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Abstract
A proxyobject is a surrogate or placeholder that controls access to another tar-

get object. Proxies can be used to support distributed programming, lazy or parallel
evaluation, access control, and other simple forms of behavioral reflection. How-
ever,wrapper proxies(like futuresor suspensionsfor yet-to-be-computed results)
can require significant code changes to be used in statically-typed languages, while
proxies more generally can inadvertently violate assumptions of transparency, re-
sulting in subtle bugs.

To solve these problems, we have designed and implemented a simple frame-
work for proxy programming that employs a static analysis based on qualifier in-
ference, but with additional novelties. Code for using wrapper proxies is automat-
ically introduced via a classfile-to-classfile transformation, and potential violations
of transparency are signaled to the programmer. We have formalized our analysis
and proven it sound. Our framework has a variety of applications, including support
for asynchronous method calls returning futures. Experimental results demonstrate
the benefits of our framework: programmers are relieved of managing and/or check-
ing proxy usage, analysis times are reasonably fast, overheads introduced by added
dynamic checks are negligible, and performance improvements can be significant.
For example, changing two lines in a simple RMI-based peer-to-peer application
and then using our framework resulted in a large performance gain.

1 Introduction

A proxyobject is a surrogate or placeholder that controls access to another object. One
example of a proxy is afuture, popularized in MultiLisp [23]. In MultiLisp, the syntax
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(future e) designates that expressione should be evaluated concurrently. A future for
it is returned, and some time later the programclaimsthe future, possibly blocking until
the result of evaluatinge is available. For example, in the following code, the two listsx
andy are sorted in parallel, the former in a new thread, and the latter in the parent thread:

(merge (future (mergesort x)) (mergesort y))

The results of bothmergesort computations are passed to themerge routine; the first
argument will be a future while the second argument will be a sorted list.

In MultiLisp, claims are performed transparently by the interpreter. In our example,
this allows the programmer to writemerge as if it takes two sorted lists as arguments,
and the interpreter will perform claims as necessary. In general, the programmer simply
insertsfuture annotations in the program and the runtime transparently takes care of the
rest.1 This makes the use of futures simple and lightweight.

A future is an example of awrapper proxyin that it wraps the actual result; whenever
the actual result is needed, the future must be unwrapped to retrieve it. Other examples
of wrapper proxies includesuspensions, which are wrappers for lazy computations, and
capabilities, which are wrappers for controlled resources.

We would like to support wrapper proxies in Java with the same kind of transparency
afforded by MultiLisp. To add futures, we would provideasynchronousmethod calls to
return a future for a non-void result. Existing proposals to do this [28, 24, 33] fall short
of our goal because they make futures manifest to the programmer. For example, Java
1.5’s util.concurrent library [24] defines a future with the following Java interface:

public interface Future<V> {
V get();
V get(long timeout, TimeUnit unit);
...

}

Introducingutil.concurrent futures into a Java program thus imposes two program-
ming tasks. First, whenever aFuture<V> value could be passed to a function, the func-
tion’s type must be changed. In our example, we would have to change the type ofmerge
to take aFuture<List> as its first argument (orObject if merge could also be called
with normalList objects).

Second, all futures must be claimed manually by callingget. For example, themerge
function would claim theFuture<List> to store its values in the merged list. We might
also claim a futureo to avoid revealing its identity, e.g., in the expressiono==o′. Not doing
so could lead to subtle bugs which we calltransparency violations.For example, when
o is the future wrappingo′, theno==o′ would be false, which could result in unexpected
behavior, such as storing a future and its value in the same container. Changing types and
adding claims can require considerable programming effort, whether to add futures or to
later remove them.

To solve these problems, we have developed a framework for proxy programming. At
the core of the framework is a static analysis that tracks how a proxy might flow through

1There is the possible need for added synchronization due to side-effects in futurized computations.
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the program, coupled with a transformation to implement proxy manipulations at runtime.
To customize the framework, a programmer specifies the syntactic points where a proxy is
introduced (e.g., by specifying a method call is asynchronous), and the expression forms
that require a claim (e.g., when a proxy is an argument to==). The programmer also
provides the code that implements the claim. We have used our framework for a variety
of applications:

• We have implemented support for transparent futures. The programmer indicates
when a method call should be asynchronous, and specifies athread managerfor
handling the call. Thread managers include global thread pools, per-object thread
pools, and others. Programmers can also influence where futures are claimed. In
essence, the framework drastically simplifies programming with Futures inutil.concurrent,
which is timely given the recent release of Java 1.5.

• We have implemented support for transparent suspensions. The programmer anno-
tates when a method call should be performed lazily, and the call is delayed until
its suspension is claimed.

• We have implemented an analysis to discover possible transparency violations due
to the introduction ofinterface proxiesin large programs. An interface proxy shares
an interface with its target object, as specified by the proxy design pattern [18]. As
with wrapper proxies, incorrect usage of these proxies could result in transparency
violations.

Our static analysis is based onqualifier inference[15], but improves on it in two ways.
First, we support dynamic coercions, needed to claim futures and other wrapper proxies.
Second, we use a simple form of flow-sensitivity to avoid claiming the same expression
more than once. While our framework was developed for proxy programming, these
advances apply to qualifier systems in general. As described in Section 3.8, they enable
a number of new or improved applications, including tracking security-sensitive data in a
program [35], and supporting stack allocation and non-null types [13].

1.1 Contributions

This paper describes the design, theory, implementation, and evaluation of a framework
for proxy programming. We make the following contributions:

• We formalize the problem of transparent proxy programming as one of qualifier in-
ference, extending existing algorithms to support dynamic coercions and a form of
flow-sensitivity. We have formalized our analysis as an extension of Featherweight
Java (FJ) [21], and proven it sound (Section 3). We are the first to consider qualifier
inference in an object-oriented setting, and our approach enables new or improved
applications of qualifier systems (Section 3.8).
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• We present the design and implementation of three applications of our framework
(described above): programming with transparent futures and suspensions (Sec-
tion 4), and discovering transparency violations (Section 5.4).

• We evaluate the framework’s performance on our three applications (Section 5).
Analysis times are comparable to those of similar static analyses, and overheads
due to inserted claims are negligible. Section 5.3 describes how we profitably
used futures and suspensions together in an RMI-based peer-to-peer application:
changing two lines resulted in a large performance gain. Section 5.4 describes how
our transparency analysis discovered a number of potential transparency violations
arising from the introduction of interface proxies in large programs.

2 Overview

In this section, we present an overview of our framework, including the API seen by the
user, and the basic flavor of our static analysis.

2.1 User API

As inputs, our framework takes application and library classfiles to analyze, and a proxy
policy and implementationspecification (apspecand ispec, respectively). As outputs,
the framework produces modified application and library classfiles which form the new
application. Thepspecand ispecallow the user to customize the framework to sup-
port different kinds of proxies. In particular, thepspecdefines syntactic patterns in the
program that indicate where proxies should be introduced and coerced, while theispec
indicates how proxy introduction and coercion are implemented at runtime.

The framework itself consists of two parts: a static analysis (which uses thepspec)
and a program transformation (which uses theispec). The static analysis discovers where
proxies are introduced in the program and then tracks their flow. The analysis observes
when a proxy could flow to a location requiring a non-proxy, thus requiring acoercion
to convert the proxy to a non-proxy. Based on the results of static analysis, the program
transformation generates a modified program. In particular, the code at each proxy in-
troduction site is modified to actually create the proxy at runtime, and code is inserted at
each coercion site to implement the proxy-to-non-proxy coercion.

As an example, consider how we implement asynchronous method calls in Java using
this API (more details are in Section 4). The proxypspecandispecare as follows:

Policy Spec Proxies are introduced by method calls marked by the user as being asyn-
chronous. All expressions that are identity-revealing, e.g., dynamic downcasts or
subexpressions ofinstanceof, must operate on non-proxies (thus necessitating a
possible coercion). Moreover, any concrete usage of an object, such as invocations
of its methods or extractions of its fields, requires that it be a non-proxy.
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Implementation Spec Calls marked as asynchronous are replaced by code that (1) exe-
cutes the original call in a separate thread, and (2) returns aFuture as a placeholder
for the eventual result. Coercing a possible future requires checking that it is in-
deed aFuture (the analysis may have been imprecise), and if so, calling itsget
method to extract the underlying object. This may entail waiting until the result is
available.

Lazy method calls are supported similarly, and other applications are described in Sec-
tion 3.8 and 5.4. Further implementation details are presented in Section 4.1.

Our goal is for the framework to be used during normal software development: the
programmer develops the annotated files, and the framework generates the final bytecode.
Alternatively, the framework could be used to add needed features to a Java program; the
annotated files would simply direct the transformation, and development would proceed
with the modified files. This would allow programmers to manually optimize the com-
piled code, but would eliminate the benefits of the lighter-weight, specification-based use
of proxies during development.

We now turn to an overview of our analysis.

2.2 Proxies as Qualifiers

Conceptually, whether or not a particular program variable refers to a proxy is indepen-
dent of that variable’s type. As such, we can think about proxies usingtype qualifiers,
which refine the meaning of a particular type. A qualified type is writtenQ τ, whereQ is
a qualifier andτ is a type. A familiar use of a type qualifier isfinal: a variable with this
qualifier must be immutable, whatever the variable’s actual type may be. Proxies can be
annotated in the same way. A variable with qualifiernonproxy is definitelynot a proxy,
while one with qualifierproxy may or may not be a proxy. Qualified types admit a natural
subtyping relationship. In particular,nonproxy τ ≤ proxy τ. That is, aτ object that is
definitely not a proxy can be used where aτ that may or may not be a proxy is expected.

The problem solved by our framework is akin toqualifier inference[15]. When us-
ing qualifier inference, the programmer annotates expressions that introduce values with
a particular qualified type. The inference algorithm determines how these values flow
through the program to ensure they are used correctly. Existing qualifier inference sys-
tems are not sufficient to model wrapper proxies like futures because they treat qualifiers
as having no runtime effect. Creating a future requires spawning a thread and creating
a placeholder for its result. Moreover, using a wrapperproxy in a context expecting a
nonproxy should not signal an error, but rather should induce a runtimeclaim to acquire
the underlying result.

Our analysis augments qualifier inference to supportcoercions. In particular, our
formal target language (Section 3) includes an expression formcoercee, whose type is
the same as that ofe but has qualifiernonproxy. During qualifier inference, expression
forms in the user’spspecdrive where coercions are inserted. At runtime, the coercions
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are implemented following the user’sispec. For example, for a possible wrapper proxy
e, a dynamic coercion is inserted to converte.m() to be(coercee).m(). At runtime, this
coercion is implemented by checking whethere is indeed a proxy, and if so extracting its
underlying object to call methodm. As an optimization, ife is a local variablex, thenx
is treated flow-sensitively by the analysis: the type ofx following a coercion will have
qualifiernonproxy. To justify this flow-sensitivity, code for a coercion logically assigns
the coerced value back to source variablex.

We can easily generalize our support for flow-sensitive coercions to apply it to tra-
ditional qualifier systems. This leads to new or improved applications, as described in
Section 3.8.

3 Formal Development

This section describes our analysis formally and proves it sound. We model the analysis
as an extension to Featherweight Java (FJ) [21], a purely-functional object calculus. We
define an implicitly-typed calculus, which we callFJi

Q, and an explicitly-typed calculus,
calledFJQ. Source programs are written inFJi

Q, and these are translated into programs
in FJQ, making manifest operations for manipulating proxies. This translation occurs in
two stages, inference and transformation, formalized as follows:

• The judgmentΓ `i e : T;Γ′ defines proxy inference for an expressione in the lan-
guageFJi

Q. A derivation induces two sets of subtyping constraintsF andC . The
F constraints capture how proxies flow through the program, and theC constraints
indicate where coercions could be inserted. The judgment states that, assuming the
generated constraints have a solution, expressione has typeT in contextΓ. Flow-
sensitivity is modeled withoutput contextΓ′, which has the same domain asΓ,
but for which some variables may havenonproxy qualifiers rather thanproxy qual-
ifiers, as a result of evaluating expressione.Constraints are solved using standard
techniques.

• The judgmentT [[e]]⇒ edefines the transformation of the original implicitly-typed
FJi

Q program into an explicitly-typed program in the languageFJQ. TheT [[·]] func-
tion uses the solutions to the constraints to add coercions where needed, and to fill
in needed qualifier and type annotations. The resultingFJQ expressione can be
typechecked in an explicitly-typed system, described by the judgmentΓ ` e : T;Γ′.
We can show that our system issound: thoseFJi

Q programs for which inference
is successful will always type-check, which in turn implies that they will not “go
wrong” during execution. We establish this result by defining an operational se-
mantics forFJQ and proving standard type soundness and inference soundness
theorems.

We present the syntax of the implicitly-typed languageFJi
Q, define the process of

inference and transformation described above, and conclude with the relevant soundness
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theorems. Additional details and proofs can be found in the Appendix.

3.1 Syntax

The syntax of the implicitly-typed calculusFJi
Q is shown in Figure 1. Expressionse

consist of a “raw” expressionE and a unique labell , used to designate where coercions
should be inserted following inference. There is no explicit coercion expression; these
are only present in the target languageFJQ.

Terms:
CL ::= classC extendsC { T̄ f̄ ;K M̄ }
K ::= C(T̄ f̄ ) { super( f̄ ); this. f̄ = f̄ ; }
M ::= T m(T̄ x̄) { return e;}
E ::= x | e. f | e.m(ē) | newC(ē) | (C)e

| let x = e in e |makeproxy e
| if e= e then eelsee

e ::= E l

Types:
C,D,E class names

Q ::= proxy | nonproxy | κ
ϕ ::= {C1, . . .Cn} | α
N ::= ϕC

S,T,U ::= Q N

Figure 1: Syntax ofFJi
Q

As in FJ, programs consist of aclass table CT, which maps class names to class
definitionsCL. Each class definition defines a list of fieldsT̄ f̄ , a constructorK, and a list
of methodsM̄. ConstructorsK merely assign their arguments to fields, either directly or
by invoking the superclass constructor. Method bodies consist of a single expressione.
We write x̄ as shorthand forx1, . . . ,xn (similarly for C̄, f̄ , etc.) and writeM̄ for M1 . . .Mn

(no commas). We abbreviate operations on pairs of sequences similarly, writingT̄ f̄
for T1 f1, . . . ,Tn fn, wheren is the length ofT̄ and f̄ . Sequences of field declarations,
parameter names, and method declarations are assumed to contain no duplicate names.
Note thatthis is not syntactically different than any other variable, but we typeset it in
bold for emphasis, and similarly forObject.

Most expressionseare as inFJ, including field accesse. f , method invocatione.m(ē),
object creationnewC(ē), and cast(C)e. We also have support for local variables (lets)
and if then else expressions to illustrate effects of flow sensitivity, described below.
Programmers use the expressionmakeproxy e to designate or create a proxy. Our for-
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malism treats proxies generically, ignoring how particular proxies might be implemented.
In particular, the operational semantics merely “tags” the result of evaluatingeas being a
possible proxy.

TypesT consist of a qualifierQ and aset type N. Set types are a setϕ of class
names{C1, . . . ,Cn} coupled with aupper bound Cwhich must be a supertype of all the
Ci . Set types are a technical device to allow inference to be more precise; we do not
expect programmers to use them directly. In essence, the set type’s upper bound is what
one would write in a normal Java program, and the set provides a more precise refinement
(which will be determined by inference). For example, say we have defined classesA, B,
andC, whereB andC are subclasses ofA. If some variablex could be assigned objects
of either classB or C, in a normal Java program we would givex type A. In FJi

Q, we
can givex type{B,C}A, indicating thatx will only ever be assigned objects of classesB
and/orC, but not objects of typeA. Note that checked casts refer to class namesC, rather
than typesT—no qualifier is necessary because it is assumed to benonproxy, and no set
type is necessary as the inference system will infer it.

Proxy inference takes a normal Java program and infers the necessary qualifiers, set-
types, and coercions. We model this inFJi

Q by extending qualifiersQ with variablesκ,
and sets of class namesϕ with variablesα. These stand for as-yet-unknown qualifiers and
sets of class names, which will be solved for during inference. In the simplest case, we
could automatically decorate a normal Java program with fresh variables before perform-
ing inference. For example, a Java variable declarationC x would be rewritten to beκ αC

x, for freshκ andα. In fact, the inference rules require explicit types to have this form.
In our implementation, we allow users to decorate Java types with qualifiers manually, to
implement coercion policies. For example, if a user wished to ensure that no proxies are
stored in theSet class, she could decorate all relevantSet methods to require that input
arguments have qualifiernonproxy.

As withFJ, FJi
Q does not support mutation (although the flow-sensitivity of coercions

updates local variables’ types implicitly): all objects are purely functional. This avoids
unnecessary complication in the formalism, though our implementation handles the full
Java language. Further discussion can be found in Section 3.7.

3.2 Subtyping

Rules for subtyping are shown in Figure 2. These areFJ’s subtyping rules extended to
consider set typesN and qualified typesT. The (SubN) rule indicates that a set typeN is a
subtype ofM if N’s bound is a subtype ofM’s, and ifN’s set is a subset ofM’s. We include
a well-formedness condition here for convenience, stating that all of the types inN’s set
must be subtypes ofN’s bound. Subtyping between qualified types using the (SubTyp)
rule is natural. For example, ifB andC are subclasses ofA, given thatnonproxy ≤ proxy
thennonproxy {B}B ≤ proxy {B,C}A. That is, an object that is definitely not a proxy of
classB can be used where a possible proxy of either classB or C, both subtypes ofA, is
expected.
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SubRef
C≤C

SubTrans
C≤ D D≤ E

C≤ E

SubDef
CT(C) = classC extendsD { . . . ; . . . }

C≤ D

SubN

{C1, . . .Cn} ⊆ {D1, . . .Dn}
C0 ≤ D0 Di ≤ D0 Ci ≤C0 for all i ≥ 0

{C1, . . .Cn}C0 ≤ {D1, . . .Dn}D0

SubQConst
nonproxy ≤ proxy

SubTyp
Q≤Q′ N ≤ N′

Q N≤Q′ N′

Figure 2:FJQ andFJi
Q: Subtyping

3.3 Inference

Inference is expressed as the judgment`i CL for class definitions,̀ i M for method defi-
nitions, andΓ `i e : T;Γ′ for expressions. The rules are in Figures 4 and 5. The judgment
Γ `i e : T;Γ′ indicates that in contextΓ, expressionehas typeT and output contextΓ′.

The rules specify that anonproxy is required by appealing to thecoercion judgment
Γ `c e : T;Γ′ (notice the subscriptc on`c rather thani). For example, the (I-Field) rule,
which checks an expression(e. fi)l , indicates that the receivere must be anonproxy by
including the requirementΓ `c e : nonproxy N;Γ′ in the premise. In our implementation,
those expressions that requirenonproxy are determined by the user’spspec. For simplic-
ity, the rules presented in Figure 4 are specialized for the case of wrapper proxies. In this
case, anonproxy type implies that operations must occur on the underlying object, rather
than on a wrapper proxy.

The coercion judgment is used to note the labels of expressions that may need an
inserted coercion. It has two forms. The (I-CoerceExp) rule creates animplication con-
straint that if the qualifier of the given expressione is notnonproxy, then a fresh labell
for e is included in a setL. (The fact that this label is fresh simplifies the proof, but is not
otherwise important.) This set is used during the transformation to determine where coer-
cions must be inserted. The output type of this judgment always has anonproxy qualifier;
this will be justified by inserting coercions during transformation. The (I-CoerceVar) rule
is similar, except that the variablex in the input context is re-bound in the output context
to its coerced type. This flow-sensitive treatment allows the continuation avoid coercing
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Fields-Object
fields(Object) = ·

Fields-C

CT(C) = classC extendsD { T̄ f̄ ;K M̄ }
fields(D) = Ū ḡ

fields(C) = Ū ḡ, T̄ f̄

Fields-N
fields(C) = T̄ f̄

fields(ϕC) = T̄ f̄

MType-C

CT(C) = classC extendsD { T̄ f̄ ;K M̄ }
U m(T̄ x̄) { return e;} ∈ M̄

mtype(m,C) = T̄ →U

MType-CSub

CT(C) = classC extendsD { T̄ f̄ ;K M̄ }
mnot defined inM̄

mtype(m,C) = mtype(m,D)

MType-N
mtype(m,Ci) = T̄i →Ui for all i

mtype(m,{C1, . . .Cn}C0) = T̄1 →U1, . . . T̄n →Un

MBody-C

CT(C) = classC extendsD { T̄ f̄ ;K M̄ }
U m(T̄ x̄) { return e;} ∈ M̄

mbody(m,C) = (x̄,e)

MBody-CSub

CT(C) = classC extendsD { T̄ f̄ ;K M̄ }
mnot defined inM̄

mbody(m,C) = mbody(m,D)

Override

mtype(m,D) = (κ1 ϕD1
1 , . . . ,κn ϕDn

n )→ κ0 ϕD0
0

T̄ →U = (κn+2 ϕC1
n+2, . . . ,κ2n+1 ϕCn

2n+1)→ κn+1 ϕC0
n+1

C̄ = D̄ C0 = D0

override(m,D, T̄ →U)

Call

for eachCi ≤C wheremtype(m,Ci) = T̄i →Qi ϕDi
i

Ci ∈ ϕ ⇒ (S̄≤ T̄i & Qi ϕDi
i ≤ κ αD)

κ,α fresh

call(m,ϕC, S̄) = κ αD

Figure 3:FJQ andFJi
Q: Auxiliary Definitions

a variable that has already been coerced.
Most inference rules thread the output context of one subexpression to the input con-
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I-Var
Γ[x 7→ T] `i xl : T;Γ[x 7→ T]

I-Let

Γ `i e1 : T;Γ1
Γ1[x 7→ T] `i e2 : T ′;Γ′[x 7→ T ′′]

Γ `i (let x = e1 in e2)l : T ′;Γ′

I-If

Γ `c e1 : nonproxy N1;Γ1
Γ1 `c e2 : nonproxy N2;Γ2

Γ2 `i e3 : Q3 ϕC
3 ;Γ3 Γ3 `i e4 : Q4 ϕD

4 ;Γ4

T ′ = κ αE Q3 ϕC
3 ≤ T ′ Q4 ϕD

4 ≤ T ′

E = lub(C,D) Γ′ = merge(Γ3,Γ4)

Γ `i (if e1 = e2 then e3 elsee4)l : T ′;Γ′

I-Field
Γ `c e : nonproxy N;Γ′ fields(N) = T̄ f̄

Γ `i (e. fi)l : Ti ;Γ′

I-Invoke

Γ `c e0 : nonproxy ϕC;Γ′ Γ′ `i ē : S̄;Γ′′
call(m,ϕC, S̄) = κ αC

Γ `i (e0.m(ē))l : κ αC;Γ′′

I-New
fields({C}C) = T̄ f̄ Γ `i ē : S̄;Γ′ S̄≤ T̄

Γ `i (newC(ē))l : nonproxy {C}C;Γ′

I-Cast

Γ `c e : nonproxy ϕD;Γ′
α = subtypes(C)∩ϕ α fresh

Γ `i ((C)e)l : nonproxy αC;Γ′

I-MakeProxy
Γ `c e : nonproxy N;Γ′

Γ `i (makeproxy e)l : proxy N;Γ′

I-CoerceExp

Γ `i E l0 : Q N;Γ′ E 6= x l fresh
proxy ≤Q⇒ l ∈ L

Γ `c E l : nonproxy N;Γ′

I-CoerceVar

Γ `i xl0 : Q N;Γ l fresh
Γ = Γ′[x 7→Q N]

proxy ≤Q⇒ l ∈ L

Γ `c xl : nonproxy N;Γ′[x 7→ nonproxy N]

Figure 4:FJi
Q: Inference for Expressions
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I-Method

x̄ : T̄, this : nonproxy {C}C `i e : U ;Γ′ U ≤ S
CT(C) = classC extendsD { . . . ; . . . }

override(m,D, T̄ → S)
S= κ αC T̄ = κ1 αC1

1 , . . .κn αCn
n

κ,κi ,α,αi fresh

`i S m(T̄ x̄) { return e;}

I-Class

K = C(T̄ ḡ, S̄ f̄ ) { super(ḡ); this. f̄ = f̄ ; }
fields(D) = T̄ ḡ T̄ = κ1 αC1

1 , . . .κn αCn
n

S̄= κ′1 α′C1
1 , . . .κ′n α′Cn

n κi ,κ′i ,αi ,α′i fresh
`i M̄

`i classC extendsD { T̄ f̄ ;K M̄ }

Figure 5:FJi
Q: Inference for Classes and Methods

text of another. When typingΓ ` ē : T̄;Γ′, the output contextΓi from typing expression
ei is used as the input context when typingei+1.

Here are highlights of the other interesting rules:

• In the (I-Let) rule, the output contextΓ1 of the binding expressione1 is extended
with the bindingx 7→ T when used as the input context of the bodye2. When type-
checking of the body is completed, thex binding is removed from output context
Γ′.

• In the (I-If) rule, the output context is a merging of the output context of each of the
branches of theif . In particular, the functionmerge(Γ1,Γ2) is the contextΓ′ such
that for eachx in dom(Γ1)∩dom(Γ2), Γ′(x) = T whereΓ1(x)≤ T andΓ2(x)≤ T.
The result type isT ′, which is a supertype of the types of each of theif branches,
bounded by the least of upper bound of their bounds.

• The (I-Invoke) rule creates subtyping constraints between the argumentsS̄ and
all methods that are possible receivers of the call using the auxiliary function
call(m,ϕC, S̄) (this and other auxiliary functions are shown in Figure 3). This is
done using implication constraints: for all possible subtypes ofC, only those that
appear inϕ are constrained. This allows overriding methods to have arguments
with different qualifiers than the methods they are overriding, improving the preci-
sion of the analysis. For example, the argumento to classA’s methodm might by
anonproxy, while the argument to its subclassB’s overriding methodm could be a
proxy. This is sound because all calling contexts ofm are considered.

• The (I-Cast) rule requires that the resulting set-typeα contains those names ine’s
set-typeϕ, limited to those that are also subtypes of the boundC. The predicate
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subtypes(C) is the set of all subtypes ofC defined in the class tableCT. There are
three possible outcomes. First, ifC is a subtype ofD, thenϕ may contain classesB
such thatC≤ B. These will be pruned from the solution, since this is a downcast.
Second, ifC is a supertype ofD, then the intersection will beϕ, since all the class
names inϕ, which are bounded byD, are also bounded byC. Finally, if neither
situation holds, which is to say thatC andD are unrelated, then the intersection
will be empty, signaling that we have a type error.

• The (I-MakeProxy) rule requires thate be anonproxy in makeproxy e. This pre-
vents proxies of proxies. While not technically necessary, it simplifies our imple-
mentation of coercions. For example, for a wrapper proxy, the underlying object
can always be extracted directly; otherwise a coercion would have to iterate until it
reached a non-wrapper.

In the standard parlance, our inference system is monomorphic: it is field-insensitive
and context-insensitive. Context- and field-sensitivity could be supported by adding class
and method parameterization, as with Generic Java (GJ) [6].

3.4 Constraint Solving

F ∪ {Q ϕC ≤Q′ ϕ′D} ≡
F ∪ {Q≤Q′}∪{ϕ ⊆ ϕ′}∪

{ϕ ⊆ subtypes(C)}∪{ϕ′ ⊆ subtypes(D)}∪
{C≤ D}

F ∪ {{D} ⊆ α}∪{D ∈ αC ⇒ (S̄≤ T̄i & Qi ϕC
i ≤ κ αC)} ≡

F ∪ {{D} ⊆ α}∪{S̄≤ T̄i}∪{Qi ϕC
i ≤ κ αC}

F ∪ {α ⊆ (subtypes(C)∩ϕ)} ≡
F ∪ {α ⊆ subtypes(C)}∪{α ⊆ ϕ}

F ∪ {{D} ⊆ α}∪{α ⊆ ϕ} ≡
F ∪ {{D} ⊆ α}∪{α ⊆ ϕ}∪{{D} ⊆ ϕ}

F ∪ {{D} ⊆ ϕ}∪{(subtypes(C)∩ϕ)⊆ α} ≡
F ∪ {{D} ⊆ ϕ}∪{(subtypes(C)∩ϕ)⊆ α}∪{{D} ⊆ α}

if D≤C

Figure 6: Subtype Constraint Reduction

Proxy inference generates constraints on the flow of proxies of the following forms
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(listed with the rules that generate them):

T ≤U (I-If), (I-New)
α = subtypes(C)∩ϕ (I-Cast)
Ci ∈ ϕ ⇒ (S̄≤ T̄i & Qi ϕC

i ≤ κ αC) (I-Invoke)

Note that we represent the equality constraint from (I-Cast) as two subset constraints.
Constraints on where coercions might be introduced have the formproxy ≤ Q⇒ l ∈ L.
Call the set of flow constraintsF , and the set of coercion constraintsC . We can solve
these constraints as follows.

We can reduceF by continuously applying the rewriting rules shown in Figure 6.
These reduce compound constraints into simpler ones following the subtyping rules, and
iteratively discharge the implication constraints when the left-hand-side of the implication
can be solved. When finished, all constraints will have the following forms:C≤ D, ϕ ⊆
ϕ′, andQ≤Q′. The first form are subtyping requirements determined by the program; if
they do not hold then the program would not be type-correct inFJ.

The remaining two forms can be solved by standard techniques. In particular, the
qualifier constraints inF form anatomic subtyping constraint system. Givenn such con-
straints, the fact thatproxy andnonproxy form a finite lattice allows us to solve them
in O(n) time [34]. The set-type constraints inF are subset constraints, as occur in
Andersen-style points-to analysis. Givenn such constraints, these can be solved in at
worstO(n3) time [2], though in practice it is often faster.

T [[classC extendsD { T̄ f̄ ;K M̄ }]] ⇒ classC extendsD { σ(T̄) f̄ ;T [[K]] T [[M̄]] }
T [[C(T̄ ḡ, S̄ f̄ ) { super(ḡ); this. f̄ = f̄ ; }]] ⇒ C(σ(T̄) ḡ,σ(S̄) f̄ ) { super(ḡ); this. f̄ = f̄ ; }
T [[S m(T̄ x̄) { return e;}]] ⇒ σ(S) m(σ(T̄) x̄) { return T [[e]];}

T [[x]] ⇒ x
T [[let x = e1 in e2]] ⇒ let x = T [[e1]] in T [[e2]]
T [[e. fi ]] ⇒ T [[e]]. fi
T [[e.m(ē)]] ⇒ T [[e]].m(T [[ē]])
T [[newC(ē)]] ⇒ newC(T [[ē]])
T [[(N)e]] ⇒ (σ(N))T [[e]]
T [[if e1 = e2 then e3 elsee4]] ⇒ if T [[e1]] = T [[e2]] then T [[e3]] elseT [[e4]]
T [[makeproxy e]] ⇒ makeproxy T [[e]]

T [[E l ]] ⇒
{

coerceT [[E ]] l ∈ L
T [[E ]] otherwise

Figure 7: Transforming aFJi
Q expression to aFJQ expression following inference

A solutionσ to constraints inF is a mapping from qualifier variablesκ to constants
proxy andnonproxy, and set-type variablesα to sets of class names{C1, . . .Cn}. The
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solution ensures that for each constraintQ1 ≤ Q2 ∈ F we haveσ(Q1) ≤ σ(Q2), and
similarly for set-type constraints. We writeσ |= F if σ is a solution ofF . We are
interested in aleastsolution toα for set-types, to reduce spurious constraints on qualifiers,
and favorproxy over nonproxy for unconstrained qualifier variables so that we might
delay inserting a coercion until absolutely necessary.

Given a solutionσ to constraintsF , we can solve the coercion constraintsC . In
particular, we applyσ to the left-hand-side of each implication inC , and then solve. The
result is a setL of all program labels that require a runtime coercion to properly typecheck.
We writeσ,L |= C for the setL and substitutionσ that satisfies constraintsC .

3.5 Transformation

We can now transform aFJi
Q program to aFJQ program, usingL andσ resulting from

inference.FJQ differs fromFJi
Q only in the addition of expressions of the formcoercee,

and in the absence of all qualifier and set-type variables (these are substituted out by their
solutions). The expressioncoercee takes a possible proxye, and coerces it to a non-
proxy at runtime. Likemakeproxy e, our semantics treats coercions generically, merely
changing the tag one to benonproxy.

The transformation is shown as the functionT [[·]] in Figure 7, whereL and σ are
“global” to avoid clutter. This function simply inserts coercions where directed byL, and
rewrites the types on method declaration parameters and field declarations as directed by
σ. To avoid clutter, it strips off all labelsl .

In the case that we are doing a completely static analysis, e.g., to look for transpar-
ency violations, the fact thatL is non-empty would denote a possible violation, so the
transformation stage would signal an error, as directed by the user.

3.6 Properties

We wish to prove thatFJQ is sound with respect to an operational semantics, and that a
transformedFJi

Q program is sound with respect to the semantics ofFJQ. For the first, the
proof follows the standard syntactic approach of usingprogressandpreservationlemmas.
The second is done by proving well-typedness of the transformed program given the well-
typedness of the sourceFJi

Q program.
Well-typedness ofFJQ programs is expressed as the judgment`CL for class defini-

tions,`M for method definitions andΓ ` e : T;Γ for expressions. The typing rules are in
Figure 9 in the Appendix. TypecheckingFJQ is straightforward, and similar to inference
onFJi

Q.
The operational semantics ofFJQ is set up as an abstract machine.Programsconsist

of a storeSand an expression to evaluatee, and the transition relation→ maps programs
(S,e) to programs(S′,e′). The store maps variablesx (either source program variables
or fresh “addresses” allocated during evaluation) to values. The complete transition rules
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are presented in the Appendix (Figure 10). We also extendFJQ typing to programs, to
support the proof of preservation.

Theprogressandpreservationlemmas forFJQ are as follows:

Lemma 3.1 (Progress)Given that̀ (S,e) : T;Γ′, then either
• e is a variable x.
• (S,e)→ (S′,e′) for some S′ and e′.
• (S,e) is stuck due to a failed dynamic downcast.

Lemma 3.2 (Preservation)Given that` (S,e) : T, and that(S,e) → (S′,e′), then`
(S′,e′) : U such that U≤ T.

Note that the typeU of the program after it takes a step may be a subtype of its original
typeT due to both coercions (to downcast theproxy qualifier) and dynamic downcasts.

Using the above lemmas, the following theorem follows.

Theorem 3.3 (Type Soundness)Given` e : T;Γ′, then either
• ( /0,e)→∗ (S,x) for some S and x.
• ( /0,e) →∗ (S,e′) for some S and e′, where(S,e′) is stuck due to a failed dynamic

downcast.
• ( /0,e) executes forever.

Here, we define→∗ to mean the reflexive, transitive closure of the transition relation→.
Implicit in all of these statements is the presence of the well-formed class tableCT. As
is standard, the proofs of progress and preservation are by induction on the typing and
evaluation derivations, respectively, and type soundness follows from them.

Finally, we can show that our proxy transformation fromFJi
Q to FJQ is sound.

Theorem 3.4 (Inference Soundness)Given a substitutionσ, label set L, and an infer-
ence derivatioǹ i CT which generates constraintsF andC , if σ |= F andσ,L |= C , then
` T [[CT]]. Moreover, for each subderivation of̀i CT which contains subderivations of
the form

1. `i CL

2. `i M

3. Γ `i E l : T;Γ′, or
Γ `c E l : T;Γ′

there is a corresponding subderivation of` T [[CT]] having the form:

1. ` T [[CL]]

2. ` T [[M]]

3. σ(Γ) ` T [[E l ]] : σ(T);σ(Γ′)

The proof is by induction on the inference derivation. All proofs can be found in the
Appendix.
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3.7 Discussion

Compared to past work in flow-sensitive type qualifiers, flow-sensitivity in our system is
significantly simpler. The approach of Foster et al. [16] allows arbitrary memory loca-
tions to be treated flow-sensitively, which is complicated by the combination of aliasing
and mutation. In particular, allowing the qualifier of a value to change flow-sensitively
requires proving that the value is not aliased (is “linear”). In contrast, our approach only
treatslocal variablesflow-sensitively, and since Java has no “address-of” operator&, the
contents of a local variable can only be accessed through that variable. Thus, we get
linearity “for free,” trading expressive power for simplicity. The caveat is that the imple-
mentation ofcoercex provided by the user must only operate on thevariablex, not on
theobjectx refers to. For wrapper proxies, this is what happens:x is overwritten to point
to the underlying object instead of the wrapper. If coercions do not meet this criteria, then
they are not treated flow-sensitively.

It is because we are flow-sensitive only for local variables that we opted not to model
field and variable updates in theFJQ. While adding updates would be straightforward (it
is modeled in MJ [5] and existing qualifier systems [15, 16], for example), it would not
change the character of our approach, adding only unnecessary complication.

In order to be able to support the full Java language, we had to address the use of
the JNI and reflection mechanisms. We have assumed a conservative approach in this
case, by demanding that no proxy object ever flows in the JNI API or in any reflection
invocation. This approach inserts claims at all places where a native method is called,
and on the arguments ofjava.lang.reflect.Method.invoke(...), ensuring that
no proxy Object will ever be passed to a reflection or JNI invocation. In addition, a
proxy object might be accessed via reflection, e.g., by reading the fields of another object.
Therefore, the analysis treats all objects obtained that way as possible proxies.

3.8 Other Applications

While the formal presentation of our analysis is specific to proxies, our added support
for coercions can easily be folded into more general qualifier systems, admitting new or
improved applications. Here we consider three possibilities.

Security-sensitive Data Shankar et al. [35] describe an application of type qualifiers
in which untrusted data, e.g., arriving from a user login prompt or a network connection,
is given the qualifiertainted, while trusted data is given qualifieruntainted. Qualifier
inference is used to ensure thattainted data does not flow to functions requiringuntainted
data. A similar analysis is supported in Perl programs, except that checks for tainted data
are performed dynamically. This has the drawback of the potentially-significant added
runtime overhead of dynamic checks, but has the benefit that it is precise, and will thus
avoid the false alarms generated by the purely static approach.

We can use our framework to implement a blending of these two approaches. In
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particular, thepspecwould specify which routines returnedtainted data, and which ex-
pecteduntainted data, while theispecwould implement coercions as a check to determine
whether the data came from an untrusted source, e.g., by reading a required field from the
object. This approach blends the two prior approaches by using static analysis to avoid
many, but not all, runtime checks.

Stack allocation Java objects have dynamic, unrestricted lifetimes, implemented using
heap allocation and garbage collection. While stack-allocating objects could improve per-
formance, avoiding dangling pointers would entail that no stack-allocated object escape
its defining scope. This could happen if the object was assigned to a field or returned
from its defining function. One solution would be to copy a stack-allocated object to the
heap at the point it escapes its scope. However, doing so might violate transparency if
that object’s identity had already been revealed, e.g., by using the stack-allocated object
as an argument to==.

Our analysis can support transparent stack allocation using two qualifiers,heap and
stack, where the latter annotates an object that could be either heap- or stack-allocated,
and the former indicates an object that must be heap-allocated; we thus haveheap ≤
stack. Any operation that could reveal the identity of an object or cause it to escape (e.g.,
by assigning it to a field of aheap object) would require the object have qualifierheap. A
coercion would check if an object was on the stack (perhaps using a bit mask), and copy
it to the heap if necessary.

Not-null types Another application is the use ofnull andnonnull qualifiers to charac-
terize objects that are possibly null, or definitely not null, respectively [13]. This would
provide a simple way of specifying the standard null-check elimination optimization as a
qualifier system, and would allow users to manually annotate fields or method arguments
as beingnonnull, to avoid explicit null tests.

To implement this in our framework, thepspecwould indicate that all occurrences of
the constantnull have qualifiernull (including default initialization of fields), and that
concrete object usages, e.g., to call a method, require that the object qualifier benonnull.
The ispecwould implement coercions as null-checks (throwing an exception on failure),
with flow-sensitivity naturally eliminating redundant checks. Of course, to be truly useful,
we would require the cooperation of the JVM to avoid checks proven redundant by our
framework.

4 Asynchronous Method Calls

Having described our proxy framework formally, we now describe our implementation of
asynchronous method invocations in Java.
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4.1 Framework Implementation

Our analysis is implemented as an extension to Soot [38] (version 2.1.0), a framework
for analyzing and transforming Java classfiles. Soot provides a framework for imple-
menting flow-insensitive points-to analyses called SPARK [27]. We extended SPARK to
track proxies and generate set types based on points-to information. SPARK’s constraint
graph representation uses a node (corresponding variously to a qualifier variableκ or a
set type variableα) for each local variable and method parameter. We extended this to be
flow-sensitive by assigning multiple nodes to each variable or method parameter, one per
use. As an optimization, we do so only for nodes that could possibly contain proxies, as
determined by a flow-insensitive analysis. This reduces the total nodes to consider, since
proxies are typically used sparingly in the program (relative to the total number of ob-
jects). For the applications presented in Section 5, this optimization yields a 6% to 45%
improvement in the cost of the flow-sensitive analysis. Note that SPARK also supports
context-sensitivity, but we have not taken advantage of this as of yet.

Programmers implement thepspecand ispecby providing three classes and linking
them into the analysis:

1. TheAsyncGen class in thepspecdefines syntactic patterns that indicate where
proxies are introduced. These patterns must, of course, be legal Java syntax that
could have been compiled to bytecode.

2. ThePolicy class in thepspecdefines coercions using a visitor over the Jimple
syntax tree that specifies which expressions require non-proxies.

3. TheClaimTransformer class implements theispec. It defines how call sites that
create proxies are transformed, and how coercions are implemented. It may direct
that supporting classes be linked into the transformed application.

Because Jimple represents typed bytecode, coercions that assign back to the original
variable must be well-typed. Thus we give typeObject to each Jimple variablex of type
A that could contain a proxy. Wheneverx is coerced, we assign the result to a newly-
introduced variabley with typeA, and replace withy subsequent occurrences ofx in the
continuation. This transformation is sound because proxies are treated transparently, and
because there is no way to alias and mutate the storage of the original variablex.

4.2 Asynchronous Invocations

Programmers invoke methods asynchronously using the syntax

r = Async.invoke(t,o.m(e1,e2,...));

According to thepspec, this syntax indicates that methodm should be invoked asyn-
chronously and the result (if any) returned to the caller will be a future. The method’s
argumentse1,e2, ...,en are still evaluated in the current thread.
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The ispecdefines the steps needed to implement an asynchronous call. First, the
program creates an anonymous subclass ofProxyImpl that encapsulates the invocation
of methodm. ProxyImpl has the following signature:

public class ProxyImpl implements Runnable, Wrapper {
public void run(); // executes the invocation
public Object get(); // acquires the result

}

TheWrapper interface simply defines a singleget method, which extracts the underlying
object for which the wrapper is a proxy.

public interface Wrapper { Object get(); }

Next, theProxyImpl object is passed to a thread manager. Thread managers implement
the Java 1.5 Executor interface:

public interface Executor {
void execute(Runnable command);

}

The thread manager will call theProxyImpl’s run method in a separate thread to achieve
asynchrony. Therun method will execute the method invocationo.m(e1,e2,...) and store
the result in a private field, to be extracted by a call toget. Finally, theProxyImpl is
returned to the caller of the original methodm in place of the resultr.

If the analysis determines that a program variablex with typeA could contain a future,
a coercionis required beforex can be used concretely. Theispecimplements coercions
with the following code fragment:

(A)(x instanceof Wrapper ? ((Wrapper)o).get() : x)

That is, ifx is a wrapper, then we must callget to extract the result. Theget method in
turn will wait if the result is not yet available.

Any implementation ofExecutor can be used as a thread manager. We have used
the Java 1.5 ThreadPoolExecutor, which provides an extensible thread pool imple-
mentation, as well as our ownThreadPerObjectExecutor, which emulatesactive ob-
jects[26] by mapping each object receiving an asynchronous method call to an executor.

Note that programmers can influence where claims occur by performing “null” casts.
That is, the expression(C)erequirese’s qualifier to benonproxy, so casting it to its known
type will have the effect of forcing a claim.

This design is both lightweight and flexible. Programmers can easily experiment with
method asynchrony without rewriting substantial amounts of code. In addition, program-
mers can experiment with a variety of threading policies by choosing different thread
managers.

A simple extension supports lazy evaluation. To invoke methodm of objecto lazily,
the programmer uses the syntax:

r = Lazy.invoke(o.m(e1,e2,...));

A ProxyImpl subclass is generated as above, but here therun method is called byget
(called when the wrapper is claimed) if no final result yet exists.
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4.3 Exceptions

If an asynchronous method callo.m() throws an exceptionE, that exception is cached
inside the future returned bym. When the future is claimed, the exceptionE is re-thrown.2

This presents some challenges to the analysis.
The fact that claims could throw exceptions can be modeled as a simple extension to

FJQ. We first must extend the language to model exceptions. We extend expressionse to
include the formtry ecatchE ⇒ e, whereE is the name of the exception being handled.
Method declarations are extended to includethrows clauses. We also add a formthrow E
for throwing an exception of typeE (throw could take arbitrary expressions of exception
type, but this simplifies the presentation). We extend the typing judgment from Figure 9 to
include thethrow setT of exceptionsE that could be thrown by evaluating an expression.

The typing rule for try-blocks is:

Γ,` e1 : T1;Γ1;T1 Γ ` e2 : T2;Γ2;T2
T2 ≤ T T1 ≤ T Γ′ = merge(Γ1,Γ2)

T ′ = handles(E,T1)∪T2

Γ ` try e1 catchE ⇒ e2 : T;Γ′;T ′

The functionhandles(E,T1) prunes those exceptionsE′ ∈ T1 which are subtypes ofE.
The resulting throw set is this pruned set and the set from the handler. This rule conserva-
tively assumes any flow-sensitive effects ofe1 reflected inΓ1 will not be seen ine2. When
checking a method consisting of expressione, we make sure thate’s resulting throws set
is covered by thethrows clauses the method declares.

Now we must reflect into a proxy’s type what exceptions it might throw. To do this we
expand theproxy qualifier into a family of qualifiers, where each mentions an exception
E that could be thrown if the qualified value is coerced. These form a lattice based on the
subtyping relationship between exceptionsE. For example, we haveproxyE ≤ proxyE2

if E ≤ E2. For allE, we haveproxy ≤ proxyE.
The rule formakeproxy ebecomes

Γ ` e : nonproxy N;Γ′;T E = lub(T )
Γ `makeproxy e : proxyE N;Γ′; /0

That is, the exceptions thatecould throw are reflected into its qualifier. For this rule to be
sound, we must modify the operational semantics to capture any exception thrown when
evaluatinge in the proxy, and then re-throw the exception when doing the coercion. The
typing rule forcoercereflects that an exception could be thrown:

Γ ` e : Q N;Γ′;T Q≤ proxyE

Γ ` coercee : nonproxy N;Γ′;T ∪{E}
2This differs from aFuture in util.concurrent, whoseget method declares it could throw an

ExecutionException, encapsulating any exception thrown by the computation. As such, the program-
mer is required to handleExecutionException each time that a future is claimed. Our implementation of
claim essentially catches this exception, and then re-throws the exception it encapsulates.
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In our implementation, we must extend the definition of theWrapper interface to define
get methods that could throw the various expressionsE determined by the analysis, and
adjustProxyImpl and claim code accordingly (which is easy to do automatically).

Given this formulation, we ensure that proxy inference deals with exceptions properly
in a couple of ways. In the simplest case, we ensure that in expressionmakeproxy e, e
never throws an exception. This is done by allowing the programmer to provide a handler
for possible exceptions when creating the proxy. In particular, users can use anExecutor
that handles exceptions in a user-specified way inside spawned threads. This approach
also requires that the user specify a “default” value for the object returned by a claim,
since the swallowed exception will have prevented the method from returning a value. In
our experience, this simple approach works fairly well in practice.

In the second case, we let inference determine where proxies could flow, signaling an
error only if an inserted coercion could throw an exception not covered by thethrows
clause for the method in which it occurs. For many applications we have considered,
unclaimed proxies do not flow outside the scope of a reasonable exception handler. This
is frequently true for event-style server applications, which have an outermost exception
handling block coupled with the event loop to catch exceptions raised by event handlers.
In the case that a proxy does flow to an unexpected location, the user learns exactly where
the offending claim was inserted and can manually alter the code to insert a handler.
Alternatively, when the user specifies a method call should be asynchronous, she can
provide ahandler objectwhosehandle method is called with argumentE when a claim
would causeE to be thrown. Any exceptions thrown by this handler (e.g., to delegate to
an outer-scope handler) are reflected in the type of the proxy.

Even when the surrounding context can handle an exceptionE thrown due to a claim,
it could be incorrect to do so. Some exceptions, likeIOException, are thrown by many
methods, and the exception generated by the claim may violate some invariant expected
by the programmer. Though we have not yet done so, we should be able to ensure that
a proxy can only throw to handlers that were present in its original context. To do this,
rather than track the exceptions possibly thrown by an expressione, we could track all
of the handlers that would catch exceptions thrown bye. These would create a similar
partial order that would be folded into theproxy qualifier. At the same time, the typing
judgment would keep track of thehandler context, which is the set of all handlers that an
exception could possibly throw to (including those in method callers). Typechecking a
coercion would require that the handler context be a subset of the handlers mentioned in
the proxy.

Note that all of this discussion need only apply tocheckedexceptions. As unchecked
exceptions typically signal disastrous (unrecoverable) situations, we can choose to ignore
them in the analysis.
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4.4 Synchronization

Concurrent programs must balance safety and liveness, by guarding against invariant vi-
olations and preventing deadlock. Our approach no worse and no better than standard
Java thread programming. When using asynchronous method calls, programmers must
use ordering, synchronization, immutability, and other techniques to ensure safety and
liveness—no automatic support is provided.

Ideally, ensuring a program is safe and live could be as lightweight as introducing an
asynchronous invocation. In Lisp, this is trivial because programs are written in a mostly-
functional (if not purely-functional) style, which means that added concurrency will not
affect the program’s safety. We contemplated approaches to inserting synchronization
automatically [26, 7, 22, 17], but rejected this idea because of its lack of generality and
potentially negative impact on performance. We discuss this issue more in Section 6.

Instead, we feel a more promising approach is to have programmers specify syn-
chronization requirements declaratively. Declarative specifications should change infre-
quently, even as the programmer changes various method invocations to be or not be
asynchronous. Therefore, the proper synchronization code could be generated from the
specification as changes are made. Work in aspect-oriented programming [29, 25, 8] and
language-level transactions [39, 19] aim to realize this goal. By not making any assump-
tions about synchronization, we can readily incorporate good results from these projects.

5 Evaluation

We evaluate our framework in terms of (1) programming benefit (how does our frame-
work simplify the programming task), (2) analysis effectiveness (how does it impact the
run-time of the instrumented program), and (3) analysis performance (how fast is the
analysis). We present a number of applications of both wrapper proxies and transparency
checking to give a sense of the costs and benefits of our approach. As use of the Java 1.5
concurrency libraries becomes more widespread, we hope to adapt larger examples to use
our framework.

We ran our experiments on a 2 GHz AMD Athlon 2600+ with 1 GB of RAM, running
Mandrake Linux 9.1 (kernel version 2.4.21.)

5.1 Claim Overhead

Wrapper proxies can flow to potentially many parts of the program, and because our static
analysis must be conservative, classes may be instrumented with redundant claims. To
measure the performance overhead of necessary as well as redundant claims, we con-
structed a simple microbenchmark:

Object o,p = ...
for (int i = 0; i<N; i++) { p = o; p.m(); }

23



test tot (s) per-check (ns) % ovr
no claim 0.122 n/a n/a

redundant claim 0.1637 16.37 34%
necessary claim 0.335 33.5 175%

Table 1: Overhead of inserted claims,N = 107

The methodm simply increments a volatile counter. We variedo to be either a normal
object, an already-claimed wrapper proxy, or an unclaimed wrapper proxy (in this last
case, the copy fromo to p ensures it will be claimed each time, sinceo never gets claimed
and thus will never be rewritten to be the wrapped object). The results are shown in
Table 1 forN = 107 (other values ofN showed a similar relationship).

Redundant claims consist of essentially three instructions at runtime: aninstanceof
check, a cast, and an assignment. Our measurements show this adds 34% to the loop run-
ning time. Necessary claims require an additional synchronized method call and assign-
ment, and cost more. However, these are unlikely to appear frequently because the future
is overwritten after the underlying object is acquired, inducing only redundant claims
from then on. In actual applications we expect the overhead of claims to be small because
(1) not all method calls require claims, and (2) method calls perform real work, dwarfing
the cost of claims relative to program running time.

5.2 Programming with Futures

A central benefit of our approach over a manual coding of proxies is that it simplifies the
programming process. To illustrate this, we take an example from theutil.concurrent
API documentation [24, 12] that describes how to convert a “blocking service” into a non-
blocking service using futures. The blocking service implements the following interface:

interface BlockingService {
public Response serve (Request req)
throws ServiceException;

}

We first present how we would convertBlockingService objects to be non-blocking
using our approach, and then present the manual approach proposed in the documentation
for util.concurrent.

Our Approach GivenBlockingService objectbs, we make calls to itsserve me-
thod asynchronous by simply changing existing method calls

bs.serve(request)

to be

Async.invoke(executor,bs.serve(request))
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The analysis will infer where claims are required and insert them directly into the byte-
code of both applications and library classes, based on user input. Assuming claims occur
whereServiceExceptions can be caught, we are finished. Otherwise, we can modify
invocations to include a wrapping exception handler, or add handlers to claim locations,
as described in Section 4.3. We might also wish to insert “null casts” to force claims
early, for performance reasons.

Manual Approach To use Java 1.5 Futures instead, we would take the following
steps [12]. First, we define a nonblocking variant of theBlockingService interface
whoseservemethod returns aFuture, and then build an adapter class to wrap aBlockingService
object, as shown in Figure 8. Theserve method ofNBSAdapter creates atask to in-
voke the underlyingBlockingService object’sserve method, handling any exception
locally. This task is executed by the adapter’sExecutor object after turning it into a
FutureTask, which implementsFuture. The future is then returned to the caller.

Now we can make our originalbs object non-blocking by creatingnbs = new NBSAdapter(bs).
Existing calls

bs.serve(request)

are changed to be

nbs.serve(request)

At this point, we must adjust old client code to handle the fact thatnbs.serve returns
a Future<Response> rather than aResponse. So that futures are claimed as late as
possible, we must follow howResponse objects would have flowed from calls toserve
and sprinkle claims just before a futurizedResponse object is used. This can be tricky
if Response objects were stored in containers that could be accessed by many methods
or threads throughout the program. If a now-futurizedResponse object could flow into
library routines or third-party components, the programmer may be forced to claim the
future early, which could hurt performance.

Compared to one-line-per-invocation change imposed by our framework, this is a fair
amount of programming overhead. Moreover, a similar overhead is required to undo the
change.

5.3 Asynchronous RMI

For an asynchronous method call to be worthwhile, the added parallelism must overcome
the added overheads, such as thread creation time and synchronization, to realize a per-
formance gain.Remotemethod calls are a natural candidate, because they must pay the
cost of a network round-trip time for each invocation. Indeed, asynchronous RPC was the
initial motivation for Liskov and Shrira’s promises [28], and recent work has considered
the idea for Java [33, 37].
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interface NonBlockingService {
public Future<Response> serve (Request req);

}
class NBSAdapter implements NonBlockingService {
public NBSAdapter (BlockingService svc) {
this.blockingService = svc;
this.executor = Executor.newFixedThreadPool(3);

}
public Future<Response> serve (final Request req) {
Callable<Response> task = new Callable<Response>() {
public Response call () {
try {
return blockingService.serve(req);

}
catch (ServiceException e) {
e.printStackTrace();
// more exception handling

}
}

};
FutureTask<Response> ftask =
new FutureTask<Response>(task);

executor.execute(ftask);
return ftask;

}
private final BlockingService blockingService;
private final Executor executor;

}

Figure 8: ABlockingService adapter class

To illustrate this benefit, we have applied our framework to a RMI-based peer-to-
peer service sharing application developed for a class at the University of Maryland3.
Each peer can perform text processing using a number of composableservices, which
are simply references to objects implementing aService interface. If the application
does not have all of the services it wants, it can ask for them from the network, and will
receive remote references for each in messages from peers. These are stored with the
local services in a table.

The code to find a (potentially remote) service is roughly as follows:

3http://www.cs.umd.edu/class/fall2003/cmsc433-0201/p5/p5.htm
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Analysis Time classes
(s) analyzed w/ fut. transformed claims

FI 73 1324 27 2 7
FS 92 1324 9 2 2

SPARK 66 1320 n/a n/a n/a

Table 2: Analysis Performance on Async RMI

Version Services requested and used
1 2 3 4 5 6 7 8 9 10

Orig. 18 32 48 65 90 100 113 124 143 153
Async 17 26 34 42 50 57 62 78 83 84

Orig. + delay 101 203 304 406 507 607 707 811 916 1010
Async + delay 106 117 122 133 145 153 157 160 171 178

Table 3: Elapsed time (s) of Peer-to-Peer RMI application with varying workload

Service findService(LocalPeer self, String sName) {
Service s = self.getService(sName);
if (s != null) return s;
else {
self.forward(new FindServiceMessage(sName));
return getRemoteService(self, sName);

}
}

If the service is present in the local table, the method immediately returns it. Otherwise,
theforward method will use RMI to send messages to the node’s peers, asking for the
service. The first thing we did was make this method call asynchronous (though no future
is returned)

ThegetRemoteService call will block (usingwait) until it observes that the desired
service has been installed in the table. This is problematic when the client application
wishes to invokefindService n times to create a composed service as each call must
wait until the prior service is found and the network will not be used to search for services
in parallel. To address this issue, we made the call togetRemoteService lazy, changing
it to beLazy.invoke(getRemoteService(self,sName)). As this syntax introduces
a wrapper proxy, the framework rewrites the caller’s class to delay the invocation of the
method until the proxy is unwrapped. Thus, alln calls togetService will proceed in
parallel, and will only block when the service is used concretely.

Analysis Performance The analysis times for this benchmark are shown in Table 2.
Here we show the results of both our flow-sensitive analysis (FS), and a flow-insensitive
variant of it (FI). Times are in seconds, and we show the total number of classes analyzed
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(which are largely library classes), those into which futures could flow, and finally those
that were transformed. For those classes transformed, we indicate how many coercions
(claims) were inserted. The results show the benefit of flow-sensitivity: fewer classes are
polluted with futures and fewer claims are required.

The flow-sensitive analysis takes more time to run than the flow-insensitive version.
Both process the same number of classes, but the flow-sensitive version generates more
constraints. Indeed, the flow-insensitive analysis is virtually identical to the cost of just
running the SPARK without modification. The flow sensitive analysis uses the result
of a flow-insensitive analysis to limit the number of variables that are analyzed flow-
sensitively. In particular, only the variables that have qualifierproxy are re-analyzed flow
sensitively. However, the time saved compared to running the flow-sensitive analysis for
the whole program is still significant, even though we are running the analysis twice.

Runtime Performance To assess the runtime benefit to asynchronous remote invoca-
tions, we ran some simple experiments on a two-node network connected by 100 Mbps
Ethernet. The application attempts to acquiren services, for 1≤ n≤ 10, all of which are
non-local. We compare the original application (Orig) to our changed version (Async). In
addition to normal RMI messaging, we ran a version that inserts an 80msdelay for each
message send, to simulate a wide area message. The results shown in Table 3 represent
the median of 11 runs, with all times in milliseconds (the mean and median values were
similar).

For the local area traffic, the added parallelism of asynchronous RMI nets perfor-
mance gains of up to 40%. For the delayed case, the running time of the original appli-
cation tracks the number of services times the round trip delay, while the Async version
significantly amortizes this cost.

Of course, these results could have been achieved by rewriting the application by
hand to capture the invocation, and acquire it before applying the result. Our framework
made it significantly easier to do this: we only had to annotate two method calls, and the
framework did the rest automatically.

5.4 Transparency Checking

We have also used our framework to search for possible transparency violations through
the use of interface proxies. Here, we consider a programmer that might like to special-
ize an object implementing interfaceI , e.g., to count how often a particular method is
called. Following the proxy design pattern, the programmer could use adynamic proxy
class[9] to create a method-counting object that also implementsI , which forwards calls
to the original object. Our framework can ensure that the program will never distinguish
between the proxy and the underlying object by using an identity-related operation, like
==, instanceof, etc. This is done with the following policy and implementation speci-
fication:
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Version Time # of classes Errors
(s) analyzed with proxies

FI 48 2189 3 0
FS 58 2189 3 0

SPARK 45 2189 n/a n/a

Table 4: Analysis Performance for SOAP/RMI

Policy Calls toProxy.newProxyInstance(...) introduce proxies. All expressions
that are identity-revealing must operate on non-proxies, includingsynchronized,
==, andinstanceof. Note that unlike futures and other wrapper proxies, method
calls do not require the object be a non-proxy.

Implementation No code is needed to generate proxies (that is already being done by
the program) or to coerce them. Any requirement of a coercion implies a possible
transparency violation, which is signaled by the analysis.

We ran our checker on two examples: an XML-based implementation of SOAP over RMI
that uses dynamic proxy classes [36], and the Soot bytecode analysis framework [38] (ver-
sion 2.0.1).4 In the former case, the analysis tracks all proxies created withProxy.newProxyInstance.
In the latter, we selected three different methods that return interfaces, and told the
checker that calling these methods might return proxies. This simulates a user wish-
ing to proxy an object returned by one of these methods, e.g., to perform profiling, but
ensuring that transparency will not be violated.

We ran the flow sensitive and a flow insensitive analysis to detect possible errors. For
the SOAP/RMI example, we ran the checker over the code as is, and found no transpar-
ency violations. Table 4 summarizes the results. Once again, the flow-insensitive analysis
had essentially the same running time as SPARK points-to analysis (not shown), and the
flow-sensitive version added some overhead. Interestingly, the flow-sensitive analysis
adds no value in this case. It could potentially reduce false positives due to spurious
flows, but does not do so.

The Soot examples for the three different methods are shown in Table 5. The SPARK
number is the average time for all three examples, which had similar running times. We
looked at the reported violations, and verified that they were genuine transparency vio-
lations that could lead to bugs. Once again, it was interesting to see that flow-sensitivity
added no precision (only overhead!), and that the original SPARK analysis times are rel-
atively close to our flow-insensitive analysis times.

4We analyze Soot 2.0.1 because analyzing 2.1.0 causes our benchmark machine to swap.
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Example Time (s) # of classes Errors
FI FS analyzed with proxies

1 181 210 2092 16 0
2 174 209 2092 3 1
3 182 214 2092 12 9

SPARK 151 n/a 2092 n/a n/a

Table 5: Analysis Performance for 3 Soot Examples

6 Related Work

Proxies Gamma et al. [18] present many uses of the proxy design pattern, including
remote references, lazy evaluation, and access control. Other uses5 include memoiza-
tion, delegation, synchronization addition, generic event listeners, and views for abstract
data types. Java’s dynamic proxy classes [9] permit the simple construction of interface
proxies, and have been used in a variety of applications [36, 4].

Static Analysis Our analysis is a variant of qualifier inference, which draws upon tech-
niques developed in other static analyses, including constraint-based analysis [1] and
points-to analysis [10]. Our approach extends Foster et al.’s qualifier inference [15] with
support for coercions that implement checks at runtime, e.g., to claim a future. These
coercions are treated flow-sensitively. Foster et al. also define a flow-sensitive variant of
their analysis [16], but their approach allows heap locations, and not just variables, to be
treated flow-sensitively. This adds expressive power but significant complication.

Asynchronous Method Calls and Futures The notion of a future was popularized
by Halstead in MultiLisp [23]. In a dynamically-typed language like Lisp or Scheme,
potentially any value could be a future, necessitating a runtime check. Flanagan and
Felleisen [14] define a whole-program static analysis for reducing eliminating some un-
necessary checks; our analysis conversely adds needed checks based on the possible flow
of futures.

Liskov and Shrira proposedpromises[28], which are futures for statically-typed lan-
guages. A promise is a type parameterized by the type of object it will ultimately com-
pute, like a Java 1.5 Future [24]. We found a number of applications of futures to
statically-typed, object-oriented languages [31, 24, 20, 33, 11].

Mandala [30] is another framework that provides asynchronous method invocation
and futures for Java. Asynchronous calls are implemented with reflection, using dynamic
proxy classes, which is more modular than our approach. However, Mandala is less ef-
ficient and less transparent. Identity-revealing operations like== could distinguish the

5See, for examplehttp://blog.monstuff.com/archives/000098.html.
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proxied object. Dynamic proxies use reflection for each method call, which is notori-
ously slow (more than an order of magnitude slower than a normal method call on our
benchmark machine). To work around this overhead, a Mandala programmer can treat the
returned value of an asynchronous call as an explicitFutureClient object (much like
a Java 1.5 Future) which must be manually claimed, thus sacrificing the programming
benefit of transparency.

A number of languages supportactive objects[26], such as the SCOOP extension
to Eiffel [7] and Io [22], which return futures.Method calls are handled by a per-object
thread, and automatically synchronized based on programmer-supplied method precon-
ditions. While simple to use, programmers are forced to use concurrency only on a per-
object basis, as opposed to per activity, which could severely limit performance with-
out potentially unnatural program restructurings.In our approach, concurrency is handled
per-method by arbitraryExecutor objects, but synchronization must be handled by the
programmer.

Polyphonic C# [3] adds concurrency abstractions to C# based on the join calculus.
Method declarations annotated asasync are always invoked asynchronously. These
methods must not return results, so there is no need for futures.

Asynchronousremotemethod invocation can be used to batch remote calls and thus
amortize the delay of round-trip times. Promises were developed in this context. Raje
et al. [33] propose an approach in which the returned future is made manifest to the
programmer, adding to the programming burden. Sysala and Janecek [37] require that
remote calls be provided acallback, to be invoked the result is available. This simplifies
exception handling but obscures the control flow of the program, making debugging more
difficult. It also forces programmers to distinguish between remote and local references,
eliminating the transparency afforded by RMI.

7 Conclusions

We have presented a simple and flexible framework for transparent programming with
proxies in Java. The framework uses a sound static analysis to track the flow of prox-
ies throughout the program. The analysis is based on qualifier inference [15], with two
extensions: we permit the use of dynamic coercions to allow proxies to have runtime
effect, and use flow-sensitivity to avoid redundant coercions. We have used our frame-
work to implement a natural form of asynchronous and lazy method invocation for Java,
and to check for possible transparency violations when using the proxy design pattern.
The framework is general enough to apply to other interesting applications, including
the tracking of security-sensitive data, and supporting not-null types and stack-allocated
objects.

We are currently pursing two avenues of future work. First, we are generalizing our
framework to support arbitrary qualifiers, to support the other applications mentioned
above. In doing so, we plan to support more sophisticated context-sensitive analysis.
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Second, we are exploring how to make our analysis incremental, to avoid reanalyz-
ing the whole program each time a source file is changed. Rather, we are developing
a dependency-tracking system that would allow for selective reanalysis of unchanged
classes, possibly in the background for better performance. We would hope to generalize
our approach to other static analyses.

Acknowledgments We thank Jeff Foster, Nikhil Swamy, James Rose, and the anony-
mous referees for helpful comments on drafts of this paper.
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A Proxy Calculus FJQ

Here we include more details on the explicitly-typed calculusFJQ, introduced in Sec-
tion 3, including its typing rules and operational semantics.

A.1 Typing

The syntax ofFJQ is the same asFJi
Q (Figure 1), minus qualifier and set type variables

κ andα, plus expressionscoercee. The typing rules are shown in Figure 9. We have
stripped labels from expressions for clarity, since they are not used. The subtyping rules
and auxiliary definitions are the same as those in Figures 2 and 3.

The rules are basically straightforward analogues of the inference rules. Note that
there are two rules for typing casts. The (Cast) rule types an upcast or a downcast, and
the (SCast) rule types a “stupid” cast. The last is a technical device borrowed fromFJ
to allow all possible casts to be considered well-typed, which is necessary to prove type
soundness via the property of type preservation (theorems are stated in Section 3.6). The
Java compiler would reject programs containing stupid casts.

A.2 Operational Semantics

The operational semantics ofFJQ are set up as an abstract machine.Programsconsist of a
storeSand an expression to evaluatee, and the transition relation→maps programs(S,e)
to programs(S′,e′). We use a call-by-valueallocation-stylesemantics [32], in which all
objects are allocated and looked up in the store, rather than being substituted into the
term. This allows us to model the flow-sensitivity of coercions on variables. The store
essentially represents a hybrid of the stack and the heap. The complete transition rules
are presented in Figure 10.

Since this is a qualified system, the store maps variables toqualified store values,
which are store valuesh paired with a qualifierQ. A store value is simply an object of the
form newC(ȳ), where the variables ¯y index other qualified store values inS. Qualified
store values are allocated by the following (TransAnnot) rule, which replaces a store value
h with a fresh variablex, and then maps that variable toh in the storeS:

(S,newC(ȳ))→ (S]{x 7→ (nonproxy,newC(ȳ))},x)

The other computation rules always operate on variables indexing the store, and so
must “look up” the corresponding value for evaluation. For example, the (TransInvoke)
rule is between two variablesx andy; it looks upx in the store to discover a function, and
then continues by evaluating the function’s bodye, having updated the store to map the
function’s parameterz to the actual argument pointed at byy.

S(x) = (nonproxy,newC(ȳ)) mbody(m,C) = (z̄,e)
(S,x.m(ȳ))→ (S]{z̄ 7→ S(ȳ)},e[this 7→ x])
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Note that we encode freshness by not adding variables to the domain of the store if
they are already present; this is illustrated by the use of]. We can always enforce this
condition using alpha conversion.

All qualified store values that are used concretely must have qualifiernonproxy, indi-
cating that the actual value is available. These conditions match those in the type rules.
Relaxing a requirement in the type rules (e.g., as would happen for interface proxies)
would require relaxing it here.

The (TransCoerce) rule handles flow-sensitive coercions:

(S]{x 7→ (Q,h)},coercex)→ (S]{x 7→ (nonproxy,h)},x)

Here, when a variablex is coerced, we remapx in the output store so that its qualifier
is nonproxy. Therefore, subsequent uses ofx will not require coercions. This will have
little effect unlessx was a variable in the original program. Otherwise it was a constant
expression, which will never again be reused. Note that the (TransCoerce) rule is well-
defined forall qualified store values, not just those with qualifierproxy; this is critical
because the subtyping rulenonproxy ≤ proxy employed by the type system allows non-
proxies to be used wherever proxies are expected.

We extend the typing judgment to programs(S,e) as shown in Figure 9. Here, the
(CheckState) rule requires that the storeScan be characterized by aΓ sufficient to type-
checke. Notice that the (CheckStore) rule only checks values mapped to by variables in
the domain ofΓ, rather than the domain ofS. This allowsΓ to refer only to variables in
the transitive closure of the variables appearing ine; any other indexes in the store are
essentially garbage, and could be removed. Also note that (CheckNewQ) returns the ex-
act (dynamic) type of objects that it finds. Because these objects could be given “higher”
type in the programe, we allowT ≤ Γ(x) in the (CheckStore) rule.
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Γ ` e : T;Γ′

Var
Γ[x 7→ T] ` x : T;Γ[x 7→ T]

Let

Γ ` e1 : T;Γ1
Γ1[x 7→ T] ` e2 : T ′;Γ′[x 7→ T ′′]

Γ ` let x = e1 in e2 : T ′;Γ′

If

Γ ` e1 : nonproxy N1;Γ1
Γ1 ` e2 : nonproxy N2;Γ2

Γ2 ` e3 : T3;Γ3 Γ3 ` e4 : T4;Γ4
T3 ≤ T T4 ≤ T Γ′ = merge(Γ3,Γ4)

Γ ` if e1 = e2 then e3 elsee4 : T;Γ′
Invoke

Γ ` e0 : nonproxy N;Γ′ Γ′ ` ē : S̄;Γ′′
mtype(m,N) = T̄1 →U1, . . . T̄n →Un

S̄≤ T̄i Ui ≤ T for all i
Γ ` e0.m(ē) : T;Γ′′

Field
Γ ` e : nonproxy N;Γ′ fields(N) = T̄ f̄

Γ ` e. fi : Ti ;Γ′
New

fields({C}C) = T̄ f̄ Γ ` ē : S̄;Γ′ S̄≤ T̄

Γ ` newC(ē) : nonproxy {C}C;Γ′

Cast

Γ ` e : nonproxy ϕD;Γ′
ϕ1 = subtypes(C)∩ϕ ϕ1 6= /0

Γ ` (C)e : nonproxy ϕC
1 ;Γ′

SCast

Γ ` e : nonproxy ϕD;Γ′
ϕ1 = subtypes(C)∩ϕ ϕ1 = /0

stupid warning

Γ ` (C)e : nonproxy ϕC
1 ;Γ′

MakeProxy
Γ ` e : nonproxy N;Γ′

Γ `makeproxy e : proxy N;Γ′
CoerceExp

Γ ` e : Q N;Γ′ e 6= x

Γ ` coercee : nonproxy N;Γ′

CoerceVar
Γ ` x : Q N;Γ Γ = Γ′[x 7→Q N]

Γ ` coercex : nonproxy N;Γ′[x 7→ nonproxy N]

`M `CL

Method

x̄ : T̄, this : nonproxy {C}C ` e : U U ≤ S
CT(C) = classC extendsD { . . . ; . . . }

override(m,D, T̄ → S)
` S m(T̄ x̄) { return e;}

Class

K = C(T̄ ḡ, S̄ f̄ ) { super(ḡ); this. f̄ = f̄ ; }
fields(D) = T̄ ḡ ` M̄

` classC extendsD { T̄ f̄ ;K M̄ }

Γ ` (Q,h) : T ` S: Γ

CheckNewQ
fields({C}C) = T̄ f̄ Γ(x̄) = Ū Ū ≤ T̄

Γ ` (Q,newC(x̄)) : Q {C}C
CheckStore

Γ ` S(x) : T T ≤ Γ(x) all x ∈ dom(Γ)
` S: Γ

` (S,e) : T

CheckState
` S: Γ Γ ` e : T;Γ′

` (S,e) : T

Figure 9:FJQ: Typing
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(S,e)→ (S′,e′)

Transitions:

TransAnnot
(S,newC(x̄))→ (S]{x 7→ (nonproxy,newC(x̄))},x)

TransInvoke
S(x) = (nonproxy,newC(ȳ)) mbody(m,C) = (z̄,e)

(S,x.m(ȳ))→ (S]{z̄ 7→ S(ȳ)},e[this 7→ x])

TransField
S(x) = (nonproxy,newC(x̄)) fields({C}C) = T̄ f̄

(S,x. fi)→ (S,xi)

TransCast
S(x) = (nonproxy,newD(ȳ)) D≤C

(S,(C)x)→ (S,x)

TransLet
(S, let x = y in e)→ (S]{x 7→ S(y)},e)

TransIfTrue
(S, if x = x then e1 elsee2)→ (S,e1)

TransIfFalse
x 6= y

(S, if x = y then e1 elsee2)→ (S,e2)

TransProxy
S(x) = (nonproxy,h)

(S,makeproxy x)→ (S]{y 7→ (proxy,h)},y)

TransCoerce
(S]{x 7→ (Q,h)},coercex)→ (S]{x 7→ (nonproxy,h)},x)

Congruence rules:

C-CongruenceE
(S,e)→ (S′,e′)

(S,e.m(ȳ))→ (S′,e′.m(ȳ))
(S,e. fi)→ (S′,e′. fi)

(S,(N)e)→ (S′,(N)e′)
(S, let x = e in e2)→ (S′, let x = e′ in e2)

(S, if e= e1 then e2 elsee3)→ (S′, if e′ = e1 then e2 elsee3)
(S, if x = e then e1 elsee2)→ (S′, if x = e′ then e1 elsee2)

(S,makeproxy e)→ (S′,makeproxy e′)
(S,coercee)→ (S′,coercee′)

C-CongruenceBarE
(S, ē)→ (S′, ē′)

(S,newC(ē))→ (S′,newC(ē′))
(S,x.m(ē))→ (S′,x.m(ē′))

Figure 10:FJQ: Operational Semantics
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B Proofs

B.1 Progress

Here we prove Lemma 3.1 (Progress), which states

Given that̀ (S,e0) : T, then either

• e0 is a variablex.
• (S,e0)→ (S′,e′0) for someS′ ande′0.
• (S,e0) is stuck due to a failed dynamic downcast.

Proof The proof is by induction oǹ (S,e0) : T.
From` (S,e0) : T and [CheckState] we get that there areΓ,Γ′ such that̀ S : Γ and

Γ ` e0;Γ′.

Case e0 ≡ (x): In this case the lemma is true by definition, the expression is a value.

Case e0≡e. f : FromΓ`e0 : T and [Field] we getΓ`e: nonproxy N;Γ′. Alsofields(C)=
T̄ f̄ .

Case e0≡ x. f : From`S: Γ andΓ` x : nonproxy N;Γ′ we deduceS(x)= (nonproxy,newC(y))
for a{C}C ≤ N. So,e0 reduces by [TransField].

Case e0 ≡ e. f : From Γ ` e : nonproxy N;Γ′ and the induction hypothesis,e0 re-
duces by [C-CongruenceE].

Case e0 ≡ (e1.m(ē)): FromΓ ` e0 : T and [Invoke] we getΓ ` e1 : nonproxy N;Γ′.

Case e0 ≡ (x.m(ȳ)): From Γ ` x : nonproxy N;Γ′, and` S : Γ we haveS(x) =
(nonproxy,newC(ȳ)) for some{C}C ≤ N. Moreover by definition, from
mtype(m,C) = T̄ →U we get thatmbody(m,C) = (z̄,em). So,e0 can reduce
by [TransInvoke].

Case e0 ≡ (e1.m(ē)): FromΓ ` e1 : nonproxy N;Γ′ and the induction hypothesis,
e1 → e′1 and the whole expression reduces by [C-CongruenceE].

Case e0≡ (x.m(ē)): FromΓ` e0 : T and [Invoke] we getΓ′ ` ē: T̄, so by induction
hypothesis, ¯e→ ē′ and the whole expression reduces by [C-CongruenceBarE].

Case e0 ≡ (newC(ē)):

Case e0 ≡ (newC(x̄)): Reduces by [TransAnnot].

Case e0 ≡ (newC(ē)): From [New] andΓ ` e0 : T we getΓ ` ē : S̄;Γ′. So, by the
induction hypothesise0 can reduce by [C-CongruenceBarE].

Case e0 ≡ ((C)e):
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Case e0 ≡ ((C)x): From [Cast] or [SCast] we have thatΓ ` x : nonproxy φD;Γ,
therefore from̀ S : Γ we have thatS(x) = (nonproxy,newC′(x̄)), for some
C′ ∈ φ, so thatC′ ≤ D. If φ∩subtypes(C) = /0 thenC′ ≤C does not hold, so
we cannot apply [TransCast], and the program cannot take a step due to a bad
cast. In the case thatφ∩subtypes(C) 6= /0, then if{C′}C′ ≤ φ′C, orC′ ≤C then
e0 reduces by [TransCast], otherwise, ifφ∩subtypes(C) = φ1 6= /0 butC′ /∈ φ1,
then [TransCast] cannot be applied, and we again have a stuck program due
to a bad cast.

Case e0 ≡ ((C)e′): From [Cast] or [SCast] we haveΓ ` e′ : T, so by induction
hypothesis,e0 reduces by [C-CongruenceE].

Case e0 ≡ (let x = e1 in e2):

Case e0 ≡ (let x = y in e2): The term reduces by [TransLet].

Case e0 ≡ (let x = e1 in e2): GivenΓ ` e0 : T we have from [Let]Γ ` e1 : T ′;Γ1.
From induction hypothesis, we get thate1 → e′1, thereforee0 reduces by [C-
CongruenceE].

Case e0 ≡ (makeproxy e′):

Case e0 ≡ makeproxy x: e0 typechecks, so from [MakeProxy] we getΓ ` x :
nonproxy N;Γ′. From` S : Γ we get thatS(x) = (nonproxy,newC(ȳ)), for
someC such that{C}C ≤ N. So, we can reduce by [TransProxy].

Case e0≡makeproxy e′: FromΓ ` e0 : T and [MakeProxyCheck] we get thatΓ `
e′ : T ′, therefore from the induction hypothesis, it reduces by [C-CongruenceE].

Case e0 ≡ (coercee′):

Case e0≡ (coercex): FromΓ ` e0 : T and [CoerceVarCheck] we get thatΓ can be
written asΓ[x 7→ Q N] such that:Γ′[x 7→ Q N] ` x : Q N;Γ′[x 7→ Q N]. From
this and` S: Γ we get thatScan be written asS′]{x 7→ (Q,newC(ȳ))} for
someC such that{C}C ≤ N. So,e0 reduces by [TransCoerce].

Case e0 ≡ (coercee′): FromΓ ` e0 : T and [CoerceExpCheck] we get thatΓ ` e′ :
Q N;Γ′. Therefore, by induction hypothesis,e0 reduces by [C-CongruenceE].

Case e0 ≡ (if e= e then eelsee)

Case e0 ≡ (if x1 = x2 then e1 elsee2) From Γ ` e0 : T and [If] we get thatΓ `
x1 : nonproxy N1 andΓ ` x2 : nonproxy N2. From this and̀ S: Γ we get that
S(x1)= (nonproxy,newC1(ȳ1)) where{C1}C1 ≤N1 andS(x2)= (nonproxy,newC2(ȳ2))
where{C2}C2 ≤ N2. So,e0 reduces by [TransIfTrue] or [TransIfFalse].

Case e0 ≡ (if e1 = e2 then e3 elsee4) From Γ ` e0 : T and [If] we get thatΓ `
e1 : nonproxy N1;Γ′. Therefore, by induction hypothesis,e0 reduces by [C-
CongruenceE].
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Case e0 ≡ (if x1 = e2 then e3 elsee4) From Γ ` e0 : T and [If] we get thatΓ `
e2 : nonproxy N2;Γ′. Therefore, by induction hypothesis,e0 reduces by [C-
CongruenceE].

�

B.2 Preservation

Here we prove Lemma 3.2 (Preservation), which states

Given that` (S,e0) : T, and that(S,e0) → (S′,e′0), then` (S′,e′0) : U such
thatU ≤ T.

Proof The proof is by induction on(S,e0)→ (S′,e′0).

Case (S,e0) ≡ (S,x): In this case the program cannot take an evaluation step, therefore
by definition the lemma is true.

Case (S,e0) ≡ (S,e. f ): From Γ ` e0 : T;Γ′ and [Field] we getΓ ` e : nonproxy N;Γ′.
Also fields(C) = T̄ f̄ .

Case e0 ≡ x. f : Then (S,e0) reduces by [TransField]:(S,x. fi) → (S,xi). Given
` (S,e0), we have from [Field] thatfields(C) = T̄ f̄ . By hypothesis̀ S : Γ,
which gives by [CheckState] that̀S(x) : Γ(x). So from [New],Γ ` xi : Si ;Γ
whereSi ≤ Ti .

Case e0 ≡ e1. f : From the induction hypothesis,(S,e1) → (S′,e′1) and` (S,e1) :
T1 mean that̀ (S′,e′1) : T ′

1 whereT ′
1 ≤ T1. So, fields(T1) ⊂ fieldsT′1, and

therefore,̀ (S′,e′1. f ) : T

Case (S,e0)≡ (S,e1.m(ē)): FromΓ ` e0 : T0 and [Invoke] we getΓ ` e1 : nonproxy N;Γ′.

Case e0 ≡ (o.m(ȳ)): From [Invoke] we have:

Invoke

Γ ` o : nonproxy N;Γ Γ ` ȳ : T̄y;Γ
mtype(m,N) = T̄1 →U1, . . . T̄n →Un

T̄y ≤ T̄i Ui ≤V for all i

Γ ` e0.m(ē) : V;Γ′′

For all the classesCi that belong to the setN, mbody(m,Ci) = (x̄,ei). More-
over, fromΓ`o : nonproxy N;Γ′, and`S: Γ we haveS(o)= (nonproxy,newC(ȳ))
for some{C}C ≤ N. Therefore, we get thatmbody(m,C) = (x̄,e) for thatC.

From [MBody-C] and [MBody-CSub], we get that for some ancestorD of
C≤D, we havembody(m,D)= (x̄,e) andm is declared inM̄ of D: U m(T̄ x̄) { return e;}.
Therefore, forD we have by [Method] that ¯x : T̄, this : nonproxy {C}C ` e : Te

andTe≤U .
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We know that(S,e0) reduces by [TransInvoke] to(S]{x̄ 7→ S(ȳ)},e[this 7→
o]). Since ¯x /∈dom(S) we can create aΓ′ = Γ]{x̄ 7→ T̄}]{o 7→ nonproxy {C}C}.
Then,S′(o) : nonproxy {C}C which meansS′(o) : Γ′(o). Furthermore,̀ S: Γ,
and the only new elements inS′ are x̄, for which S(xi) = S(yi), andS(yi) :
Γ(yi). But, Γ(ȳ) = T̄y andT̄y ≤ T̄, so, by [CheckStore], we have that` S′ : Γ′.
Finally, we also have thatΓ′ ` e[this 7→ o] : Te andTe≤U from [Method], and
U ≤V from [Invoke]. ThereforeTe≤V.

Case e0 ≡ (e1.m(ē)): ` (S,e0) and e0 reduces by [C-CongruenceE], so by the
induction hypothesis,̀ (S′,e′0).

Case e0 ≡ (x.m(ē)): ` (S,e0) ande0 reduces by [C-CongruenceBarE], so by the
induction hypothesis,̀ (S′,e′0).

Case (S,e0)≡ (S,newC(ē)):

Case e0≡ (newC(ȳ)): Reduces by [TransAnnot] to(S]{x 7→ (nonproxy,newC(ȳ))},x).
From` (S,e0) : T0 and [New] we haveΓ ` e0 : nonproxy {C}C;Γ. Moreover
S′(x) = (nonproxy,newC(ȳ)). So, forΓ′ = Γ[x 7→ nonproxy {C}C] we have:
S(z) : Γ(z) for everyz∈ dom(Γ), S′(x) : Γ′(x), anddom(Γ′) = dom(Γ)∪{x}.
Therefore,̀ S′ : Γ′.
Also, Γ′ ` x : nonproxy C andnonproxy {C}C ≤ T0.

Case e0 ≡ (newC(ē)): e0 reduces by [C-CongruenceBarE], so by the induction
hypothesis,̀ (S′,e′0) : T ′ andT ′ ≤ T0.

Case (S,e0)≡ (S,(C)e):

Case e0 ≡ ((C)x): In this case, the program either takes a step by [TransCast] or
we have a stuck program due to a bad cast. If the program takes a step, it will
reduce to(S,(C)x) → (S,x). The fact that the program takes a step means
that S(x) = (nonproxy,newD(ȳ)) andD ≤ C, by [TransCast]. So,x in the
resulting program will have typenonproxy {D}D.

Case e0 ≡ ((C)e): From [Cast] or [SCast] we haveΓ ` e : φD;Γ′, ande0 reduces
by [C-CongruenceE] to(S′,(C)e′). So, by induction hypothesis,̀(S′,e′) : T ′

whereT ′ ≤ φD. Thereforee0 typechecks with [Cast] or [SCast].

Case (S,e0)≡ (S, let x = e1 in e2):

Case e0≡ (let x= y in e2): Then(S,e0) reduces by [TransLet] to(S, let x= y in e2)→
(S]{x 7→S(y)},e2). Given that̀ (S,e0) : T, we know thatΓ` e0 : T and from
[Let] we have thatΓ ` y : Ty andΓ1[x 7→ Ty] ` e2 : T. So, forΓ′ = Γ1[x 7→ Ty],
we have thatS′(z) : Γ′(z)∀z ∈ dom(Γ) and thatS′(x) = S(y) : Γ(y). But
Γ′(x) = Γ(y), so` S′ : Γ′. Moreover, from [Let] we know thatΓ′ ` e2 : T.
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Case e0 ≡ (let x = e1 in e2): GivenΓ ` e0 : T we have from [Let]Γ ` e1 : T1;Γ1.
From hypothesis,e0 reduces (by [C-CongruenceE]) soe1 → e′1. By the in-
duction hypothesis,̀ (S′,e′1) : T ′

1 andT ′
1 ≤ T1. So,` (S′,e′0) : T ′.

Case (S,e0)≡ (S,makeproxy e′):

Case e0 ≡ makeproxy x: e0 typechecks, so from [MakeProxy] we getΓ ` e0 :
proxy N andΓ ` x : nonproxy N

From ` S : Γ we get thatS(x) = (nonproxy,h), whereh = newC(ȳ) for
someC such that{C}C ≤ N. Reduction by [TransProxy] gives(S] {y 7→
(proxy,h)},y). For Γ′ = Γ[y 7→ proxy N], we have` S′ : Γ′. Also, Γ′ ` y :
proxy N.

Case e0 ≡ makeproxy e: From Γ ` e0 : T and [MakeProxyCheck] we get that
Γ ` e : Te. Also, by hypothesis, it reduces by [C-CongruenceE] to(S′,e0 ≡
makeproxy e′) wherè S′ : Γ′, Γ′ `e′ : T ′

e andT ′
e ≤Te. So,Γ′ `makeproxy e′ :

T ′ andT ′ ≤ T.

Case (S,e0)≡ (S,coercee):

Case e0≡ (coercex): FromΓ ` e0 : T and [CoerceVarCheck] we get thatΓ can be
written asΓ1[x 7→Q N] such that:Γ1[x 7→Q N] ` x : Q N;Γ1[x 7→Q N]. From
this and` S: Γ we get thatScan be written asS′]{x 7→ (Q,newC(ȳ))} for
someC such that{C}C ≤ N.

By hypothesis,e0 reduces by [TransCoerce]:(S]{x 7→ (Q,h)},coercex)→
(S]{x 7→ (nonproxy,h)},x).
So, forΓ′ = Γ1[x 7→ nonproxy N] we havè S′ : Γ′ andΓ′ ` x : nonproxy N,
wherenonproxy N ≤Q N.

Case e0≡ (coercee): By hypothesis:(S,coercee)→ (S′,coercee′) and` (S,e0) :
T, which gives from [CoerceExpCheck] that` (S,e) : Te.

So, by induction hypothesis we get that` (S′,e′) : T ′
e andT ′

e ≤ Te. Therefore,
` (S′,coercee′) : T ′ whereT ′ ≤ T.

Case (S,e0)≡ (S, if e= e then eelsee)

Case e0 ≡ (if x1 = x2 then e3 elsee4) From Γ ` e0 : T and [If] we get thatΓ `
x1 : nonproxy N1 andΓ ` x2 : nonproxy N2. From this and̀ S: Γ we get that
S(x1)= (nonproxy,newC1(ȳ1)) where{C1}C1 ≤N1 andS(x2)= (nonproxy,newC2(ȳ2))
where{C2}C2 ≤ N2. Also, (S,e0) reduces by [TransIfTrue] or [TransIfFalse],
to (S,e2) or (S,e3).
So, forΓ′ = Γ, we have that̀ S′ : Γ′ sinceSdid not change, and thatΓ′ ` e2 :
T2 andΓ′ ` e3 : T3, where from [If] we had thatT2≤ T andT3≤ T. Therefore,
in either caseΓ′ ` e′0 : T ′ andT ′ ≤ T.
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Case e0 ≡ (if e1 = e2 then e3 elsee4) From Γ ` e0 : T and [If] we get thatΓ `
e1 : nonproxy N1;Γ′. Also by hypothesis,e0 reduces by [C-CongruenceE], so
(S,e1)→ (S′,e′1). By the induction hypothesis, there is aΓ′ such that̀ S′ : Γ′
andΓ′ ` e′1 : T ′

1 whereT ′
1 ≤ nonproxy N1. It follows thatT ′

1 = nonproxy N′
1

andN′
1 ≤ N1.

Therefore,Γ′ ` e′0 : T ′ andT ′ ≤ T.

Case e0 ≡ (if x1 = e2 then e3 elsee4) From Γ ` e0 : T and [If] we get thatΓ `
e2 : nonproxy N2;Γ′. Also by hypothesis,e0 reduces by [C-CongruenceE], so
(S,e2)→ (S′,e′2). By the induction hypothesis, there is aΓ′ such that̀ S′ : Γ′
andΓ′ ` e′2 : T ′

2 whereT ′
2 ≤ nonproxy N2. It follows thatT ′

2 = nonproxy N′
2

andN′
2 ≤ N2.

Therefore,Γ′ ` e′0 : T ′ andT ′ ≤ T.

�

B.3 Inference Soundness

The soundness proof makes general use of the following lemma and corollary.

Lemma B.1 Given a derivatioǹ i CT, for any subderivation concluding withΓ `i E l :
T;Γ′ or Γ `c E l : T;Γ′, there is no other subderivationΓ0 `i E l0

0 : T;Γ′0 or Γ0 `c E l0
0 :

T0;Γ′0 in `i CT where l = l0.

Proof Assume that all expressionsE appearing inCT are uniquely-labeled. We proceed
by case analysis on the inference rules observing that never does a subderivation in the
premise refer to the label used in the conclusion. The only interesting cases are the [I-
CoerceVar] and [I-CoerceExp] rules, which introduce a fresh label to ensure this invariant.
�

Corollary B.2 Given a derivatioǹ i CT generating implication constraints I, and a la-
bel set L and substitutionσ such thatσ,L |= I, then for all expressionsE l appearing in
subderivations concluding with rules [I-exp], whereexp is not CoerceExp or CoerceVar,
then l 6∈ L.

The following lemma is used in cases involving fields and methods in the soundess proof.

Lemma B.3 Given a substitutionσ, label set L, and an inference derivatioǹi CT which
generates constraintsS and I, if σ |= S andσ,L |= I, then let CT′ = T [[CT]] (usingσ and
L):

1. If using CT we have that fields(ϕC) = T̄ f̄ , then using CT′ we have fields(σ(ϕC)) =
σ(T̄) f̄ .

2. If call(m,ϕC, S̄) = κ αC is a subderivation of̀ i CT then for all Ci ∈ σ(ϕ), if
mtype(m,Ci) = T̄i → Qi ϕC

i in CT, then mtype(m,Ci) = σ(T̄i) → σ(Qi) σ(ϕC
i ) in

CT′.
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Proof

1. σ(ϕC)= σ(ϕ)C, andfields(σ(ϕ)C)= fields(C), so it suffices to show that iffields(C)=
T̄ f̄ in CT, thenfields(C) = σ(T̄) f̄ in CT′. This follows by straightforward induc-
tion on the derivation offields(C) in CT and the transformationT [[C]]. The key
point is that theclass case ofT [[·]] uniformly appliesσ to the types of declared
fields (which otherwise remain the same).

2. By definition,call(m,σ(ϕC), S̄) implies that for allCi ∈ σ(ϕ), mtype(m,Ci) = T̄i →
Qi ϕC

i . The desired result follows by straightforward induction on the derivation
of mtype(m,Ci) in CT and the transformationT [[CT]]. The key point is that the
method case ofT [[·]] uniformly appliesσ to the types of parameters and return
types of methods (which otherwise remain the same).

�
Now we prove Theorem 3.4 (Inference Soundess), which states

Given a substitutionσ, label setL, and an inference derivatioǹi CT which
generates constraintsS andI , if σ |= S andσ,L |= I , then` T [[CT]]. More-
over, for each subderivation of̀i CT which contains subderivations of the
form

1. `i CL

2. `i M

3. Γ `i E l : T;Γ′, or
Γ `c E l : T;Γ′

there is a corresponding subderivation of` T [[CT]] having the form:

1. ` T [[CL]]

2. ` T [[M]]

3. σ(Γ) ` T [[E l ]] : σ(T);σ(Γ′)

Proof The proof is by induction on the inference derivation`i CT. We consider each of
the rules used in the derivation of`i CT. Using Corollary B.2, we can assume thatl 6∈ L
for each of the [I-exp] rules, whereexpis not CoerceExp or CoerceVar.

Case [I-Var]: E ≡ x Γ[x 7→ T] `i xl : T;Γ[x 7→ T]

Sincel 6∈ L, we haveT [[E l ]]⇒ x. Sinceσ(Γ[x 7→ T]) = σ(Γ)[x 7→ σ(T)], we have
σ(Γ)[x 7→ T ′] ` x : T ′;σ(Γ)[x 7→ T ′] by [Var].

Case [I-Let]: E ≡ let x = e1 in e2

Γ `i e1 : T;Γ1
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Γ1[x 7→ T] `i e2 : T ′;Γ′[x 7→ T ′′]

Sincel 6∈ L, we haveT [[E l ]]⇒ let x= T [[e1]] in T [[e2]]. By the induction hypothesis

σ(Γ) ` T [[e1]] : σ(T);σ(Γ1)

σ(Γ1[x 7→ T]) ` T [[e2]] : σ(T ′);σ(Γ′[x 7→ T ′′]).

The latter can be written as:σ(Γ1)[x 7→ σ(T)] ` T [[e2]] : σ(T ′);σ(Γ′)[x 7→ σ(T ′′)].
Therefore, we haveσ(Γ) ` let x = T [[e1]] in T [[e2]] : σ(T ′);σ(Γ′) by [Let].

Case [I-If]: E ≡ if e1 = e2 then e3 elsee4

Γ `c e1 : nonproxy N1;Γ1

Γ1 `c e2 : nonproxy N2;Γ2

Γ2 `i e3 : Q3 ϕC
3 ;Γ3

Γ3 `i e4 : Q4 ϕD
4 ;Γ4

Q3 ϕC
3 ≤ T ′ andQ4 ϕD

4 ≤ T ′

T ′ = κ αE andE = lub(C,D)

merge(Γ3,Γ4)

Sincel 6∈ L, we haveT [[E l ]] ⇒ if T [[e1]] = T [[e2]] then T [[e3]] elseT [[e4]]. By the
induction hypothesis we have

σ(Γ) ` T [[e1]] : nonproxy σ(N1);σ(Γ1),

σ(Γ1) ` T [[e2]] : nonproxy σ(N2);σ(Γ2) and

σ(Γ2) ` T [[e3]] : σ(Q3 ϕC
3);σ(Γ3).

σ(Γ3) ` T [[e4]] : σ(Q4 ϕD
4 );σ(Γ4).

Becauseσ |= S , we haveσ(Q3 ϕC
3) ≤ σ(T ′) andσ(Q4 ϕD

4 ) ≤ σ(T ′). Moreover,
sinceΓ3(x)≤ Γ′(x) andΓ4(x)≤ Γ′(x) for all x∈ dom(Γ3)∩dom(Γ4) (by the defi-
nition of merge), thenσ |= S implies thatσ(Γ′) = merge(σ(Γ2),σ(Γ3)). Therefore,
from [If] we get

σ(Γ) ` if T [[e1]] = T [[e2]] then T [[e3]] elseT [[e4]] : σ(T ′);σ(Γ′)

Case [I-Field]: E ≡ e. fi

Γ `c e : nonproxy N;Γ′

fields(N) = T̄ f̄

Sincel 6∈ L, we haveT [[E l ]]⇒ T [[e]]. fi . By the induction hypothesisσ(Γ) ` T [[e]] :
nonproxy σ(N);σ(Γ′). By Lemma B.3, we havefields(σ(N)) = σ(T̄) f̄ . Therefore,
from [Field] we have
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σ(Γ) ` T [[e]]. fi : σ(Ti);σ(Γ′)

Case [I-Invoke] E ≡ e1.m(ē)

Γ `c e1 : nonproxy ϕC;Γ′

Γ′ `i ē : S̄;Γ′′

call(m,ϕC, S̄) = κ αC

Sincel 6∈ L, we haveT [[E l ]]⇒ T [[e1]].m(T [[ē]]). By the induction hypothesis,

σ(Γ) ` T [[e1]] : nonproxy σ(N);σ(Γ′)
σ(Γ′) ` T [[ē]] : σ(S̄);σ(Γ′′)

By Lemma B.3 we have

for all Ci ∈ σ(ϕ), mtype(m,Ci) = σ(T̄i)→ σ(Qi) σ(ϕC
i ) in CT′.

This implies that

mtype(m,σ(ϕC)) = σ(T̄1)→ σ(Q1) σ(ϕC
1), . . . ,σ(T̄n)→ σ(Qn) σ(ϕC

n), where
mtype(m,Ci) = T̄1 →Q1 ϕC

1 (in CT) for all Ci ∈ σ(ϕ)

By the definition ofcall and sinceσ |= S , we also have that

σ(S̄)≤ σ(T̄i) for all i ≤ n

σ(Qi) σ(ϕC
i )≤ σ(κ) σ(αC)

Therefore, from [Invoke] we get

σ(Γ) ` T [[e1]].m(T [[ē]]) : σ(κ) σ(αC);σ(Γ′′)

Case [I-New]: E ≡ newC(ē)

Γ `i ē : S̄;Γ′

fields({C}C) = T̄ f̄

S̄≤ T̄

Since l 6∈ L, we haveT [[E l ]] ⇒ newC(T [[ē]]). By the induction hypothesis, we
have

σ(Γ) ` T [[ē]] : σ(S̄);σ(Γ′)

By Lemma B.3 we havefields(σ({C}C)) = σ(T̄) f̄ , and sinceσ |= S , we have
σ(S̄)≤ σ(T̄). Therefore, from [New] we get

σ(Γ) ` newC(T [[ē]]) : nonproxy σ({C}C);σ(Γ′)
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Case [I-Cast]: E ≡ (C)e

Γ `c e : nonproxy ϕD;Γ′

Sincel 6∈ L, we haveT [[E l ]]⇒ (σ(C))T [[e]]. By the induction hypothesis

σ(Γ) ` T [[e]] : nonproxy σ(ϕD);σ(Γ′)

Therefore, we can always apply either [Cast] or [SCast], depending on whether
φ1 = ϕ∩subtypes(C) is empty or not to prove

σ(Γ) ` T [[(C)e]] : nonproxy σ(φC
1);σ(Γ′)

Case [I-MakeProxy]: E ≡makeproxy e

Γ `c e : nonproxy N;Γ′

Sincel 6∈ L, we haveT [[E l ]]⇒makeproxy T [[e]]. By the induction hypothesis

σ(Γ) ` T [[e]] : nonproxy σ(N);σ(Γ′)

Therefore, by [MakeProxy] we have

σ(Γ) `makeproxy T [[e]] : proxy σ(N);σ(Γ′)

Case [I-CoerceExp]:E 6≡ x

Γ `i E l0 : Q N;Γ′

By the induction hypothesis

σ(Γ) ` T [[E ]] : σ(Q) σ(N);σ(Γ′) (1)

The desired result is

σ(Γ) ` T [[E ]] : nonproxy σ(N);σ(Γ′)

sinceσ(nonproxy) = nonproxy. There are two cases.

• l 6∈ L. Thenσ,L |= I impliesproxy 6≤Q, which implies thatσ(Q) = nonproxy.
Moreover, we haveT [[E l ]]⇒ T [[E ]] (sincel 6∈ L), and thus using (1) we can
show the desired result.

• l ∈ L. Thenσ,L |= I implies proxy ≤ Q, which implies thatσ(Q) = proxy.
Moreover, we haveT [[E l ]]⇒ coerceT [[E ]], and thus by [CoerceExp] and (1)
we have the desired result.

Case [I-CoerceVar]:E ≡ x

Γ[x 7→Q N] `i xl0 : Q N;Γ[x 7→Q N]
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By the induction hypothesis

σ(Γ)[x 7→ σ(Q) σ(N)] ` T [[x]] : σ(Q) σ(N);σ(Γ)[x 7→ σ(Q) σ(N)] (2)

The desired result is

σ(Γ)[x 7→ σ(Q) σ(N)] ` T [[x]] : nonproxy σ(N);σ(Γ)[x 7→ nonproxy σ(N)]

Similarly with [I-CoerceExp], there are two cases:

• l 6∈ L. Similarly [I-CoerceExp],σ(Q) must benonproxy, andT [[E l ]]⇒ T [[x]],
which using (2) yields the desired result.

• l ∈ L. ThenT [[E l ]]⇒ coercex. Therefore, from [CoerceVar] and (2) we have
the desired result.

Case [I-Method] M ≡ S m(T̄ x̄) { return e;}

x̄ : T̄, this : nonproxy {C}C `i e : U ;Γ′

U ≤ S

CT(C) = classC extendsD { . . . ; . . . }
override(m,D, T̄ → S)

We have that

T [[S m(T̄ x̄) { return e;}]]⇒ σ(S) m(σ(T̄) x̄) { return T [[e]];}

By the induction hypothesis

x̄ : σ(T̄), this : nonproxy {C}C ` T [[e]] : σ(U);σ(Γ′)

By definition we have thatT [[CT(C)]] = classC extendsD { . . . ; . . . }, and since
σ |= S , we haveσ(U)≤ σ(S). Finally, we have thatoverride(m,D,σ(T̄)→ σ(S)),
since by Lemma B.3, inT [[CT]] we havemtype(m,D) = σ(T̄)→ σ(S). Therefore,
by [Method], we have

` σ(S) m(σ(T̄) x̄) { return T [[e]];}

Case [I-Class]classC extendsD { T̄ f̄ ;K M̄ }

K = C(T̄ ḡ, S̄ f̄ ) { super(ḡ); this. f̄ = f̄ ; }
fields(D) = T̄ ḡ

`i M̄

The transformation gives

T [[classC extendsD { T̄ f̄ ;K M̄ }]]⇒T [[classC extendsD {σ(T̄) f̄ ;T [[K]] T [[M̄]] }]]
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By the induction hypothesis

` T [[M̄]]

By Lemma B.3,

σ(fields(D)) = σ(T̄) ḡ

By definition,

T [[K]]⇒C(σ(T̄) ḡ,σ(S̄) f̄ ) { super(ḡ); this. f̄ = f̄ ; }

So, by [Class] we have

` classC extendsD { σ(T̄) f̄ ;T [[K]] T [[M̄]] }

�
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