
Improving Software Quality with Static Analysis ∗

Jeffrey S. Foster Michael W. Hicks William Pugh
University of Maryland, College Park
{jfoster,mwh,pugh}@cs.umd.edu

Abstract
At the University of Maryland, we have been working to improve
the reliability and security of software by developing new, effective
static analysis tools. These tools scan software for bug patterns or
show that the software is free from a particular class of defects.
There are two themes common to our different projects:

1. Our ultimate focus is on utility: can a programmer actually
improve the quality of his or her software using an analysis
tool? The important first step toward answering this question
is to engineer tools so that they can analyze existing, nontrivial
programs, and to carefully report the results of such analyses
experimentally. The desire to better understand a more human-
centered notion of utility underlies much of our future work.

2. We release all of our tools open source.1 This allows other
researchers to verify our results, and to reuse some or all of
our implementations, which often required significant effort to
engineer. We believe that releasing source code is important for
accelerating the pace of research results software quality, and
just as importantly allows feedback from the wider community.

In this research group presentation, we summarize some recent
work and sketch future directions.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.4 [Software/Program
Verification]: Reliability

General Terms Algorithms, Reliability, Security

Keywords Bugs, bug patterns, FFIs, network protocols, data
races, modularity, C, Java, software quality

1. Recent Work
Our focus has been to develop tools that find problems in existing
systems, with a low burden on the programmer (e.g., no or few
annotations, being fully automatic, producing few false positives,
etc.). Among others, we have developed the following five tools.

FindBugs FindBugs [4] is a static analysis tool that finds coding
mistakes or defects in Java programs. The approach taken by the
FindBugs project is to start with real bugs in real software, abstract

∗ This research was supported in part by NSF CCF-0346982, CCF-
0430118, CCF-0346989, IIS-0613601, and CCF-0541036, and gifts from
Fortify Software, Sun Microsystems and Google.
1 http://www.cs.umd.edu/projects/PL/

Copyright is held by the author/owner(s).
PASTE’07 June 13–14, 2007, San Diego, California, USA.
ACM 978-1-59593-595-3/07/0006.

a bug pattern from those bugs, and devise the simplest possible
detector that can effectively find that bug pattern, as evaluated by
trying the proposed detector on test cases for that bug pattern as
well as tens of millions of lines of production software. FindBugs
now finds more than 250 bug patterns. Some bug detectors, such
as those reporting null pointer errors [5], reflect lots of work over
a long period of time, and find lots of errors. But there is also a
long tail of bug detectors/patterns: many patterns only occur a few
times per million lines of code, but in total find a substantial number
of defects. Such detectors are frequently conceived, implemented,
evaluated and tuned within the space of a few hours.

FindBugs can be run within multiple environments, and also
supports historical tracking [8] so that the persistence of defects
across successive builds of a software project can be captured.

FindBugs has been downloaded more than 300,000 times, and
is now in use by many large companies and open source efforts.
This provides an opportunity to study open code bases and see how
the defects identified by FindBugs change over time, both in cases
where FindBugs is in use and in cases where it is not. FindBugs
also provides an excellent delivery vehicle for allowing new defect
detection research ideas to be quickly disseminated.

Saffire Many software systems are written in multiple languages,
and yet there has been little research to date in reasoning about
such programs. Most multi-lingual programs are built using foreign
function interfaces (FFIs), which define what must be done to
translate between native and foreign data representations and how
the foreign code should safely interact with the native code. These
requirements are easy to get wrong, and mistakes often lead to
subtle, hard-to-find bugs. To prevent such problems, we developed
Saffire [1, 2], which checks type safety across an FFI. Saffire
operates on the OCaml-to-C FFI and the Java-to-C FFI (called the
Java Native Interface or JNI).

Saffire works by performing type inference on C “glue code,”
which in these FFIs performs most of the work mediating between
the languages. Saffire infers representational types, which model
C’s low-level view of OCaml and Java values, and Saffire uses sin-
gleton types to track integers, memory offsets, type tags, and strings
through C. J-Saffire, our Java system, uses a polymorphic, flow-
insensitive, unification-based analysis, while O-Saffire, our OCaml
system, uses a monomorphic, flow-sensitive analysis. Our experi-
ments using Saffire are very encouraging. Across 11 programs that
use the OCaml FFI, O-Saffire found 24 bugs and 22 bad coding
practices (things that are not actually errors, but are not a good
idea), and across 12 programs that use the JNI, J-Saffire found 156
bugs and 124 bad coding practices. The analysis is very fast, typi-
cally taking only seconds, with a low false positive rate.

Pistachio Today’s software systems communicate over the Inter-
net using standard protocols that have been heavily scrutinized,
providing some assurance of resistance to malicious attacks and
general robustness. However, the software that implements those
protocols may still contain mistakes, and an incorrect implementa-
tion could lead to vulnerabilities even in the most well-understood
protocol. We have developed a tool called Pistachio [10] that tries



to close this gap by checking that a C implementation of a protocol
matches its description in an RFC or similar standards document.

The first component of Pistachio is a rule-based specification
language that is tuned to describing network protocols. Our rule
language is designed to naturally encode the kinds of requirements
in protocol specifications. As an example, our specification for part
of SSH2 consists of 96 rules, which took about 7 hours to develop.
The second component of Pistachio is a symbolic evaluation en-
gine that simulates the execution of program source code. Using
a fully automatic theorem prover, Pistachio checks that whenever
it encounters a statement that triggers a rule (typically a receive()
call), on every path the conclusion of the rule is eventually satis-
fied (typically, there is a send() that transmits the right data). The
analysis is not guaranteed sound, but in practice has few false neg-
atives. We applied Pistachio to implementations of SSH2 and RCP,
and compared its output against the projects’ bug database. Over-
all, Pistachio found many bugs, and had approximately a 38% false
positive rate and only a 5% false negative rate.

Locksmith aims to prove that multi-threaded C programs are free
from data races. Locksmith statically enforces the the well-known
“guarded-by” pattern [7, 3], in which each thread that accesses a
memory location must do so while holding the lock that “guards”
that location. LOCKSMITH aims to be sound, so that if it produces
no warnings, then the program has no data races.

To begin, LOCKSMITH performs a context-sensitive, inclusion-
based points-to analysis to characterize the locks and locations in
the program, and uses a sharing analysis to determine which lo-
cations might be shared between threads. Given this information,
we developed a novel correlation analysis to check that a shared
location is consistently correlated with some lock. One of the chal-
lenges of achieving this result is to properly handle dynamic allo-
cation of locks and data structures, and to properly check when a
data structure might have several locks for each of its constituent
parts. We adapted ideas from existential types to allow individual
elements of recursive data structures to be conflated by the points-
to analysis, but still be treated separately from each other when
considering their synchronization behavior [6].

We have used LOCKSMITH to analyze several modestly-sized
C programs, including Linux device drivers, and found several data
races with a low number of false alarms.

CMod is tool that provides a sound, backward-compatible mod-
ule system for C [9]. While many languages have linguistic sup-
port for modules, C programs instead rely on the preprocessor:
.h header files act as module interfaces and .c source files act
as module implementations. While this basic idea is well-known,
the details in getting it right are not, and furthermore there is no
enforcement mechanism. The result is the potential for type errors
and information hiding violations, which degrade programs’ mod-
ular structure and complicate maintenance.

CMOD addresses this problem by enforcing a set of four rules
that are based on principles of modular reasoning and on current
programming practice. The first two rules ensure that headers prop-
erly enforce information hiding policies: one module may only link
against another module’s symbol, or make use of a type defined by
that module, by referring to that symbol or type via the header that
acts as the module’s interface. These rules also enforce that pro-
grams are type safe at link time (i.e., the types of shared symbols
match across modules). The third and fourth rules define acceptable
preprocessor usage so that the first two rules are not circumvented.
To our knowledge, CMOD is the first system to enforce both infor-
mation hiding and type safety for standard C programs. We evalu-
ated CMOD on a number of benchmarks and found that most pro-
grams obey CMOD’s rules, or can be made to with minimal effort,

while rule violations reveal brittle coding practices including nu-
merous information hiding violations and occasional type errors.

2. Future Directions
We think of software development as a process involving both hu-
mans (developers) and software tools (type checkers, code genera-
tors, and analysis tools). Any attempt to improve software quality
needs to understand the roles each party plays and their interaction.
We plan to pursue several important future directions all aimed at
improving the utility of static analysis tools:

• What do we need to do to make a tool useful for a developer?
Much academic research has focused on the fundamental algo-
rithmic challenges of such tools rather than their usability. We
need to study, both scientifically and anecdotally, what design
choices make tools better or worse in practice.

• How can we give programmers more ways to customize tools
to their needs? Some frameworks exist (e.g., standard types,
typestate or finite state properties, and type qualifiers, to name
just a few), but they capture only part of the space.

• Are the defects reported by tools important? It could be some
static analysis techniques identify additional “bugs”, but only
find ones that developers wouldn’t ordinarily bother with. This
is a thorny issue, but should be studied.

• How can we help programmers understand the output of a static
analysis tool? We need better ways to present static analysis
results in terms of the abstractions the developer has in mind.
Just as we would like to have standard tool front-ends, can we
develop standard back-ends for presenting analysis results?

We are working at Maryland within the context of a large software
research group, with strengths in software engineering and human-
computer interaction. We feel further attention to these areas is
critical to making future tools successful.

References
[1] M. Furr and J. S. Foster. Checking Type Safety of Foreign Function

Calls. In PLDI’05, pages 62–72, Chicago, Illinois, June 2005.

[2] M. Furr and J. S. Foster. Polymorphic Type Inference for the JNI. In
ESOP’06, pages 309–324, Vienna, Austria, 2006.

[3] M. Hicks, J. S. Foster, and P. Pratikakis. Lock Inference for Atomic
Sections. In TRANSACT’06, Ottawa, Canada, June 2006.

[4] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In Onward!,
OOPSLA’04, Vancouver, BC, October 2004.

[5] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a
static analysis to find null pointer bugs. In PASTE’05, pages 13–19,
2005.

[6] P. Pratikakis, J. S. Foster, and M. Hicks. Existential Label Flow
Inference via CFL Reachability. In SAS‘06, pages 88–106, Seoul,
Korea, Aug. 2006.

[7] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-Sensitive
Correlation Analysis for Race Detection. In PLDI’06, pages 320–331,
Ottawa, Canada, June 2006.

[8] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect warnings
across versions. In MSR’06, pages 133–136, 2006.

[9] S. Srivastava, M. Hicks, and J. S. Foster. Modluary Information
Hiding and Type-Safe Linking for C. In TLDI’07, pages 3–13, Nice,
France, Jan. 2007.

[10] O. Udrea, C. Lumezanu, and J. S. Foster. Rule-Based Static Analysis
of Network Protocol Implementations. In USENIX Security’06, pages
193–208, Vancouver, British Columbia, Canada, Aug. 2006.


