
Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

Luís Pina∗
George Mason University

lpina2@gmu.edu

Anastasios Andronidis
Imperial College London

a.andronidis15@imperial.ac.uk

Michael Hicks
University of Maryland
mwh@cs.umd.edu

Cristian Cadar
Imperial College London
c.cadar@imperial.ac.uk

Abstract
Dynamic Software Updating (DSU) is a technique for patch-
ing stateful softwarewithout shutting it down, which enables
both timely updates and non-stop service. Unfortunately,
bugs in the update itself—whether in the changed code or in
the way the change is introduced dynamically—may cause
the updated software to crash or misbehave. Furthermore,
the time taken to dynamically apply the update may be un-
acceptable if it introduces a long delay in service.
This paper makes the key observation that both prob-

lems can be addressed by employing Multi-Version Execution
(MVE). To avoid delay in service, the update is applied to a
forked copy while the original system continues to operate.
Once the update completes, the MVE system monitors that
the responses of both versions agree for the same inputs.
Expected divergences are specified by the programmer using
an MVE-specific DSL. Unexpected divergences signal pos-
sible errors and roll back the update, which simply means
terminating the updated version and reverting to the orig-
inal version. This is safe because the MVE system keeps
the state of both versions in sync. If the new version shows
no problems after a warmup period, operators can make it
permanent and discard the original version.

We have implemented this approach, which we callMved-
sua,1 by extending the Kitsune DSU framework with Varan,
a state-of-the-art MVE system.We have usedMvedsua to up-
date several high-performance servers: Redis, Memcached,
and Vsftpd. Our results show that Mvedsua significantly
reduces the update-time delay, imposes little overhead in
steady state, and easily recovers from a variety of update-
related errors.
∗This workwas donewhile Luís was a researcher at Imperial College London
1Mvedsua (“MVE” + “DSU”) is pronounced “Medusa”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304063

CCS Concepts • Computer systems organization →
Reliability;Availability;Maintainability andmaintenance.

ACM Reference Format:
Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian
Cadar. 2019. Mvedsua: Higher Availability Dynamic Software Up-
dates via Multi-Version Execution. In 2019 Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’19),
April 13–17, 2019, Providence, RI, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3297858.3304063

1 Introduction
For many modern software systems, constant availability
is a key requirement. At the same time, such systems are
often subject to frequent updates, including security patches
and feature improvements. Applying such updates by stop-
ping, patching, and restarting the system results in an unac-
ceptable loss of availability, therefore a more sophisticated,
“rebootless” updating technique must be used.

1.1 Seeking Fast, Reliable Updates to Stateful
Services

One common updating approach is the rolling upgrade [6].
This technique supports updating stateless nodes in a dis-
tributed service (e.g., application servers in a web service)
by gracefully directing new connections away from a node
and then stopping, patching, and restarting it once its work
queue is empty. Thus each node is upgraded (in a “rolling”
fashion) without disrupting the overall service.
Rolling upgrades work in many cases, but not always.

Nodes with long-running sessions (e.g., SSH and remote
access servers) present problems because they cannot be up-
dated until sessions terminate. This is because sessions are
stateful, and dropping session state ungracefully is disrup-
tive. Stateful servers are problematic in general. For example,
the Snort intrusion detection system [39] builds a substan-
tial in-memory state machine to detect multi-packet attacks.
Shutting down and restarting Snort drops this state machine
and thus potentially misses a mounting attack [19].

Updating in-memory databases, like Redis andMemcached,
requires checkpointing their state before shutdown and restart,
which can introduce a long pause in service. This problem
is acute enough that Facebook uses a custom Memcached
that keeps in-memory state in a RAMdisk to which it recon-
nects on restart after an update, “so that the data can remain

https://doi.org/10.1145/3297858.3304063
https://doi.org/10.1145/3297858.3304063

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Pina, Andronidis, Hicks, and Cadar

live across a software upgrade and thereby minimize disrup-
tion” [29]. In short: While rolling upgrades work well on
stateless servers, they do not solve the problem of updating
the stateful components of a service.

Dynamic software updating (DSU) is a technique for updat-
ing stateful servers without shutting them down or losing
any state. DSU typically works by updating a process in place,
replacing the code and transforming the existing in-memory
state—both control (i.e., thread call stacks and program coun-
ters), and data (i.e., contents and format of heap objects)—to
an equivalent representation that is compatible with the new
code. State transformations are partially or fully automated.
DSU technology is available in commercial products, e.g., for
patching Linux [3], Java VM-based applications [24, 30], tele-
com systems using Erlang [2], and even satellite systems [43].
The research community has pushed the envelope further, de-
veloping support for full release-level updates to substantial
applications, including operating systems, data management
systems, and various servers [8, 13–15, 20, 28, 37, 42].
Even with state-of-the-art DSU, the promise of constant

availability can be broken by errors in updates. The updated
code itself may have errors—many patches that aim to fix
bugs end up introducing new ones [49]. Or the updated code
may be correct, but the mechanics of applying it at runtime
may be the issue. For example, state transformations may
have bugs that cause the program to fail [17, 36]. Even if
transformations are correct, they might take a long time to
perform if the state to transform is very large (e.g., the whole
heap), temporarily halting service [19, 37].

1.2 Better DSU Reliability/Availability with MVE
The key idea of this paper is that DSU’s reliability and avail-
ability problems can both be addressed by usingmulti-version
execution (MVE) [5, 9, 10, 22, 27, 40, 46, 48]. An MVE system
works by running multiple instances of a program at once,
ensuring that each sees the same inputs and confirming that
all produce the same (or equivalent) outputs.
To address the availability problem, we can fork the cur-

rent program (the leader) and connect it via MVE with the
child (the follower), which will perform the update. While
the update is taking place, the leader continues to provide
service, avoiding or shortening any update-induced pause.

To address the reliability problem, the MVE system moni-
tors the behavior of both versions. When the update on the
follower completes, the MVE system feeds it the events it
missed, already processed by the leader. During and after this
catch-up period, the MVE system compares the responses of
both versions. Any disagreement may signal a bug in either
the new version or the update. In response, we can terminate
the follower, effectively rolling back the update. Importantly,
no state changes made during or after the update are lost.After
running for a while with the old version as leader, we can
promote the new version to leader, and eventually drop the
old version (a demoted follower by now).

This solution to DSU’s availability and reliability prob-
lems, which we call Mvedsua, is new. Proteos [15] handles
errors that manifest during updates, but not afterward, while
MUC [38] combines MVE and DSU, but not in a way that
addresses either the availability or reliablity problems (and,
as it turns out, it imposes far higher overheads). §7 considers
prior work in detail.

Mvedsua’s novel use of MVE creates some challenges. In
particular, the behavior of the old and new versions should
change in most cases, due to added features and bug fixes.
Yet MVE judges any divergence in external behavior as prob-
lematic. There are two situations to consider. The first is
when the new behavior is superficially different from the
old, but both are equivalent to the client. For example, a
single system call in the old version might be broken into
multiple system calls in the new version.Mvedsua allows
the programmer to specify such allowed differences using
domain-specific languages (DSLs) provided by modern MVE
systems [23, 27, 34].
The second, more interesting situation is when the new

version’s behavior purposely disagrees with the old. For ex-
ample, the new version might support a new client command
(e.g., store data in a new format). For this version, executing
the command updates the new version’s state, while the old
version rejects the command and does not change the state.
As such, tolerating the system call differences will result in
later divergences (e.g., retrieving the data stored in the new
format, only present in one version). To handle this situation,
we use the MVE DSL to specify that semantically dissonant
system call sequences leave the leader and follower in equiv-
alent states. For the case of the added command, the DSL
can be used to direct an invalid command to the (updated)
follower so its subsequent behavior, and state, matches that
of the (outdated) leader. As a result, Mvedsua essentially
enforces the semantics of the old version while this version
is the leader, testing that the new version matches that se-
mantics when it should. Once operators are confident the
new version is behaving correctly, they make it the leader
and thus expose (and test) its new semantics.

We have implementedMvedsua by extending Kitsune [20],
a DSU system for C programs, with MVE support from
Varan [23], a modern, high-performance MVE system. We
have evaluated Mvedsua by using it to perform multiple
dynamic updates on three high-performance servers: Mem-
cached (2 updates), Redis (3), and Vsftpd (13). Our results are
promising. Mvedsua addresses the problems it set out to: it
can completely eliminate the pause due to updating and it
can detect and recover from a variety of errors, including
those due to failed update specifications, and failures in the
updated code itself. In addition,Mvedsua’s costs are modest.
The added programmer effort of usingMvedsua was man-
ageable: No DSL rules were needed for either Memcached
update, one was needed for Redis, and, on average, one was
needed for each Vsftpd update. Only Memcached required

Mvedsua: Higher Availability DSU via MVE ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

interesting code changes (about 100 lines) to work properly
with Mvedsua, owing to its use of multiple threads and
stateful libraries. In terms of runtime overhead, we found
thatMvedsua imposes 3–9% overhead on throughput during
normal operation, as compared to 0–3% for Kitsune alone.
While Mvedsua is monitoring both the original and up-
dated versions, the overhead is 25–52% (which essentially
matches Varan’s overhead)—but this overhead is only in-
curred temporarily, and can be further mitigated by using
rolling upgrades.

1.3 Contributions
In summary, the main contributions of this paper are:
(1) A novel approach to supporting reliable, low-latency
updates to stateful services, called Mvedsua. This approach
augments DSUwithMVE so as to hide the latency of dynamic
updates, and tolerate errors in the update process, including
those from bugs introduced by the new software version, and
errors specific to the DSU process. The use of MVE ensures
that no state is lost when recovering from bugs, even those
manifesting after an update is deployed.
(2) A prototype implementation of Mvedsua using Kitsune
and Varan, together with an empirical evaluation on the
high-performance servers Redis, Memcached and Vsftpd.
Our evaluation on more than a dozen updates shows that
Mvedsua can effectively reduce update latency while incur-
ring only a modest overhead of 3–9% in steady state. For
these systems,Mvedsua can also correctly detect, abort, and
recover from erroneous updates; and can tolerate expected
divergences in behavior across versions.

2 DSU: Background and Problem
Statement

This section sets up the problem we are trying to solve:
How to quickly and reliably update a long-running, state-
ful service. We introduce a running example update, used
throughout the paper. We then explain how standard tech-
niques such as rolling upgrades struggle with this example.
Next, we introduce Dynamic Software Updating (DSU) as a
solution that can handle general-purpose upgrades to state-
ful services, including our example. Finally, we outline key
challenges faced by the state-of-the-art DSU systems, which
Mvedsua addresses.

2.1 Update Example
Figure 1a shows the API of a key-value store. The store is
contained in the global structure table, which has SIZE en-
tries. Each entry has two fields: key and val. Clients store
and access data by calling functions put and get, respectively.
The application server exposes this API through a simple
wire protocol in the form of text commands, such as PUT
balance 1000 and GET balance, which the server (respec-
tively) translates to calls to put and get.

1 typedef char∗ str;
2

3

4 struct entry {str k; void∗ v;};
5 #define SIZE 1024
6 struct entry∗ table[SIZE];
7

8

9 void put(str k, void ∗v) { ... }
10 struct entry ∗get(str k) { ... }

1 typedef char∗ str;
2 typedef int typ;
3 typ string = 1, number = 2; date = 3;
4 struct entry {str k; void∗ v; typ t;};
5 #define SIZE 1024
6 struct entry∗ table[SIZE];
7

8 typ type(str k) { ... }
9 void put(str k,void ∗v, typ t) { ... }
10 struct entry ∗get(str k) { ... }

(a) Original (b) Update

Figure 1. An update for an in-memory key-value store.

Figure 1b shows an update to this program that: (1) ex-
tends entry with a t field that indicates the value’s type; and
(2) defines some standard types string, number, and date. This
change impacts the signature of put, which now takes the typ
as an extra argument. The server assigns type string to out-
dated client requests (e.g., PUT balance 100 translates to
put("balance", "100", string)). Updated requests can specify the
type explicitly (e.g., PUT-number balance 100 translates to
put("balance", "100", number)). The request GET balance does
not change. A new request form TYPE balance translates
to type("balance"), returning the key’s type.

2.2 Challenges of Stateful Upgrades
Suppose we would like to upgrade a running version of the
key-value store according to the above change. The simplest
way to do so is to stop the old version and restart with
the new one. The problem is that our server is stateful, due
to its maintenance of table. Stopping the old version drops
this important state, harming clients. For example, a stop-
restart after client request PUT balance 1000 would cause
subsequent request GET balance to fail, rather than return
1000 as expected.
The industry-standard rolling upgrade [6] approach does

not immediately help us here. Rolling upgrades work by
shutting down and restarting individual nodes when they
have completed their work, relying on the other nodes to
maintain the overall service. Ultimately, individual nodes
must be restarted, and if these are stateful, that state will be
lost.
To mitigate this problem, a server could checkpoint its

state to persistent storage on exit, and restore it when start-
ing in the new version. This process presents some chal-
lenges. First, the state format may change between ver-
sions, as happens in our example, necessitating a backward-
compatible checkpoint/restore protocol. Second, the time
required to persist and restore the state can be non-trivial,
and therefore lengthen the latency of the full-service update.
For example, checkpointing and restarting a 10GB Redis heap

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Pina, Andronidis, Hicks, and Cadar

took 28 seconds in one experiment [20], and 1GB H22 heap
took 13 seconds in another [35]. This delay is sufficiently
disruptive that Facebook avoids it on updates to its Mem-
cached nodes by customizing Memcached to store its state
on a RAMdisk that the new version can immediately connect
to [12]. Of course, Facebook’s approach only works if the
internal representation of the state does not change between
versions; this is not true for our example.

A related mitigation to state checkpointing is state repli-
cation. Most distributed services employ a protocol for state
replication to ensure fault tolerance. If the state represen-
tation does not change due to an update, this replication
layer is sufficient to preserve a node’s state during a rolling
upgrade—the restarted node will warm its state from nearby
replicas. But this approach suffers similar problems to ex-
plicit persistence. Changes in state representation necessitate
a change to the replication protocol that is compatible across
versions. Even if this change is made, warming a replica
post-upgrade can take a while, hurting performance in the
meantime.

Finally, we observe that not all stateful software services
that might benefit from on-the-fly updates necessarily can
take advantage of distribution and replication. Satellites must
provide non-stop service and adapt to changing technolo-
gies during their long lifetime, which pushes satellite con-
trol systems to feature DSU [43]. The Internet-of-Things
(IoT) promises a plethora of devices that must be updated
due to security concerns and changing requirements. Up-
dating such IoT devices is an open problem, and DSU will
be unavoidable [44]. Non-Volatile Memory (NVM) makes all
program state transparently persistent. As a consequence,
the stop-restart approach simply does not work as a valid
means of updating the program as it will not reset the state.
Again, DSU is central to support evolving programs in NVM
deployments [4].

2.3 Dynamic Software Updating
Dynamic Software Updating (DSU) is a solution to the prob-
lem of upgrading a running, stateful process. With it, critical
updates can be applied in a timely fashion without disrupt-
ing existing sessions and without dropping performance-
or safety-critical in-memory state, even when that state’s
representation changes. Furthermore, DSU can be used as a
mechanism for per-node updates within an overall rolling
upgrade.

DSU systems usually perform updates in two steps. First,
they dynamically load new code, which constitutes the log-
ical modifications to the program. Second, they transform
the program’s execution state into a form that is compatible
with the updated code. In our example, all entries in table

before the update must be updated to have an additional t

2H2 is a SQL database implemented in Java: http://www.h2database.com

field. Oftentimes, automated support assists with this pro-
cess (e.g., to reallocate entries that need more space), but the
programmer also gets involved. In our example, the program-
mer might indicate that all existing entries should have t set
to string. Control state may also change between versions.
For example, new variables or function parameters might
be allocated on the stack. Mapping the running program’s
control state to one compatible with new code also often re-
quires programmer assistance. For instance, if function put is
active at the time of an update, programmers may transform
that stack frame by adding a new argument to represent the
type of the entry being added to the store.

The task of writing data and control state transformations
is fairly simple when a DSU system permits restricting when
updates may happen. For example, a DSU systemmay simply
disallow updates when functions modified by the update are
active (e.g., put) [26, 28, 42]. Automatic techniques such as
this activeness checking work in some limited cases [3, 30]
but, unfortunately, are incomplete in general and may still
lead to update errors simply due to performing the update at
the wrong time [17, 36]. Some solutions allow the program-
mer to transform the stack in-place [26], others require the
programmer to list when updates can happen [20, 21, 28, 37]
or cannot happen [42]. In the former case, programmers
can specify update points at which all active threads must
pause (or “quiesce”) before the update is applied, with the
goal of ensuring all expected state invariants hold prior to
transformation, and avoiding races while it takes place. A
detailed discussion of the design space of DSU can be found
elsewhere [31].
Following decades of research, state-of-the-art DSU sys-

tems largely manage to support full-featured software up-
grades while imposing minimal performance overhead, and
requiring little extra programmer work [20, 37, 47]. To make
a system DSU-ready imposes a modest, one-time cost but
little maintenance work. For instance, Kitsune [20] is able
to update the Tor anonymous router (76K LoC) with just
159 LoC of changes, and the multimedia server IceCast (16K
LoC) with 134 LoC of changes. In both cases combined, sup-
port for 18 versions required only a combined effort of 24
LoC. Rubah [37] showed similar numbers for Java. Both of
these systems impose only a few percent overhead on nor-
mal execution. Besides these examples, state-of-the-art DSU
tools have demonstrated updates to the Snort IDS, a Quake 2
port, the PostgreSQL database [26], and the Minix [15] and
Linux [3] operating systems, among other examples.

2.4 Threats to Availability
The advantages of DSU hold if all goes well, but there is a
potential for problems. First off, there could be errors in the
new program version. New bugs may escape notice during
the testing process and only manifest once a dynamic update
is applied, e.g., as a crash or wrong answer. There is also the
problem of bugs in the DSU-specific parts of the program, e.g.,

http://www.h2database.com

Mvedsua: Higher Availability DSU via MVE ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

due to the wrong specification of when updates may happen,
or how to transform the state. Roughly speaking, these can
be broken down as timing errors and state transformation
errors.

As an example timing error, suppose that a multi-threaded
program attempts an update while thread T1 holds a lock
and thread T2 waits for it. This may happen because the
programmer allowed an update to happen at such a wrong
point in the program [36]. As a result, T1 will block waiting
for all threads to be ready to perform the update while T2 is
blocked waiting for the lock that will never be released.
A state transformation error can arise when the code to

transform existing state is wrong. In our example, field t is
mistakenly left uninitialized, rather than explicitly initialized
to a default value (like string). Then code that retrieves the
updated entries may behave incorrectly. Or, suppose that
the programmer mistakenly forgets to copy over the entries
from the old table to the new version, leaving the latter
uninitialized.3 As such, the new version may fail to find an
entry on a subsequent GET that should have been present.

Post-update failures are an extreme threat to system avail-
ability, but a less extreme threat is the delay in service that
occurs while an update is taking place. The delay is due to:
(1) the time to quiesce the program threads, and (2) the time
to transform an arbitrarily large program state. Part (1) can
often be minimized [16], but part (2) may fundamentally take
a while. For instance, in the example shown in Figure 1, the
state transformation must iteratively update every existing
entry in the table. If SIZE is large, this could take a long time.
In the next section, we present Mvedsua, our approach

to addressing these problems.

3 Better DSU with Mvedsua
Mvedsua extends a DSU system withmulti-version execution
(MVE). This section describes MVE and then explains how
Mvedsua employs it to reduce the pause in service due to a
dynamic update, and to gracefully tolerate errors that might
be introduced by it.

3.1 Multi-Version Execution
Multi-Version Execution (MVE) allows several processes to
execute in parallel over the same inputs to increase either
reliability (a bug that affects only some of the processes is
tolerated by the others which continue execution) or security
(attacks need to succeed in all processes to go undetected,
significantly raising the bar for a successful attack). Most
MVE systems operate at the system-call level [22, 23, 25, 40,
46], checking that all processes issue the same sequence of
system calls and ensuring these produce the same results.
For instance, if two processes P1 and P2 issue a read system
call from a socket, MVE ensures that the socket is only read
once and both processes receive the same data.

3Not all DSU systems leave this task to the programmer, but Kitsune does.

Leader

Follower

Ring-Buffer

t0 t1 t2 t3 t4 t5 t6 t7

Version 0

Version 1

t0 t1 t2 t3 t4 t5 t6 t7

Single
Leader

Outdated
Leader

Updated
Leader

Single
Leader

Stage

Figure 2. Mvedsua’s update stages.

An efficient way to perform MVE is to define one process
as the leader and all others as followers [23, 25, 46]. The
leader interacts with the underlying operating system (OS)
by issuing system calls, while the followers check that their
system calls match the leader’s, in which case they get their
results from it, not from the OS. This is typically done using
a ring buffer. The leader registers each system call and its
result on the ring buffer. Each follower matches each system
call with its current position on the ring buffer, ensuring that
it is about to perform the same system call with the same
arguments, and if so returning the leader’s results from the
ring buffer. MVE can handle the non-determinism introduced
by multi-threading, with some limitations [23, 32, 45].
A divergence occurs when the sequence of system calls

issued by a follower does not match that of the leader. Some-
times a divergence indicates a problem, but not always. For
instance, a divergence could occur when the leader and
follower are executing different versions of the same pro-
gram and they issue different, but equivalent, system calls. A
proven way to tolerate expected divergences is to provide the
MVE system with a set of rewrite rules to map the sequence
of system calls of the follower into a different sequence that
matches the leader’s [23, 27, 32, 34]. The use of rewrite rules
to tolerate divergences following an upgrade is a key element
of Mvedsua, which we describe next.

3.2 Mvedsua: MVE-enhanced DSU
We illustrate how Mvedsua enhances DSU with MVE in
Figure 2. At time t0, we deploy a DSU-enabled program exe-
cuting in a degenerate MVE mode with a single leader and
no follower—the single-leader stage. This executes the pro-
gram in a lightweight MVE runtime that will accept another
version later while imposing minimal overhead.

When an update becomes available at t1,Mvedsua uses
the MVE system to create a new follower by forking the
leader. Then,Mvedsua uses the underlying DSU system to
perform the dynamic update on the follower. This starts the
outdated leader stage. In the meantime, the leader keeps
providing service, registering its system calls on the ring
buffer. If the buffer gets full, the leader blocks until the fol-
lower finishes the update.

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Pina, Andronidis, Hicks, and Cadar

The follower finishes the update at t2. At this point it is
running the new version while the leader is running the old
version. The follower will start consuming the system calls
that the leader registered on the ring buffer. As it does so,
MVE confirms that it, the new version, is consistent with the
old version’s behavior. Of course, there are going to be inten-
tional divergences in behavior, e.g., because the new version
added new features. These will be handled by a programmer-
provided mapping, as discussed in §3.3. Eventually, the fol-
lower will catch up with the leader, at t3. For the rest of the
outdated leader stage, the new version continues to be tested
against the old one.

At t4, the operator decides to expose the updated interface
to clients by promoting the updated version and demoting
the out-of-date version. This is a fast operation that ends at
t5, and involves the leader registering a special demotion/pro-
motion event on the ring buffer, and becoming a follower
immediately, no longer processing incoming events. During
this time, there are two followers and no leader providing
service. The usage of the ring buffer drops to zero as the
new-version follower consumes the remaining system calls.

At t5, the new version becomes the leader and resumes ser-
vice. During the updated leader stage, the new version reg-
isters events on the ring buffer that the outdated follower will
now consume and validate. A reverse developer-provided
mapping can handle expected divergences in system call
sequences. This stage may be bypassed if constructing the
reverse mapping is too difficult (owing to substantial changes
in the new version).
Finally, at t6, the operator decides that the update was

successful and terminates the outdated follower. From this
point on,Mvedsua resumes the single-leader stage.

In sum, Mvedsua improves the reliability of dynamic up-
dates and the availability of system services by:

Reducing update latency. By performing the dynamic up-
date in the follower in parallel with the execution of the
leader (between t1 and t2), Mvedsua avoids any pause in
service availability.

Handling in-update errors. If the dynamic update fails
prior to t2,Mvedsua will terminate the follower and revert
to a single-leader stage, allowing the old version to carry on.
Nondeterministic failures (e.g., due to unlucky timing) can
simply be retried; deterministic failures (e.g., due to state
transformation errors) can be retried once the update is fixed.

Handlingnew-version errors. If the update succeedswith-
out incident, MVE will try to match the new version’s exe-
cution to the old version’s during the outdated leader stage.
Bugs in the new version, or residual update bugs (e.g., due to
incorrect state transformations), manifest as a new-version
crash or a divergence. In these cases,Mvedsua terminates
the follower and resumes single-leader mode with the old
version until the bug is fixed and the update is retried.

Old Version
(leader)

New Version
(follower)

. . .

. . .

xform xform xform

cmd1 cmd2 cmd3

cmd
′

1 cmd
′

2 cmd
′

3

map map map

Figure 3.Mapping that ensures old- and new-version states
are related by the state transformation.

Handling old-version errors. If the old version crashes
but the new version does not, this may indicate an old-
version bug fixed in the new version. Mvedsua recovers
by promoting the new version to sole leader (jump to t6).
Such a promotion is possible at any time after t1. If the old
version exhibits a bug between t5 and t6 that manifests as a
divergence, then it (the follower) will be terminated.

3.3 Maintaining a Consistent Semantic View
A key requirement for usingMvedsua is for the programmer
to provide a mapping from system call sequences issued by
the leader to an equivalent sequence issued by the follower.
During the outdated leader stage, the old version’s semantics
are primary, and an old-version view of events must be given
to the new version, to ensure they maintain an equivalent
semantic view. During the updated leader stage, the new
version’s semantics are primary, and the situation is reversed.

3.3.1 Old-version Leader Mappings
After the update is applied, Mvedsua treats the old version
as the leader, using its behavior to confirm that the new
version’s behavior is reasonable, i.e., that there was not a bug
in the update, or in the new code. It does this by confirming
that portions of the API that are backward compatible behave
the same, from the clients’ perspective, before and after the
update.
To do this, the programmer should write a mapping that

ensures that after processing each client command, both
the old version and new version are in compatible states.
In particular, the new version should be in the same state
it would have been in had the old version been dynami-
cally updated at that point. This situation is depicted in
Figure 3. The top line depicts the processing of client com-
mands cmd1, cmd2, cmd3, ... by the old-version leader. Each
of these changes the leader’s state, depicted as a red shape,
e.g., adding entries to the key-value store. The map down
arrow indicates the process by which system calls that cor-
respond to these commands are mapped to system calls that
correspond to commands cmd ′1, cmd ′2, cmd ′3, ... for the new
version. Importantly, after each command, the old and new
version states should be related by the dynamic update’s
state transformer, here shown with a down arrow labeled

Mvedsua: Higher Availability DSU via MVE ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

xform. This means that had the dynamic update occurred
after any of these commands instead, it would have produced
an MVE system in the same state. As such, a divergence indi-
cates a mistake in either xform, inmap, or in genuine system
behavior, e.g., due to a new bug in the new version.

For commands that have the same semantics in both ver-
sions, it is likely that no syscall mapping is needed. This
is the case for the GET and PUT commands, introduced in
Figure 1. On the other hand, the new version is likely to
have added new features. Our example update introduced
two new client-visible commands, PUT-type and TYPE. If
we provide no syscall mapping for these commands, the
two versions’ behavior will diverge. Suppose a client issues
the command PUT-number balance 1001. This command
will be rejected by the old version (since it does not under-
stand PUT-number) but accepted by the new version.
We could write a mapping that tolerates this difference,

but doing so is problematic because the result would violate
our expected state relation. In particular, it would no longer
be the case that dynamically updating the old version’s state
would yield the new version’s: the new-version follower
added a new entry balance→ (1001, number) to its store,
but no corresponding entry in the old version would produce
this on an update—the types of all updated values would be
string. Breaking the state relation will lead to divergences
later that may not signal genuine errors. For example, a
subsequent command GET balance would return an error
on the leader, since no mapping is present, but would return
a value (1001) on the follower. But this divergence does not
signal an actual error in the update or the new version; it is
simply a to-be-expected difference in behavior.

To avoid this spurious divergence, the programmer should
write rules that force the new version to adhere to behaviors
defined by the old version. In particular, we can easily write
rules to translate new commands that the leader does not un-
derstand to commands that the follower does not understand
either. Rule 1 in Figure 4 encodes this logic in the syntax of
the Varan MVE [23]’s DSL [34].4 It says that if a read system
call receives a PUT command with a type component, i.e.,
of the form PUT-type, then it should issue bad-cmd to the
new-version follower. The follower does not understand this
command and will reject it, just as the old version will do for
the original command. We only show the rule for the PUT
command for simplicity, the rules for the other commands
can be written in a similar way.

If commands understood by the old version are not valid
in the new version, sometimes we can write a mapping for
these. For example, if the new version dropped support for
PUT, we could install Rule 2 to translate such commands
to PUT-string, which should have equivalent semantics.

4The syntax of the rules in Figure 4 is slightly changed to make the rules a
bit more concise; the actual rules are available at https://srg.doc.ic.ac.uk/
projects/mvedsua/

1 // parse("PUT k1 v1") = (PUT, NULL, "k1", "v1")
2 // parse("PUT−string k1 v1") = (PUT, string, "k1", "v1")
3 // Rule 1
4 read(fd,s,_) {
5 (cmd,typ,_,_) = parse($(s))
6 return cmd == PUT && typ != NULL; } as r
7 => r(fd, "bad−cmd", 7)
8 // Rule 2
9 read(fd,s,n) {
10 (cmd,typ,_,_) = parse($(s))
11 return cmd == PUT && typ == NULL; } as r => r(fd,s,n) {
12 (cmd,_,key,val) = parse($(s));
13 $(s) = "$cmd−string $key $val";
14 $(n) += 7; }

(a) Updated follower t2–t4

15 // Rule 3
16 read(fd,s,_) {
17 (cmd,typ,_,_) = parse($(s))
18 return cmd == PUT && typ == string; } as r
19 => r(fd,s,n) {
20 (cmd,_,k,v)=parse($(s));
21 $(s) = "$cmd $k $v";
22 $(n) −= 7; }

(b) Outdated follower t5–t6

Figure 4. Rewrite rules to map syscalls for PUT.

For commands in the old version that simply have no new-
version equivalent, we have no choice but to terminate the
follower unless the command produces clearly-wrong be-
havior in the leader, such as a hang or a crash.

3.3.2 New-version Leader Mappings
During the updated leader stage the new version is the leader
so the situation depicted in Figure 3 is slightly different: The
new version is on top and the xform arrows are reversed.
But the principle is the same: after each command, the two
versions should be in related states.

When the new version presents a mostly backward com-
patible client API, there is little work involved. However,
for new commands it may be difficult or impossible to pro-
vide a proper mapping. For our example update, GET and
PUT commands will work as usual. But if the client sub-
mits a PUT-type command, there is no complete solution. If
type is string, then we can map the command to a normal
PUT command, for which string is the default type. This is
shown in Rule 3 in Figure 4. For other values of type, there is
no possible mapping, meaning that the old-version follower
will diverge from the leader and be terminated. Up to the
point that this happens,Mvedsua will check that the new
version does not do something obviously wrong, like crash,
in which case it can promote the follower. But, in general,
the inability to gracefully deal with new-version commands

https://srg.doc.ic.ac.uk/projects/mvedsua/
https://srg.doc.ic.ac.uk/projects/mvedsua/

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Pina, Andronidis, Hicks, and Cadar

means that updated-leader stage is likely to be less useful at
finding update-related errors compared to outdated-leader
stage.

We have used added/removed/updated commands in our
examples to explain the expected mappings needed to han-
dle semantic differences between versions. Prior work by
Ajmani et al. [1] identifies general principles for maintaining
a consistent semantic view when multiple nodes of a stateful,
distributed system are interacting with clients of different
versions during a rolling upgrade. For example, they rec-
ommend exposing only the intersection of behaviors across
multiple versions so as to ensure that each client session’s
semantics is consistent with its own version. They enforce
this behavioral restriction by translating calls between ver-
sions when possible, and causing problematic calls to fail,
otherwise, mirroring the approach we have described here.

4 Implementation
Wehave implementedMvedsua by extending the Kitsune [20]
DSU system with support from the Varan [23] MVE system.
The bulk of our implementation is located inside Varan, in
1202 lines of extra C code. Kitsune required minimal changes,
with only 88 lines modified. We believe that basingMvedsua
on other general-purpose DSU systems would be straight-
forward.

The changes to Kitsune support coordinating with Mved-
sua to fork a follower and perform the update only there,
while aborting the update and resuming normal execution
on the leader. This is done by having Kitsune contact Mved-
sua to check if the update should be taken, after stopping all
threads at update points. Mvedsua uses this opportunity to
fork execution, aborting the update on the leader and allow-
ing it on the follower.Mvedsua provides a callback that is
invoked on an aborted update, in case some work should be
done before resuming; we used this callback for Memcached
as discussed in §5.3. One wrinkle arises in the case of multi-
threaded applications. In modern operating systems, forking
a multithreaded program results in only one thread running
in the forked process;5 all other threads must be restarted.
Pleasantly, this is something that Kitsune already does after
quiescing at update points, soMvedsua piggbacks on that
support.

Mvedsua enhances Varan with efficient support for single-
leader mode, which spans the majority of a Mvedsua pro-
gram’s lifetime. Normally, the leader logs its intercepted
system calls on the ring buffer, and the followers read from
the buffer to match their own intercepted calls. In addition,
Varan tracks kernel state that is relevant to MVE, such as
logical process IDs (used for both leader and followers), event-
poll descriptors, and more. In single-leader mode, the ring
buffer is not used, but system calls must still be intercepted to
track kernel state. This state is then used when forking into

5
http://man7.org/linux/man-pages/man2/fork.2.html

Table 1. Mvedsua rewrite rules per Vsftpd pair.

Versions # rules Versions # rules
1.1.0 → 1.1.1 0 2.0.0 → 2.0.1 0
1.1.1 → 1.1.2 2 2.0.1 → 2.0.2 1
1.1.2 → 1.1.3 0 2.0.2 → 2.0.3 1
1.1.3 → 1.2.0 2 2.0.3 → 2.0.4 1
1.2.0 → 1.2.1 0 2.0.4 → 2.0.5 1
1.2.1 → 1.2.2 0 2.0.5 → 2.0.6 0
1.2.2 → 2.0.0 3 Average 0.85

1 read(_,_,_), write(_,"500 Unknown command",_)
2 => read(_,"FOOBAR\r\n",8), write(_,"500 Unknown command",_)

Figure 5. Rewrite rule for Vsftpd to safely redirect unknown
commands to newer version.

leader-follower mode later on. The overhead due to syscall
interception is relatively small, as Varan does it via binary
rewriting [23].

5 Case Studies
We testedMvedsua by using it to perform multiple dynamic
updates to three high-performance servers: Vsftpd, Redis,
and Memcached. We found that few DSL rules were needed,
and only Memcached required nontrivial code changes to
work withMvedsua.

5.1 Vsftpd
Vsftpd is an open-source FTP server and is a useful bench-
mark because several other DSU systems have used it for
evaluation [18, 20, 26, 28]. We used 14 versions tested in 13
pairs which cover three years of releases. On average, we
found we needed only one DSL rule per update. Table 1 re-
ports the versions and number of rules required (the same
number for both the outdated and updated leader stages,
where the latter were easily derived from the former).

One interesting case was version 1.2.0 introducing a new
command, STOU, which stores a unique file in the current
working directory. Following the methodology in §3.3.1, we
used a rule to trigger an invalid command on the new version
while the old version is the leader. Figure 5 shows a general
form of this rule: when the old version reports 500 Unknown
command, it rewrites the STOU command to another invalid
command, guaranteed to result in the same behavior in the
new version.

An interesting, happy coincidence happens when the up-
dated leader issues the new command STOU. Normally, this
would cause an irreparable divergence (§3.3.2) and terminate
the outdated follower. However, Vsftpd does not keep any
state about the file system that would diverge. Therefore,
the leader executes the STOU command, generates a new
file f , and later GET commands of f execute successfully on

http://man7.org/linux/man-pages/man2/fork.2.html

Mvedsua: Higher Availability DSU via MVE ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

both leader and follower. We can thus write a rule to tolerate
the STOU divergence on the follower, and the two versions
will remain in sync. No existing MVE system keeps a sep-
arate copy of the file system per version for performance
reasons [22, 23, 25, 40, 46]. Of course, if an MVE system pro-
vided that extra separation, or if Vsftpd kept any state about
the file system (e.g., a cache), this solution would not work
andMvedsua would terminate the outdated follower.

5.2 Redis
Redis6 is a single-threaded, in-memory key-value store, typ-
ically used as a database cache or a message broker, with
the option of persisting the store contents to disk. We used
versions 2.0.0, 2.0.1, 2.0.2, and 2.0.3, which were also used
to evaluate Kitsune [20] and related systems [22, 38], and
thus allows for a direct performance comparison. We also
evaluated Redis with a bug fix to handle unitialized read
errors (7 lines per version, the same lines in the same files),
and a DSL rule for 2.0.0 → 2.0.1 as 2.0.1 reverses the order
of two system calls when handling client commands.

5.3 Memcached/LibEvent
Memcached7 is a multi-threaded, in-memory key-value store,
typically used for caching results of database queries, API
calls, or page rendering. We used versions 1.2.2, 1.2.3, and
1.2.4, which were also used to evaluate Kitsune [20] and re-
lated systems [38]. Memcached is built around LibEvent,8
which replaces the event loop found in many applications.
With LibEvent, applications register file descriptors, time-
outs, and signals they are interested in; and function pointers
to execute when these events happen. LibEvent’s internal
event loop invokes the appropriate callbacks when events
occur.
Memcached’s Kitsune support required changes to work

with Mvedsua so that it could properly abort the update on
the leader. One change involved writing a callback to reset
some of LibEvent’s state (see §4), to avoid spurious diver-
gences due to the order that events are handled. In particular,
each Memcached thread registers many events in which it is
interested. When several events become available, LibEvent
invokes the callbacks in a round-robin fashion, remembering
where it was after each invocation. The updated follower
does not have this memory, which means it may handle
events in a different order, causing spurious divergences. Re-
setting the state on the leader ensures that it and the follower
are in sync.
A more interesting problem arose because of the use of

LibEvent.Memcached’s event handling loop is inside LibEvent.
When an update is signaled Kitsune interrupts LibEvent,
which causes all threads to exit LibEvent, reach an update

6
https://redis.io/

7
https://memcached.org

8
http://libevent.org/

point, and then terminate (as Kitsune would relaunch them
in the following version). WithMvedsua, the update is sig-
naled on the leader (to fork execution in MVE), which causes
the leader to terminate execution, wrongly. One solution is to
cause Kitsune to relaunch threads in the same version on the
leader. Unfortunately, this is not sufficient: Later, when de-
moting the leader, no update is available to break LibEvent’s
loop. Instead, we extended Kitsune to optionally consider in-
stances of system call epoll_wait as an update point. This
allows LibEvent to reach an update point frequently, with-
out exiting; which works for establishing quiescence when
updating originally, and for swapping leader and follower.
In total, we modified 114 lines for each Memcached ver-

sion (same lines in the same files). No version changed the
sequence of system calls or added any commands, so we did
not write any DSL rules.

6 Experimental Evaluation
Here we describe how we used the applications described
in §5 to evaluate the performance and efficacy of Mved-
sua. In summary, we found thatMvedsua introduces 3–9%
overhead during the single-leader stage, which spans the
vast majority of program execution, and 25–52% overhead
when monitoring an update; that Mvedsua eliminates up-
date pauses completely; and that it recovers from real and
realistic update errors.

6.1 Performance
We evaluatedMvedsua’s performance by measuring its ef-
fect on the throughput of our test applications. We ran Redis
versions 2.0.0 and 2.0.1, and Memcached versions 1.2.2 and
1.2.3, both with the benchmark Memtier9 version 1.2.10. We
ran it for 6 minutes, starting from an empty store, and using
a 90% read 10% write workload. For Vsftpd, we used versions
2.0.5 and 2.0.6 with a custom benchmark script which sim-
ply logs in and repeatedly downloads a particular file for 60
seconds before logging out. We considered a “small” version
of the benchmark with a 5B file, and a “large” version with
a 10MB file, with the former stressing user-space FTP com-
mand processing, and the latter stressing the kernel-space
syscall processing, which puts a load on Varan.
We performed this evaluation on a machine equipped

with two Intel Xeon E5-2450 CPUs, each with 8 physical
cores; and 192GB RAM. To prevent NUMA memory-access
noise, the server processes execute on one CPU and the client
benchmark on the other. All live threads have a dedicated
core. Results report the average and standard deviation of
10 runs.

Unless otherwise specified, Varan was configured to use a
buffer size of 256 entries. Each entry in the ring buffer is 32B
long; the largest buffer used with 224 entries requires 512MB
of memory.

9
https://github.com/RedisLabs/memtier_benchmark

https://redis.io/
https://memcached.org
http://libevent.org/
https://github.com/RedisLabs/memtier_benchmark

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Pina, Andronidis, Hicks, and Cadar

Table 2. Steady-state performance and overhead of Memcached, Redis, and Vsftpd.

Version
Memcached Redis Vsftpd small Vsftpd large

Ops/sec Overhead Ops/sec Overhead Ops/sec Overhead Ops/sec Overhead
×1000 vs. Native ×1000 vs. Native vs. Native vs. Native

Native 249 ± 1.05 — 73 ± 0.46 — 2667 ± 5.53 — 118 ± 0.06 —
Kitsune 242 ± 1.52 3% 74 ± 0.31 -1% 2535 ± 5.27 5% 117 ± 0.13 2%
Varan-1 234 ± 0.78 6% 68 ± 0.92 8% 2594 ± 3.14 3% 117 ± 0.10 2%

Mvedsua-1 226 ± 1.69 9% 69 ± 0.12 6% 2458 ± 4.26 8% 116 ± 0.11 3%
Varan-2 125 ± 2.13 50% 41 ± 0.46 44% 2048 ± 2.71 24% 90 ± 0.18 25%

Mvedsua-2 121 ± 5.22 52% 43 ± 0.11 42% 2001 ± 4.30 25% 89 ± 0.19 25%
MUC [38] — 23.2%–87.1% — 23.2%–75.9% —
Mx [22] — — 3x–16x —

Imago [11] Up to 1000x overhead

0 60 120 180 240 300 360
seconds

0K

50K

100K

150K

200K

250K

op
s/

se
c

Memcached
Redis

Figure 6. Performance while updating Memcached and Re-
dis with Mvedsua during all update stages.

We note that our performance results reflect a worst-case
scenario, with the client on the samemachine as the server. A
more realistic scenario, with the client in a different location,
would incur a lower performance overhead as measured by
the client benchmark since network latency would hide some
of Mvedsua’s overhead.

Steady-State. Mvedsua’s performance results are presented
in Table 2. The first six rows of the table show the perfor-
mance of its two key modes of operation, single-leader mode
(Mvedsua-1) and outdated/updated-leader mode (Mvedsua-
2), as well as of related configurations which highlight com-
ponent costs. The last three rows of Table 2 show the perfor-
mance of competing techniques, explained in §7.

Mvedsua-1 represents a program’s normal mode of oper-
ation, and its overhead is small compared to a Native binary:
3–9%. Mode Mvedsua-2 imposes around 50% overhead, but
is only enabled for a relatively short period: just during an
update and afterward, while testing it. Roughly these over-
heads correspond to the component overheads of Kitsune
added to single-leader Varan (Varan-1) or leader-follower
Varan (Varan-2), respectively.

Update time. To understand how well Mvedsua masks the
pause due to updating, we evaluated the performance of
Mvedsua when performing an update on Redis 2.0.0 →

0 60 120 180 240 300 360
seconds

0K

10K

20K

30K

40K

50K

60K

op
s/

se
c

Native
Kitsune
MVEDSUA 224

MVEDSUA 210

MVEDSUA 220

120 125 130 135
seconds

Figure 7. Performance while updating Redis with a large
program state and different buffer sizes. The right-hand side
zooms-in on the 15 seconds following the update.

2.0.1 and Memcached 1.2.2 → 1.2.3.10 In our experiments,
the update happens at 120 seconds (t1 in Figure 2); the pro-
motion/demotion (t4) happens at 180 seconds; and single
leader mode resumes (t6) at 240 seconds. Figure 6 shows how
many operations Memtier completed per second, on aver-
age. Times t1 and t6 are immediately visible, with Mvedsua
entering and exiting MVE. The performance levels match
Mvedsua-1 andMvedsua-2 in Table 2. For Redis, t4 is visible
as a slight increase in throughput. A key takeaway is that
service never stops during the updating process.
To see the impact of a larger state on update time, we

modified the Redis experiment to initialize the store with
1M entries before the benchmark starts, which results in a
resident process size of around 250MB. We then repeated the
experiment for native without an update, Kitsune performing
a 2.0.0 → 2.0.1 update, and Mvedsua performing the same
update with three ring-buffer sizes: 210, 220, and 224 entries.

Figure 7 shows the results. We measured the pause intro-
duced by each update as the maximum latency reported by
Memtier for each of 10 runs, and we report the average and
standard deviation of those maximum latencies: 5040±101ms
for Kitsune; 7130 ± 45ms for Mvedsua-210; 5330 ± 100ms

10Vsftpd is essentially stateless, which means its update-time pause is al-
ready low, so we did not measure it.

Mvedsua: Higher Availability DSU via MVE ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

for Mvedsua-220; and 117 ± 41ms for Mvedsua-224. The na-
tive maximum latency is 100 ± 46ms. The results thus show
that, with a large enough ring buffer, Mvedsua can mask
the update pause introduced by DSU.

Note that executing in outdated leader mode is important
for masking update latency. This is because the ring buffer
can be drained in parallel with providing service, as opposed
to drained while service is paused, prior to switching to the
new version. To confirm this, we configuredMvedsua to pro-
mote the updated version and terminate the outdated version
immediately, measuring the maximum latency throughout
the process as 3000ms, as compared to 117ms when running
for a time in outdated leader mode.11

6.2 Fault Tolerance
In this set of experiments, we demonstrate how Mvedsua is
able to detect and recover from a variety of errors.

Error in the New Code. In Redis, revision 7fb16bac intro-
duces an error that crashes the server when invoking com-
mand HMGET on the wrong type of data. The error is present
on all versions of Redis we tested. As an experiment, we ran
version 2.0.0 without the revision that introduced the error,
so that the update 2.0.0 → 2.0.1 introduces it. Following a
dynamic update with Kitsune, the program crashes when a
client sends a bad HMGET command. But when using Mved-
sua for the update, sending a bad HMGET command results
in the follower failing, at which point execution reverts to
single-leader mode. Clients proceed without incident.

Error in the State Transformation. A Kitsune-developed
update had a latent bug: it would free memory still in use by
LibEvent, whichwould cause a crash if the freedmemorywas
later re-used by the memory allocator. We observed that this
error seemed to manifest only when a sufficiently large num-
ber of clients were connected to Memcached. With Kitsune,
the result was an immediate crash. WithMvedsua, however,
this new-version crash is tolerated, and execution continues
with the old-version leader without clients noticing.

Timing Error. Recall that we needed to change Memcached
to reset LibEvent’s state in the leader after an aborted up-
date (see §5.3). Failure to do so constitutes a kind of timing
error in the dynamic update, and leaving out our change
may produce a divergence detected by Mvedsua. While we
ultimately fixed the error by adding code to reset LibEvent’s
state, the fact that divergences are aborted means we could
have simply retried the update. In an experiment, we config-
ured Mvedsua to retry the update after waiting 500ms, and
found that the update was always installed eventually, after
a maximum of 8 retries with a median of 2 retries.

11The follower will take 6,200ms to do the update, during which time the
leader is filling the ring buffer. When the update switches to the follower, it
will take half that time to consume the buffer.

7 Related Work
MUC [38] is the first work we know of that combines DSU
and MVE. It aims to support incremental upgrades across
distributed systems, combining DSU with MVE to ensure
that old clients interact with old servers, new clients with
new servers, and client upgrades force a switch. As with
Mvedsua, an update starts by forking the current process
and then updating the child. Both processes are shepherded
by a coordinator that monitors system calls between the
two (via ptrace) and compares their outputs. Unfortunately,
MUC’s MVE solution is very limited: (1) it cannot tolerate
update-induced pauses as it runs both processes in lock-step;
(2) it introduces 23–87% steady-state performance overhead;
(3) it cannot handle failures during or after an update, i.e.
none of the faults listed in §6.2; and (4) it cannot keep states
related across versions, in the manner of §3.3, and has no
good way to fix this. MUC can handle expected divergences
in behavior, but only by annotating the system calls in the
source code that are expected to diverge.

POLUS [8] also supports incremental updates, but within
a process rather than across a distributed system. It allows
multiple threads to run different code versions so they can be
updated one at a time. It employs transformation functions
to map shared data to a view consistent with the accessing
thread’s version. POLUS does not support rollback on error
and does not support updates with incompatible backward
mappings. For example, for our update in Figure 1, POLUS
could not back-transform store entries with non-string type.

TTST [13] proposes an approach for validating state trans-
formations based on process-level updates. TTST first up-
dates the old version (running in a process Old) to the new
version (running in a process New) using forward state trans-
formations, and then updates the new version to an old ver-
sion (running in a process Reversed) using backward state
transformations. It then compares Old and Reversed in order
to detect potential state transformation bugs, which would
cancel the update.Mvedsua is more general than TTST in
that it may find state transformation errors that escape TTST
(e.g., when both the forward and the backward transforma-
tions are wrong, but in a reversible way, or when the mistake
manifests after update time); can find other types of bugs
introduced by the update process, particularly bugs intro-
duced by the patch itself; and Mvedsua can mask the pause
times introduced by live updates, which TTST cannot (more
precisely, TTST adds 0.1–1.2s to the update time). Note that
TTST could also benefit from the overallMvedsua approach,
by performing the forward and backward updates in the
background.
Proteos [15] provides OS support to update a set of pro-

cesses atomically. Similarly toMvedsua, if the update fails,
Proteos simply rolls it back, allowing the to-be-updated pro-
cesses to resume execution in the old version. However, Pro-
teos does not monitor the updated processes after the update

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA Pina, Andronidis, Hicks, and Cadar

is completed, so it cannot detect post-update errors such as
those due to buggy patches. Furthermore, Proteos cannot
tolerate update-induced delays as it pauses all processes until
the update completes.

Mx [7, 22] uses MVE to run two program versions in par-
allel and tolerates errors in one by using the other. However,
Mx does not support DSU—it can run two versions with MVE
from the beginning, but it cannot add a new version in mid-
execution, resulting in fundamentally different requirements
fromMvedsua’s. Mx executes versions in lock-step, synchro-
nizing at each system call, so it incurs a significant overhead,
e.g., 3-16x on a comparable scenario for the versions of Redis
evaluated with Mvedsua. Finally, Mx does not tolerate sys-
tem call divergences nor changes to data structures, which
restricts its ability to deploy release-level versions. Mx was
able to tolerate a simpler version of the new code error listed
in §6.2, without syscall divergences; it fundamentally cannot
tolerate the other two faults listed in §6.2.

Imago [11] can update large distributed systems by launch-
ing a full copy of the system under upgrade. Imago treats
the whole system as a black-box, intercepting the inputs
(e.g., HTTP requests) to send them to both versions, and
comparing the outputs (e.g., database queries). If an update
fails, Imago can terminate the duplicate system and revert to
the outdated version without any client-visible disruption.
Imago can also detect semantic errors by comparing out-
puts at the database level, with programmer-specified data
conversion logic to tolerate divergences between the two ver-
sions. Imago requires a mostly stateless system which keeps
its state on a data store that can be shared with other sys-
tems (and whose semantics cannot change). Mvedsua does
not require a particular architecture, supports expressive
updates (including representation changes), can work with
any updatable system (and adapted to many DSU systems)
and with memory-only stateful applications. Both Imago
and Mvedsua tolerate update errors by using more compu-
tational resources, but Mvedsua operates at a lower level
and requires less resources than Imago.

An approach to deal with long update times is to perform
parallel state transformation using several threads [37, 41] or
on-demand (lazy) state transformation [28, 33, 37], transform-
ing data as it is accessed after the update. Unfortunately, lazy
transformation is particularly challenging for C programs,
which can easily break proxies and other abstractions used
to support it. Parallel transformation can reduce the pause
but not eliminate it.

8 Conclusion
Dynamic software updating (DSU) can be an effective solu-
tion to the problem of updating stateful applications without
disrupting service. However, DSU systems introduce pauses
during updates and require programmer assistance which is

prone to introducing errors. In addition, software updates
themselves can introduce errors which can escape off-line
testing.

Mvedsua is a novel DSU system that employsmulti-version
execution (MVE) to deliver a solution that both masks up-
date pauses and tolerates a variety of failed updates. We
implemented Mvedsua by combining Kitsune, a modern
DSU system, with Varan, a high-performance MVE system,
and evaluated it on several high-performance servers—Redis,
Memcached and Vsftpd. We found that Mvedsua imposes
low overhead in steady state, masks the update-time pauses,
and tolerates real and realistic update errors.

Acknowledgements
We thank Karla Saur for her assistance with the Kitsune
codebase; Paul-Antoine Arras, Frank Busse, Jeff Foster, Ke-
sha Hietala, Timotej Kapus, Martin Nowack and the anony-
mous reviewers for their useful feedback. This research was
generously sponsored by the UK EPSRC through the Early-
Career Fellowship EP/L002795/1 and the HiPEDS Centre for
Doctoral Training.

References
[1] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Modular software

upgrades for distributed systems. In European Conference on Object-
Oriented Programming (ECOOP), July 2006.

[2] Joe Armstrong. Programming ERLANG: software for a concurrent world.
Pragmatic programmers. 2007.

[3] Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic rebootless
kernel updates. In Proc. of the 4th European Conference on Computer
Systems (EuroSys’09), March-April 2009.

[4] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy. Op-
erating system implications of fast, cheap, non-volatile memory. In
Proceedings of the 13th USENIX Conference on Hot Topics in Operat-
ing Systems, HotOS’13, pages 2–2, Berkeley, CA, USA, 2011. USENIX
Association.

[5] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’06), June 2006.

[6] E. A. Brewer. Lessons from giant-scale services. IEEE Internet Com-
puting, 5(4):46–55, Jul 2001.

[7] Cristian Cadar and Petr Hosek. Multi-version software updates. In Proc.
of the 4th Workshop on Hot Topics in Software Upgrades (HotSWUp’12),
June 2012.

[8] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. Po-
lus: A powerful live updating system. In Proc. of the 29th International
Conference on Software Engineering (ICSE’07), May 2007.

[9] Liming Chen and Algirdas Avizienis. N-version programming: A fault-
tolerance approach to reliability of software operation. In Proc. of
the 8th IEEE International Symposium on Fault Tolerant Computing
(FTCS’78), June 1978.

[10] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,Wei Hu,
Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-
variant systems: A secretless framework for security through diversity.
In Proc. of the 15th USENIX Security Symposium (USENIX Security’06),
July-August 2006.

[11] Tudor Dumitraş and Priya Narasimhan. Why do upgrades fail and
what can we do about it?: Toward dependable, online upgrades in
enterprise system. In Proc. of the 10th ACM/IFIP/USENIX International

Mvedsua: Higher Availability DSU via MVE ASPLOS ’19, April 13–17, 2019, Providence, RI, USA

Conference on Middleware (Middleware’09), November 2009.
[12] How Facebook pushes updates to its site every

day. http://thenextweb.com/facebook/2011/05/28/

how-facebook-pushes-updates-to-its-site-every-day/, 2011.
[13] Cristiano Giuffrida, Calin Iorgulescu, Anton Kuijsten, and Andrew S.

Tanenbaum. Back to the Future: Fault-tolerant Live Update with Time-
traveling State Transfer. In Proc. of the 27th USENIX Conference on
System Administration (LISA’13), November 2013.

[14] Cristiano Giuffrida, Calin Iorgulescu, and Andrew S. Tanenbaum. Mu-
table Checkpoint-Restart: Automating Live Update for Generic Server
Programs. In Proc. of the 15th ACM/IFIP/USENIX International Confer-
ence on Middleware (Middleware’14), December 2014.

[15] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe
and automatic live update for operating systems. In Proc. of the 18th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’13), March 2013.

[16] Christopher Hayden, Karla Saur, Michael Hicks, and Jeffrey Foster.
A study of dynamic software update quiescence for multithreaded
programs. In HotSWUp, 2012.

[17] Christopher Hayden, Edward Smith, Eric Hardisty, Michael Hicks,
and Jeffrey Foster. Evaluating dynamic software update safety using
efficient systematic testing. IEEE TSE, 2012.

[18] Christopher Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S.
Foster. State transfer for clear and efficient runtime upgrades. In
HotSWUp, 2011.

[19] Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael Hicks,
and Jeffrey S. Foster. Efficient, general-purpose dynamic software
updating for c. ACM Transactions on Programming Languages and
Systems (TOPLAS), 36(4):13, October 2014.

[20] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael
Hicks, and Jeffrey S. Foster. Kitsune: Efficient, general-purpose dy-
namic software updating for C. In Proc. of the 27th Annual Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’12), October 2012.

[21] Michael Hicks and Scott M. Nettles. Dynamic software updating.
TOPLAS, 2005.

[22] Petr Hosek and Cristian Cadar. Safe software updates via multi-version
execution. In Proc. of the 35th International Conference on Software
Engineering (ICSE’13), May 2013.

[23] Petr Hosek and Cristian Cadar. Varan the Unbelievable: An efficient
N-version execution framework. In Proc. of the 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’15), March 2015.

[24] Jevgeni Kabanov and Varmo Vene. A thousand years of productivity:
the jrebel story. Software: Practice and Experience, 44(1):105–127.

[25] K. Koning, H. Bos, and C. Giuffrida. Secure and efficient multi-variant
execution using hardware-assisted process virtualization. In Proc.
of the 2016 46th International Conference on Dependable Systems and
Networks (DSN’16), June 2016.

[26] Kristis Makris and Rida A. Bazi. Immediate multi-threaded dynamic
software updates using stack reconstruction. In Proc. of the 2009
USENIX Annual Technical Conference (USENIX ATC’09), June 2009.

[27] Matthew Maurer and David Brumley. TACHYON: Tandem execution
for efficient live patch testing. In Proc. of the 21st USENIX Security
Symposium (USENIX Security’12), August 2012.

[28] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Prac-
tical dynamic software updating for C. In Proc. of the Conference on
Programing Language Design and Implementation (PLDI’06), June 2006.

[29] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.
Scaling Memcache at Facebook. In Proc. of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’13), April
2013.

[30] Oracle(TM). Java SE 1.4 Enhancements. http://download.java.net/

jdk8/docs/technotes/guides/jpda/enhancements1.4.html.
[31] Luís Pina. Practical Dynamic Software Updating. PhD thesis, Instituto

Superior Técnico, 2016.
[32] Luís Pina, Anastasios Andronidis, and Cristian Cadar. FreeDA: Incom-

patible stock dynamic analyses in production. In Proc. of the 2018 ACM
International Conference on Computing Frontiers (CF’18), May 2018.

[33] Luís Pina and João Cachopo. Atomic dynamic upgrades using software
transactional memory. In Proc. of the 4th Workshop on Hot Topics in
Software Upgrades (HotSWUp’12), June 2012.

[34] Luís Pina, Daniel Grumberg, Anastasios Andronidis, and Cristian
Cadar. A DSL approach to reconcile equivalent divergent program
executions. In Proc. of the 2017 USENIX Annual Technical Conference
(USENIX ATC’17), July 2017.

[35] Luís Pina and Michael Hicks. Rubah: Efficient, general-purpose dy-
namic software updating for Java. In Proc. of the 5th Workshop on Hot
Topics in Software Upgrades (HotSWUp’13), June 2013.

[36] Luís Pina and Michael Hicks. Tedsuto: a general framework for testing
dynamic software updates. In Proc. of the IEEE International Conference
on Software Testing, Verification, and Validation (ICST’16), April 2016.

[37] Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for Java on a
stock JVM. In Proc. of the 29th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’14), Octo-
ber 2014.

[38] Weizhong Qiang, Feng Chen, Laurence T Yang, and Hai Jin. MUC:
Updating cloud applications dynamically via multi-version execution.
Future Generation Computer Systems, 2015.

[39] Martin Roesch. Snort - lightweight intrusion detection for networks. In
Proc. of the 13th USENIX Conference on System Administration (LISA’99),
November 1999.

[40] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Or-
chestra: intrusion detection using parallel execution and monitoring of
program variants in user-space. In Proc. of the 4th European Conference
on Computer Systems (EuroSys’09), March-April 2009.

[41] Karla Saur, Michael Hicks, and Jeffrey S. Foster. C-strider: Type-aware
heap traversal for C. Software, Practice, and Experience, May 2015.

[42] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dy-
namic software updates: A VM-centric approach. In Proc. of the Con-
ference on Programing Language Design and Implementation (PLDI’09),
June 2009.

[43] A. T. Tai and L. Alkalai. Long-life deep-space applications. Computer,
31:37–38, 04 1998.

[44] Hannes Tschofenig and Stephen Farrell. Report from the Internet of
Things Software Update Workshop 2016. RFC 8240, September 2017.

[45] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere,
Per Larsen, and Michael Franz. Taming parallelism in a multi-variant
execution environment. In Proc. of the 12th European Conference on
Computer Systems (EuroSys’17), April 2017.

[46] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu,
Per Larsen, Bjorn De Sutter, and Michael Franz. Secure and efficient
application monitoring and replication. In Proc. of the 2016 USENIX
Annual Technical Conference (USENIX ATC’16), June 2016.

[47] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic
code evolution for Java. In Proceedings of the 8th International Confer-
ence on the Principles and Practice of Programming in Java, 2010.

[48] Hui Xue, Nathan Dautenhahn, and Samuel T. King. Using replicated
execution for a more secure and reliable web browser. In Proc. of the
19th Network and Distributed System Security Symposium (NDSS’12),
February 2012.

[49] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and
Lakshmi Bairavasundaram. How do fixes become bugs? In Proc.
of the joint meeting of the European Software Engineering Conference
and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’11), September 2011.

http://thenextweb.com/facebook/2011/05/28/how-facebook-pushes-updates-to-its-site-every-day/
http://thenextweb.com/facebook/2011/05/28/how-facebook-pushes-updates-to-its-site-every-day/
http://download.java.net/jdk8/docs/technotes/guides/jpda/enhancements1.4.html
http://download.java.net/jdk8/docs/technotes/guides/jpda/enhancements1.4.html

	Abstract
	1 Introduction
	1.1 Seeking Fast, Reliable Updates to Stateful Services
	1.2 Better DSU Reliability/Availability with MVE
	1.3 Contributions

	2 DSU: Background and Problem Statement
	2.1 Update Example
	2.2 Challenges of Stateful Upgrades
	2.3 Dynamic Software Updating
	2.4 Threats to Availability

	3 Better DSU with Mvedsua
	3.1 Multi-Version Execution
	3.2 Mvedsua: MVE-enhanced DSU
	3.3 Maintaining a Consistent Semantic View

	4 Implementation
	5 Case Studies
	5.1 Vsftpd
	5.2 Redis
	5.3 Memcached/LibEvent

	6 Experimental Evaluation
	6.1 Performance
	6.2 Fault Tolerance

	7 Related Work
	8 Conclusion
	References

