checks
the body of the program using an arbitrary capability and updateability U to allow
updates.
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Configuration typing: ⊢ Ω; H, e : τ

⊢ Ω Ω; Φ ⊢ H
∆;Ω, Φ ⊢U e : τ ;∆′

⊢ Ω; H; e : τ
(a.type.config)

Heap typing: Ω;Φ ⊢ H

dom(Φ) = dom(H)

∀z 7→ (τ
µ;∆′

−→ τ ′, λ∆(x).e ) ∈ H. ∆;Ω,Φ, x : τ ⊢µ e : τ ′;∆′ ∧ Φ(z) = τ
µ;∆′

−→ τ ′

∀z 7→ (τ, e) ∈ H. ∅; Ω,Φ ⊢N e : τ ; ∅ ∧ Φ(z) = τ ref

∀r 7→ (·, e) ∈ H. ∅; Ω, Φ ⊢N e : τ ; ∅ ∧ Φ(r) = τ ref

Ω;Φ ⊢ H
(a.type.heap)

Type Environment Well-formedness: Ω ⊢ Ω

Ω ⊢ ∅ (a.tenv.empty)
Ω, t = τ ⊢ Ω′ Ω ⊢ τ OK

Ω ⊢ t = τ,Ω′ (a.tenv.type)

Fig. 23. Proteus∆ Configuration typing

5.2.3 Configuration Typing. Figure 23 shows the configuration typing rules for
Proteus∆. These have the same structure as those for Proteuscon (Figure 14),
but they mention capabilities and updateabilities. For functions, we type check
with the updateability indicated by the function’s type, while for other bindings we
assume N.

5.3 Safety

Since we are approximating the conFree[− ] check using static capabilities, we can
take advantage of this by refining the updateOK(−) predicate for (update); this
is shown in Figure 24 (contrast with the original definition in Figure 16). The two
timing-related changes are highlighted by the boxes labeled (a) and (b). First, ∆,
taken from update∆, replaces e as the last argument. This is used in part (a) to
syntactically check that no types mentioned in ∆ are changed by the update. Part
(a) also refers to bindOK[ Γ ]upd to ensure that all top-level bindings in the heap
that use types in upd.UN concretely, as indicated by their input capability, are also
replaced. This allows the type system to assume that calling a function is always
safe, and need not impact its capability. Together, these two checks are analogous
to the con-free dynamic check to ensure proper timing.3

Type transformers provided for updated types must not, when inserted, violate
assumptions made by the updateability analysis. In particular, each abst e ap-
pearing in the program type checks with some capability prior to an update, i.e.,
∆; Γ ⊢µ abst e : τ ; ∆′. If type t is updated and has transformer c, we require
∆; Γ ⊢µ abst (c e) : τ ; ∆′. Since abst e expressions could be anywhere at update
time, and could require a different capability ∆ to type check, condition (b) con-
servatively mandates that transformers c must check in an empty capability, and
may not perform updates (c’s type must have updateability N). These conditions

3Note that the con-free check is compatible with the analysis and therefore could simply be tried
as an alternative if the static check fails.
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updateOK(upd,Ω, H,∆) =
Γ = types(H)∧

dom(∆) ∩ dom(upd.UN) = ∅ ∧ bindOK[ H ]upd
(a)

∧

⊢ U [Ω]upd∧
∀t 7→ (τ, c) ∈ upd.UN. ∃∆′, ∆′′.

∅;U [Ω, Γ]upd ⊢N c : Ω(t)
N;∆′;∆′′

−→ τ ; ∅

(b)

∧

∀z 7→ (τ, bv) ∈ upd.UB. U [Ω,Γ]upd ⊢ bv : τ∧

U [Ω]upd ⊢ heapType(τ, bv) <: Γ(z)
(c)

∧

∀z 7→ (τ, bv) ∈ upd.AB. U [Ω,Γ]upd ⊢ bv : τ ∧ z /∈ dom(H)

bindOK[ H ]upd = tt | ff

bindOK[ ∅ ]upd = tt

bindOK

»

z 7→ (τ1
µ;∆′

−→ τ2, λ∆(x).e ), H′

–upd

= bindOK[ H′ ]upd∧

(dom(upd.UN) ∩ ∆ 6= ∅) ⇒ z ∈ dom(upd.UB)

bindOK[ z 7→ (τ, b), H′ ]upd = bindOK[ H′ ]upd ∧ τ 6= τ1
µ;∆′

−→ τ2

bindOK[ r 7→ (·, b), H′ ]upd = bindOK[ H′ ]upd

Fig. 24. Precondition for update∆ operational rule

are sufficient to ensure type correctness. Otherwise, a transformer function c is like
any other function. For example, if it uses some type t concretely, it will have to
be updated if t is updated. The ramifications of this fact are explored in §6.

Finally, we allow bindings to be updated at subtypes, as indicated by condition
(c). This is crucial for functions, because as they evolve over time, it is likely that
their capabilities will change depending on what functions they call (or are called
by) or what types they manipulate. Fortunately, we can always update an existing
function with a function that causes no updates. In particular, say function f has

type t
U;{t,t′}
−→ t′, where t = int and t′ = int. Say we add a new type t′′ = int and

want to change f to be the following:

fun f(x : t) : t′ =
let y = cont′′ t′′1 in

let z = cont x in (abst′ z) + y

The expected type of this function would be t
N;{t,t′′}
−→ t′, but it could just as well be

given type t
U;{t,t′,t′′}
−→ t′, which is a subtype of the original, and thus an acceptable

replacement. Replacements that contain update or that call functions that contain
update are more rigid in their capabilities.

5.4 Inference

The type rules were designed so that type inference is straightforward, using con-
straints. In particular, we simply extend the definition of capability ∆ to include
variables ϕ and updateability µ to include variables ε. Then we take a normal
Proteuscon program and decorate it with fresh variables on each function def-
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inition, function type, and update expression in the program. We also adjust
the rules to use an algorithmic treatment of subtyping, eliminating the separate
(a.expr.sub) rule and adding subtyping preconditions to the (a.expr.app) and
(a.expr.assign) rules as is standard. This allows the judgement to be syntax-
directed.

As a result of these changes, conditions imposed on capability variables by the
typing and subtyping rules become simple set and term constraints [Heintze 1992].
Call the set of generated constraints S. A solution to S consists of a substitution
σ, which is a map from variables ϕ to capabilities {t1, . . . , tn}, and from variables
ε to updateabilities either U or N. The constraints can be solved efficiently with
standard techniques in time O(n3) in the worst case, where n is the number of
variables ϕ or set constants {·} mentioned in the constraints. The constraints have
the following forms (shown with the rules that induce them):

(1) Γ ⊢ τ1 <: τ2 (a.expr.sub)
(2) ε = U (a.expr.update)
(3) (µ̂ = U) ⇒ C (a.expr.app), (a.expr.sub)
(4) ϕ ⊆ ∆ (a.expr.update), (a.expr.app)
(5) t ∈ ∆ (a.expr.con)

For updateabilities, we want the greatest solution; that is, we want to allow as
many functions as possible to perform updates (with an unannotated program, this
will vacuously be the case). For the capabilities, we are interested in the least
solution, in which we minimize the set to substitute for ϕ, since it will permit more
dynamic updates. For updateϕ, a minimal ϕ imposes fewer restrictions on the

types that may be updated at that point. For functions τ
ε;ϕ′

−→ τ ′, the smaller ϕ′

imposes fewer constraints on subtypes, which in turn permits more possible function
replacements.

Here is one way to solve the constraints (which closely follows our implementa-
tion). First, we simplify the subtyping constraints (1) following the subtyping rules.
For example, say we have the constraint

Γ ⊢ τ1
ε1;ϕ′

1−→ τ ′
1 <: τ2

ε2;ϕ′

2−→ τ ′
2

We remove this constraint from S and replace it with constraints, following
(a.sub.fun):

Γ ⊢ τ2 <: τ1

Γ ⊢ τ ′
1 <: τ ′

2

ϕ′
2 ⊆ ϕ′

1

(ε2 = U) ⇒ (ε1 = U)

We continue until only simple subtyping constraints remain, e.g., Γ ⊢ int <: int,
and then remove these from S (such constraints will always be satisfied by a program
that type checks). Next, we find the greatest solution for updateability variables
ε appearing in constraints (2) and (3). That is, we make as many of the variables
have updateability U as possible to allow for greater flexibility in future updates. As
we discharge the implication constraints (2), additional constraints C are added to
S. Finally, the constraints that remain in S are only subset constraints concerning
capabilities (i.e., forms (4) and (5)), which are easily solved.

The right side of Figure 20 shows the constraints of forms (2), (4), and (5) that
are generated from the dispatch function (we elide the subtyping and function call
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constraints for simplicity). Following the algorithm above, we arrive at the solution
at the bottom of the figure.

When using inference for later versions of a program, we must introduce sub-
typing constraints between an old definition’s (solved) type and the new version’s
to-be-inferred one. This ensures that the new definition will be a suitable dynamic
replacement for the old one.

Inferring update points. Using the inference system, we can take a program that
is devoid of update expressions, and infer places to insert them that are con-free
for all types. Define a source-to-source rewriting function rewrite : P → P ′ that
inserts updateϕ at various locations throughout the program. Then we perform
inference, and remove all occurrences of update

ϕ for which ϕ is not ∅ (call these
universal update points as they do not restrict the types that may be updated).
In the simplest case, the rewriting function could insert updateϕ just before a
function is about to return. Adding more points implies greater availability, but
longer analysis times and more runtime overhead. Intuitively, this approach will
converge because the annotations ϕ on update points are unaffected by those on
other update points; rather they are only impacted by occurrences of con in their
continuations.

5.5 Properties

The two important properties of the updateability analysis are soundness and pre-
dictability. As with the dynamic system, soundness is proved syntactically via
preservation and progress lemmas. The former is stated as follows:

Lemma 5.1 (Preservation). If ⊢ Ω; H ; e : τ then

(i) if Ω; H ; e → Ω; H ′; e′ then ⊢ Ω; H ′; e′ : τ

(ii) if Ω; H ; e
upd
−−→ Ω′; H ′; e′ then ⊢ Ω′; H ′; e′ : τ

The proof of part (1) of Preservation is mostly standard. However, the proof of
part (2) is more challenging, and reduces to proving the following lemma, which
states that valid updates preserve typing:

Lemma 5.2 (Update Program Safety). If ⊢ Ω; H ; E[update∆] : τ and

updateOK(upd, Ω, H, ∆) then ⊢ U [Ω]
upd

;U [H ]
upd

;U [E[0]]
upd

: τ .

A core element of this proof is that we must show that by changing the named
types listed in upd.UN we will not invalidate code in the existing program. We do
this by proving the following lemma:

Lemma 5.3 (Update Capability Weakening). If ∆; Γ ⊢µ E[update
∆′′

] : τ ; ∆′ then

∆′′; Γ ⊢µ E[update∆′′

] : τ ; ∆′.

This states that for any expression that has update∆′′

as its redex, we can
typecheck that whole expression using capability ∆′′. In turn, this implies that the
existing program could only use the types listed in ∆′′ concretely, and therefore it
should be safe to update the other types in the program.

Another important element of the Update Program Safety lemma is that the
insertion of type transformers will preserve type-safety. This must take into account
that an inserted transformer will not have an adverse effect on the capability. The
following lemma states that as long as a given expression e will not perform an
update, it is always safe to increase its capability. Since type transformer functions
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may not perform updates and are required to have an empty capability, this lemma
allows them to be inserted at arbitrary program points:

Lemma 5.4 (Capability strengthening). If ∆; Γ ⊢N e : τ ; ∆′ then for all ∆′′ we
have ∆ ∪ ∆′′; Γ ⊢N e : τ ; ∆′ ∪ ∆′′.

Proofs of these properties can be found in Appendix A.1.

6. EXTENSIONS

This section presents how Proteus∆ can be extended with three features to im-
prove its expressiveness: (1) permitting replacement bindings at changed types;
(2) supporting binding deletion; and (3) extending Proteus to support multiple
threads.

6.1 Replacing Bindings at New Types

Both Proteuscon and Proteus∆ only permit replacement bindings having types
compatible with the original; e.g., condition (c) of updateOK(−) in Figure 24 at
best allows replacements to be subtypes of the original. However, as described in §2,
it is not uncommon for bindings to change type; e.g., for a later version of a function
to have an additional parameter. Given the type compatibility restriction, a simple
way to effect type changes to functions is to add the new version at a new name,
and then define a stub function to replace the old version [Frieder and Segal 1991;
Hicks 2001]. The stub function has the same type as the original, but calls the new
version at the new type, e.g., by generating default values for added parameters.
While expedient, the stub approach has two drawbacks. First, a transformation
from the old type to the new may be inefficient or impossible; transformations will
occur with each call to the function, but only when the old call contains sufficient
information to generate the new one. Second, there is no way to generate a stub
for a non-function that has changed type.

To solve these problems, we can extend our notion of con-freeness to consider
concrete uses of top-level term bindings, and not just concrete uses of named types.
Top-level bindings are either global variables having type τ ref , or functions having
type τ → τ ′, and their concrete uses are dereference and assignment for the former,
and application for the latter. For example, if at the time of update a call to function
f occurs in either the active expression e or within a function not being replaced,
then the program would not be considered con-free with respect to f. This means
that f should only be updated at a compatible type. On the other hand, if f is not
called by the active expression (or in any function not being replaced), then it will
be safe to update f at a new type as part of a well-formed update.

It is straightforward to extend Proteus∆ to capture this extended notion of con-

freeness statically. In particular, we augment types τ ref and τ
µ;∆
−→ τ ′ to include a

set L of identifiers z; this set contains those top-level variables that may be given
this type. In addition, we allow capabilities ∆ to contain both named types and
top-level identifiers. For simplicity, we will just consider functions in the following

discussion, having augmented types τ
µ;∆;L
−→ τ ′. The constructor for such a type is a

function definition:
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Γ′ = Γ, z1 : τ1
µ1;∆′

1
;{z1}

−→ τ ′
1, . . . , zn : τn

µn;∆′

n;{zn}
−→ τ ′

n

∆i; Γ
′, x : τi ⊢µ ei : τi;∆

′
i i ∈ 1..n Γ′ ⊢ P : τ

Γ ⊢
fun z

µ1;∆1;∆′

1

1 (x : τ1) : τ ′
1 = e1 . . .

and z
µn;∆n;∆′

n
n (x : τn) : τ ′

n = en in P : τ

(a.prog.fun’)

This rule differs from the one in Figure 22 only in the structure of the arrow types
in Γ′; the arrow type of each function zi contains zi in its L set. The destructor
rule is application:

∆;Γ ⊢µ e1 : τ1
µ̂;∆̂;L
−→ τ2;∆

′

∆′; Γ ⊢µ e2 : τ1;∆
′′ ∆′′′ ⊆ ∆′′ L ⊆ ∆′′

(µ̂ = U) ⇒ (µ = U ∧ ∆′′′ ⊆ ∆̂)

∆; Γ ⊢µ e1 e2 : τ2;∆
′′′ (a.expr.appu’)

This rule differs from the one in Figure 18 in that the set L must be included
in the output capability ∆′′, indicating that any update prior to this call must not
update those functions appearing in L. Finally, subtyping permits the set L on an
arrow to be smaller in the subtype:

Γ ⊢ τ2 <: τ1 Γ ⊢ τ ′
1 <: τ ′

2

∆2 ⊆ ∆1 L1 ⊆ L2 (µ2 = U) ⇒ (µ1 = U)

Γ ⊢ τ1
µ1;∆1;L1−→ τ

′
1 <: τ2

µ2;∆2;L2−→ τ
′
2

(a.sub.fun’)

As an example, consider the typing of the call to the socket handler as part of
the dispatch function shown in Figure 6:

let u2 : int = updateϕ in

let res : handResult = (consockhandler h)(k, (conreq s).buf, flags) in e

We might type this fragment in the following context:

Γ = . . . ,

sockhandler = {sock : sock, buf : buf, sflags : sflags}
U;∅;{upd read,udp write,...}

−→ handResult,

udp read : {sock : sock, buf : buf, sflags : sflags}
U;∅;{upd read}

−→ handResult,

udp write : {sock : sock, buf : buf, sflags : sflags}
U;∅;{upd write}

−→ handResult,

k : sock,

flags : sflags,

h : sockhandler, . . .

In such a context, the subexpression consockhandler h will have type {sock : sock, buf :

buf, sflags : sflags}
U;∅;{upd read,udp write,...}

−→ handResult by the (a.expr.con) rule so
that applying (a.expr.app’) above requires that {upd read, udp write, . . .} be in-
cluded in the current capability. This constraint will propagate backward so that
applying (a.expr.update) requires {upd read, udp write, . . .} ⊆ ϕ. As ϕ is the an-
notation on the update, updates to upd read and udp write at that point will be
prevented if they have different types than the originals.

Note that one way to effectively allow variables to change type without this ex-
tension would be to give each a distinct named type. Since named type definitions
can change, this would effectively allow the types of variables to change. However,
this approach does not quite work because one cannot directly ascribe to a function
a named type. The best one can do is define a variable as having a named type,
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and assign to it a function having that named type’s definition. Of course, a com-
piler could automatically perform this transformation and generate the attendant
transformer functions when variables are updated. The drawback in doing so is
that it introduces extra implementation complexity, and extra run-time overhead,
since each function call or variable would require a con coercion. Therefore, in our
implementation we take the approach presented here.

6.2 Binding Deletion

While most changes we have observed in source programs are due to added or
replaced definitions, occasionally definitions are deleted. Assuming that DSU is
meant to prolong a program’s running time for perhaps a few years, we could choose
to ignore deleted functions, as in many cases the dead code will not take up much
memory. However, an excessive number of dead functions could hamper dynamic
updates, since update well-formedness dictates that if some type t is updated, any
function f that concretely manipulates t must also be updated. Therefore, even if
some function f has been removed from the program sources, a future update to t

would necessitate updating f. But how does one update a function that is no longer
of use? This issue also arises with old type transformer functions.

To support deletion, we augment updates upd to contain a component DB—a
list of top-level identifiers to delete. To preserve type safety, we can only apply such
an update if the deleted bindings will never be used again by the updated program.
Ensuring this condition is surprisingly similar to permitting a type change. In
particular, the deletion of an identifier z is only permitted if the program is con-free
with respect to z, which is implemented just as described above.

We have to be a bit careful how we implement this check. In particular, while
the program could well be con-free with respect to some function f to delete, it
might be executing f at the time of the update. Since the operational semantics
models application by substitution, this is a non-issue, since the active expression
is separate from the definition of f in the heap. This would not be the case in an
actual implementation, however, so we would need to delay the deletion of f until
it is no longer executing (which could be established, for example, by a kind of
reference counting). Because the program was (and is) con-free with respect to f,
it will never be called after this point, so the code can be safely deleted.

6.3 Threads

Many non-stop systems are written in a multi-threaded programming style, so we
would like our approach to work for these systems as well. We define the syntax
fork e to mean that e should be executed in a separate thread. We adjust the
operational semantics so that configurations consist of a tuple of thread expressions
e1, . . . , en, a heap H , and a type environment Ω. The definition of (dynamic) con-
freeness in this setting is the same as in the single-threaded case (Figure 16) but
considers all expressions ei. (Note that we would have to pause all threads at the
time of the update to perform this check dynamically.)

Unfortunately, it is easy to see that our updateability analysis does not soundly
approximate con-freeness in the multi-threaded case. In particular, capabilities
mention the definitions with respect to which the current thread is not con-free,
but say nothing about the restrictions due to the concurrent activities other threads.

A simple way to address this problem is to treat each update∆ as a synchroniza-
tion barrier. When each thread t has synchronized at some update∆t , the update
may proceed as long as the update has not changed the type of any definition in
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⋃

all t

∆t. This ensures that the update is con-free with respect to all threads, rather

than just one.
Implementing this semantics could be done as follows. First, we can give fork

the following type rule:

∆; Γ ⊢ e : τ ; ∆′

∆; Γ ⊢ fork e : int; ∆

Notice that the input capability of the child matches that of the parent, to preserve
any restrictions imposed by past updates, while the output capability of the parent
is indifferent to that of the child. This is because the child will perform updates
asynchronously, so statically limiting the parent’s capability is unnecessary.

Second, we modify the dynamic semantics of update∆ to barrier synchronize.
That is, for each thread that reaches update

∆, if updateOK(. . . , ∆) holds then
the thread pauses until all other threads have similarly paused. Then the update
takes place and execution resumes on the modified program. As a degenerate case,
if no types are updated (and no variables have changed type), there is no need to
synchronize.

We believe this is a promising starting point for supporting multi-threaded pro-
grams, but there are still other problems to solve. The main problem is that using
blocking synchronization to ensure safety may compromise the liveness of the sys-
tem. In particular, depending on the program, it may take a while for each thread
to reach a suitable update point, so some threads will not be doing useful work while
they wait. At the extreme, pausing a thread at an update could induce deadlock
if the thread holds mutual exclusion locks that prevent other threads from reaching
suitable update points.

Nevertheless, we believe our current framework puts us in a good position to solve
these problems, for two reasons. First, by using update to make explicit when a
dynamic update might occur, we can statically reason about its potential to induce
deadlock by adapting existing techniques [Foster et al. 2002; Xie and Aiken 2005;
Ball and Rajamani 2002]. Second, our notion of con-freeness permits identifying
safe update points at fairly fine grain, creating more opportunities for updating and
thus reducing potential waiting time. We plan to consider these issues carefully in
future work.

7. PRELIMINARY IMPLEMENTATION

Following the formal development of Proteus presented here, we have been im-
plementing a compiler and run-time system for dynamically updating C programs.
Though a full discussion of the implementation and its evaluation is beyond the
scope of this paper, this section nonetheless presents an overview of our approach,
and briefly describes our experience dynamically updating three of the open source
programs mentioned in §2: the “Very Secure” FTP daemon, vsftpd, OpenSSH’s
sshd daemon and the zebra routing daemon from the GNU Zebra routing package.
Our intent is to provide some evidence that Proteus does indeed represent the
necessary core of a system by which real-world programs can be safely and flexibly
updated on the fly. Full details of our implementation and experience, including
performance measurements, are presented elsewhere [Neamtiu et al. 2006].

An overview of the update process is presented in Figure 25. Given a C pro-
gram program1

src, our update compiler (UC) transforms it into an updateable C
program, program1

src, which is then compiled into a dynamically updateable ex-
ecutable, program1

bin. When a new version, program2
src, becomes available, our
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Fig. 25. Dynamic Update Methodology

patch generator (PG) generates a dynamic patch patch1→2
src, which is then passed

to UC to generate an updateable patch patch1→2
con, and finally compiled into

a shared library patch1→2
bin. patch1→2

bin can now be linked into program1
bin’s

address space so that run-time system can fix up the running program to start
using the new and replacement code and data. Both the update compiler and the
patch generator use CIL (C Intermediate Language) [Necula et al. 2002] for C code
parsing and source-to-source transformation.

The update compiler makes a program updateable via a source-to-source trans-
lation of the program. Following prior work (e.g., Hicks [2001], Orso et al. [2002],
Soules et al. [2003], and others), functions are made updateable by introducing a
level of indirection at each direct call-site. At update-time, the target of each in-
direct call is modified to point to the new version of the function, thus ensuring
that each call to the function is to the newest version, while existing versions may
continue to run until they exit. Function pointers are treated a bit differently to
ensure this invariant. Whenever the program uses a function f ’s address as data,
the compiler introduces a wrapper function, fwrap to be used instead. This wrapper
simply contains an (indirected) call to f .

To implement updates to values of a named type t, uses of such values are com-
piled to use the explicit type coercions cont and abst, following the rules presented
in §4.2. Values are compiled specially to be updateable (essentially using a level
of indirection), and coercions are merely small functions that convert between this
representation and the concrete representation expected by the program. Whenever
a cont is called, the necessary sequence of type transformers is invoked if the value is
not up-to-date. Thus data transformation for named types is lazy, happening during
program execution, rather than eager, happening at update-time. Duggan [Duggan
2001] also proposes lazy dynamic updates to types using type transformers, but our
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work is the first work that explores the implementation of such primitives.

Once type coercions have been inserted, the update compiler performs the up-
dateability analysis outlined in §5.4, including the extension to functions noted in
§6.1. During this analysis the compiler can insert calls to update, which is merely
a call into the runtime system, but so far we have just inserted one or two calls to
update manually at quiescent program points, following Hicks [2001]. The analysis
then infers those types that are not con-free at these update points, and the list
is passed to the call to update to check well-timedness of an available update at
run-time.

While this might be the end of the story for a type-safe, high-level language,
C’s weak type system and low level of abstraction create additional challenges. To
ensure that compiling for updateability does not break otherwise correct programs,
we must account for the & operator, unsafe casts, use of void* for polymorphism,
physical subtyping, and other “low-level” language features. In some cases, we
augmented the analysis to be more precise; for example we model some safe uses
of void* and most uses of & as part of the updateability analysis. In other cases,
low-level features render types or functions non-updateable; for example casting an
integer to a pointer to a named type t would cause the analysis to deem t forever
non-updateable.

A dynamic patch patch1→2
bin implements a dynamic update (§3.2) from

program1
src to program2

src. Starting from the two sources program1
src and

program2
src, the patch generator (PG) generates a C program patch1→2

src with
the new and updated bindings and types (the UN, UB, AN and AB maps from
§3.2). AN and AB are straightforward to generate, and they are written directly
to patch1→2

src. Constructing UN and UB is a bit more complicated, because writ-
ing converting functions for types (type transformers) and global variables (state
transformers) cannot be fully automated. Instead we partially automate this pro-
cess through a type-directed comparison of the old and new types, following Hicks
[2001]. Since these state and type transformers might require user intervention, they
are written into a file patch1→2

tt that the user can inspect and modify before being
passed to later stages. patch1→2

src and patch1→2
tt are transformed by UC into an

updateable program patch1→2
con and finally compiled into a binary patch1→2

bin

that will be linked into the running system program1
bin.

We updated vsftpd from version 1.1.0 to 2.0.3, for a total of 13 releases, the
OpenSSH daemon, from version 3.5 to 4.2, for a total of 11 releases, and zebra

from version 0.92a to 0.95a, for a total of 6 releases. This represents the last three
years in the lifespan of Vsftpd and OpenSSH, and the last four years of Zebra.
Vsftpd grew from roughly 10K to 17K LOC, OpenSSH grew from 47K to 58K LOC,
and Zebra grew from 41K to 45K LOC. We started with the oldest version of each
program and generated a dynamic patch for each new release. With these patches,
we can start running the oldest version of the program, and then successively patch
it up to the most recent version. While testing the patches, we performed updates
on the programs while they were actively serving requests. We also ran the relevant
regression tests on the updated versions, to make sure they supported all of the
added functionality.

The updateability analysis was helpful for ensuring that updates were performed
at an appropriate time. For all the three programs, the quiescent update points
that we picked manually were ratified by the analysis as having an empty capability,
hence being con-free. The analysis also was very helpful for ensuring con-freeness
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with respect to accessing global variables and calling functions, whose types did
change over the lifetime of the two programs (see §2 for more detail). While in
principle the static updateability analysis is more conservative than the dynamic
con-free check, this was not a problem in practice; all of the bindings deemed not
con-free by the analysis would have been deemed so by the dynamic check as well.
The analysis itself was fairly efficient. On average, the entire compilation process
was on the order of 10 seconds per patch for vsftpd, 70 seconds for OpenSSH
daemon and 50 seconds for zebra. We intend to update some additional programs
and more carefully evaluate our implementation as future work.

8. RELATED WORK

The main challenge in developing a dynamic software updating system is balancing
the tension between safety and flexibility. Rather than survey the entirety of related
work in this area (a reasonably thorough survey can be found in Hicks [2001];
updated in Hicks and Nettles [2005]), here we consider how systems that aim to
provide type safety balance this goal with flexibility.

The simplest approach to ensuring type safety is to only permit replacement
bindings at the same (or compatible) type as the original. This idea can be im-
plemented directly by the compiler and run-time system, as in Orso et al. [2002],
Drossopoulou and Eisenbach [2003], Hjálmtýsson and Gray [1998], and the K42 op-
erating system [Soules et al. 2003; Baumann et al. 2005], among others; or it can be
programmed directly using dynamic linking, as proposed by Appel [1994] and Pe-
terson et al. [1997]. In earlier work, we formalized this approach using dynamic
binding, considering different evaluation strategies [Bierman et al. 2003], and later
added versioned identifiers for more precision [Bierman et al. 2003]. In essence,
this definition of well-formedness trivially ensures that all updates are well-timed.
However, as we showed in Section 2, over time software systems do tend to change
their type structure, and so restricting updates to this form prevents natural, on-
line evolution. It is nonetheless useful in some situations, such as simple security
patches [Altekar et al. 2005].

Dynamic ML [Gilmore et al. 1997] supports updating modules defining abstract
types t. The internal representation type of such a module is permitted to change,
while the external interface must remain the same (or be a subtype). Since by
definition clients of such a module must use values of type t abstractly, the module
can be updated if none of its functions are on the call-stack (i.e., it is inactive).
This approach thus extends the natural reusability benefits (due to representation
independence [Mitchell 1986]) of abstract types to a dynamic setting. Our use of
abst and cont coercions generalizes this idea to non-abstract named types. This
allows our conFree[− ]

−
check to be more precise, and thus more permissive in

allowing safe updates, than Dynamic ML’s “activeness” check. As examples, we
could discover points within an abstract module at which it could be safely updated,
and we can permit the module within which an infinite loop is executing to be
updated; we have found the latter case particularly important in practice. Dynamic
ML has no static notion of proper update timing, as we do with our updateability
analysis. Moreover, as far as we can tell, there has never been formal proof that
Dynamic ML’s activeness check is sufficient to ensure type safety (though this seems
plausible).

Dynamic ML’s approach is a functional language analogue of object-oriented ap-
proaches to DSU, such as Hjálmtýsson and Gray [1998], and the K42 operating
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system [Soules et al. 2003; Baumann et al. 2005], which require interface compati-
bility between versions of objects, while allowing internal representations to change.
However, these systems do not provide the same strong encapsulation guarantees as
abstract types in ML, since programmers may leak the internal state of an object.
If the program contains pointers into the internal representation of objects at the
time those objects are updated, the pointers may no longer be type correct. While
the K42 designers cite the need for encapsulation, they provide no way to enforce
it.

Duggan [2001] supports changing the representation of named types, which use
constructs fold and unfold to create and destruct values of named type, similar
to our abst and cont. However, rather than require representation consistency, in
which programs have at most one definition of a type at a time, Duggan proposes
allowing multiple versions of types to coexist. As such, programmers must provide
transformer functions that “go both ways”: from the old to the new representation
and from the new version back to the old. Occurrences of unfold will dynamically
compare the expected version of the t value with its actual version and apply some
composition of forward or backward transformers to convert the value. This ap-
proach ensures well-formed updates are always well-timed. However, programs are
harder to reason about. One might wonder: will the program still behave prop-
erly when converting a t value forward for new code, backward for old code, and
then forward again? Moreover, it may not always be possible to write backward
transformers, since updated types often contain more information than their older
versions (§2). Finally, Duggan does not permit functions and global variables that
are not defined as named types to be replaced with bindings having different types.

Hicks’ earlier DSU approach [2001] permits the types of arbitrary bindings to
change, but also at the cost of representation consistency. Type safety is preserved
by copying data when transforming it to the new representation; in effect, for any
bindings whose type has changed, old code uses the old value, while new code uses
the new one. For functions, stubs (§3.2) can be used to direct calls having the old
type to those having the new type, but there is no such facility for data. For named
types, a representation change causes a new name to be generated by the compiler
to be seen by the run-time system, and it is up to the programmer to manually
copy and transform the data at update-time. This limits transformation to data
that is reachable from global variables; stack-allocated data cannot be changed in
general. In constrast, Proteus is representation-consistent, so there is no possibility
of having two parts of the program operating on two copies of the same logical data,
or calling two versions of the same function. Moreover, Proteus can update named
types wherever they might be allocated, and is not limited to data reachable from
global variables.

Boyapati et al. [2003] and the K42 operating system [Soules et al. 2003; Bau-
mann et al. 2005] ensure well-timed updates to objects in a multi-threaded setting.
Both systems rely on object encapsulation to guarantee that no active code de-
pends on an object’s representation when the object is updated (Boyapati et al.
guarantee proper encapsulation exists while K42 assumes it). In Boyapati et al.,
proper timing is enforced by programmer-defined database-style transactions: if an
update occurs at an inopportune time, they abort the current transaction, perform
the update, and then restart the transaction. In K42, an object to be updated is
made quiescent by blocking new threads from using it, and waiting until all cur-
rent threads that could be using it have terminated. Our approach uses the more
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general notion of con-freeness, rather than encapsulation. Transactions are approx-
imated by automatically- or programmer-inserted update points, but without the
benefit of rollback. Compared to K42, our approach to safety in multi-threaded
programs is preemptive, rather than reactive: when an update is pending, update

points act as a barrier, while in K42 threads are allowed to proceed unless they
might interfere with the update. However, their approach may have difficulty scal-
ing to multi-object updates or those in which types have changed, since there may
be no easy way to recover if an interfering action is detected. We plan to explore
multi-threaded, dynamically updateable programs more carefully in future work.

Our approach focuses on updating single processes. To support updating pro-
cesses in a distributed system would require coordination when the communication
protocol is changed in a non-backward-compatible manner. The most recent work
on this problem is that of Ajmani et al [Ajmani 2004; Ajmani et al. 2006]. They
model distributed systems as processes communicating via remote procedure calls;
in this light, a change in protocol amounts to a change in a remote function’s type or
usage pattern. They define conditions under which older versions of a system might
simulate newer versions, and vice versa, to relax synchronization constraints. This
idea might apply to our proposed idea of coordinating updates to multi-threaded
programs.

While our con-freeness property and its relation to type-safe dynamic updating
is new, others have considered other properties of dynamic updates. Gupta [1994]
developed a high-level formal framework in which he proved that the problem of up-
date validity is, in general, undecidable. He defines validity to mean that following
a valid update, the existing program will eventually transition to the legal states
of the new program. Bloom [1983; Bloom and Day [1993] explores the limitations
of dynamic updates in a somewhat information-theoretic sense. That is, some dy-
namic updates are not possible simply because the existing program state does not
contain the information to construct data structures needed by the new code.

The general formulation of our updateability analysis using capabilities is sim-
ilar to other capability type systems [Walker et al. 2000; Walker 2000; Grossman
et al. 2002]. For example, capabilities in the Calculus of Capabilities [Walker et al.
2000] statically prevent a runtime dereference of a dangling pointer by approximat-
ing the runtime heap. Our capabilities prevent runtime access to a value whose
representation might have changed by approximating the current set of legal types.

9. CONCLUSIONS

In this paper we have presented Proteus, a simple calculus for modeling type-safe
dynamic updates in imperative languages. To ensure that updates are type-safe
in the presence of changes to named types, Proteus exploits the idea of “con-t-
freeness:” a given update point is con-t-free if the program will never use a value
of type t concretely at its old representation from then on. We have shown that
con-freeness can be checked dynamically, and automatically inferred statically using
our novel updateability analysis.

In the short term, we plan to continue our implementation of Proteus in the
context of single-threaded C, to explore its feasibility for existing non-stop services.
Our next step will be to consider the addition of threads, and ultimately move to
operating systems. We also plan to explore reasoning techniques for other useful
properties, such as update availability. Currently we can discover functions for
which an update is never possible; conversely, we wish to understand how often an
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update is possible for some function, which depends more on runtime behavior. In
the longer term, we wish to adapt our techniques to functional and object-oriented
languages. On the one hand, these languages will be easier to reason about due to
their strong abstraction and encapsulation properties. On the other hand, advanced
features such as closures and objects are more challenging to update.

We have also starting applying our updateability analysis to the related problem
of ensuring that a dynamic update of a security policy does not impact the security
properties of a running program that uses it [Hicks et al. 2005]. We are working
to scale up this basic insight to provide soundness guarantees for distributed secure
systems for which policies change over time.
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A. PROOFS

A.1 Proof of Type Soundness for Proteus∆

In this section we give a proof of type soundness for Proteus∆. The proof is based
on standard techniques for proving syntactic type soundness. Proving soundness
for the system guarantees that our inferred update points are safe and consequently
any update judged suitable by updateOK() at runtime will not invalidate the type
of the program.

Before we begin the proof we discuss the rôle of update capability weakening
(Lemma A.13), a key lemma. Update capability weakening shows that the ∆ an-
notation on updates is faithful to our intended meaning, that is, given an update

point update∆̂ in redex position in some larger expression, the only types used
concretely following the update are contained in ∆̂. More formally, if

∆; Γ ⊢ E[update∆̂] : τ ; ∆′

then

∆̂; Γ ⊢ E[update∆̂] : τ ; ∆′

Most of the work to establish this fact is done in proving a generalised E-inversion
lemma (Lemma A.12), from which Update Capability Weakening follows easily.

Definition A.1 (Typing contexts). A context Γ is a finite partial function with
the following entries:

z : τ types of external identifiers
z : τ ref types of references

x : τ types of local identifers
t = τ named type definitions

We write Φ for typing contexts containing only external identifiers and references,
and Ω for those containing only named type definitions.

We first note some standard Inversion, Canonical Forms and Weakening lemmas.

Lemma A.2 (Inversion – expressions).
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(1 ) If ∆0; Γ ⊢µ {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}; ∆n then
∃τ ′

1, . . . , τ
′
n, ∆′

1, . . . , ∆
′
n−1, ∆

′
n ⊇ ∆n such that ∀i ∈ 1..n we have Γ ⊢ τ ′

i <: τi

and ∆′
i−1; Γ ⊢µ ei : τ ′

i ; ∆
′
i

(2 ) If ∆0; Γ ⊢µ e1 e2 : τ2; ∆ then ∃τ ′
2, ∆1, ∆2, ∆̂

′, µ̂ such that ∆0; Γ ⊢µ e1 : τ1
µ̂;∆̂
−→

τ2; ∆1 and ∆1; Γ ⊢µ e2 : τ1; ∆2 and ∆′ ⊆ ∆2 ∧ (µ̂ = U ⇒ (µ = U ∧ ∆′ ⊆ ∆̂′))

Lemma A.3 (Inversion – subtyping).

(1 ) If τ <: τ1
µ1;∆1

−→ τ ′
1 then ∃µ2, ∆2, τ2, τ

′
2 such that τ = τ2

µ2;∆2

−→ τ ′
2

(2 ) If τ <: {l1 : τ1, . . . , ln : τn} then ∃τ ′
1, . . . , τ

′
n such that τ = {l1 : τ ′

1, . . . , ln : τ ′
n}

Lemma A.4 (Canonical Forms).

(1 ) If v is a value of type int then for some n ∈ N, v = n

(2 ) If v is a value of type t then for some value v′, v = abst

(3 ) If v is a value of type {l1 : τ1, . . . , ln : τn} then ∃v1, . . . , vn such that v = {l1 =
v1, ..., ln = vn}

(4 ) If v is a value of type t ref then v = ρ, where ρ ranges over references and
external identifiers

(5 ) If v is a value of type τ1
µ;∆
−→ τ2 then ∃z. v = z

Lemma A.5 (Weakening). If ∆1; Γ ⊢µ e : τ ; ∆2 and Γ ⊆ Γ′ then ∆1; Γ
′ ⊢µ e :

τ ; ∆2

We now establish some basic facts about capabilities.

—If an update is judged safe for one update point then it is also safe for any more
restricted update point.

—If an expression does not perform an update, it does not consume any of its
capability. By “consume” we mean that its pre-capability is equal to its post-
capability.

—If a term type checks given one capability the it type checks in a larger capability.

—Values type with any pre and post-capability (as long as pre is as least as per-
missive as post)

Lemma A.6 (UpdateOK Capability Weakening). If updateOK(upd, Ω, H, ∆) and
∆′ ⊆ ∆ then updateOK(upd, Ω, H, ∆′)

Proof. The only clause in updateOK() that depends on ∆ is dom(∆) ∩
dom(upd.UN) = ∅, and the validity is unaffected by the shrinking of ∆.

Lemma A.7 (Capability Strengthening).

(i) If ∆1; Γ ⊢N e : τ ; ∆2 then ∀∆3. ∆1 ∪ ∆3; Γ ⊢N e : τ ; ∆2 ∪ ∆3

(ii) If ∆1; Γ ⊢µ e : τ ; ∆2 then ∀∆3. ∆1 ∪ ∆3; Γ ⊢µ e : τ ; ∆2

Proof. We first prove (i) by induction on the typing derivation of e. Note that the
(a.expr.update) case cannot occur as the annotation on the turnstyle is U not N.
We give the application case:
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case (a.expr.app) :

Assume

∆; Γ ⊢N e1 : τ1
µ̂;∆̂
−→ τ2; ∆

′

∆′; Γ ⊢N e2 : τ1; ∆
′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆̂′

∆; Γ ⊢N e1 e2 : τ2; ∆
′′′

prove

∆ ∪ ∆3; Γ ⊢N e1 : τ1
µ̂;∆̂
−→ τ2; ∆

′ ∪ ∆3

(a)

∆′ ∪ ∆3; Γ ⊢N e2 : τ1; ∆
′′ ∪ ∆3

(b)
∆′′′ ∪ ∆3 ⊆ ∆′′ ∪ ∆3

(c)

µ̂ ≤ µ(d) µ̂ = U =⇒ ∆′′′ ∪ ∆3 ⊆ ∆̂′(e)

∆ ∪ ∆3; Γ ⊢N e1 e2 : τ2; ∆
′′′ ∪ ∆3

(a) and (b) hold by induction. (c) holds if ∆′′′ ⊆ ∆′′, which holds by assump-
tion. (d) holds by assumption. If µ̂ = N then (e) holds trivially. It cannot be
the case that µ̂ = U because then the annotation on the turnstyle for the typing
of e1 e2 must be U contradicting our assumption.

case (a.expr.update) :

This is trivially true as type checking update requires U annotation on the
turnstyle.

The rest of the cases are similar.
(ii) can be proved by a similar induction on the typing derivation of e.

Lemma A.8 (Value Typing). If ∆1; Γ ⊢µ v : τ ; ∆2 then ∀∆′
1, ∆

′
2, µ

′ such that
∆′

2 ⊆ ∆′
1 it holds that ∆′

1; Γ ⊢µ′ v : τ ; ∆′
2

Proof. Proceed by induction of the typing derivation of v. First note that none of
the rules a.expr.var,refcell,proj, appu,if, let, ref deref, assign, update,
con or if-update can the expression be a value.

case (a.expr.int) :

By (a.expr.int) ∆′
2; Γ ⊢µ n : int; ∆′

2. By Capability Strengthening Lemma
∆′

1; Γ ⊢µ n : int; ∆′
2 as required.

case (a.expr.xvar) :

Similar to (a.expr.int) case.

case (a.expr.record) :

By Lemma A.4 (Canonical Forms) each element of the record must be a value
in order for the record to be a value. The result follows by induction on each
of the elements of the record and use of the (a.expr.record) rule.

case (a.expr.abs) :

By Lemma A.4 (Canonical Forms) of values abst is a value only if e is a value,
thus suppose e = v for some v, then the result follows by induction on the
typing derivation of v and use of the (a.expr.abs) rule.

case (a.expr.sub) :

By straight-forward application of the IH.

Lemma A.9 (Substitution). If ∆1; Γ, x : τ ′ ⊢µ e : τ ; ∆2 and ∆3; Γ ⊢µ v : τ ′; ∆3

then ∆1; Γ ⊢µ e[v/x] : τ ; ∆2
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Proof. This property follows by induction on the typing derivation of e using the
Value Typing Lemma as appropriate.

Lemma A.10 (Derivations have Well-Formed Types). If ∆1; Γ, Ω, Φ ⊢µ e : τ ; ∆2

then Ω ⊢ τ

Lemma A.11 (Typing Weakens Capability). If ∆1; Γ ⊢µ e : τ ; ∆2 then ∆2 ⊆ ∆1

Proof. By an easy induction on typing derivations. Note that the axioms enforce
equality of capabilities; update, if and if-update rules allow weakening of capa-
bilities; and the remainder act inductively w.r.t. capabilities.

The following E-inversion lemma describes the constraints on the capabilities of
an expression if it is to be placed in a given evaluation context (continuation).
The lemma essentially tells us that, given an expression E[e] which is checkable in
capability ∆, we can substitute any term e′ for e, that is checkable in capability
∆̂, provided its post-capability is at least that of the post-capability of e. i.e. we
have to ensure that the computation has “enough capability left” to execute the
continuation.

The reader may be surprised that the pre-capability of e′ (which is also the pre-
capability of E[e′]) is not constrained in any way. Intuitively this is justified by
the fact that capabilities are flow-sensitive, and that the expression E[e′] represents
an expression e′ with continuation E. Thus, the execution of, and therefore the
calculation of capabilities for, E[e′] proceeds first by considering e′, and then by
considering E. Provided that after e′ is considered, there is enough capability left
over to satisfy E, then the capability we started out with is irrelevant.

This lemma is a key component in proving Update Capability Weakening (Lemma
A.13).

Lemma A.12 (E-inversion). If ∆; Γ ⊢µ E[e] : τ ; ∆′ then there exists ∆̂′ ⊇ ∆′ and
τ ′ such that

(i) ∆; Γ ⊢µ e : τ ′; ∆̂′.

(ii) for all e′, ∆̂, ∆̂′′ ⊇ ∆̂′ and Γ′ ⊇ Γ, if ∆̂; Γ′ ⊢µ e′ : τ ′; ∆̂′′ then ∆̂; Γ′ ⊢µ E[e′] :
τ ; ∆′.

Proof. Proceed by induction on the expression typing derivation of E[e]. In each
case E may be or a compound context. In the case where E can be a compound
context we don’t consider the case as this holds trivially.

case (a.expr.var) :

In this case E = , e = x and ∆′ = ∆.

Assume ∆; Γ, x : τ ⊢µ x : τ ; ∆ and choose the existentially quantified variable

∆̂ = ∆. (i) holds by assumption.

To prove (ii) assume ∆̂′′ ⊇ ∆ (*), Γ′ ⊇ Γ, x : τ and that for some ∆̂, ∆̂; Γ′ ⊢µ

e′ : τ ; ∆̂′′ (**). To complete we are required to show ∆̂; Γ′ ⊢µ e′ : τ ; ∆, which
follows from (*) and (**) using (a.expr.sub) type rule.

case (a.expr.int—xvar—update) :

These cases all follow in a similar way to the (a.expr.var) case.

case (a.expr.record) :
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E = {l1 = v1, . . . , li = E′[e], . . . , 1n = en}. By assumption (where ∆ ≡ ∆0, ∆
′ ≡

∆n):

∆0; Γ ⊢µ v1 : τ1; ∆1 . . .
∆i−1; Γ ⊢µ E′[e] : τi; ∆i

. . .∆n−1; Γ ⊢µ en : τn; ∆n

∆0; Γ ⊢µ {l1 = v1, . . . , li = E
′[e], . . . , 1n = en} : {l1 : τ1, . . . , ln : τn}; ∆n

Prove that for some ∆̂′ ⊇ ∆n (i) and (ii) hold.

(i) By induction on the typing derivation of E[e] we have that for some ∆̂′ ⊇ ∆i

it holds that ∆0; Γ ⊢µ e : τ ′; ∆̂′. By Typing Weakens Capability lemma

∆i ⊇ ∆n, therefore ∆̂′ ⊇ ∆n as required.

(ii) Assume ∆̂; Γ′ ⊢µ e′ : τ ′; ∆̂′′ holds for some ∆̂, ∆̂′′ ⊇ ∆̂′ and Γ′ ⊇ Γ. Note

that by Value Typing lemma and Weakening, we have ∆̂; Γ′ ⊢µ vj : τj ; ∆̂ for
1 ≤ j ≤ i − 1. Prove

∆̂; Γ′ ⊢µ v1 : τ1; ∆̂ . . .

∆̂; Γ′ ⊢µ E′[e′] : τi; ∆i

. . .∆n−1; Γ
′ ⊢µ en : τn; ∆n

∆̂; Γ′ ⊢µ {l1 = v1, . . . , li = E
′[e′], . . . , 1n = en} : {l1 : τ1, . . . , ln : τn}; ∆n

By induction, we have ∆̂; Γ ⊢µ E
′[e′] : τ ; ∆i. The reset of the premises follow

from the assumptions using Weakening.

case (a.expr.app) :

There are two possibilities for the form of E: v E′ and E′ e. We just consider
the first as the second is similar.

Assume E = v E′ and

∆; Γ ⊢µ v : τ1
µ̂;∆f

−→ τ2; ∆
′

∆′; Γ ⊢µ E′[e] : τ1; ∆
′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆f

∆; Γ ⊢µ v E
′[e] : τ2; ∆

′′′

Show that (i) and (ii) hold for some τ ′ and ∆̂′ ⊇ ∆′′′.

(i) By IH there exists a ∆̂′ ⊇ ∆′′ such that ∆; Γ ⊢µ e : τ ′; ∆̂′. From the

assumptions we can deduce ∆̂′ ⊇ ∆′′′ as required.

(ii) By the typing judgement for v, Value Typing lemma and Weakening, for
some Γ′ ⊇ Γ we have

∆̂; Γ′ ⊢µ v : τ1
µ̂;∆f

−→ τ2; ∆̂ (1)

Thus, it suffices to prove

∆̂; Γ′ ⊢µ v : τ1
µ̂;∆f

−→ τ2; ∆̂

∆̂; Γ′ ⊢µ E′[e′] : τ1; ∆
′′ ∆′′′ ⊆ ∆′′

µ̂ ≤ µ µ̂ = U =⇒ ∆′′′ ⊆ ∆f

∆̂; Γ′ ⊢µ v E
′[e] : τ2; ∆

′′′

The typing for v holds by 1 and the judgement for E′[e′] by IH. Finally, the
subset constraints hold directly by assumptions.

case (a.expr.con) :
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E = cont . Assume

∆; Γ ⊢µ E′[e] : t; ∆′ Γ(t) = τ t ∈ ∆′

∆; Γ ⊢µ cont E
′[e] : τ ; ∆′

(i) follows by IH. To prove (ii) assume that for some arbitrary e′, ∆̂, ∆̂′′ ⊇ ∆̂′

and Γ′ ⊇ Γ

∆̂; Γ′ ⊢µ e′ : t; ∆̂′′

and prove

∆̂; Γ′ ⊢µ E
′[e′] : t; ∆′ Γ′(t) = τ t ∈ ∆′

∆̂; Γ′ ⊢µ cont E
′[e] : τ ; ∆′

The first premise of which follows by induction and the second and third directly
from the assumptions.

case (a.expr.if) :

There are two cases for the form of E: if v = E′ then e1else e2 and if E′ =
e then e1else e2. We consider only the first as the second is similar.
Assume E = if E′ = e then e1else e2 and

∆; Γ ⊢µ v : τ ; ∆1 ∆1; Γ ⊢µ E
′[e] : τ ; ∆2

∆2; Γ ⊢µ e1 : τ ′; ∆3 ∆2; Γ ⊢µ e2 : τ ′; ∆4

∆; Γ ⊢µ if v = E
′[e] then e1else e2 : τ ′; ∆3 ∩ ∆4

where ∆3∩∆4 ≡ ∆′. Prove (i) and (ii) hold. (i) holds by induction on the typing
derivation of E′[e] and use of Weakening, Capability Strengthening, and Typing
Weakens Capability lemmas. To prove (ii) assume for arbitrary e′, ∆̂, ∆̂′′ ⊇ ∆̂′

and Γ′ ⊇ Γ that ∆̂; Γ′ ⊢µ e′ : τ ′; ∆̂′′ holds and show

∆̂; Γ′ ⊢µ v : τ ; ∆̂
(A)

∆̂; Γ′ ⊢µ E′[e′] : τ ; ∆2
(B)

∆2; Γ
′ ⊢µ e1 : τ ′; ∆3

(C)
∆2; Γ

′ ⊢µ e2 : τ ′; ∆4
(D)

∆̂; Γ′ ⊢µ if v = E
′[e′] then e1else e2 : τ ′; ∆3 ∩ ∆4

(A) holds by assumptions, Value Typing lemma and Weakening. (B) holds by
induction on the typing derivation of E[e], while (C) and (D) hold straight from
the assumptions by use of Weakening.

case (a.expr.proj-abs-ref-deref-assign-let-ifupdate-sub) :

These cases follow by simple inductive arguments, similar to those presented
above, using Value Typing lemma and Weakening lemma.

The following Update Capability Weakening lemma is used in the proof of Update
Program Safety. It states that given an expression where the next redex is an
update, this expression is checkable with the capability annotated on the update.
Put another way, the capability annotated on the update is a sufficient capability
for the execution of the continuation. If this is true, then the only types concreted
by old code in the continuation are those not updated at this update point.

Lemma A.13 (Update Capability Weakening). If ∆; Γ ⊢µ E[update∆′′

] : τ ; ∆′

then ∆′′; Γ ⊢µ E[update∆′′

] : τ ; ∆′.
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Proof. Assume ∆; Γ ⊢µ E[update∆′′

] : τ ; ∆′.

By E-inversion lemma, for some ∆̂′: ∆; Γ ⊢µ update∆′′

: τ ; ∆̂′.

By update type rule ∆̂′ = ∆′′ and ∆′′ ⊆ ∆.

Thus: ∆′′; Γ ⊢µ update∆′′

: τ ; ∆′′.

By E-inversion: ∆′′; Γ ⊢µ E[update∆′

] : τ ; ∆′, as required.

Lemma A.14 (Heap Extension). If ⊢ Ω and Ω; Φ ⊢ H and ∅; Ω, Φ ⊢N v : τ ; ∅ and
l /∈ dom(H) then Ω; Φ, l : τ ref ⊢ H, l 7→ (·, v)

Proof. By definition of heap typing.

Lemma A.15 (Update Expression Safety). If ⊢ Ω and Ω; Φ ⊢ H and ∆1; Ω, Φ, Γ ⊢µ

e : τ ; ∆2 and updateOK(upd, Ω, H, ∆1) then ∆1;U [Ω, Φ, Γ]upd ⊢µ U [e]upd : τ ; ∆2

Proof. Proceed by induction on the derivation of ∆; Ω, Φ, Γ ⊢µ e : τ ; ∆′:

case (a.expr.int) :

By assumption ∆; Ω, Φ, Γ ⊢µ n : int; ∆′. Since U [n]
upd

= n, we have

∆;U [Ω, Φ, Γ]
upd ⊢µ U [n]

upd
: int; ∆′ follows from (a.expr.int).

case (a.expr.var) :

By assumption ∆; Ω, Φ, Γ, x : τ ⊢µ x : τ ; ∆′. Since U [x]
upd

= x and

U [Ω, Φ, Γ, x : τ ]
upd

= U [Ω, Φ, Γ]
upd

, x : τ , the result follows from (a.expr.var).

case (a.expr.xvar) :

By assumption ∆; Ω, Φ, Γ ⊢µ z : τ ; ∆′. Thus Φ(z) = τ and by (a) z ∈ dom(H).

By definition of U [−]
upd

on expressions we have U [z]
upd

= z.

There are three ways in which U [Ω, Φ, Γ]
upd

(z) = τ ′ can arise:
case z ∈ dom(upd.AB) :

As z ∈ dom(H) and by updateOK the domain of the heap and upd.AB are
disjoint, we can conclude z /∈ upd.AB, therefore this case cannot occur.

case z ∈ dom(upd.UB) :

Let upd.UB(z) = (τ ′, bv).

By definition of U [−]upd we have U [Φ]upd(z) = heapType(τ ′, bv).

By updateOK assumption U [Ω, types(H)]
upd ⊢ heapType(τ ′, bv) <: τ .

By Weakening U [Ω, Φ]
upd ⊢ heapType(τ ′, bv) <: τ .

The result follows by use of (a.expr.sub) type rule.
case z /∈ dom(upd.UB) :

By definition of U [−]
upd

on contexts U [Φ]
upd

(z) = τ , thus

∆;U [Ω, Φ, Γ]
upd ⊢µ z : τ ; ∆′, as required.

case (a.expr.reference) :

Similar to the var case.

case (a.expr.abs) :

By assumption

∆; Ω, Φ, Γ ⊢µ e : τ ; ∆′ [Ω, Φ](t) = τ

∆; Ω, Φ, Γ ⊢µ abst e : t; ∆′

Consider the form of upd.UN:
case t 6∈ dom(upd.UN) :

By definition we have U [Ω, Φ, Γ]upd(t) = τ and U [abst e]upd = abst U [e]upd.
The desired result follows by induction and (a.expr.abs).
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case upd.UN(t) = (τ ′′, c) :

Observe U [abst e]
upd

= abst (c U [e]
upd

). Using (a.expr.abs) and
(a.expr.app) we are required to prove:

∆;U [Ω, Φ, Γ]
upd ⊢µ c : τ ′ N;∆c

−→ τ ′′; ∆
(a)

∆;U [Ω, Φ, Γ]
upd ⊢µ U [e]

upd
: τ ′; ∆′

(b)

∆;U [Ω, Φ, Γ]
upd ⊢µ c U [e]

upd
: τ ′′; ∆′

[Ω, Φ, Γ](t) = τ ′(c)

∆;U [Ω, Φ, Γ]upd ⊢µ abst (c U [e]upd) : t; ∆′

(b) holds by induction. To prove (a):

∅;U [Ω, types(H)]
upd ⊢N c : τ− > τ ′; ∅ By updateOK() assumption

∆;U [Ω, types(H), Γ]upd ⊢N c : τ
N;∆c
−→ τ ′; ∆ By Cap. Strengthening lemma

∆;U [Ω, Φ, Γ]
upd ⊢N c : τ

N;∆c
−→ τ ′; ∆ By Ctx. Weakening lemma

Where the last step is valid because Ω; Φ ⊢ H and so types(H) ⊆ Φ.
By case split Ω = (t = τ, Ω′) for some Ω′.

By definition of U [] U [t = τ, Ω′, Φ, Γ]
upd

= t = τ ′′,U [Ω′, Φ, Γ]
upd

, thus (c)
holds.

case (a.expr.con) :

Assume

t ∈ ∆′ Ω(t) = τ ∆; Ω, Φ, Γ ⊢µ e : t; ∆′

∆; Ω, Φ, Γ ⊢µ cont e : τ ; ∆′ (2)

updateOK(upd, Ω, H, ∆) (3)

Suffices to show that the leaves of this derivation hold:

t ∈ ∆′(a) U [Ω]upd(t) = τ
(b)

∆;U [Ω, Φ, Γ]upd ⊢µ U [e]upd : t; ∆′
(c)

∆;U [Ω, Φ, Γ]upd ⊢µ cont U [e]upd : τ ; ∆′

(a) holds by assumptions. (c) holds by induction. Now show (b). Note that by
(3) ∆ ∩ dom(upd.UN) = ∅, so by assumption t /∈ upd.UN.

Ω = t = τ, Ω′ for some Ω′, by 3
dom(∆′) ∩ dom(upd.UN) = ∅ by 3

U [t = τ, Ω′]
upd

= (t = τ,U [Ω′]
upd

) as t /∈ upd.UN

case (a.expr.record) :

By assumption (where ∆ ≡ ∆0, ∆
′ ≡ ∆n):

∆i; Ω, Φ, Γ ⊢µ ei+1 : τi+1; ∆i+1 i ∈ 1..(n − 1) n ≥ 0
∆0; Ω, Φ, Γ ⊢µ {l1 = e1, . . . , 1n = en} : {l1 : τ1, . . . , ln : τn}; ∆n

By typing weakens capability ∆i−1 ⊆ ∆i for i ∈ 1..n. By the fact that
updateOK(−) is preserved under weakening of capability, and induction, we
can prove:

∆i; Ω, Φ, Γ ⊢µ U [ei+1]
upd

: τi+1; ∆i+1

For each i ∈ 0..n − 1. Finally, the result follows using (a.eq.record).

case (a.expr.sub) :
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Assume

∆; Ω, Φ, Γ ⊢µ e : τ ′; ∆′′ Γ ⊢ τ ′ <: τ ∆′ ⊆ ∆′′

∆; Ω, Φ.Γ ⊢µ e : τ ; ∆′

Prove

∆;U [Ω, Φ, Γ]upd ⊢µ U [e]upd : τ ′; ∆′′ U [Ω, Φ, Γ]upd ⊢ τ ′ <: τ ∆′ ⊆ ∆′′

∆;U [Ω, Φ, Γ]upd ⊢µ U [e]upd : τ ; ∆′

The typing judgement on e holds by induction and the subset constraint holds
by assumption. We are left to show the subtype assertion. By assumption
Ω, Φ, Γ ⊢ τ ′ <: τ . Furthermore, this judgement’s only constraint on Ω, Φ, Γ
is that the free type names in τ and τ ′ are in the domain of Ω, Φ, Γ. It is
easily proven that the domain of U [Ω, Φ, Γ]

upd
is a conservative extension of the

domain of Ω, Φ, Γ. Thus the subtype judgement holds.

case (a.expr.update) :

Update checks to be int in any environment.

case (a.expr.(app—proj—let—ref—deref—assign—if—if-update)) :

All follow by a simple inductive argument.

The next lemma, Heap Update Safety, tells us that given a typeable heap and a
valid update, applying that update to the heap leaves the heap well typed in the
updated environment.

Lemma A.16 (Heap Update Safety). If ⊢ Ω and Ω; Φ ⊢ H and

updateOK(upd, Ω, H, ∆̂) then U [Ω]
upd

;U [Φ]
upd ⊢ U [H ]

upd

Proof. First note that from Ω; Φ ⊢ H we can deduce that for all ρ ∈ dom(H), τ, e:

(a) dom(Φ) = dom(H)

(b) if ρ = z and H(z) = (τ, e) then Ω, Φ ⊢ e : τ and Φ(z) = τ ref

(c) if ρ = z and H(z) = (τ, λ(x).e ) then Ω, Φ ⊢ λ(x).e : τ and Φ(z) = τ

(d) if ρ = r and H(r) = (·, e) then there exists a τ such that Ω, Φ ⊢ e : τ and
Φ(r) = τ ref

So assume (a)-(d) and also:

⊢ Ω (4)

updateOK(upd, Ω, H, ∆̂) (5)

Via the same expansion we are required to prove for all ρ ∈ dom(U [H ]
upd

), τ, e
that

(i) dom(U [Φ]
upd

) = dom(U [H ]
upd

)

(ii) if ρ = z and U [H ]
upd

(z) = (τ, e) then U [Ω, Φ]
upd ⊢ e : τ and U [Φ]

upd
(z) = τ ref

(iii) if ρ = z and U [H ]upd(z) = (τ, λ(x).e ) then U [Ω, Φ]upd ⊢ λ(x).e : τ and

U [Φ]upd(z) = τ

(iv) if ρ = r and U [H ]
upd

(r) = (·, e) then there exists τ such that U [Ω, Φ]
upd ⊢ e : τ

and U [Φ]
upd

(r) = τ ref
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hold. (a) implies (i) by inspection of the definition of U [] on contexts and heaps.
We are left to show (ii)-(iv).

Observe that types(H) ⊆ Φ because of (b) and (c).

Now consider the form of an arbitrary entry in U [H ]upd:

case r 7→ (·, e) :

In this case (ii) and (iii) hold trivially because the domain is a reference. To

prove (iv) for U [H ]
upd

(r) = (·, e) we show that, for some τ

∅;U [Ω, Φ]
upd ⊢N e : τ ; ∅

U [Ω, Φ]
upd ⊢ e : τ

(6)

U [Φ]
upd

(r) = τ ref (7)

By the action of U [−]
upd

on heaps there exists an e′ such that r 7→ (·, e′) ∈ H

and e = U [e′]
upd

.
By (d) there exists a τ ′ such that

Ω, Φ ⊢ e′ : τ ′ (8)

Φ(r) = τ ′ ref (9)

By Update Expression Safety lemma U [Ω; Φ]
upd ⊢ e′ : τ ′.

Take τ = τ ′ to show 8 and 9.
By definition of U [−]upd on heaps U [Φ]upd(r) = τ ′ ref holds, which proves 9.
By UpdateOK Capability Weakening lemma updateOK(upd, Ω, Φ, ∅).
By Update Expression Safety lemma:

∅;U [Ω, Φ]
upd ⊢N U [e′]

upd
: τ ′; ∅

We obtain 8 by application of (a.bind.expr).

case z 7→ (τ, b) :

In this case (iv) holds trivially and we are left to show (ii) and (iii).

case (ii) :

Assume U [H ]
upd

(z) = (τ, e) and prove

∅;U [Ω, Φ]upd ⊢N e : τ ; ∅

U [Ω, Φ]
upd ⊢ e : τ

(10)

U [Φ]
upd

(z) = τ ref (11)

By definition of U [−]upd on heaps, there are three ways to generate elements

of U [H ]
upd

.

case z ∈ dom(H) and upd.UB(z = (τ, e) :

As (a) holds by assumption and z ∈ dom(H) by case split, we have
z ∈ dom(Φ). Thus for some τ ′, Φ(z) = τ ′.

By definition of U [−]
upd

on contexts U [Φ]
upd

(z) = τ ref , which proves
11.
By 9 U [Ω, types(H)]

upd ⊢ e : τ .

By context weakening U [Ω, Φ]upd ⊢ e : τ , which proves 10.
case z ∈ dom(H) and z /∈ dom(upd.UB) :

By the definition of U [−]
upd

on heaps there must exist b′ such that

U [z 7→ (τ, b′), H ′]
upd

= z 7→ (τ,U [b′]
upd

),U [H ′]
upd

.
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As b = U [b′]upd and this is an expression by fact we are in (ii) case
split, b′ must also be an expression. Thus by (b) Ω, Φ ⊢ b′ : τ and
Φ(z) = τ ref . Then by inversion ∅; Ω, Φ ⊢N b′ : τ ; ∅ holds.
By Update Expression Safety lemma

∅;U [Ω, Φ]
upd ⊢N U [b′]

upd
: τ ; ∅

which proves 10
As z /∈ dom(upd.UB), by the definition of U [−]

upd
on contexts we have

U [Ω, Φ′, z : τ ref ]
upd

= z : τ ref ,U [Ω, Φ′]
upd

, which proves 11.
case z /∈ dom(H) :

In this case it must hold that z ∈ dom(upd.AB).

By assumptionU [H ]upd(z) = (τ, e) (where e is in fact a value) therefore
upd.AB(z) = (τ, e).
By 9

U [Ω, Φ]upd ⊢ e : τ

which proves 10.
By inspection of the action of U [−]

upd
on contexts we see that

U [Ω, Φ]
upd

(z) = types(upd.AB)(z) = τ ref

which proves 11, as required.
case (iii) :

Assume

U [H ]
upd

(z) = (τ1
µ;∆′

−→ τ2, λ
∆(x).e )

i.e. that b = λ∆(x).e and τ = τ1
µ;∆′

−→ τ2. Prove

U [Ω, Φ]
upd ⊢ U

[

λ∆(x).e
]upd

: τ1
µ;∆′

−→ τ2 (12)

U [Ω, Φ]upd(z) = τ1
µ;∆′

−→ τ2 (13)

By definition of U [−]upd on heaps, there are three ways to generate elements

of U [H ]upd.
case z ∈ dom(H) and z ∈ dom(upd.UB) :

By case split there exists x, e, τ1, τ2, µ
′, ∆1, ∆2 such that upd.UB(z) =

(τ1
µ′;∆2

−→ τ2, λ
∆1(x).e ).

U [Ω, types(H)]
upd ⊢ λ∆1(x).e : τ1

µ′;∆2

−→ τ2 by 9

U [Ω, types(()H)]
upd ⊢ λ∆1(x).e : τ1

µ′;∆2

−→ τ2 by weakening

which proves 12. Finally, by (a), z ∈ dom(Φ), so by definition of U [−]upd

on contexts: U [Φ]
upd

(z) = τ1
µ′;∆2

−→ τ2 which proves 13
case z ∈ dom(H) and z /∈ dom(upd.UB) :

By case split and definition of U [−]
upd

on heaps, there exists b′, H ′ such

that U [z 7→ (τ, b′), H ′]
upd

= z 7→ (τ,U [b′]
upd

),U [H ′]
upd

and H = z 7→
(τ, b′), H ′.

Because b′ is a function by case split, then by the definition of U [−]
upd

on bindings, U [b′]
upd

is a function, say b′ = λ∆(x).e′
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By (c) and typing rules

∆; Ω, Φ ⊢µ e′ : τ2; ∆
′

Ω, Φ ⊢ λ∆(x).e′ : τ1
µ;∆′

−→ τ2

where τ = τ1
µ;∆′

−→ τ2.
Required to prove 12 and 13.
By 9 bindOK[ types(H) ]. By case split z /∈ dom(upd.UB). By last two
facts dom(upd.UN) ∩ ∆ = ∅. It follows by the previous fact 9 that
updateOK(upd, Ω, H, ∆).

By Update Expression Safety lemma ∆;U [Ω, Φ]
upd ⊢µ U [e]

upd
: τ2; ∆

′.
Therefore, by use of (a.bind.fun), 12 holds.

By the definition of U [−]
upd

on contexts it follows that U [Φ]
upd

(z) = τ
making 13 holds, as required.

case z /∈ dom(H) :

The result follows similarly to this subcase in case (ii).

Lemma A.17 (Update Program Safety). If

(i) ∅ ⊢µ Ω; H ; E[update∆̂] : τ and

(ii) updateOK(upd, Ω, H, ∆̂)

then U [∅]upd ⊢ U [Ω]
upd

;U [H ]
upd

;U [E[0]]
upd

: τ

Proof. Assume

⊢ Ω Ω; Φ ⊢ H

∆; Ω, Φ ⊢U E[update∆̂] : τ ; ∆′

∅ ⊢ Ω; H ; E[update∆̂] : τ
(14)

updateOK(upd, Ω, H, ∆̂) (15)

It suffices to prove the hypotheses for this deduction:

⊢ U [Ω]upd(a)
U [Ω]upd; Φ′ ⊢ U [H ]upd(b)

∆̂;U [Ω]
upd

, Φ′ ⊢U U
[

E[update∆̂]
]upd

: τ ; ∆′
(c)

U [∅]upd ⊢ U [Ω]
upd

;U [H ]
upd

;U
[

E[update∆̂]
]upd

: τ

Choose Φ′ = U [Φ]upd; then (a) follows from the definition of updateOK. (b) follows
from Update Heap Safety lemma.

By Update Capability Weakening lemma and 14

∆̂; Γ, Ω, Φ′ ⊢U E[update∆̂] : τ ; ∆′

therefore (c) follows from Update Expression Safety lemma.

The Non-update Expression Safety Lemma establishes that the typing relation
is closed under reduction. One thing to stress is that we only require closure; the
capabilities do not become more restrictive, indeed they can grow at function calls,
which explains ∆′

1 ⊇ ∆1 and ∆′
2 ⊇ ∆2 in the existentially quantified variables.
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Lemma A.18 (Non-Update Expression Safety). If ⊢ Ω and Ω; Φ ⊢ H and
∆1; Ω, Φ ⊢µ e : τ ; ∆2 and H ; e → H ′; e′ then ∃Φ′ ⊇ Φ, ∆′

1 ⊇ ∆1, ∆
′
2 ⊇ ∆2 such that

(i) Ω; Φ′ ⊢ H ′ and

(ii) ∆′
1; Ω, Φ′ ⊢µ e′ : τ ; ∆′

2

Proof. Proceed by induction on the derivation of ∆1; Γ, Ω, Φ ⊢µ e : τ ; ∆2.

case (a.expr.var) :

Expressions are closed w.r.t local variables, so this cannot occur.

case (a.expr.xvar-int-reference) :

These are values, so can not reduce.

case (a.type.appu) :

Assume

Ω; Φ ⊢ H (16)

∆1; Ω, Φ ⊢µ e1 : τ1
µ̂;∆′

−→ τ2; ∆2

∆2; Ω, Φ ⊢µ e2 : τ1; ∆3 ∆4 ⊆ ∆3

µ̂ ≤ µ µ̂ = U =⇒ ∆4 ⊆ ∆′

∆1; Ω, Φ ⊢µ e1 e2 : τ2; ∆4
(17)

H ; e1 e2 → H ′; e′ (18)

Required to prove that there exists Φ′ ⊇ Φ, ∆′
1 ⊇ ∆1, ∆

′
2 ⊇ ∆2 such that (i)

and (ii) hold. The only possible expression reduction of 18 is (call). In this
case

(H, z 7→ (τ, λ∆(x).e )), z v → (H, z 7→ λ∆(x).e ), e[v/x]

Take H ′ = H and Ω′ = Ω then (i) holds by 16.
Now prove (ii) by showing

∆ ∪ ∆1; Γ ⊢µ e[v/x] : τ2; ∆4 (19)

By 17 we have ∆2; Ω, Φ ⊢µ v : τ1; ∆3 and by applying Value Typing lemma
∅; Ω, Φ ⊢µ v : τ1; ∅. By 16 ∆; Ω, Φ, x : τ1 ⊢µ̂ e : τ2; ∆

′. Then by Substitution
lemma

∆; Ω, Φ ⊢µ̂ e[v/x] : τ2; ∆
′ (20)

From typing of the LHS of the application

∆; Ω, Φ ⊢µ z : τ1
µ̂;∆′

−→ τ2; ∆2 (21)

It is clear that 20 must be derived either directly from the axiom (a.type.xvar)
or by (possibly repeated use of) subsumption terminated by (a.type.xvar). It
is easy to check that <: is transitive allowing us to conclude that Ω ⊢ Φ(z) <:

τ1
µ̂;∆′

−→ τ2. By Subtype Inversion Lemma there exists τ3, τ4, µ̂
′, ∆5 such that

Ω ⊢ τ3
µ̂′;∆5

−→ τ4 <: τ1
µ̂;∆′

−→ τ2 (22)

and thus

τ1 <: τ3 τ4 <: τ1 ∆′ ⊆ ∆5 µ̂′ ≤ µ̂ (23)

By use of subsumption on 20 using facts from 23

∆; Ω, Φ ⊢µ̂′ e[v/x] : τ2; ∆
′ (24)
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To show 19 we case on the value of µ̂′.

case µ̂′ = U :

By 23 µ̂ = U. Thus by precondition of app rule µ = U and ∆4 ⊆ ∆′. By
these derived facts, 24, Capability Strengthening Lemma, and subsumption
rule we have the result.

case µ̂ = N :

By 23 µ̂ can be either U or N. If it is U we proceed as we did in the previous
case, so suppose µ̂ = N. In this case µ is unconstrained so case on its value.
If µ = U then proceed as in µ̂′ = U case. If µ = N the result follows by
Capability Strengthening Lemma and use of subsumption.

case (a.expr.con) :

Assume

∆1; Ω, Φ ⊢µ e′ : t; ∆2 t ∈ ∆2 [Ω, Φ](t) = τ

∆1; Ω, Φ ⊢µ cont e′ : τ ; ∆2
(25)

Ω; Φ ⊢ H (26)

The only possible expression reduction of cont e′ is (conabs). In this case
e′ = abst v for some value v, and the result of the reduction is v. By inversion
∆1; Ω, Φ ⊢µ v : τ ; ∆2 as required.

case (a.expr.proj) :

Assume

∆0; Ω, Φ ⊢µ e : {l1 : τ1, . . . , ln : τn}; ∆1

∆0; Ω, Φ ⊢µ e.li : τi; ∆1
(27)

Ω; Φ ⊢ H (28)

The only possible expression reduction is (proj). Assume

∆i−1; Ω, Φ ⊢ vi : τi; ∆i i ∈ 0..n n ≥ 0
∆0; Ω, Φ ⊢ {l1 = v1, . . . , 1n = vn} : {l1 : τ1, . . . , ln : τn}; ∆n

∆0; Ω, Φ ⊢ {l1 = v1, . . . , 1n = vn}.li : τi; ∆n
(29)

The result of the reduction is vi. Choose Φ′ = Φ, then (i) holds by 28. By
typing weakens capability lemma we have ∆i ⊆ ∆i+1 for i ∈ 0..n. Therefore:

∆0; Ω, Φ ⊢ vi : τi; ∆i by capability strengthening
∆0; Ω, Φ ⊢ vi : τi; ∆n by (a.expr.sub)

as required to show (ii).

case (a.expr.let) :

Assume

∆1; Ω, Φ ⊢µ e1 : τ ′
1; ∆2

∆2; Ω, Φ, x : τ1 ⊢µ e2 : τ2; ∆3

∆1; Ω, Φ ⊢µ let x : τ = e1 in e2 : τ2; ∆3
(30)

The only possible expression reduction is (let). In this case e1 is equal to some
value. (i) holds by assumption and we are left to show (ii) where e′ = e2[e1/x].

∅; Ω, Φ ⊢µ e1 : τ ′
1; ∅ by Value Typing lemma

∆2; Ω, Φ ⊢ e2[e1/x]τ2; ∆3 by Substitution lemma
∆1; Ω, Φ ⊢ e2[e1/x]τ2; ∆3 by Capability Strengthening lemma
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case (a.expr.record) :

No expression reductions apply.

case (a.expr.update) :

The case is trivially true as the expression cannot do a non-update reduction.

case (a.expr.sub) :

Follows directly by application of IH.

case (a.expr.ref) :

Assume ⊢ Ω and Ω; Φ ⊢ H and H, ref e′′ −→ H ′, e′ and

∆; Ω, Φ ⊢µ e : τ ; ∆′

∆; Ω, Φ ⊢µ ref e : τ ref ; ∆′

The only reduction rule applicable here is ref. This implies, for some value v
and location r /∈ dom(H), that e′′ = v and H ′ = H, r 7→ v.
Required to prove
(i) Ω; Φ, r : τ ref ⊢ H, r 7→ (·., v)
(ii) ∆; Ω, Φ, r : τ ref ⊢µ r : τ ref ; ∆′

(i) follows from Heap Extension lemma. (ii) is deducible from (a.expr.loc)
and (a.expr.sub).

case (a.expr.(if—deref—assign—abs—if-update)) :

These cases follow similarly.

Lemma A.19 (Non-Update Program Safety). If ⊢ Ω, Ω; Φ ⊢ H, ∆1; Ω, Φ ⊢ E[e] :
τ ; ∆2 and Ω; H ; E[e] −→ Ω; H ′; E[e′], then there exists Φ′ ⊇ Φ, ∆′

1 ⊇ ∆1 and ∆′
2 ⊇

∆2 such that

(i) Ω; Φ′ ⊢ H

(ii) ∆′
1; Ω, Φ ⊢ E[e′] : τ ; ∆′

2

Proof. By E-inversion lemma we have, for some τ ′ and ∆̂′ ⊇ ∆′
2, that ∆1; Ω, Φ ⊢

e : τ ′; ∆̂′.
By inversion of derivation of program reduction Ω;H ; e −→ Ω; H ′; e′.
By Non-Update Expression Safety lemma there exists Φ′ ⊇ Φ, ∆′

1 ⊇ ∆1 and ∆̂′′ ⊇
∆̂′ such that ∆′

1; Ω, Φ ⊢ e′ : τ ′; ∆̂′ and Ω; Φ ⊢ H . The latter proves (i).
By weakening ∆1; Ω, Φ′ ⊢ E[e] : τ ′; ∆2.
By E-inversion lemma ∆′

1; Ω, Φ′ ⊢ E[e] : τ ′; ∆2, which proves (ii) as required.

Lemma A.20 (Preservation). If ∅ ⊢ Ω; H ; e : τ then

(i) if Ω; H ; e → Ω; H ′; e′ then ∅ ⊢ Ω; H ′; e′ : τ

(ii) if Ω; H ; e
upd
−−→ Ω′; H ′; e′ then ∅ ⊢ Ω′; H ′; e′ : τ

Proof. Suppose ∅ ⊢ Ω; H ; e : τ and consider the form of the transition:

case Ω; H ; e → Ω; H ′; e′ :

(i) holds by Non-Update Program Safety lemma. (ii) trivially holds.

case Ω; H ; e
upd
−−→ Ω′; H ′; e′ :

This transition must be by the update rule, therefore e = E[update∆] for some
E and ∆; and either
(a) updateOK(upd, Ω, H, ∆) Ω′ = U [Ω]upd H ′ = U [H ]upd e′ = U [E[0]]upd
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(b) e′ = E[1]
In the former case ∅ ⊢ Ω′; H ′; e′ : τ by Update Program Safety lemma. In
the latter case E[1] can be typed by E-inversion lemma. In either case (ii) is
confirmed. (i) holds trivially.

Lemma A.21 (Progress). If ⊢ Ω and Ω; Φ ⊢ H and ∆1; Ω, Φ ⊢µ e : τ ; ∆2 then
either

(i) there exists Ω′, H ′, e′ such that Ω; H ; e → Ω′; H ′; e′ or

(ii) e is a value

Proof. Proceed by induction on the derivation of ∆1; Ω, Φ ⊢µ e : τ ; ∆2.

case (a.expr.int—xvar—loc) :

All values.

case (a.expr.var) :

Cannot occur because the context is closed under local variables.

case (a.expr.app) :

Assume

⊢ Ω (31)

Ω; Φ ⊢ H (32)

∆1; Ω, Φ ⊢µ e1 : τ1
µ̂;∆′

−→ τ2; ∆2

(a)

∆2; Ω, Φ ⊢µ e2 : τ1; ∆3 ∆4 ⊆ ∆3

µ̂ ≤ µ (µ̂ = U) =⇒ ∆4 ⊆ ∆′

∆1; Ω, Φ ⊢µ e1 e2 : τ2; ∆4
(33)

By IH one of (i)-(iii) holds for e1:
case (i) holds for e1 :

(i) holds for e1 e2 by cong rule.
case (iii) holds for e1 :

By IH there are three cases to consider for e1:
case (i) holds for e2 :

(i) holds for e1 e2 by cong rule
case (iii) holds for e2 :

e1 = z by Canonical Forms lemma

∆1; Ω, Φ ⊢µ z : τ1
µ̂;∆′

−→ τ2; ∆2 By (a)

Thus Φ(z) = τ1
µ̂;∆′

−→ τ2 and H(z) = λ∆(x).e by 32. Therefore the
(call) reduction rule matches and (a) holds for e1 e2.

case (a.expr.sub) :

Follows directly by induction on the sub derivation.

case (a.expr.abs) :

Assume

∆; Ω, Φ ⊢µ e : τ ; ∆′ Γ(t) = τ

∆; Ω, Φ ⊢µ abst e : t; ∆′

By IH there are three cases to consider:
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case (i) holds for e :

By cong reduction rule (i) holds.
case (iii) holds for e :

e is a value by case split, thus abst is also a value (by inspection of values)

case (a.expr.update) :

update∆ is not a value, so (i) must hold. There are two possible reductions
for update, but both result in an integer. By Typing Weakens Capability and
the Value Typing Lemma an integer can be made to type check in the same
updateability and capability environments as update∆.

The rest of the cases are similar.

Theorem A.22 (Type Soundness). If ∅ ⊢µ Ω; H ; e : τ then either

(i) there exists Ω′, H ′, e′ such that Ω; ; He → Ω′; H ′; e′ and ∅ ⊢µ Ω′; H ′; e′ : τ or

(ii) e is a value

Proof. Suppose ∅ ⊢µ Ω; H ; e : τ then by progress one of the following hold:

(a) there exists Ω′, H ′, e′ such that Ω; H ; e → Ω′; H ′; e′ or

(b) e is a value

Suppose (a) holds, then by preservation ∅ ⊢µ Ω′; H ′; e′ : τ and (i) holds. Suppose
(c) holds, then (iii) holds.
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A.2 Proof of Type Soundness for Proteus

The proof of soundness for Proteus follows an almost identical structure to the
proof for Proteus∆. In this section we give a sketch of the proof, paying particular
attention when it differs from that of the corresponding Proteus∆ proof.

We state the three main theorems whose proofs can be easily reconstructed by
following the structure of those in Proteus∆.

Lemma A.23 (Progress). If ⊢ Ω and Ω; Φ ⊢ H and Ω, Φ ⊢ e : τ then either

(i) there exists Ω′, H ′, e′ such that Ω; H ; e → Ω′; H ′; e′ or

(ii) e is a value

Lemma A.24 (Preservation). If ∅ ⊢ Ω; H ; e : τ then

(i) if Ω; H ; e → Ω; H ′; e′ then ∅ ⊢ Ω; H ′; e′ : τ

(ii) if Ω; H ; e
upd
−−→ Ω′; H ′; e′ then ∅ ⊢ Ω′; H ′; e′ : τ

Theorem A.25 (Type Soundness). If ∅ ⊢ Ω; H ; e : τ then either

(i) there exists Ω′, H ′, e′ such that Ω; ; He → Ω′; H ′; e′ and ∅ ⊢ Ω′; H ′; e′ : τ or

(ii) e is a value

Proteus’ type system is a simplification of that of Proteus∆. To obtain Proteus,
the capabilities are removed, along with the subtype relation and the subsump-
tion rule. Subtyping can be removed as its only function was to provide subtype-
polymorphic behaviour for the capabilities on function arrows, which do not exist
in the dynamic system.

We first give some properties of conFree[ ] and updateOK(), the proofs for which
are simple inductions on the syntax of terms.

Lemma A.26 (conFree[− ] Congruence). For any upd and e, if conFree[ e ]
upd

holds, then for any subterm e′ of e we have conFree[ e′ ]
upd

. We say that

conFree[− ]
upd

is congruent to the syntax of expressions.

Lemma A.27 (updateOK(−) Congruence). For any upd, Ω, H and e,
if updateOK(upd, Ω, H, e) holds then for any subterm e′ of e we have
updateOK(upd, Ω, H, e′). We say that updateOK(−upd, Ω, H,−) is a congruent
to the syntax of expressions.

The only change to the dynamic semantics is in the definition of updateOK. We
now give the cases of proofs that depend on updateOK.

Lemma A.28 (Update Expression Safety). If ⊢ Ω and Ω; Φ ⊢ H and Ω, Φ, Γ ⊢µ

e : τ and updateOK(upd, Ω, H, e) then U [Ω, Φ, Γ]
upd ⊢µ U [e]

upd
: τ

Proof. The proof is by induction on the typing derivation of e in a similar way to
the Proteus∆proof. We give the cases for concretization, abstraction and top-level
variables variables:

case (expr.xvar) :

By assumption Ω, Φ, Γ ⊢ z : τ . Thus Φ(z) = τ and by (a) z ∈ dom(H).

By definition of U [−]
upd

on expressions we have U [z]
upd

= z.

There are three ways in which U [Ω, Φ, Γ]
upd

(z) = τ ′ can arise:
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case z ∈ dom(upd.AB) :

As z ∈ dom(H) and by updateOK the domain of the heap and upd.AB are
disjoint, we can conclude z /∈ upd.AB, therefore this case cannot occur.

case z ∈ dom(upd.UB) :

Let upd.UB(z) = (τ ′, bv).

By definition of U [−]
upd

we have U [Φ]
upd

(z) = heapType(τ ′, bv).
By updateOK assumption τ = heapType(τ ′, bv).

By (a.expr.xvar) U [Ω, Φ]
upd ⊢ z : τ , as required.

case z /∈ dom(upd.UB) :

By definition of U [−]
upd

on contexts U [Φ]
upd

(z) = τ , thus U [Ω, Φ, Γ]
upd ⊢

z : τ , as required.

case (expr.abs) :

By assumption

Ω, Φ, Γ ⊢ e : τ [Ω, Φ](t) = τ
Ω, Φ, Γ ⊢ abst e : t

Consider the form of upd.UN:
case t 6∈ dom(upd.UN) :

By definition we have U [Ω, Φ, Γ]upd(t) = τ and U [abst e]upd = abst U [e]upd.
The desired result follows by induction and (a.expr.abs).

case upd.UN(t) = (τ ′′, c) :

Observe U [abst e]
upd

= abst (c U [e]
upd

). Using (a.expr.abs) and
(a.expr.app) we are required to prove:

U [Ω, Φ, Γ]upd ⊢ c : τ ′ → τ ′′
(a)

U [Ω, Φ, Γ]upd ⊢ U [e]upd : τ ′
(b)

U [Ω, Φ, Γ]
upd ⊢ c U [e]

upd
: τ ′′ [Ω, Φ, Γ](t) = τ ′(c)

U [Ω, Φ, Γ]
upd ⊢ abst (c U [e]

upd
) : t

(b) holds by induction. To prove (a):

U [Ω, types(H)]
upd ⊢ c : τ → τ ′ By updateOK() assumption

U [Ω, types(H), Γ]
upd ⊢ c : τ → τ ′ By Cap. Strengthening lemma

U [Ω, Φ, Γ]
upd ⊢ c : τ → τ ′ By Ctx. Weakening lemma

Where the last step is valid because Ω; Φ ⊢ H and so types(H) ⊆ Φ.
By case split Ω = (t = τ, Ω′) for some Ω′.

By definition of U [] U [t = τ, Ω′, Φ, Γ]
upd

= t = τ ′′,U [Ω′, Φ, Γ]
upd

, thus (c)
holds.

case (expr.con) :

Assume

Ω(t) = τ Ω, Φ, Γ ⊢ e : t

Ω, Φ, Γ ⊢ cont e : τ
(34)

updateOK(upd, Ω, H, cont e) (35)

Suffices to show that the leaves of this derivation hold:

U [Ω]
upd

(t) = τ
(a)

U [Ω, Φ, Γ]
upd ⊢ U [e]

upd
: t

(b)

U [Ω, Φ, Γ]
upd ⊢ cont U [e]

upd
: τ
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By updateOK assumption: conFree[ cont e ]upd, thus by definition of conFree,

t /∈ dom(upd.UN). It follows by definition of U [−]
upd

that (a) holds.

By Confree Congruence lemma conFree[ e ]
upd

. It can now be shown by appli-
cation of IH that (b) holds.

Lemma A.29 (Heap Update Safety). If ⊢ Ω and Ω; Φ ⊢ H and

updateOK(upd, Ω, H, e) then U [Ω]
upd

;U [Φ]
upd ⊢ U [H ]

upd

Proof. First note that from Ω; Φ ⊢ H we can deduce that for all ρ ∈ dom(H), τ, e

(a) dom(Φ) = dom(H)

(b) if ρ = z and H(z) = (τ, e) then Ω, Φ ⊢ e : τ and Φ(z) = τ ref

(c) if ρ = z and H(z) = (τ, λ(x).e ) then Ω, Φ ⊢ λ(x).e : τ and Φ(z) = τ

(d) if ρ = r and H(r) = (·, e) then there exists a τ such that Ω, Φ ⊢ e : τ and
Φ(r) = τ ref

So assume (a)-(d) and also

⊢ Ω (36)

updateOK(upd, Ω, H, ∆̂) (37)

Via the same expansion we are required to prove for all ρ ∈ dom(U [H ]
upd

), τ, e
that

(i) dom(U [Φ]
upd

) = dom(U [H ]
upd

)

(ii) if ρ = z and U [H ]upd(z) = (τ, e) then U [Ω, Φ]upd ⊢ e : τ and U [Φ]upd(z) = τ ref

(iii) if ρ = z and U [H ]
upd

(z) = (τ, λ(x).e ) then U [Ω, Φ]
upd ⊢ λ(x).e : τ and

U [Φ]
upd

(z) = τ

(iv) if ρ = r and U [H ]
upd

(r) = (·, e) then there exists τ such that U [Ω, Φ]
upd ⊢ e : τ

and U [Φ]
upd

(r) = τ ref

hold. (a) implies (i) by inspection of the definition of U [] on contexts and heaps.
We are left to show (ii)-(iv).

Observe that types(H) ⊆ Φ because of (b) and (c).

Now consider the form of an arbitrary entry in U [H ]
upd

:

case r 7→ (·, e) :

This case is dealt with as in the Proteus∆case.

case z 7→ (τ, b) :

In this case (iv) holds trivially and we are left to show (ii) and (iii).
case (ii) :

This case is dealt with as in the Proteus∆case as it only relies on properties
of updateOK common between the two definitions.

case (iii) :

Assume

U [H ]
upd

(z) = (τ1 → τ2, λ(x).e )

i.e. that b = λ(x).e and τ = τ1 → τ2. Prove

U [Ω, Φ]
upd ⊢ U [λ(x).e ]

upd
: τ1 → τ2 (38)

U [Ω, Φ]
upd

(z) = τ1 → τ2 (39)
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By definition of U [−]upd on heaps, there are three ways to generate elements

of U [H ]
upd

.
case z ∈ dom(H) and z ∈ dom(upd.UB) :

This case is dealt with as in the Proteus∆case as it only relies on prop-
erties of updateOK common between the two definitions.

case z ∈ dom(H) and z /∈ dom(upd.UB) :

By case split and definition of U [−]upd on heaps, there exists b′, H ′ such

that U [z 7→ (τ, b′), H ′]
upd

= z 7→ (τ,U [b′]
upd

),U [H ′]
upd

and H = z 7→
(τ, b′), H ′.

Because b′ is a function by case split, then by the definition of U [−]upd

on bindings, U [b′]
upd

is a function, say b′ = λ(x).e′

By (c) and typing rules

Ω, Φ ⊢µ e′ : τ2

Ω, Φ ⊢ λ(x).e′ : τ1 → τ2

where τ = τ1 → τ2.
Required to prove 38 and 39.
By 37 conFree[H ]

upd
, therefore conFree[ e ]

upd
. By UpdateOK Con-

gruence lemma updateOK(upd, Ω, H, e).

By Update Expression Safety lemma U [Ω, Φ]
upd ⊢µ U [e]

upd
: τ2. There-

fore, by use of (a.bind.fun), 38 holds.

By the definition of U [−]
upd

on contexts it follows that U [Φ]
upd

(z) = τ
making 39 holds, as required.

case z /∈ dom(H) :

The result follows similarly to this subcase in case (ii).

Lemma A.30 (U [− ]− preserves type-safety). Given ⊢ Ω; H ; e and an update, upd,

for which we have updateOK(upd, Ω, H, e), then ⊢ U [ Ω ]
upd

;U [ H ]
upd

,U [ e ]
upd

: τ .

Proof. Follows (Heap Update Safety) and (Update Expression Safety) and an ap-
plication of the configuration typing rule.
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