
Trusted Declassification
High-level policy for a security-typed language

Systems and Internet Infrastructure Security Laboratory (SIIS)
Computer Science and Engineering, Penn State University

NSRC Technical Report NAS-TR-0033-20061

Boniface Hicks Dave King
Patrick McDaniel
Penn State University

{phicks,dhking,mcdaniel}@cse.psu.edu

Michael Hicks
University of Maryland

mwh@cs.umd.edu

Abstract
Security-typed languages promise to be a powerful tool with which
provably secure software applications may be developed. Programs
written in these languages enforce a strong, global policy of nonin-
terference which ensures that high-security data will not be observ-
able on low-security channels. Because noninterference is typically
too strong a property, most programs use some form of declassifi-
cation to selectively leak high security information, e.g. when per-
forming a password check or data encryption. Unfortunately, such
a declassification is often expressed as an operation within a given
program, rather than as part of a global policy, making reasoning
about the security implications of a policy more difficult.

In this paper, we propose a simple idea we call trusted declas-
sification in which special declassifier functions are specified as
part of the global policy. In particular, individual principals declar-
atively specify which declassifiers they trust so that all informa-
tion flows implied by the policy can be reasoned about in absence
of a particular program. We formalize our approach for a Java-
like language and prove a modified form of noninterference which
we call noninterference modulo trusted methods. We have imple-
mented our approach as an extension to Jif and provide some of
our experience using it to build a secure e-mail client.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Constraints, Data
types and structures, Frameworks; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Specification Techniques, Invariants, Mechanical veri-
fication; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms Security, Languages, Design, Theory

Keywords Security-typed languages, declassification, Jif, se-
curity policy, information-flow control, noninterference modulo
trusted methods, trusted declassification, FJifP

1 This paper appeared without proofs in

B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassification:
High-level policy for a security-typed language. In Proceedings of the 1st
ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security (PLAS 06), Ottawa, Canada, June 10 2006. ACM Press.

1. Introduction
Even a brief glance at the cases prosecuted by the United States
Federal Trade Commission reveals the damage that is continually
caused by electronic information leakage. In protecting sensitive
information, including everything from credit card information to
military secrets to personal, medical information, there is a pressing
need for software applications with strong, confidentiality guaran-
tees.

Security-typed languages promise to be a valuable tool in mak-
ing provably secure software applications. In such languages, each
data item is labeled with its security policy. For example, Alice’s
password can be labeled to indicate that only Alice may read it:

StringAlice alicePwd;

Principals may delegate to other principals, so this label more
precisely states that Alice and those principals who act for Alice
may read alicePwd. The legal acts-for relationships are typically
defined in a global policy kept separate from the program. Given
this global policy and a particular program, standard type checking
enforces the property of noninterference, which informally means
that throughout the entire execution of the program, only those
principals to which Alice (transitively) delegates may learn the con-
tents of her data, whether directly or indirectly. This is quite con-
venient for the security analyst: to understand the security implica-
tions of a particular datum, the analyst needs only to examine the
label on the datum and the global acts-for relationships; she does
not need to examine the entire program.

Unfortunately, noninterference is too strong a property for real
programs. Consider a password check in which a guess is compared
with Alice’s password:

boolean??? check(Stringpublic guess, StringAlice pwd) {
return guess isEqualTo alicePwd;

}

What should be the label of the boolean return value? The problem
is that this function reveals one bit of information about Alice’s
password, which is whether or not it is equal to the guess. Assuming
that Alice does not delegate to the public, this program would not
satisfy noninterference if ??? were public. But then the function is
useless as a password checker.

To remedy this problem, practical security-typed languages sup-
port some form of declassification, in which high-security informa-
tion is permitted to flow to a low-security observer. For example,
we could rewrite the above function to support declassification se-
lectively, based on a programmer annotation, as follows:

booleanpublic check(Stringpublic guess, StringAlice pwd) {
return declassify(guess isEqualTo alicePwd, public);

}

Another useful example is when we want to encrypt some data to
send it over a public channel:

Stringpublic encrypt(StringAlice secret, StringAlice key) {
return declassify(aesEncrypt(secret,key), public);

}

While efficacious, the problem with such annotation-based de-
classification is that we have lost localized reasoning about data
security. No longer can one simply examine a data label and the
global acts-for relations; now one must also find and reason about
each occurrence of declassification in the program; i.e., the global
meaning of the policy Alice is lost. Another way of saying this is
that we can no longer reason about a global security policy (i.e., the
acts-for relations) in absence of a program that uses it.

To remedy this problem, we propose the following simple idea.
Rather than permit declassification on the granularity of program
statements, declassification may only occur within special func-
tions called declassifiers. The check and encrypt functions above
are declassifiers. Then, individual principals indicate whether or not
they trust a given declassifier as part of the global policy. For ex-
ample, Alice may allow her data to be encrypted via the encrypt
declassifier, or may wish to release her personal, medical records
for scientific investigation, but only so long as the personal infor-
mation is stripped out of them first by an anonymizeMR declassifier.
On the other hand, even the small amount of information released
by check and encrypt might be too much for some sensitive data.

This paper presents a global security policy system for a
security-typed language, which extends existing work by allowing
each principal to indicate which declassifiers it trusts. We call our
approach trusted declassification. With one of our policies in hand,
the label on Alice’s password regains a global meaning without
having to inspect the code of the whole program. For example, if,
according to the policy, Alice trusts no declassifiers, then we can be
certain that alicePwd is only visible to principals who act for her.
If, according to the policy, Alice trusts only encrypt and check,
we can check the code and types for these two declassifiers, but
not the entire program, to find that negligible information is leaked
via the output from each encryption or password check. We have
formalized our approach in a Java-like language called FJifP, and
proven a noninterference property, called noninterference modulo
trusted methods, and implemented it as an extension to Jif [14],
a full scale implementation of a security-typed language based on
Java.

There has recently been a proliferation of work toward incorpo-
rating forms of declassification into security-typed languages [11,
4, 3, 12, 15, 10] as detailed in a recent survey [18]. Placed next
to much of this work, what we propose is comparatively simple.
Nonetheless, the value of our approach is borne out of practical ex-
perience. In particular, we and others [1] have been trying to build
applications in Jif. Jif supports selective declassification [13], sim-
ilar in style to the examples we presented above. Based on exist-
ing experience, many uses of declassification—such as for encryp-
tion, anonymization, authentication, and filtering—fit nicely into
the framework we have proposed. Indeed, we have used our frame-
work to build an SMTP/POP3-compliant e-mail client called JP-
mail, and found that it made the process of reasoning about declas-
sification and information flows far easier. Thus, we hope our work
takes a step toward making security-typed languages more practi-
cal.

The structure of the paper is as follows: in Section 2 we give an
example of a program and policy which we will use throughout the

class MedicalRecord<p> {
Stringpublic name;
Stringp: history;
Keyp: aesKey;
Stringp: password;

Stringp: getHistory() { return history; }

void saveHistory(OutputStreampublic out) {
out.write(AES<p>.encrypt(history,aesKey)); }

void updateName(Stringpublic guess, Stringpublic newName) {
boolpublic valid = Passwd<p>.check(guess,password);

if (valid) name = newName; }
}

Figure 1. A simple example

Alice -> DrBob
Alice allows Passwd.check(public)
Alice allows AES.encrypt(public)
DrBob allows AES.encrypt(public)
DrBob -> DrJohn
Chuck -> DrBob

Figure 2. A simple policy

DrBob

DrJohn

Alice Chuck

AliceDrBob

AES.encrypt Passwd.check

public

public

Figure 3. Example acts-for
hierarchy and declassifier
context.

paper to describe our approach. In Section 3, we describe a basic
object-oriented, security-typed language, FJifP with declassifica-
tion and an external policy. We also give the security theorems we
have proven about FJifP, namely noninterference modulo trusted
methods. In Section 4, we describe an external, global policy def-
inition for our system and an implementation of our system in the
security-typed language, Jif. In Section 5, we describe related work.
In Section 6, we conclude and give future work.

2. Example
Consider the code in Figure 1. Medical records are parameterized
by a principal (indicated with <>’s) and a medical record could
be instantiated for Alice by writing the following (presuming
an implicit constructor which takes arguments of the appropriate
security levels to assign each of the member variables).
MedicalRecord<Alice> rec = new MedicalRecord<Alice>(...)

A medical record can release its history with the method
getHistory, but the label on the return value, p:, ensures that it
will remain protected after it is released. A medical record can also
write its history to a public stream (a socket or a file, e.g.) via the
saveHistory method, but because the stream is public, the history
must be passed through a declassifier, in this case it is encrypted
with AES. Finally, using the method updateName, the name on the
medical record can be updated by someone other than p, but only
if that principal knows the password. Here again, declassification
is needed, because the result of comparing a public value, guess,
and a secret value, password, is stored in a public boolean, valid.
Thus, the declassifier check is used to do the comparison and de-

classify the result. Principals must authorize these declassifications
explicitly in the global policy.

A simple global policy is shown in Figure 2. Global policies
express both delegations, using ->, and trusted declassifiers, us-
ing allows. Given this policy, we can determine all the possi-
ble ways in which Alice’s data can flow. Anything Alice can read
can also flow to Dr. Bob, because Alice explicitly trusts him (in-
dicated by Alice -> DrBob). It can also flow transitively to his
partner, Dr. John. More interestingly, this policy contains all of
the declassifiers which Alice will allow to operate on her data.
Thus, we see that Alice’s data can flow to a public output, but
only if it is first encrypted with AES. This is asserted by the
Alice allows AES.encrypt(public) policy statement. Alter-
natively, Alice’s data might be leaked (a bit at a time) via a pass-
word check.

In FJifP, security is enforced statically by the type-checker, by
disallowing programs which violate their policy. Consider the two
methods, updateName and saveHistory. These methods utilize
declassifiers, Passwd.check and AES.encrypt, respectively. In
order to instantiate a MedicalRecord with a principal p, we re-
quire that p allows the use of these declassifiers. Thus, given the
policy in Figure 2, the above instantiation of rec for Alice will
succeed, because Alice allows both declassifiers. On the contrary,
attempting to instantiate a medical record for Chuck would cause
a type error. Note that our implementation of this in Jif has a more
dynamic behavior, using dynamic checks to ensure that a principal
trusts a given declassifier. We explain this further in Section 4.2.

In this example, we can see how policy can be lifted out of a
program and stored in an external file. In this way, when examining
any fragment of code, we can understand the security guarantees
of policy labels by consulting a centralized policy file. It is worth
noting that a precise characterization of how much information can
be leaked would also require inspecting the code of the declassi-
fiers. For example, consulting the code for encryption and the code
for password checks readily leads to the conclusion that very little
information is leaked through these methods. Since the number of
declassifiers for an application should not be large, it is not hard
to inspect them by hand. Furthermore, a standard collection of de-
classifiers can be built up over time with careful analyses of the
information leakage allowed by each.

3. Semantics and properties of FJifP
3.1 Introduction to FJifP
We first describe FJifP (short for Featherweight Jif with Policy), a
security-typed, object-oriented language. FJifP is an extension of
Featherweight Java [9] that includes the essential security features
of Jif as well as the option for certain methods to be used as declas-
sifiers. We then give typing and evaluation rules for that system,
show their soundness, and prove a theorem about the language’s
security, noninterference modulo trusted methods.

Featherweight Java (FJ) is a minimal subset of the Java pro-
gramming language that models essential features of an object-
oriented language such as field access, dynamic dispatch, inher-
itance, casting, and mutually recursive classes. It does not in-
clude many features of the full language, including mutable state,
concurrency, and introspection. Conditionals can be implemented
through inheritance and loops can be implemented through recur-
sive method calls.

In giving the definition of FJifP, we seek to add security types
and runtime principals to FJ in order to provide a basic framework
for the Jif language. We omit some of the more complex features
of Jif such as authority and unrestricted declassification (we will
replace these features with our own declassification mechanism
about which we can prove some security properties) as well as

class MedicalRecord<α> / Object {
Stringpublic name;
Stringα: history;
Keyα: aesKey;
Stringα: password;

Stringα: getHistory() { return history; }

OutputStreampublic saveHistory(OutputStreampublic out) {
return out.write(

new AES<α>α:().encrypt(this.history,
this.aesKey));}

MedicalRecord<α>public updateName(Stringpublic guess,

Stringpublic newName) {
if (new Passwd<α>α:().check(guess,password))

return new MedicalRecord<α>public(this.newName,
this.history, this.aesKey, this.password);

else
return this; }}

Figure 4. Figure 1, rewritten in FJifP

exceptions2. We also omit some labels from Jif which are required
for checking a pc-label in order to prevent illegal implicit flows
(flows introduced by the control path). Because we do not have
state, we are able to capture implicit flows without the use of a
pc-label. To additionally simplify the presentation of our system,
we omit two mechanisms of FJ: constructors3 and unrestricted
casts. These features were originally included in FJ to ensure every
FJ program was also a Java program. In FJifP, it is sufficient to
consider upcasts: unrestricted casting can be easily added back to
the language.

Figure 4 shows the Medical Record Example from Figure 1,
modified to be a program in FJifP, extended with primitives for
booleans and conditional expressions.

For the most part, the code in Figure 4 remains the same as
the pseudo-code. We presume the standard encodings for if and
the existence of OutputStream, String, Key, etc. The keyword
Public is a special principal having the property that Public � p
for all principals p and the label public being the policy {Public :}.
There are also a few things to note involving the lack of state,
static methods. First, when the original code called for modification
of a medical record through an assignment statement, the new
code instead returns a new medical record. Static methods (such
as the call to AES.encrypt) have been replaced by creating new
instances of the class and then calling that member function on
them.

Because there is an illegal, implicit flow between the public
string guess and the {α :}-level password in updateName, this
class cannot be type-checked without some notion of declassifica-
tion. In this example, to correctly type the updateName method,
we need the check method in Password to allow data to flow from
Alice to Public.

There is one other technical detail to note in updateName. In
order to simplify the semantics of FJifP, we omit including a special
security label that keeps track of the current security level of this.
Therefore, the only legal instances of the MedicalRecord class
are ones where the two branches of the if statement return an

2 Covering exceptions in a security-typed language has been covered else-
where in the literature [16].
3 The basic constructor which simply assigns input parameters to member
variables is, of course, provided.

Class Names C, D
Field Names f, g
Method Names m
Variables x, y
Principals p, q, r
Policies d ::= p1 : q1; . . . ; pk : qk

Labels l = {d}

Param. Classes N ::= C〈p〉
Security Types S, T ::= N{l}
Class Definitions CL ::= class C〈α〉 / N { S f; M }
Methods M ::= S m(S x) { return(t); }
Terms t ::= x

| t.f
| t.m(t)
| new S(t)
| (S) t
| actsfor(p, q) in t

Values u, v ::= new S(v)

Actsfor Hierarchy (p, q) ∈ ∆
Declass. Policy (m, p, q) ∈ Υ
Security Contexts Θ = (∆, Υ)

Figure 5. FJifP Language Syntax

object of the same type, and so this must always have the type
MedicalRecord〈α〉public. The inclusion of a security level for
this would complicate the theory and the challenges this poses
are orthogonal to studying trusted declassification. However, we do
not wish to restrict what security levels class instances can take on
beyond what is required by the code. Specifying the security level
of all class instances would be another, though more restrictive,
solution to these issues [2].

3.2 Definitions
A FJifP program consists of a series of defined classes C, D, . . . and
terms t1, t2, . . . that are to be evaluated under a series of class
definitions. Terms might invoke methods, access fields, create new
instances of classes, and perform casts (to name a few possibili-
ties). Classes contain fields f and methods m. Instantiated classes
are parameterized by principals p and tagged by labels l for secu-
rity. The language syntax for FJifP is given in Figure 5. As in FJ,
the notation x represents a list: so x is a list of variables, parame-
terized x1, x2, The notation t[v/x] represents a simultaneous
substitution being performed: in this case the value v is substituted
for the free variables x in the term t.

FJifP classes and terms are typed under a global security context
Θ = (∆, Υ). The trust relations between principals are given in
the acts-for hierarchy ∆. For example, if Alice trusts Bob to act for
her, then we have the pair (Alice, Bob) ∈ ∆. The declassification
policy Υ allows for users to specify trust relationships with higher
granularity. If the triple (m, p, q) ∈ Υ, then the trust relation
(p, q) is added to the acts-for hierarchy ∆ when type-checking the
method m. m then acts as an information flow from p’s data to q4.
We define the function extract(Υ, m) as follows:

extract(Υ, m) = { (p, q) | (m, p, q) ∈ Υ}
We overload the extract function on security contexts in the natural
way: extract(Θ, m) = extract(Υ, m) if Θ ≡ (∆, Υ), while the

4 It would be simple, but technically more elaborate, to specify a more fine-
grained policy that only added these new assumptions while typing certain
methods m inside certain classes C.

Actsfor Checking

Θ ` p � p
(PLT-REFL)

(p, q) ∈ Θ(∆)

Θ ` p � q
(PLT-ACTSFOR)

Θ ` p � r Θ ` r � q

Θ ` p � q
(PLT-TRANS)

Label Comparison

∀p : q ∈ d1 . ∃p′ : q′ ∈ d2 . Θ ` p : q v p′ : q′

Θ ` {d1} v {d2}
(SEC-LAB)

Θ ` p � p′ ∀q′i ∈ q′ . ∃qj ∈ q . Θ ` qj � q′i

Θ ` p : q v p′ : q′
(SEC-LIST)

Figure 6. Security Context Judgements

notation Θ ∪ ∆′ represents, for Θ ≡ (∆, Υ), the security context
(∆ ∪∆′, Υ).

Our security labels follow the decentralized label model (DLM)
[13], which permits multiple policies on values. A label l is made
up of policies. Each policy consists of an owning principal p to-
gether with reader lists allowed by that principal (implicitly in-
cluding p). The type system ensures that all of the policies in a
label are enforced, requiring a reader to appear in all policies in
order to read the data. For example, let l be the label {Alice :
Bob, Charlie;Charlie : Bob}. Alice owns the first policy, and is
implicitly a reader. Bob, and Charlie are also readers in this policy.
The second policy is owned by Charlie and readable by both Bob
and Charlie. If a value v has been instantiated and tagged with l,
then either Bob or Charlie can read v; though Alice owns a policy
on v, she is not a reader in Charlie’s policy. A security context Θ
then has two primary judgements: the first tests if the principal q
is trusted to act for p, written Θ ` p � q . The second tests if a
label l2 is at least as restrictive as l1 and is written Θ ` l1 v l2.
The metavariable d represents a list of policies p : q. These rules
are given in Figure 6.

In FJifP, classes can be templated by principals, which intro-
duces a principal variable α that can be used within the class.
When we create a new instance of a class, the templated princi-
pals are then substituted in for the principal variables of a class.
Templated classes, C〈p〉, are represented by the meta-variable N.
Security types, C〈p〉{l}, are templated classes with labels attached,
and they are ranged over by S, T. The function lab returns the label
associated with a security type, while the expression S t l repre-
sents the security type S raised to the security level lab(S) t l. The
definitions for these are as follows:

lab(C〈p〉{l}) = l C〈p〉{l} t l′ = C〈p〉{l t l′}
As in FJ, there is a special class, Object, which has no principal
variables, no fields, and no methods. Every other class inherits from
this one.

FJifP contains a class table CT which looks up a class’s defini-
tion. We examine a class’s definition:

CT(C) = class C〈α〉 / D〈q〉 { S f; M }
C is then a class with principal parameters α (the bar indicates

a list), which inherits from the class D〈q〉 (some of the qi might be
in α). C has whatever fields are declared in its parent along with
the fields S f. C also has the methods declared in D〈q〉, along with
those in M; these might override the implementation of its parent’s
methods.

Subtyping Rules

Θ ` S <:S
(S-REFL)

Θ ` S <:S′ Θ ` S′ <:T

Θ ` S <:T
(S-TRANS)

Θ ` l1 v l2 parent(C) = D〈q〉 pvars(C) = α

Θ ` C〈p〉{l1} <:D〈q[p/α]〉{l2}
(S-CLASS)

Figure 8. Subtyping Rules

We define a few simple functions for future reference, to avoid
continual reference to the class table in our inference rules.

• parent(C) = D〈q〉: the parent of a class.
• pvars(C) = α: the principal variables of a class.
• localfields(C) = S f: fields declared locally. Each field has a

security type associated with it.
• localmethods(C) = M: methods declared locally. Each method

specifies the security type of its arguments and the security type
of the returned value.

Member methods m are declared as follows: S0 m(S x). Then the
method m takes arguments x of security type S and returns a value
of the security type S0. We now give important auxiliary definitions
for field lookup, method lookup, method type lookup, method over-
riding, and others. We first give these definitions for parameterized
classes, then later overload their definition for security types in our
inference rules; they are defined in Figure 7 and closely follow the
analogous functions from FJ.

3.3 Subtyping
In FJ, a class C is a subtype of another class D if D is C, C inherits
from D, or there is a C′ such that C is a subtype of C′ and C′

is a subtype of D. For FJifP, we need to define exactly what it
means for a security type C〈p〉{l} to be a subtype of D〈q〉{l}. The
combination of two observations forms our subtyping rules, given
in Figure 8. If we have CT(C) = class C〈α〉 / D〈α〉 { · · · },
then C〈Alice〉{l} is a subtype of D〈Alice〉{l} for all l. Following
Jif, even when Θ ` Alice � Bob, we do not have C〈Alice〉{l} as a
subtype of C〈Bob〉{l}.

As we can always safely raise the security level of a class,
C〈p〉{l1} is a subtype of C〈p〉{l2} if l2 is at least as restrictive as
l1. Subtyping for security classes then needs to be done under a
security context Θ.

3.4 Typing Rules
We are prepared to present our typing rules for terms. Let Γ be
an environment mapping variables to security types. There are
three important judgements here. The first is term typing, written
Θ;Γ ` t : S; under security context Θ and environment Γ, the term
t has type S. The second and third involve checking that classes and
methods are well-formed. The judgement Θ ` S OK specifies that
a security-tagged and parameterized class C is well-formed under
security context Θ; we can view Θ as the constraints that need to
be satisfied in order to use C. The judgement Θ ` m OK IN S
says that the method m is well-formed within a security-tagged and
parameterized class S under a security context Θ. Inference rules
for term typing, class checking, and method checking are given in
Figure 9.

Unfortunately, we must individually check that a class is well-
formed at each instantiation of a security type. For example, sup-
pose C has an integer in field f and the class D has a method m
that takes an integer at {Alice :} security level. If a method in C

calls D.m(this.f), then this call is alternatively legal or illegal de-
pending on the current security level that C has been instantiated
to. This difficulty could be circumvented by adding a special “this”
security level, bound locally within each class. We do not include
such a feature for reasons mentioned above and thus we are willing
to accept this checking behavior.

3.5 Evaluation
Evaluation in FJifP is done in a way similar to FJ, with one excep-
tion. To evaluate some terms, we need security information. The
evaluation judgement is thus Θ ` t 7→ t′; under security context
Θ, t makes a single step to t′. When we talk of a complete evalu-
ation from a term to a value, we write Θ ` t 7→∗ v, representing
multiple evaluation steps. The evaluation rules for FJifP are given
in Figure 10.

Note that there are two method invocation rules,
(EV-INVKNEW) and (EV-INVKNEW-DEC). If Θ ` t 7→∗ v
without using the (EV-INVKNEW-DEC) rule, then noninterference
still holds and an observer cannot gain any additional information
from the term’s evaluation. Otherwise, it is possible that some data
has been leaked, but only through trusted declassifiers.

3.6 Type System Properties
With the following lemmas, we prove that FJifP is sound. The
proofs are provided in the full version of this paper [7].

Lemma 3.1 (Weakening). Suppose Θ;Γ ` t : S, Γ′ ⊇ Γ, and
Θ′ ⊇ Θ. Then Θ′; Γ′ ` t : S.

Proof. Proof proceeds by induction on the typing derivation.
Suppose Θ;Γ ` x : S; then by inversion we have Γ(x) = S.

Since Γ′ ⊇ Γ, G′(x) = S, and so Θ;Γ′ ` x : S as required.
All other cases follow by straightforward induction on the typ-

ing assumptions.

Lemma 3.2. Suppose Θ ` S <:T and let mtype(m, T) = S → S0.
Then mtype(m, S) = S→ S0.

Proof. The proof proceeds by induction on the derivation of Θ `
S <:T.

Suppose the last subtyping rule used was (S-REFL); then T = S
and the result follows by assumption.

Suppose the last subtyping rule used was (S-TRANS), so
Θ ` S <:S′ and Θ ` S′ <:T. By induction, mtype(m, S) =
mtype(m, S′) and mtype(m, S′) = mtype(m, T), so mtype(m, S) =
mtype(m, T) as required.

Suppose the last subtyping rule used was (S-CLASS), so Θ `
l1 v l2, parent(C) = D〈q〉, and pvars(C) = α. There are now two
cases, depending on whether m is defined in localmethods(C) or
not.

If not, then m is defined in D or one of its parent classes and
by the second definition rule for mtype, mtype(m, D〈q[p/α]〉) =
mtype(m, C〈p〉) as required.

Otherwise we have Θ ` m OK IN C〈p〉{l1}. We thus have
override(m, D〈q〉{l2}, S → S0) and so mtype(m, C〈p〉{l1}) =
mtype(m, D〈q〉{l2}) = S→ S0 as required.

Lemma 3.3 (Value Substitution). Suppose Θ;Γ, x : S0 ` t : S
and Θ ` v : S′0, where Θ ` S′0 <:S0. Then Θ;Γ ` t[v/x] : S′ for
some S′ such that Θ ` S′ <:S.

Proof. Proof proceeds by induction on the derivation of Θ;Γ, x :
S0 ` t : S.

Suppose the last rule used was (TP-VAR) and t ≡ y for some
variable y. If y 6= x, then there is nothing to prove. Otherwise
x[v/x] = v and the result follows by the assumption Θ ` v : S′0.

Field Lookup
fields(Object{l}) = •

localfields(C) = S f
parent(C) = D〈q〉 pvars(C) = α

fields(D〈q[p/α]〉) = T g

fields(C〈p〉) = (T g, S[p/α] f)

Method Typing

S m(S x) { return(t); } ∈ localmethods(C)
pvars(C) = α

mtype(m, C〈p〉) = (S→ S)[p/α]

m not defined in localmethods(C)
parent(C) = D〈q〉 pvars(C) = α
mtype(m, D〈q[p/α]〉) = S→ S0

mtype(m, C〈p〉) = S→ S0

Method Body Lookup

S m(S x) { return(t); } ∈ localmethods(C)
pvars(C) = α

mbody(m, C〈p〉{l}) = (x, t[p/α])

m not defined in localmethods(C)
parent(C) = D〈q〉 pvars(C) = α

mbody(m, D〈q[p/α]〉) = (x, t)

mbody(m, C〈p〉) = (x, t[p/α])

Declared Methods
mbody(m, S) = (x, t)

m ∈ methods(S)

Method Overriding

mtype(m, D〈q〉) = T→ T0 implies
S = T and S0 = T0

override(m, D〈q〉, S→ S0)

Overloaded Functions for Security Types

fields(C〈p〉{l}) = fields(C〈p〉)

mbody(m, C〈p〉{l}) = mbody(m, C〈p〉)

mtype(m, C〈p〉{l}) = mtype(m, C〈p〉)

override(m, C〈p〉, S→ S0)

override(m, C〈p〉{l}, S→ S0)

Figure 7. Auxiliary Definitions

Typing
Γ(x) = S

Θ;Γ ` x : S
(TP-VAR)

Θ; Γ ` t0 : S Si fi ∈ fields(S)

Θ; Γ ` t0.fi : Si t lab(S)
(TP-FIELD)

Θ; Γ ` t0 : S0 mtype(m, S0) = S→ S

Θ;Γ ` t : S′ Θ ` S′ <:S

Θ;Γ ` t0.m(t) : S t lab(S0)
(TP-INVK)

fields(S0) = S f Θ;Γ ` t : S′ Θ ` S′ <:S
Θ ` S0 OK

Θ;Γ ` new S0(t) : S0

(TP-NEW)

Θ; Γ ` t0 : S0 Θ ` S0 <:S

Θ;Γ ` (S) t0 : S
(TP-UPCAST)

Θ; Γ ` t : S Θ ` p v q

Θ;Γ ` actsfor(p, q) in t : S
(TP-ACTSFOR)

Class Checking

for all m ∈ methods(C〈p〉{l}), Θ ` m OK IN C〈p〉{l}
Θ ` C〈p〉{l} OK

Method Checking

mbody(m, C〈p〉{l}) = (x, t0)
mtype(m, C〈p〉{l}) = S→ S0

Θ ∪ extract(m, Θ); x : S, this : C〈p〉{l} ` t0 : T0

Θ ` T0 <:S0

parent(C) = D〈q〉 override(m, D〈q〉{l}, S→ S0)

Θ ` m OK IN C〈p〉{l}

Figure 9. Typing Rules

fields(S) = S f

Θ ` new S(v).fi 7→ vi
(EV-PROJNEW)

mbody(m, S) = (x, t0) extract(Υ, m) = ∅
Θ ` new S(v).m(u) 7→ t0[u/x, new S(v)/this]

(EV-INVKNEW)

mbody(m, S) = (x, t0) extract(Υ, m) 6= ∅
Θ ` new S(v).m(u) 7→ t0[u/x, new S(v)/this]

(EV-INVKNEW-DEC)

Θ ` S <:T

Θ ` (T) new S(v) 7→ new S(v)
(EV-CASTNEW)

Θ ` p � q

Θ ` actsfor(p, q) in t 7→ t
(EV-ACTSFOR)

Θ ` t0 7→ t′0

Θ ` t0.f 7→ t′0.f
(EV-FIELD)

Θ ` t0 7→ t′0

Θ ` t0.m(t) 7→ t′0.m(t)
(EV-INVK-RECV)

Θ ` ti 7→ t′i

Θ ` v0.m(v, ti, t) 7→ v0.m(v, t
′
i, t)

(EV-INVK-ARG)

Θ ` ti 7→ t′i

Θ ` new S(v, ti, t) 7→ new S(v, t′i, t)
(EV-NEW-ARG)

Θ ` t0 7→ t′0

Θ ` (T) t0 7→ (T) t′0
(EV-CAST)

Figure 10. Evaluation Rules

All other cases follow by straightforward induction on the typ-
ing derivation.

Lemma 3.4. Suppose Θ ` S0 OK, mtype(m, S0) = T → T, and
mbody(m, S0) = (x, t). Then for some T0 such that Θ ` S0 <:T0,
there exists S with Θ ` S <:T and Θ∪ extract(m, Θ); x : T, this :
T0 ` t : S.

Proof. Proof proceeds by induction on the judgement
mbody(m, S0). This splits the proof into two parts: where m
is defined in localmethods(C) and not.

First suppose S m(S x) { return(t); } ∈ localmethods(C). By
the judgement Θ ` m OK IN S, we have

Θ ∪ extract(m, Θ); x : S, this : S ` t : T

By taking T0 = S0 and S = T. This is the required result.
Otherwise, let S0 ≡ C〈p〉{l}. We have parent(C) = D〈q〉,

pvars(C) = α, with mbody(m, D〈q[p/α]〉) = (x, t′), and t =
t′[p/α]. By Lemma 3.2, the types of the methods are the same,
and since m is not defined in localmethods(C), mbody(m, S0) =
mbody(m, T0). By induction there exists a T0 and S such that
Θ ` S0 <:T0, Θ ` S <:T and

Θ ∪ extract(m, Θ); x : T, this : T0 ` mbody(m, D〈q〉) : S

T0 and S then satisfy the requirements of the theorem.

Theorem 3.5 (FJifP Type Preservation). If Θ;Γ ` t : S and
Θ ` t 7→ t′, then there exists Θ′ such that Θ′; Γ ` t′ : S′ for
some Θ ` S′ <:S.

Proof. Proof proceeds by induction on Θ ` t 7→ t′.
Suppose the last rule used was (EV-PROJNEW); then t ≡

new S0(v) and S ≡ Si t lab(S0).
By assumption on the typing derivation, we have Θ ` vi : S′i

for some Θ ` S′i <:Si; let Θ′ = Θ. This is the required result.
Suppose the last evaluation rule used was either (EV-INVKNEW)

or (EV-INVKNEW-DEC) (the proofs are similar). We then have
t ≡ new S0(v).m(u) and S ≡ T0 t lab(S0).

By assumption on the typing derivation, we have S ` u : T′ for
some Θ ` T′ <:T such that mtype(m, S0) = T→ T.

Let Θ′ = Θ ∪ extract(m, Θ). By Lemma 3.4 we have T0 such
that there exists a S1 with Θ′; x : T0, this : Θ ` t : S1. The
result then follows by value substitution; we substitute each of the
arguments in for their variables and then finally the value new S0(v)
for this. This gives us a final Θ′ and type S∗ such that we have the
typing

Θ′ ` mbody(m, S0)[u/x, new S0(v)/this] : T∗

We have Θ′ ` T∗ <:T, as required.
Suppose the last case used was (EV-CASTNEW). Then we have

t ≡ (T) new T0(v) and Θ ` (T) new T0(v) : T.
By inversion, we have

Θ ` new T0(v) : T0 Θ ` T0 <:T

Let Θ′ = Θ. As we have Θ ` (T) new T0(v) 7→ new T0(v), the
above gives us a typing of new T0(v) under Θ at type T0, a subtype
of T. This is the required result.

If the last case used was (EV-ACTSFOR). The proof is similar to
the above: the typing of the actsfor expression gives a typing of
t by inversion at the same type S.

3.7 Noninterference
In order to show that the desired security policies hold, we define
a bisimulation relation ≈ on FJifP terms. The judgement is written
Θ ` t1 ≈ζ t2 : S: “under security context Θ, the terms t1 and
t2 are observationally equivalent at security type S to an observer
at security label ζ”. Noninterference is only true for programs that
have been verified to be secure by our type system. By doing this,
we ensure that all information leakage is done through predeter-
mined declassifiers. This ensures non-occlusion [18].

Essentially, two values are equivalent at security type S to the se-
curity label ζ if any equivalent operation that is performed on those
values looks the same. If S is at a security level above the observer,
then, assuming both values are typable to subtypes of S, any two
values “look” the same. Otherwise, any action that the values can
take, notably field access and method invocation, must also “look”
the same. Two terms are equivalent if they both eventually evalu-
ate to equivalent values. For our definition of noninterference, we
do not address termination leaks: one term might finish evaluation
while the other diverges.

The above reasoning is formalized in Definition 3.6.

Definition 3.6 (Observational Equivalence). Under security con-
text Θ, two terms t1, t2 are observationally equivalent at security
type S at security label ζ, written Θ ` t1 ≈ζ t2 : S, if:

• Θ ` t1 : S1 and Θ ` t2 : S2 and both Θ ` S1 <:S and
Θ ` S2 <:S.

• Suppose t1 ≡ new S1(v), t2 ≡ new S2(w). Then:
1. If Θ ` lab(S) v ζ, then for all Ti fi ∈ fields(S), Θ `

vi ≈ζ wi : Ti.
2. If Θ ` lab(S) v ζ, then for all m ∈ methods(S) with

mtype(m, S) = T → T and for all u, u′ such that Θ ` u ≈ζ

u′ : T, then Θ ` new S1(v).m(u) ≈ζ new S2(w).m(u′) : T.
• Otherwise, for all v1 and v2 such that without using the eval-

uation rule (EV-INVKNEW-DEC), both Θ ` t1 7→∗ v1 and
Θ ` t2 7→∗ v2 then Θ ` v1 ≈ζ v2 : S.

Value equivalence only makes sense without declassifier meth-
ods. Classes that use declassifiers usually cannot be shown to be
observationally equivalent to one another, as it would require typ-
ing the bodies of their methods under a reduced security context.
This is intuitively what we want: if a class has a method that can
be used as a declassifier, it may not be noninterfering. On the other
hand, by constructing the system in this way, we can be certain that
the only points of noninterference are the points allowed explicitly
in the security context. Thus, all information leakage is governed
by the declassification policy.

We now state the main security theorem. Suppose we have a
program that is well-typed that relies on a free variable x. If we
substitute in two observationally equivalent values to the term, then
the evaluations of the program are also observationally equivalent.
This captures the essence of noninterference: if we make a change
in the program the observer cannot determine, then he cannot
distinguish between the results of the two different evaluations.

Lemma 3.7 (Security Subtyping). Suppose Θ ` t1 ≈ζ t2 : S′

and Θ ` S′ <:S. Then Θ ` t1 ≈ζ t2 : S.

Proof. Because of invariance of typing under subtyping, we must
check the second two cases in the definition of ≈.

Proof is by cases as to whether or not t1 and t2 are both values.
First suppose t1 ≡ new S1(v) and t2 ≡ new S2(w). Note

that fields(S′) ⊆ fields(S), so if Θ ` lab(S) v ζ, then for all
Ti fi ∈ fields(S), Θ ` vi ≈ζ wi : Ti as required.

For all m ∈ methods(S), we have

mtype(m, S′) = mtype(m, S) = T→ T

Thus for all u, u′ with Θ ` u ≈ζ u′ : T,

Θ ` new S1(v) ≈ζ new S2(w) : T

This is the required result.
Otherwise t1, t2 or both are not values; so Θ ` t1 7→∗ v1

and Θ ` t2 7→∗ v2 with Θ ` v1 ≈ζ v2 : S′. By the above,
Θ ` v1 ≈ζ v2 : S and so Θ ` t1 ≈ζ t2 : S as required.

Theorem 3.8 (Security). Suppose Θ; x : S0 ` t : S and Θ `
v1 ≈ζ v2 : S0. Then Θ ` t[v1/x] ≈ζ t[v2/x] : S.

Proof. Proof proceeds by induction on the derivation of Θ; x : S0 `
t : S.

Suppose the last rule used in the typing was (TP-FIELD), so we
have the following:

Θ; x : S0 ` t0 : S Ti fi ∈ fields(S)

Θ; x : S0 ` t0.fi : Ti t lab(S)

By the induction hypothesis,

Θ ` t0[v1/x] ≈ζ t0[v2/x] : S

Let new S1(v), new S2(w) be such that

Θ ` t0[v1/x] 7→∗ new S1(v)
Θ ` t0[v2/x] 7→∗ new S2(w)

Θ ` new S1(v) ≈ζ new S2(w) : S

We thus have

Θ ` t0[v1/x].fi 7→∗ vi Θ ` t0[v2/x].fi 7→∗ wi

By the observational equivalence, if

Θ ` lab(Ti t lab(S)) v ζ

We must have
Θ ` lab(S) v ζ

Thus if the security level is observable by ζ, we have

Θ ` vi ≈ζ wi : T

and so
Θ ` vi ≈ζ wi : T t lab(S)

This is the required result.
Suppose the last typing rule used was (TP-INVK). By inversion

we then have the typing

Θ; x : S0 ` t0 : T mtype(m, T) = S→ S

Θ; x : S0 ` t : S′ Θ ` S′ <:S

Θ; x : S0 ` t0.m(t) : S t lab(T)

By the induction hypothesis,

Θ ` t0[v1/x] ≈ζ t0[v2/x] : T0

Thus if Θ ` t0[v1/x] 7→ v′1 and Θ ` t0[v2/x] 7→ v′2 with
v′
1 ≡ new S1(v) and v′

2 ≡ new S2(w), then by definition

Θ ` v
′
1 ≈ζ v

′
2 : T0

By induction hypothesis on the arguments to the method,

Θ ` t[v1/x] ≈ζ t[v2/x] : S′

and so as Θ ` S′ <:S and by Lemma 3.7

Θ ` t[v1/x] ≈ζ t[v2/x] : S

We then have

Θ ` v
′
1.m(t[v1/x]) ≈ζ v

′
2.m(t[v2/x]) : S

The result follows.

Suppose the last typing rule was (TP-NEW). Then we have the
following:

fields(S1) = S f Θ; x : S0 ` t : S′ Θ ` S′ <:S
Θ ` S1 OK

Θ; x : S0 ` new S1(t) : S1

By the induction hypothesis,

Θ ` t[v1/x] ≈ζ t[v2/x] : S′

So if
Θ ` t[v1/x] 7→∗ v Θ ` t[v2/x] 7→∗ w

Then
Θ ` v ≈ζ w : S′

By Lemma 3.7,
Θ ` v ≈ζ w : S

The result then follows.
Suppose the last rule used was (TP-UPCAST). Then we have

Θ; x : S0 ` t0 : S0 Θ ` S0 <:T

Θ; x : S0 ` (T) t0 : T

Note that if Θ ` t0 7→∗ v and Θ ` S0 <:T, then Θ ` (T) t0 7→∗ v.
By the induction hypothesis,

Θ ` t0[v1/x] ≈ζ t0[v2/x] : S

The result then follows.
Finally, suppose the last typing rule used was (TP-ACTSFOR).

The logic here is identical to the case for (TP-UPCAST).

Note that if the term t uses any declassifiers, then Θ `
t[v1/x] ≈ζ t[v2/x] : S holds vacuously, since t[v1/x] and
t[v2/x] cannot finish evaluation without using the evaluation rule
(EV-INVKNEW-DEC). Suppose a term t finishes evaluation under
a security context Θ; then any informational leakage that occured
must have been done through declassification methods. The sec-
tions of the program which do not involve declassification are sub-
ject to the above theorem and so they remain observationally equiv-
alent as they evaluate to values. Those values are then used in the
larger program by methods that involve declassification; after in-
formation has been safely released, observational equivalence no
longer holds. In short, all information leakage can be justified by
the declassification policy, Υ.

4. Implementation
We implemented our trusted declassifiers in Jif 2.0 [14]. In this
section, we first describe how we compile an external policy into
Jif code and access it from a Jif program. Then we comment on our
approach, relating it to FJifP.

4.1 Compiling policy into Jif
We have developed a simple policy language for introducing prin-
cipals and describing the delegations and declassifiers allowed by
each principal. We built a small translator to compile policies into
Jif code. The translator automatically generates principal class def-
initions as well as a Policy class. The Policy class instantiates
these principals and establishes the delegations described in the
policy. In order to use our system, a programmer must provide a
policy file (such as in Figure 2, an application and the declassifiers
mentioned in the policy file. This policy is applied to the applica-
tion by adding a single line to the starting point of the application.
Finally, the automatically generated files must be compiled (other
than the one line inserted into the main application file, all other
files in the application do not need to be changed and thus do not
need to be re-compiled). This is illustrated in Figure 11.

alice -> bob
alice allows X

...
policy

compiler

Jif compiler

XClosure

...
class MyProg
...

AlicePrincipal

...

class Policy

policy

Policy.setupPolicy();

void main() {
...

}

Jif code
(auto-generated)

Jif code

class
files

Figure 11. Integrating an external policy into Jif.

principal p ::= alice | bob | ...
declassifier D ::= method1 | method2 | ...
delegation Del ::= p -> p
trust stmt Allow ::= p allows D(p) | p allows None
policy stmts Stmt ::= (Del | Allow)∗

Figure 12. Policy language syntax.

Our policy language currently consists of only two kinds of
statements, ->-rules corresponding to delegations and allow-rules,
establishing trust in declassifiers. The syntax is shown in Figure 12.
There is a special allow rule, allow None. Since a principal
must be used in a rule in order to be added to the system, a
principal, p, which trusts no declassifiers and has no delegations
should be added with the special policy, p allows None. The
policy compiler takes policies and produces Jif code. To understand
the Jif code, a brief explanation of Jif Principals and Closures
is necessary.

The Jif Principal class has methods for adding delegations
called addDelegate and for checking authorizations called
isAuthorized. Our policy compiler leverages this interface by au-
tomatically generating Principal subclasses which override the au-
thorization method in order to authorize only the declassifiers men-
tioned in allow statements in the given policy file. To establish the
delegations given by ->-rules, code is automatically generated for
the Policy.setupPolicy method. This method instantiates each
principal and uses the principal’s addDelegate method to perform
the delegations given in the policy file. This gives the desirable re-
sult that, after writing the policy in a simple syntax, the program-
mer merely has to invoke the Policy.setupPolicy method at the
beginning of an application in order to put the policy into effect.

We implement declassifiers using Jif’s Closure class. The Jif
Closure class provides a way of packaging up a function with
some arguments and then treating it as a first-class value. More
importantly, it is parameterized by a principal, whose authorization
it needs in order to execute. This authorization is sought from the
principal’s isAuthorized method when it is invoked. By building
Closure subclasses for each declassifier, we can be sure that all
declassifications will consult the policy before executing.

Consider the example policy in Figure 2. Compiling this pol-
icy generates classes for AlicePrincipal, DrBobPrincipal,
DrJohnPrincipal and ChuckPrincipal, as well the Policy
class with a setupPolicy method that instantiates each class and
performs the indicated delegations. The principals are automati-

public class TripleDESClosure[principal P,label L]
implements Closure[P,{P:}] {

byte{P:}[]{P:} plaintext;
Key{P:} key;
...
public Object{this} invoke{P:}() where caller(P) {

return declassify(AES[{P:}].encrypt(
key,plaintext),{this});

}}

Figure 13. A closure for declassifying the cipher text generated by
triple DES encryption. The standard constructor is defined, but not
displayed.

cally generated such that the isAuthorized method give autho-
rization to the Closures named in the allow statements in the
policy file. The AlicePrincipal class, for example, allows for
the Passwd.check(public) and AES.encrypt(public) clo-
sures to operate on data labeled with a policy owned by Alice. The
declassifier in the allow statements is parameterized by a princi-
pal which indicates the lowest possible security level to which the
method may declassify.

Adding a declassifier One of the selling points of our system is
that adding a declassifier is simple. Consider a declassifier for triple
DES encryption. In our system, this would require the programmer
to provide a closure to call the encryption function and do the
declassification, as shown in Figure 13. In order to use this closure
to encrypt and declassify some plaintext, the principal who owns
the plaintext must authorize AESClosure. This authorization must
be established through the policy file with a command such as:

Alice allows crypto.TripleDESClosure(public)

This command is automatically translated into a line of Jif code
in the automatically generated AlicePrincipal class.Once this
has been done, the programmer simply needs to use the declassifier
by first instantiating the closure class with the particular arguments
that are to be used. Then Jif’s built-in authorize method must be
called with the principal and the declassifier closure as arguments:

principalUtil.authorize(...)

This built-in method calls the principal’s isAuthorized
method and if it authorizes the closure, allows the closure to be
executed.

4.2 Relating the implementation to FJifP
In FJifP, typing and evaluation take place in the presence of a
security context Θ, which contains an acts-for hierarchy, ∆ and
a declassification policy, Υ. The implementation of the acts-for
hierarchy is straight-forward; all delegation statements indicated
by ->-rules in the policy file are automatically generated in the
Policy.setupPolicy method. We implement Υ by first defining
all the principals which may be used in the program. Recall that Υ
contains triples (m, p, q). These correspond to allow statements in
the policy written p allows m(q). Such allow statements corre-
spond to lines of Jif code in the particular Principal class defi-
nitions, such that exactly the methods in Υ relating to a particular
principal are explicitly allowed by that principal’s isAuthorized
method. For example, if p = Alice then for all triples (m, Alice, q),
the isAuthorized method for the AlicePrincipal class explic-
itly allows closures m with return type, q. In our example, this would
be AES.encrypt(public) and Passwd.check(public).

In order to faithfully implement FJifP, and achieve noninterfer-
ence modulo trusted methods, we must place some restrictions on
Jif’s principals and declassification mechanism:

1. We require that no declassification may take place other than
through Closures. This is because all declassifications should
first consult the declassification context, which is distributed
throughout the Principal classes in our implementation.
Since Closures require an authorization before they may be
executed, they will always consult the principal whose data they
are trying to declassify, to make sure that the newly introduced
flow is allowed by policy. Although we have not built our re-
strictions into the Jif compiler, it should be straight-forward.

2. We require that no new principals are introduced other than the
ones introduced in the Policy.setupPolicy method which is
automatically generated from the policy file.

3. We require that no delegations are established or revoked, other
than the ones introduced in the Policy.setupPolicy method
which is automatically generated from the policy file.

We believe these restrictions present only minor limitations to
the language. The declassification restriction does not limit the ex-
pressive power of Jif at all, since it would be possible to wrap every
declassify statement in a Closure and add the appropriate allows
statements to the policy. The restrictions on the principal hierarchy
could be somewhat more serious. In particular, by requiring that all
principals and delegations are established at the outset of the pro-
gram, this would disallow dynamic updates to the security policy.
Currently, however, the mechanism for dynamic updating in Jif is
arguably unsafe [19], and needs revision. Additionally, the static,
global nature of the acts-for hierarchy is less critical for our ap-
proach and it is easy to imagine this restriction could be adapted to
work with safe and secure dynamic updates.

One difference between FJifP and our Jif implementation is in
the enforcement of the security policy. Jif is currently configured to
do all delegations and policy authorizations using a runtime mech-
anism. Although we use this runtime mechanism, the Jif compiler
could be modified to check the policy at compile-time. Our re-
strictions force delegations and declassifications to be static, global
entities. Thus, the policy must be established at the outset of the
program and the policy checks could be integrated into the type-
checker, which would give static enforcement, as we have in FJifP.

4.3 A significant example
Since a key motivation for our approach is the hope of gaining prac-
tical experience with security-typed programming, we have used
trusted declassification to implement a significant application, an e-
mail client we call JPmail5 (JP = Jif/policy). JPmail consists of an
SMTP-compliant mail sender and a POP3-compliant mail reader.
In our prototype implementation, we use a policy with a dozen prin-
cipals, including a few groups (implemented as principals which
delegate to the members of the group). It uses several declassifiers,
including a variety of symmetric and asymmetric encryption de-
classifiers for sending sensitive data to an insecure mail server, as
well as other filter declassifiers which filter e-mails for certain re-
cipients. Principals can choose which encryption and filter declas-
sifiers they trust, merely by changing a few lines in the policy file.
Likewise, groups may be changed by merely changing a few lines
in the policy file. JPmail is the largest security-typed application
written to date, consisting of about 6000 lines of code. We give a
more complete description of JPmail elsewhere [6], highlighting its
own contributions apart from this work.

We offer an anecdote here from our experience to support the
effectiveness of our model. When adding the policy to JPmail, we
forgot that we had introduced a temporary work-around. When en-
crypting the body of an e-mail, we use skip encryption. We encrypt

5 This application is still in development, but a preliminary version of the
code can be found at http://siis.cse.psu.edu/jpmail.html.

the body of the email with a symmetric encryption method and then
include the symmetric key in the body after encrypting it with the
public key of the principal. Prior to integrating assymetric cryptog-
raphy, so that we could encrypt the key with the principal’s public
key, we had introduced a hack to simply declassify shared keys be-
fore sending them (without first encrypting the key). We placed this
declassification in a closure, as required by our model. When later
developing our policy, we did not think to allow it in the policy file,
because we clearly did not want to permit a declassifier which de-
classified shared keys. Consequently, our program, obedient to the
policy, refused to send any keys over e-mail! This led us to track
down the deprecated closure which was correctly maintaining the
security we had established in our policy file. Lifting our policy
to a global viewpoint was beneficial to understanding the security
enforced in our application.

Implementing policy in our model was significantly easier than
managing all the complex structures provided by Jif for principals,
delegations and declassifications. The ability to implement a policy
by merely giving a series of delegation and allow-statements made
the policy easier to construct and easier to manage. Furthermore,
we found that it is quite beneficial to be able to understand all
possible flows, including the fact that no symmetric keys were
allowed to be declassified for any principal, by merely examining
the policy file.

5. Related Work
This work falls into a long line of research on using security-typed
languages to enforce information flow control and noninterference.
This research development is detailed in a survey by Sabelfeld and
Myers [17]. Various languages have been extended with security
types for statically validating noninterference, but only one other
system exists using an object calculus [2]. FJifP differs from the ob-
ject calculus of Banerjee and Naumann in several ways. FJifP does
not include notions of state or permissions. On the other hand, it is
closer to Jif, because security types are built directly into the lan-
guage as opposed to being an inferred annotation. The differences
illustrate the difference in our motives for designing the language.
Namely, we are primarily concerned with showing noninterference
in a simple object-oriented language with declassification. Myers
describes rules for the decentralized label model as implemented in
Jif [13], but do not prove security properties about their system.

Our work is most closely connected with Jif’s selective declassi-
fication [13] which is the only declassification mechanism currently
implemented in a full-scale language. We restrict this mechanism in
order to lift out authorization into an external, global policy. In this
way, we are able to prove the security property of noninterference
modulo trusted methods.

Much work has recently been done on declassification, as de-
scribed in a recent survey [18]. In this survey, the authors loosely
divide declassification schemata into four categories: who, what,
where and when. Our model does not fit nicely into any of these
categories. It corresponds mostly to “where” declassification may
occur (in explicitly identified declassifiers). “Who”, “when” and
“what” is declassified may be gleaned from analyzing the policy
and the declassifiers themselves. Our system could naturally be
strengthened by quantifying exactly what may be leaked by de-
classifiers. For example, our system facilitates knowing that Alice’s
data can only be leaked by a password check by merely examining
the external policy. Analyzing this declassifier, it could be deter-
mined that only one bit of information is leaked per call. A further
analysis could ensure that it is not called a sufficient number of
times to leak more than a certain amount of information.

Broberg and Sands recently introduced the notion of flow
locks [3] for describing temporal policies. This work is similar to
ours in that spots of declassification are limited to explicitly identi-

fied regions. We can imagine placing appropriate flow locks around
our declassifiers. While this mechanism is very general, it is also
very localized. Our policies are more global and more flexible.

Chong and Myers introduce a mechanism for downgrading un-
til conditions [4]. This model allows downgrading only in the pres-
ence of externally verified conditions. It is similar to ours in that we
both check an externally verified condition. They open new flows,
which are not subsequently closed, while our mechanism limits de-
classification to the bodies of declassifiers. Furthermore, they pro-
vide some possibilities for conditions, but they provide no external
policy or actual implementation.

Ana Matos and Boudol’s non-disclosure policies [12] are also
related to our approach. They have locally induced, transitive poli-
cies. Their system makes an important contribution in handling
concurrency, but they do not have an implementation; we accepted
the limitations of Jif (no concurrency) in order to facilitate an im-
plementation. They also do not allow declassifications to be ex-
pressed as a global policy.

Another well-studied declassification mechanism related to ours
is robust declassification [15] which will be in the next release of
Jif [5]. The key to this mechanism is in the use of integrity. It
uses integrity to ensure that low integrity flows do not influence
high confidentiality data that will later be declassified. Integrity is
not currently implemented for Jif, although it is actively being de-
veloped. Once robust declassification is implemented in Jif, it will
work well with our model, making declassifications safe from ac-
tive attackers. It is orthogonal to the issues we discuss in allowing
principals to choose declassifiers which they trust and implement-
ing this in an external, global policy. It will also lead naturally to ad-
ditional policy statements which may place robustness constraints
on the input parameters for declassifiers.

Tse and Zdancewic propose a decentralized, certificate-based
mechanism for declassification [20]. They describe their system in
a lambda-calculus with subtyping and modals in order to make the
addition of features more modular. Like us, they use subtyping to
describe declassifications. They prove a noninterference theorem
which says that so long as no declassifications are visible to the
observer, noninterference is maintained. Furthermore, they are able
to justify all declassifications based on externally validated certifi-
cates. They provide a prototype implementation for a functional
language, but it is not as robust or practical as Jif. Ideally, a merg-
ing of our approach and theirs could yield a very useful architecture
for building distributed applications.

6. Conclusion and Future Work
In this paper, we have presented a security-typed, object-oriented
language, FJifP, which incorporates declassification and delegation
as authorized by an external, global policy. We have shown that this
language satisfies a modified form of noninterference, noninterfer-
ence modulo trusted methods, meaning that all violations of nonin-
terference can be justified by the policy. Consequently, noninterfer-
ence is maintained for principals which allow no declassifications
(i.e. have no trusted declassifiers) in the policy (and no one who
can act for them makes any declassifications). We implemented our
policy and trusted declassification in Jif by using a restricted form
of Jif’s selective declassification: we provide a policy compiler to
compile simple policy files into Jif code and we restrict the use of
Jif’s declassify in a way that does not limit the expressive power
of the language.The restrictions we place on Jif are that all dele-
gations must appear at the beginning of a program, that declassify
statements can only be placed in Jif’s Closure’s, and that only our
automatically generated principals may be used in programs. We
demonstrated the practicality of our approach by using it in a pro-
totype Email client and we found it easy to use in practice.

Previously, determining the security of a Jif application would
require combing over all the code to find all the declassify
statements, as done by Askarov et al. in their analysis of mental
poker [1]. This is already a great improvement over other ad hoc
security certification techniques, because it narrows down the es-
cape hatches to a small number of declassify statements. Our
approach takes this a step further, however. For our system, the se-
curity analysis only requires inpspection of the policy and the code
of the declassifiers.

One area of future work is in relaxing some of the restrictions
we have imposed on Jif. For example, delegations and allowances
for declassification could appear later in the program, even being
established at runtime, and runtime checks could be used to con-
sult a principal’s policy. This would actually be a more natural im-
plementation of our mechanism in Jif, but some security theorems
should be proved for this. This is nontrivial, since it opens the door
for dynamic updating of policies, which is still an open area of re-
search [8, 19].

The theoretical model that we explore in this paper is restricted
in a number of undesirable ways. In particular, the lack of a special
security level for this places a number of constraints on FJifP. Ad-
ditionally, the noninterference theory for FJifP needs to be strength-
ened to provide guarantees about data safety in the presence of non-
interference [20]. In particular, if we only declassify data to Alice
security level, then an observer below Alice should not be able to
interfere.

Another avenue of future work lies in expanding the policy
model. It is currently very simple, but could be more expressive.
For example, constraints could be added to indicate negative in-
formation flows. Policy analyses could also be used to determine
whether separation of duties is maintained between two principals.
When integrity is added to Jif, it could be expanded with robustness
constraints.

We plan to continue using our declassification mechanism to
gain practical experience. It is a general problem in language-
based security that there is too little experience with security-typed
programming to help guide such research as designing the best
form of declassification. We hope that our implementation of this
mechanism in Jif will help to promote more practical experience
with declassifiers which will better inform future research.

Acknowledgments
We thank Steve Chong for his endless patience with and prompt re-
sponses to our questions about Jif. We thank the reviewers for their
helpful comments. We also thank Stephen Tse, Andrei Sabelfeld
and John Hannan for their helpful feedback on earlier versions of
this paper.

References
[1] ASKAROV, A., AND SABELFELD, A. Secure implementation

of cryptographic protocols: A case study of mutual distrust. In
Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS ’05) (Milan, Italy, September 2005),
LNCS, Springer-Verlag.

[2] BANERJEE, A., AND NAUMANN, D. A. Stack-based access control
and secure information flow. Journal of Functional Programming 15,
2 (2005), 131–177. Special issue on Language-based Security.

[3] BROBERG, N., AND SANDS, D. Flow locks: Towards a core calculus
for dynamic flow policies. In Proceedings of ESOP’06, European
Symposium on Programming (Vienna, Austria, March 2006), LNCS,
Springer-Verlag.

[4] CHONG, S., AND MYERS, A. C. Security policies for downgrading.
In Proceedings of the 11th ACM Conference on Computer and
Communications Security (Oct 2004), ACM.

[5] CHONG, S., AND MYERS, A. C. Decentralized robustness. In
Proceedings of the 19th IEEE Computer Security Foundations
Workshop (CSFW) (Venice, July 2006). to appear.

[6] HICKS, B., AHMADIZADEH, K., AND MCDANIEL, P. From Lan-
guages to Systems: Understanding Practical Application Develop-
ment in Security-typed Languages. Tech. Rep. NAS-TR-0035-2006,
Network and Security Research Center, Department of Computer
Science and Engineering, Pennsylvania State University, University
Park, PA, USA, April 2006.

[7] HICKS, B., KING, D., MCDANIEL, P., AND HICKS, M. Trusted
declassification: High-level policy for a security-typed language.
Tech. Rep. NAS-TR-0033-2006, Networking and Security Research
Center, Department of Computer Science, Pennsylvania State
University, March 2006.

[8] HICKS, M., TSE, S., HICKS, B., AND ZDANCEWIC, S. Dynamic
updating of information-flow policies. In Proceedings of the
Foundations of Computer Security Workshop (FCS ’05) (March
2005).

[9] IGARASHI, A., PIERCE, B., AND WADLER, P. Featherweight Java:
A minimal core calculus for Java and GJ. In Proceedings of the
1999 ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA‘99) (N. Y., 1999),
L. Meissner, Ed., vol. 34(10), pp. 132–146.

[10] LI, P., AND ZDANCEWIC, S. Downgrading policies and relaxed
noninterference. In Proc. 32nd ACM Symp. on Principles of
Programming Languages (POPL) (2005).

[11] MANTEL, H., AND SANDS, D. Controlled declassification based on
intransitive noninterference. In Proceedings of the Asian Symposium
on Programming Languages and Systems (Taipei, Taiwan, 2004),
vol. 3302, Springer-Verlag, pp. 129–145.

[12] MATOS, A. A., AND BOUDOL, G. On declassification and the
non-disclosure policy. In Proceedings of the Computer Security
Foundations Workshop (CSFW’05) (June 2005).

[13] MYERS, A. C. Mostly-static decentralized information flow control.
Technical Report MIT/LCS/TR-783, Massachussetts Institute of
Technology, University of Cambridge, January 1999. Ph.D. thesis.

[14] MYERS, A. C., NYSTROM, N., ZHENG, L., AND ZDANCEWIC,
S. Jif: Java + information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[15] MYERS, A. C., SABELFELD, A., AND ZDANCEWIC, S. Enforcing
robust declassification. To appear in Journal of Computer Security,
2006.

[16] POTTIER, F., AND SIMONET, V. Information flow inference for ML.
In Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL ’02) (January 2002), pp. 319–330.

[17] SABELFELD, A., AND MYERS, A. C. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications
21, 1 (January 2003), 5–19.

[18] SABELFELD, A., AND SANDS, D. Dimensions and principles of
declassification. In Proceedings of the IEEE Computer Security
Foundations Workshop (Aix-en-Provence, France, June 2005).

[19] SWAMY, N., HICKS, M., TSE, S., AND ZDANCEWIC, S. Managing
policy updates in security-typed languages, February 2006. Submitted
for publication.

[20] TSE, S., AND ZDANCEWIC, S. A design for a security-typed
language with certificate-based declassification. In Proc. of the
10th European Symposium on Programming (2005), Lecture Notes in
Computer Science.

