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Abstract—Metrics for quantifying information leakage as-
sume that an adversary’s gain is the defender’s loss. We
demonstrate that this assumption does not always hold via
a class of scenarios. We describe how to extend quantification
to account for a defender with goals distinct from adversary
failure. We implement the extension and experimentally ex-
plore the impact on the measured information leakage of the
motivating scenario.
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I. INTRODUCTION

Quantitative information flow (QIF) is concerned with
measuring the amount of secret information that leaks
through a system’s observable behavior during its execution.
The system takes secret (high) input and produces (low)
output that can be observed by an adversary. Before the
system is run, the adversary is assumed to have some a
priori information about the secret. As the system executes,
the adversary’s observations are combined with knowledge
about how the system works, resulting in some a posteriori
information about the secret. A general principle of QIF
states that the leakage of information by the execution is
defined as the increase in the adversary’s information.

Past work has studied how to precisely instantiate this
principle, considering various notions of information and
how they relate to each other [1], [3]–[5], [8], [9], [16], [23],
[27], [30], [32], and increasingly powerful adversaries. For
example, active adversaries may be allowed to provide (low)
inputs to the system, to manipulate it to leak more data, and
adaptive adversaries may choose these inputs based on the
observable behavior of the system [14], [17].

Most approaches to QIF consider leakage only from the
adversary’s point of view, whereas the goals and concerns
of the defender—i.e., the party interested in protecting
information—are overlooked. While in many cases the
adversary’s gain is directly and inversely related to the
defender’s loss, this is not always the case. This paper
explores this point of view, that is, that the actual leakage
of information of an execution is linked to the defender’s
loss of secrecy and not necessarily the adversary’s gain of
information. The following example illustrates this point.

A defender has a stash of gold and a set of 8 possible
locations at which to hide it from an adversary, who wants to
steal the valuable. Assume that time passes in discrete steps,
and that after four time steps the defender can choose to

relocate the stash. On the other hand, the adversary can take
one of three actions at each time step: (i) choose a location
to stake out, incurring in a cost of $c due to the resources
needed for the observation; (ii) choose a location to raid,
resulting in a gain of $1 if the gold is found (but no gain
otherwise); or (iii) do nothing and wait for another time step,
at no cost or gain. The adversary can collect observations or
stall for as many time steps as he wants, but once a raid is
made the process must stop (perhaps because the defender
will realize his gold is at risk and flee the country with it).

We can measure the leakage of the secret in terms of
expected value (in $) in knowing the secret. From the
adversary’s point of view, the leakage relates to his total
profit over the process; to maximize leakage, he wants to
find the gold with the fewest possible observations. On the
other hand, the defender’s sole concern is to keep the stash
safe, and so leakage for him relates directly to the value ($1)
of the stash. Because defender’s loss and adversary’s gain do
not directly oppose each other—in particular, the cost of the
adversary’s observations is irrelevant to the defender—subtle
issues emerge when we try to reason about the leakage of
information only from the point of view of the adversary.

As we will show in Section V, if the adversary is rational,
his gain can take any value between $0 and $1 depending on
observation cost c. However, in the long run there are only
two feasible measures of the defender’s loss: the gold will be
successfully stolen with probability either 1 or 0, and nothing
in between is possible. The cutting edge between the two
extremes is due to the adversary’s interest in maximizing
gain: the endeavor will be profitable only if the cost of
observing is at most $c ≤ $1/7; 1 otherwise the best strategy
is not to observe (or raid) at all. Hence, measuring the threat
in terms of adversarial gain could lead one to incorrect
conclusions about the security of the defender’s secret. This
analysis also gives a meaningful insight to the defender’s
policy making: rather than move the stash more frequently
to reduce the risk of theft, he should instead increase the
cost of observation to the adversary—anything above $1/7
will make the gold completely safe.

This paper explores a model for QIF that distinguishes
the gain of the attacker from the loss to the defender.
Our model is a generalization of a model we developed

1An analysis that proves this inequality can be found in Section 6.D of
our prior paper [18].
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Figure 1. System modeled as an information theoretic channel.

previously that considers dynamic secrets, which are secrets
the defender may change over time, while interacting with
an adaptive (and active) adversary [18]. While our previous
model measures leakage only from the adversary’s point of
view, this paper provides separate metrics for the attacker
and defender.

The main contributions of this paper are the following.
• We extend the model of systems with dynamic secrets

and adaptive adversaries [18] to distinguish between the
defender’s loss and adversary’s gain. We make explicit
the strategy each party adopts and we propose metrics
of leakage based on how these two interact.

• We show that both adversary gain and defender loss are
necessary to quantify vulnerability of the secret and that
if the distinction is ignored, incorrect conclusions can
follow.

• We define best- and worst-case measures of loss that
describe bounds on loss in the face of the most lucky
and unlucky defenders, respectively.

• We also show how sound overestimation of adversary
gain can lead to unsound underestimation of defender
loss (once again motivating the need to distinguish the
two).

The remainder of the paper is organized as follows.
Section II reviews the basic information-theoretic approach
to quantifying information flow. Section III presents the
model we adopt in the paper, which accounts for a defender
and an adversary producing inputs to the system according
to their own strategies, and Section IV defines metrics of
information leakage over this model, and algorithms to
compute them. Section V describes a series of experiments
involving an implementation of our model that illustrate
the above points. Section VI discusses related work, and
Section VII concludes.

II. BACKGROUND

A. The basic information theoretic approach to QIF

The classic model for QIF, pioneered by Denning [10],
represents a system as an information-theoretic channel as
in Figure 1. The channel is a probabilistic function mapping
each high security (i.e., secret) input and low security (i.e.,
public) input to an observable (i.e., public) output. (High
security outputs can also be modeled, but we have no need
for them in this work.)

The adversary is assumed to know the probabilistic
function describing the channel, and to have some initial

uncertainty (i.e., a possibly incomplete state of knowledge)
about the high input. By providing low input and observ-
ing output, the adversary derives some revised uncertainty
about the high input. Uncertainty is typically represented
with probability distributions [12], and specific metrics of
information for QIF map each distribution to a numeric
quantity representing the information it contains [6], [8],
[9], [25], [30]. Leakage is then defined as the change in
the adversary’s information.

More formally, let XH, XL and XO be random variables
representing the distribution of high inputs, low inputs, and
observables, respectively. Given a function F (X) of the
information of X, leakage is calculated as follows: 2

F (XH | XL = `,XO)− F (XH), (1)

where ` is the low input chosen by the adversary, F (XH)
is the adversary’s initial information about the high in-
put, and F (XH | XL = `,XO) is the revised in-
formation. As is standard, F (XH | XL = `,XO) is
defined to be Eo←XO [F (XH | XO = o,XL = `)], where
Ex←X [f(x)] denotes

∑
x Pr (X = x) · f(x).

Various instantiations of F have been proposed, includ-
ing Shannon entropy [3], [6], [8], [15], [17], [24], [25],
guessing entropy [16], [21], marginal guesswork [27], and
(Bayes) vulnerability [5], [30]. In particular, the g-leakage
framework [3] uses gain functions to model the benefit the
adversary obtains by making a particular guess when the
secret has a particular value, and define information in terms
of adversary gain. Gain functions are expressive enough
to model a wide range of scenarios, including when the
adversary benefits from guessing part of the secret, guessing
a secret approximately, guessing a property of the secret, or
guessing the secret within a certain number of tries. As we
will see in Section IV, in this paper we will consider notions
of information based on a variation of gain functions.

B. System, context, and maximum leakage

In general, the amount of information leaked in an execu-
tion varies according to the particular high and low inputs
fed to the system. When analyzing the level of security
of a system, it is often desirable to obtain robust upper
bounds on its leakage that do not depend on any assumption
about how exactly inputs will be generated and provided. In
order to obtain such bounds, the modeling of the system
itself (i.e., the mapping from inputs to outputs) is made
independently from the modeling of the context in which
the system executes, which describes the way inputs are
generated and fed to the system.

2Braun et al. [5] make a distinction between this definition of leakage,
called additive leakage, and multiplicative leakage, where the ratio (rather
than the difference) of the a posteriori and a priori information is taken.
Divisions by zero avoided, the results of this paper apply to both definitions.
For recent results on maximum leakage for both definitions, we refer to
Alvim et al. [2].
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Figure 2. Model.

The maximum leakage is an upper bound on the leakage
of a system obtained by maximizing the value of leakage
over all possible configurations of the context of execution.
For systems that only accept high inputs, the context can
be modeled simply as a distribution on secret inputs, and
the maximum leakage is the supremum of the leakage over
all possible distributions of secrets. When low inputs are
also possible, the description of a context needs to account
for both the distribution on secrets and for how adversarial
choices of low inputs affect the behavior of the system.
In Section IV we will discuss the calculation of maximum
leakage for the type of execution we are interested in.

III. MODEL

This paper extends a model we recently developed to
quantify information flow for dynamic secrets (i.e., those
that change with time) [18]. The model generalizes the
classic model in several ways:

Dynamic secrets: Typical information flow models
assume the defender’s secret is fixed across adversarial
observations. Our model permits the defender to replace
the existing secret with a new secret without resetting the
measure of leakage; thus from the adversary’s point of view,
the secret is a moving target.

Interactivity: To model a powerful adversary, our
model allows feedback from outputs to inputs. That is, the
adversary can use knowledge gained from one observation
to choose a subsequent input to feed into the system.

Input vs. attack: Our model distinguishes inputs that
are attacks from those that are not. For example, an ad-
versary might navigate through a website before uploading
a maliciously crafted string to launch a SQL injection

Notation Explanation
H Finite set of high inputs
L Finite set of low inputs
E Finite set of exploits
A The set of low inputs and exploits, L∪E (also called actions)
O Finite set of observables
υ The system function, of type H∗ × L∗ ×O∗ → D (O)
η A high-input strategy, of type H∗ × L∗ ×O∗ → D (H)
α An adversary’s action strategy, of type L∗ ×O∗ → D (A)
Sη The set of possible high-input strategies
Pr(Xη) The distribution of possible high-input strategies for a given

scenario
Sα The set of possible action strategies
λ, γ Loss, and gain, functions, respectively, each with type H∗×

A∗ ×O∗ → D (R)
T ∈ Z+ The latest possible time to attack in a given scenario

Table I
ELEMENTS OF THE MODEL IN FIGURE 2

attack; the navigation inputs themselves are not attacks.
This distinction is important when quantifying information
flow: the leakage at one point is taken with respect to the
expectation of a future attack.

Delayed attack: Just as adversaries are permitted to
decide what input to provide, they are also permitted to
decide when is the best time to attack, and this decision
process will be considered when quantifying leakage.

This paper extends the model of [18] one step further:
when quantifying information leakage from the system, we
make the defender’s loss distinct from the adversary’s gain.

The model is depicted in Figure 2, and consists of roughly
three parts: the context, at the top; the round, in the middle;
and the evaluation, at the bottom. The latter two phases
together are termed the scenario. We describe each part in
turn, but before we do, we introduce some notation.

A. Notation

• We write f : A → D (B) to designate a probabilistic
function of type A → B, i.e., a function that takes an
element of A as input and probabilistically returns an
element of B (so D should be read “distribution over”).

• Given a random variable X , we will write x ← X as
the process of sampling a value from the distribution
Pr(X) and write x ∈ X to designate any value x that
has non-zero probability according to Pr(X).

• Strings are given type S∗ def
= {ε} ∪ S ∪ S2 · · · . We

will use capital letters (L,H,O, · · · ) to refer to strings.
We will sometimes write St to designate an element
of S∗ that is t elements long and at to refer to the tth

element in some string S. Given S ∈ St and a ∈ S
then S·a ∈ St+1.

Formal terminology that we use is tabulated in Table I.
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B. Iterated rounds

The model depicted in Figure 2 characterizes an interac-
tion between two participants, an adversary and a defender.
The elements of the classic model from Figure 1 can be
seen in the middle part of the figure, the round, which is
iterated over a series of rounds (hence its name). Here, the
defender (the box labeled high-input generation) starts by
picking an initial secret (high) value out of a set H, and may
choose a different secret in subsequent rounds t (the secret
value h is indexed by the round t). Likewise, in each round
the adversary (the box labeled action generation) produces
a low input draw from a set L. These inputs are fed into
the system υ which produces an observable, visible to both
participants, that is drawn from set O. The system may
consider past observations as well when producing its result;
it has type H∗×L∗×O∗ → D (O). At some predetermined
time T , or before then if it is in his interest, the adversary
picks an exploit from a set E , which is then evaluated, along
with the history of events so far, to determine the gain of
the adversary and the loss of the defender. We discuss the
evaluation phase at the end of this section.

The history of an execution can be split into a secret
history (high values) and a public history (low values and
observables). The defender’s view of an execution consists
of both the secret and public history, whereas the adversary’s
view is restricted to the latter. The choices made in each
round by the defender and adversary are specified in terms
of strategy functions, which depend on their views of the
execution. The defender’s high-input strategy is a function
η : H∗×L∗×O∗ → D (H) that produces the next high value
given the history so far. For the adversary, the strategy is a
function α : L∗ × O∗ → D (L ∪ E) that produces a low
input or an exploit given the public history of the execution.
These strategies are determined by the context in a manner
described in the next subsection.

Next we characterize the scenario precisely. A single
round of interactions is described by the round function
(where we write A to mean the set L ∪ E):

roundη,α : H∗ ×A∗ ×O∗ → D (H∗ ×A∗ ×O∗)

1 roundη,α : (H,A·`, O) 7→
2 let a ← α(A·`, O) in
3 if a ∈ L then
4 let o ← υ(H,L·a,O) in
5 let h ← η(H,A·`·a,O·o) in
6 (H·h,A·`·a,O·o)
7 else
8 (H,A·`·a,O)
9 roundη,α : (H,A·e,O) 7→ (H,A·e,O)

The subscripts on the function identify the two strategy
functions, and the proper arguments characterize the history
of high inputs, actions (low inputs or exploits), and observa-
tions made so far. Lines 1–8 consider the case that the last
action of the adversary was a low input `. In this case, the

scenario computes next action of the adversary (line 2) and,
if it is a low input (line 3), produces the next observation
(line 4) and the subsequent high value using the defender’s
strategy (line 5). Each of these choices is appended to the
existing history (line 6). If the adversary instead produces
an exploit (line 7), then just this exploit is added to the
history (line 8). An exploit is considered the final event of an
interaction, and as such line 9 leaves the history untouched.

C. Context

The context describes the possible strategy functions used
in a scenario. It includes a set of high-input strategies Sη
and a distribution Xη on these strategies, which encodes
an adversary’s prior knowledge of the possible strategies
the defender will use. This distribution helps establish the
adversary’s initial uncertainty about the defender’s secret.

The context also includes a set of adversary strategies
Sα which enumerates the space of behaviors permitted to
the adversary. While the defender’s strategy can be any
one drawn from Xη , our definition of information leakage
assumes that adversaries are optimal and pick from the set
Sα only strategies maximizing expected gain. Later, we will
define the set Sα to restrict the adversary in several ways
and in so doing show how to define standard QIF metrics.

D. Full scenario and evaluation

The impact of an exploit is evaluated by two functions,
as shown at the bottom of the figure. The gain function
γ : H∗ × A∗ × O∗ → D (R) determines the gain to the
adversary; the loss function λ : H∗ × A∗ × O∗ → D (R)
determines the defender’s loss. Notice that gain functions
are defined over the history of each of the relevant values,
rather than, say, the most recent ones. This is because we
are quantifying leakage about moving-target secrets, so we
must discriminate current and past high values.

To use these functions to compute the information leak-
age, we can evaluate the scenario up to (at most) some time
T and then compute the gain, and loss, of the final outcome.
This is done according to the scen function.

scenγ,λ : Z× Sη × Sα → D (R× R)

1 scenγ,λ : (T, η, α) 7→
2 let h0 ← η(ε, ε, ε) in
3 let (H,A,O) ← roundTη,α(h0, ε, ε) in
4 let s ← λ(H,A,O) in
5 let g ← γ(H,A,O) in
6 (s, g)

Evaluation starts with computing the initial high value
h0 (line 2). It then computes T rounds using round (line
3): on the first iteration it uses arguments (h0, ε, ε), which
produces some output (H2, A1, O1) that is used as input to
the next call to round, whose output is passed to the next
call, and so on; this happens T times with (H,A,O) as the

4



final outcome. The loss s and gain g are computed on lines
4 and 5, respectively.

In the remainder of the paper, when (s, g) =
E [scenγ,λ(· · · )] we sometimes write lossγ,λ(· · · ) and
gainγ,λ(· · · ) to refer to the expected loss s and the expected
gain g, respectively. 3

IV. METRICS

The evaluation component of the model from the previous
section produces expected values of loss and gain for given
defender and adversary strategies. In this section we use
these values to define metrics of the information flow of
system executions, and we show how to compute these
metrics. Our definitions generalizes several popular metrics
from the literature, and Appendix A shows how these metrics
can be recovered by simplified variants of our model.

A. Defining the metrics

The amount of information leaked by a system depends
on actions performed by both adversary and defender. Our
metrics are defined assuming that each party has independent
interests, and that each has some knowledge about the
other’s actions.

In particular, we assume that the adversary knows that the
defender draws a high-input strategy according to Xη . Hence
an optimal adversary picks an action strategy αopt ∈ Sα
that would maximize their expected gain. The adversary’s
expected gain G is defined, then, as the expected gain when
using an optimal strategy αopt.

Given that the defender draws a high-input strategy from
Xη , the expected loss S is defined as the expectation of the
loss evaluation function, assuming the adversary’s strategy
is their optimal one, αopt.

Figure 3 depicts an example of spaces of strategies, to-
gether with the gain and loss they induce. In both graphs, the
x-axis represents defender’s loss and the y-axis represents
adversary gain.

The top graph depicts the set of possible adversary strate-
gies. The maximum expected gain, labeled G, is achieved
by an optimal strategy αopt, and this strategy induces an
expected loss, labeled S, for the defender. This loss, however,
is not necessarily the maximum (or minimum) possible.

Worst- and best-case defender loss are depicted in the
bottom graph. They are defined, respectively, as the maxi-
mum and minimum expected loss over the set Sη of high
strategies when the adversary follows the optimal strategy
αopt.

Whereas S represents the expected loss over all defenders
in Sη , worst-case loss S∧ and best-case loss S∨ are absolute
bounds that hold for all defenders.

3Multivariate expectation E [(x, y)] is defined as (E [x] ,E [y]).

loss
(for η ← Xη)

gain
(against η ← Xη)

action strategies
Sα

high-input
strategies
Sη

αopt

loss
(against αopt)

ηwcηbc

G

S

S S∧S∨

Xη

Figure 3. Metrics: optimal expected gain (above), and (worst case, best-
case, expected) loss (below).

Before formally introducing metrics to capture the inter-
play between defender’s loss and adversary’s gain, we will
introduce the following notation.
gainγ,λ(T, η←Xη, α)

def
= Eη←Xη

[
gainγ,λ(T, η, α)

]
, and

lossγ,λ(T, η←Xη, α)
def
= Eη←Xη [lossγ,λ(T, η, α)],

The expectation is taken over the probability Pr(Xη) and
the various probabilities in the other model parameters.

Definition 1 (Metrics of information).
1) An adversary’s (optimal) expected gain against prior

Pr(Xη) is the maximal expected gain over the set Sα
of adversary strategies:

GTγ (Xη,Sα, υ)
def
= max

α∈Sα
gainγ,λ(T, η ← Xη, α)

= gainγ,λ(T, η ← Xη, αopt)

2) The defender’s expected loss against the optimal adver-
sary αopt is defined as: 4

STγ,λ (Xη,Sα, υ)
def
= lossγ,λ(T, η ← Xη, αopt)

3) The defender’s worst case (best case) loss is the
maximal (minimal) expected loss against the optimal
adversary αopt:

ST∧γ,λ (Xη,Sη,Sα, υ)
def
= max

η∈Sη
lossγ,λ(T, η, αopt)

= lossγ,λ(T, ηwc, αopt)

ST∨γ,λ (Xη,Sη,Sα, υ)
def
= min

η∈Sη
lossγ,λ(T, η, αopt)

= lossγ,λ(T, ηbc, αopt)

(So, ηwc and ηbc are the strategies that, respectively,
maximize and minimize loss against an optimal adver-
sary.)

4We assume that if there are multiple optimal adversary strategies, αopt
is one which maximizes defender loss among them (that is, uses loss as a
tie-breaker in the optimization).
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B. Computing optimal adversary gain and associated de-
fender loss

If the sets of possible strategies are large, enumerating
them in order to calculate the given metrics could be too
costly. Here we consider the following alternative approach.

We assume that the set of adversary strategies Sα has
a basis of deterministic strategies, which ensures that the
search for optimal action strategies can be simplified. We
then define a procedure P that predicts the adversary’s
expected gain and the associated defender’s loss. This proce-
dure builds an action strategy (simplified by our assumption)
that always picks an action maximizing gain according
to the adversary’s current belief about the state of the
system. This belief is constructed by the procedure infer

which describes how the adversary updates their knowledge
about the high values in an execution, given their view
of the system (the public history of adversary actions and
observables). This procedure produces a distribution over
high values conditioned on the adversary’s view. We describe
each of these steps in more detail in the rest of this section.

Structure on Sα: We assume the set Sα has a basis
composed of deterministic strategies, meaning that whenever
an action can be generated by a probabilistic strategy in Sα,
there is also a deterministic strategy in Sα that can generate
the same action. We represent this basis in compact form as
a possibilistic strategy αS : L∗×O∗ → P (A), which returns
the subset of A consisting of exactly all actions allowed by
some strategy in Sα. The set of all deterministic strategies
gen(αS) generated by the possibilistic strategy αS is given
by

gen(αS)
def
= {α ∈ L∗ ×O∗ → D (A) :

α is deterministic,
α is consistent with αS},

where we say strategy α is consistent with possibilistic
strategy αS iff α(L,O) ⊆ αS(L,O) for every L,O.

Assuming that gen(αS) ⊆ Sα, we can greatly reduce the
computational cost of finding an optimal strategy, as the best
strategy among all of those in Sα can be found using the
possibilistic strategy as the underlying search space. 5

Adversary inference: By interacting with the system
and observing the public history of an execution, the adver-
sary learns about the defender’s strategy and the high values.
For a given context Xη and system υ, this learning process is
encapsulated by the procedure infer defined below. Given
the public history visible to an adversary, the procedure
produces a distribution over the secret history conditioned

5 This is because in games in which an adversary is optimized against a
fixed defender, as is the case here, there is always an optimal deterministic
strategy [18], assuming it can choose from among the options available
to the probabilistic strategies. Effectively, in general probabilistic strategies
can be ignored as long as the space of deterministic ones is general enough
(which is the case, for instance, when deterministic strategies are corner
points for the space of all strategies).

on adversary’s view (i.e., consistent with the adversary’s
observations). We will use this distribution in maximizing
the expectation of gain.

infer : A∗ ×O∗ → D (Sη ×H∗)

1 infer:(ε, ε) 7→
2 let η ← Xη in
3 let h ← η(ε, ε, ε) in
4 (η, h)
5 infer:(A·a,O·o) 7→
6 let (η,H) ← infer(A,O) in
7 assume υ(H,A·a,O) = o
8 let h ← η(H,A·a,O·o) in
9 (η,H·h)

The conditioning in the second case (lines 5–9) deter-
mines the adversary’s knowledge about H·h given a non-
empty public history A·a, O·o. The adversary first deter-
mines an initial knowledge about η and H , which is defined
recursively (line 6). This knowledge is then refined by
taking into consideration that the system function must have
returned o when evaluated on H,A·a,O (line 7). Finally,
he predicts the next high value h as produced from the high
strategy η (line 9).

Gain optimization: We can now define P (for “pre-
diction”) as the function that, for a given context Xη and
system υ, maps the adversary’s view to the pair of their
optimal expected gain and associated defender’s expected
loss.

P (A,O)
def
=

max
a∈αS(A,O)


E(·,H)←infer(A,O)

g←γ(H,A·a,O)
s←λ(H,A·a,O)

[(g, s)] (1)

E(η,H)←infer(A,O)
o←υ(H,A·a,O)

[P (A·a,O·o)] (2)

where (1) requires a ∈ E or t = T , and (2) requires a ∈ L
and t < T , given that t def

= length of A,O. For purposes
of maximization, we order pairs lexicographically, favoring
g over s, i.e., (g1, s1) < (g2, s2) whenever g1 < g2 or
g1 = g2 and s1 < s2. This is a technicality required for the
definition of defender loss when there are multiple optimal
adversaries. This definition lets us construct an optimal
“demonic” adversary who, when gain is equal, picks actions
that maximize loss.

The definition of P recursively maximizes the expected
gain over all actions available to the adversary, given the
public history at each time step. Whenever an exploit is
produced, or when the maximum time T is achieved, the
adversary expected gain is calculated using the result of
the gain function evaluated over the public history and the
adversary’s belief about what the secret history might be.
Alternatively, when t < T and the action is a low input,
their expected gain is calculated using the gain expected
for the adversary’s view at the following time step, which
includes a prediction of what the next observable might be.

6



An optimal strategy αopt is defined by replacing max with
argmax in the definition of P above.

Proposition 1. The recurrence P accurately describes the
optimal expected adversary gain and the associated defender
loss. Also, the strategy αopt is a strategy that realizes both.

GTγ (Xη,Sα, υ) = P1(ε, ε) = gainγ,λ(T, η ← Xη, αopt)

STγ,λ (Xη,Sα, υ) = P2(ε, ε) = lossγ,λ(T, η ← Xη, αopt)

C. Computing worst- and best-case defender loss

The worst- and best-case defender loss can be determined
by computing lossγ,λ(T, η, αopt) for every η ∈ Sη . Once
again, enumerating the set Sη of defender strategies may be
too costly, so we assume additional structure on that set and
describe how to find the defender strategies that realize the
worst- and best loss.

More precisely, we consider that the defender’s strategy
can be split into two components: (i) a controllable one,
which is deterministic and can be directly regulated by the
defender, and (ii) a imposed one, which can be probabilis-
tic and is beyond the defender’s control. As an example,
consider a defender who can decide when to reset a secret
key (via a controlled component), but does not have control
over the value it is reset to (it is picked by the imposed
component). This expressiveness is particularly relevant for
calculating our best- and worst-case metrics, since it allows
us to rule out a defender who, knowing beforehand that
the adversary is rational, would behave so to minimize the
efficacy of the adversary’s strategy (e.g., by always picking
the secret key that would be guessed last by the rational
adversary). 6

Formally, the imposed and controllable components of a
defender strategy are separated as follows. Define H̄ to be
a set of high actions (distinct from secret high values H),
modeling inputs that the controllable component can produce
and feed to the imposed component. A controllable half is
a strategy η̄ : H∗ × L∗ × O∗ → D

(
H̄
)

that produces a
high action to be fed to a imposed half, which is a function
ηf : H∗×L∗×O∗×H̄ → D (H) that takes the high action
into account to actually produce a high value. A defender
strategy, thus, is a composition η̄ ◦ ηf :
(η̄ ◦ ηf ):(H,L,O) 7→
let h̄ ← η̄(H,L,O) in

ηf (H,L,O, h̄)

6In this paper we do not need impose similar restrictions to the behavior
of the adversary, but there may be interesting examples which might require
us to do so.

Our enumeration of high actions is made akin to that
of adversary actions in the optimization for gain. We will
similarly define a possibilistic high action strategy η̄S :
H∗ × L∗ × O∗ → P

(
H̄
)
, which provides the set of high

actions available at any point in a scenario. The search for
the worst- and best-case defender loss can be thus restricted
to strategies generated as follows:

gen(η̄S , ηf )
def
= {η ∈ H∗ × L∗ ×O∗ → D (H) :

η = η̄ ◦ ηf ,
η̄ is deterministic,
η̄ is consistent with η̄S}

We thus assume that gen(η̄S , ηf ) ⊆ Sη , and that any
other strategy in Sη is a composition of some η̄ (consistent
with η̄S ) and ηf . From here we proceed similarly as in the
optimization of adversary behavior. We define S∧ and S∨

as mappings from the defender’s view (the full history of
the execution) to their expected worst- and best-case loss,
respectively.

S∧(H,A,O)
def
=

max
h̄∈η̄S(H,A·a,O)


Eh←ηf (H,A·a,O,h̄)
s←λ(H·h,A·a,O)

[s] (1)

Eh←ηf (H,A·a,O,h̄)
o←υ(H·h,A·a,O)

[S∧(H·h,A·a,O·o)] (2)

where (1) requires a ∈ E or t = T , and (2) requires a ∈ L
and t < T , given that a def

= αopt(A,O) and t
def
= length of

H .
The definition of S∨ for computing the best-case is the

same but replacing max with min and S∧ with S∨ in the
recursive case. Let ηwc and ηbc be strategies defined by
replacing max and min above with argmax and argmin re-
spectively, and composing with the imposed ηf as described
above.

Proposition 2. The recurrences S∧ and S∨ accurately
describe the worst- and best-case defender loss against the
optimal adversary. Also, the strategies exhibiting the worst-
and best-case loss are ηwc and ηbc, respectively.

ST∧γ,λ (Xη,Sη,Sα, υ) = S∧(ε, ε, ε)

= lossγ,λ(ηwc, αopt)

ST∨γ,λ (Xη,Sη,Sα, υ) = S∨(ε, ε, ε)

= lossγ,λ(ηbc, αopt)

V. EXPERIMENTS

As a proof-of-concept we use a simple implementation to
evaluate our model on a few scenarios. We briefly describe
the implementation below. In Section V-A we revisit the ex-
ample from the introduction, analyzing the relation between
loss and gain. In the process, we illustrate how to instantiate
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Figure 4. Experimental parameters.

several parameters of our model that have only been treated
abstractly so far. In Section V-B we slightly adapt the
example, and analyze worst- and best-case defender loss.
Finally in Section V-C we show how sound over-estimation
of adversary gain can lead to unsound under-estimation of
defender loss. The model parameters we instantiate in our
experiments are summarized in Figure 4.

Implementation: We implemented our model using a
simple monadic embedding of probabilistic computing [28]
in OCaml, as per Kiselyov and Shan [13]. The various
probabilistic model parameters are written in monadic style
(see [18] for code examples). The recursive procedure
P from Section IV-B is computed using these elements
to obtain both the optimal adversary gain and associated
defender loss, as well as the strategy that achieves these.
To compute the worst- and best-case defender loss we
similarly implement the recursive procedures S∧ and S∨ of
Section IV-C. The implementation (and experiments from
the next section) are available online. 7

A. How does a non-zero-sum utility/gain impact information
flow as compared to zero-sum?

Here we analyze our introductory example to show how
adversary gain and defender loss are not necessarily aligned
and that conclusions from one do not necessarily carry over
to the other.

We consider a defender who can choose to hide a stash
of gold in one of a set of possible stash locations, modeled
as an integer between 0 and 7. At every point in time the
adversary may pick one of three actions: (i) stake out, at
a cost, a location to learn whether the defender’s stash is

7http://github.com/plum-umd/qif/tree/master/fcs14

stored there; (ii) raid a location, obtaining a gain of 1 if the
stash is found there, and 0 otherwise; or (iii) stall and not
stake out or raid at all (at no gain or cost). Concomitantly,
at every 4th time step, the defender can move the stash to
a new random location. The defender’s concern is only for
whether or not the stash stays hidden; the cost incurred by
the adversary is of no interest.

This example can be formally captured by our model as
follows. (Whenever we use the variable t in the pseudo-code,
it will refer to the length of the high portion of the history.)
• Sets of possible high inputs, low inputs, observations,

and exploits are encoded as:

H = {0, · · · , 7}
L = {stakeouti}7i=0 ∪ {no-stakeout}
O = {found, not-found}
E = {raidi}7i=0 ∪ {no-raid}

• There is only one possible high-input strategy, move,
which at every 4th time step picks a new high value
uniformly at random:
move:(H·h,A,O) 7→
if t mod 4 = 0
then uniform H
else h

Hence Sη = {move}. (We are not yet reasoning
about worst- and best-case loss, so we do not need to
decompose the defender strategy into controllable and
imposed components per Section IV-C.)

• The adversary is assumed to know the defender’s
strategy. The adversary’s prior knowledge Xη about
possible high-input strategies is encoded as a process
taking no arguments and returning high input strategy:
Xη:() 7→ move

• The possibilistic basis αS = act_all for the allowable
adversary strategies, Sα, allows for any action at any
point:
act_all:(A,O) 7→ L ∪ E

• The system function, through which the adversary
makes observations, is υ = stakeout_maybe, and it
determines whether the adversary staked out the correct
location or not:
stakeout_maybe:(H·h,A·no-stakeout, O) 7→

not-found
stakeout_maybe:(H·h,A·stakeout`, O) 7→
if h = `
then found
else not-found

• The adversary gain, γ = raid_maybe, computes the
cumulative cost incurred for observations made by the
adversary. If the adversary decides to raid, the function
adds the cost a value of either 1 or 0 depending on

8
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Figure 5. Expected raid_maybe gain (dotted lines) and
raid_success loss (solid lines) with costly stakeouts
stakeout_maybe and moving stash move.

whether the raid was, respectively, successful or not
successful:
raid_maybe:(H·h,A·no-raid, O) 7→
−c * count_stakeouts(A)

// count how many adversary
// actions were stakeouts

raid_maybe:(H·h,A·raid`, O) 7→
let raid_gain =

if h = ` then 1 else 0 in
let stakeouts = count_stakeouts(A) in

raid_gain - c * stakeouts

The process is parameterized by the value c of the cost
the adversary incurs for each observation.

• The defender loss, λ = raid_success, on the other
hand, indicates only the success of the raid if it oc-
curred.
raid_success:(H·h,A·no-raid, O) 7→ 0.0
raid_success:(H·h,A·raid`, O) 7→
if h = ` then 1 else 0

Figure 5 demonstrates how adversary gain and defender
utility behave in this stakeouts example for varying lengths
of time (T ). Each line considers a different cost value c:
dotted lines show adversary gain, whereas solid ones show
defender loss. Lines incurring the same cost have the same
color, for easier comparison. Notice that gain very much
depends on the cost of observations. With cost 0.00 the gain
is highest, and it steadily decreases as cost increases. At 0.15
it is no longer advantageous for the adversary to observe at
all, so the gain flattens at 1/8 (their initial gain without any
observations). On the other hand, defender loss is not as
dependent on the observation cost: it is essentially the same
for costs 0.00, 0.05, and 0.10, and it follows in magnitude
the gain an adversary would receive were cost equal to 0.00.
When the cost is high enough (0.15) the loss drops abruptly
to 1/8, since in this case the adversary would opt to never
observe.

From an analytical study of this scenario (see [18]), we
know adversary gain and the resulting defender loss can be
bounded at 0 as long as the cost for observations is high
enough (at least 1/7). For intermediate values of cost, the gain

and loss are not identical. There, the gain can be bounded
in the limit by 1− c · 1/7 but even given this bound, the loss
for the defender approaches 1.

B. How can a defender be prevented from a catastrophic
worst-case behavior?

This experiment shows how to use worst- and best-case
defender loss as a means of quantifying secret vulnerability
in the face of, respectively, a catastrophic defender and
a particularly lucky one. It shows, on one hand, that a
scenario can be sufficiently restricted that even the worst-
case defender maintains security for some period of time,
and on the other hand, that even the most lucky defender
will succumb eventually under those same restrictions.

Best- and worst-case defender loss are extra tools in
analyzing the information flow of a system. Though the
adversary is expecting to act optimally against a population
of defender strategies Xη , here we will look at the range
of the resulting loss over three, ever larger, sets of defender
strategies Xη ⊂ Sη1 ⊂ Sη2 ⊂ Sη3. In effect this provides
some guarantees that no matter what strategy is chosen by
the defender, their loss will be bounded above and below by
the worst case and best case loss. The worst-case is perhaps
more relevant as it provides a means of quantifying security
even in the face of catastrophic defender behavior.

To illustrate our point, consider a slight modification to the
previous example. Assume that now the adversary expects to
be attacking a defender who may or may not choose to move
the secret stash every 4th time step. To model this variation
we decompose the defender strategies into controllable and
imposed components, as described in Section IV-C.

Recall that the controllable component produces a high
action that the imposed component uses as input when
deciding on what high value to generate. Here we define
the high actions as follows:

H̄ = {move, no-move} ∪ {move-toi}7i=0

In short, the defender can choose to move the stash (but
cannot determine where), leave it in place, or move it
to a particular location. Assume the adversary thinks the
defender’s controllable strategy η̄ considers moving the stash
very 4 time steps, but will only do so half the time.
decide_move_maybe:(H,A,O) 7→

let c ← uniform {true,false} in
if t mod 4 = 0 and c then move
else no-move

The imposed component of the defender strategy, ηf , con-
trols the actual movement, and is defined as follows:
move_act:(H,A,O,move) 7→ uniform H
move_act:(H·h,A,O,move-to`) 7→ `
move_act:(H·h,A,O, no-move) 7→ h

move_maybe
def
=

(move_act) ◦ (decide_move_maybe)
Xη:() 7→ move_maybe

9
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Though the adversary believes he is interacting with this
kind of a defender, we will also analyze the loss with respect
to three wider sets of defender strategies, Sη1 ⊂ Sη2 ⊂ Sη3.
We define the basis functions for these strategies as follows.

For the first, the defender has the control to either change
the stash every 4 time steps or not but cannot decide where
the stash gets changed to.
η̄S1:(H,A,O) 7→
if t mod 4 = 0

then {move, no-move} else {no-move}

The second, wider set of defender strategies, also includes
ones in which the defender can move every 4 time steps to
anywhere they want but cannot decide where the initial stash
is placed:
η̄S2:(H,A,O) 7→
if t = 0 then {move}
else if t mod 4 = 0

then {move-toi}7i=0 else {no-move}

The third, most permissive one, is the set of strategies
like the above but also giving the defender control over the
initial stash location:
η̄S3:(H,A,O) 7→
if t mod 4 = 0

then {move-toi}7i=0 else {no-move}

The three sets of strategies are generated from com-
positions of move_act and one of η̄1, η̄2, η̄3, with the
extra addition of the sole strategy the adversary believes is
employed, move_maybe.

Sη1

def
= gen(η̄1, move_act) ∪ {move_maybe}

Sη2

def
= gen(η̄2, move_act) ∪ {move_maybe}

Sη3

def
= gen(η̄3, move_act) ∪ {move_maybe}

Notice that Xη ⊂ Sη1 ⊂ Sη2 ⊂ Sη3. Given the increasing
range of defender strategies, the worst- and best-case will
likewise increase in the range between them. The results of
this experiment can be seen in Figure 6. The line shows
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Figure 7. Two gain functions: gainnear is inversely proportional to
distance between guess and secret, and an over-approximation, gainfar,
is proportional to distance but offset so that gainfar ≥ gainnear on
all inputs.

the expected loss for the defender drawn from the prior Xη ,
whereas the shaded regions show the range between worst-
and best-case defender loss for varying spaces of defender
strategies; lighter regions denote more permissive spaces.

The most permissive set of defender strategies allows the
defender to set the initial stash location to the one raided by
the adversary at time 0 (before making any observations).
This results in the worst-case loss to immediately shoot up
to its maximum. On the other hand, the defender can also
pick a stash location that the optimal adversary will never
check and never raid, keeping the best-case loss at 0.

The less permissive set of strategies prevents the defender
from picking the initial stash location. This makes worst-
and best-case loss coincide with expected loss until they get
a chance to make a best or worst choice at time 4. Then
the worst-case shoots up to 1 for the same reason as in
the previous case, and the best-case stays near the level it
has reached up to that point; the adversary will never get
to observe the correct stash location from here on and can
only succeed by a lucky raid, as opposed to having some
chance to observe the stash while interacting with expected
defender (thus the slight drop in defender loss compared to
expected loss).

Finally the most restricted set of strategies only allows the
defender to choose to move or not move, but not where to
move to. In that situation the worst-case is to not ever move,
and the best-case is to move every 4 time steps. This results
in the worst-case loss increasing faster than the expected
and the best-case loss increasing slower than the expected.
The expected itself has a 50/50 chance of moving and is
approximately between the worst- and best-case loss.

C. How can sound over-estimation adversary gain impact
defender loss?

Our final experiment demonstrates the importance of care-
fully making sure adversary goals are accurately defined if
loss is to be correctly quantified. In particular, it is not safe to
over-approximate the adversary’s gain because doing so may
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Figure 8. Expected gainnear gain with resulting (matching) lossnear
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lead to an unsound calculation (i.e., an under-approximation)
of loss.

Consider a variation of our introductory example in which
the adversary does not need to raid the stash’s exact location.
Instead of being all-or-nothing, the adversary receives gain
proportional to how near the raid is to the stash (assuming
stash locations wrap around at 0 and 7 so that distance
between 0 and 7 is 1). 8 This is modeled using the following
modification to raid_maybe function:
dist:(x, y) 7→ min{|x− y|, 8− |x− y|}

gainnear:(H·h,A·raide, O) 7→
let raid_gain = 4 - dist(h, e) in
let stakeouts = count_stakeouts(A) in

raid_gain - c * stakeouts

Thus, the adversary receives gain of 4 when raiding the
exact stash location and as little as 0 when raiding a location
as far away from the real stash as possible. The defender’s
loss function lossnear is identical to gainnear above.

It may seem at first glance that one we can better safe-
guard the secret by over-estimating the adversary’s gain. For
example, instead of choosing gainnear, we might assume the
adversary receives gain according to a function gainfar that
is greater than gainnear on all inputs (that is, overestimates
adversary gain):
gainfar:(H·h,A·raide, O) 7→
let raid_gain = 4 + dist(h, e) in
let stakeouts = count_stakeouts(A) in

raid_gain - c * stakeouts

This function returns adversary gain proportional to the
distance between the stash and the raid location (instead of
inversely). The two gain functions can be seen in Figure 7,
for all combinations of stash and raid locations assuming 0
incurred observation costs. The function gainfar is plotted
in black and is seen above the plot for gainnear in gray.

Though the alternate gain function is indeed more con-
servative from the adversary’s point of view, it results in
very unsound conclusions about the defender’s loss. Figure 8

8Say that the pile of gold is so big that it falls into a pyramid-like shape,
with a peak in the middle and coins spreading around the area.

demonstrates the adversary gain and defender loss under two
different scenarios; one in which the gain and loss functions
are both gainnear, and one in which the adversary acts to
optimize gainfar instead, whereas the defender still loses
according to lossnear. It can be seen there, that indeed the
expected gain is higher for gainfar (thick dashed gray line)
than for gainnear (thick solid gray line) and in that sense
gainfar does result in a more conservative gain calculation.
The associated defender loss is not soundly approximated,
however. Instead it can be seen that using the gainfar
gain function for the adversary reduces the associated loss
(dashed black line) as compared to loss with a gainnear-
optimized adversary (solid black line). Essentially, it does
not matter that gainfar is a more conservative gain function
than gainnear in the absolute sense. The relative gains for
the adversary encoded in gainfar make him optimize his
actions so that he can raid as far from the stash as possible,
the exact opposite of the behavior induced by gainnear.

VI. RELATED WORK

In this paper we adopt the model of Mardziel et al. [18]
to model dynamic secrets that evolve over time, and that
may vary as the system interacts with its environment.
Our model extends that of [18] by distinguishing between
adversary’s and defender’s goals, thus allowing for a more
precise quantification of leakage.

Alternative approaches capture interactivity in systems by
encoding it as a single “batch job” execution. Desharnais et
al. [11], for instance, model the system as a channel matrix
of conditional probabilities of whole output traces given
whole input traces. Besides creating technical difficulties for
computing maximum leakage [1], this approach does not
permit low-adaptive or wait-adaptive adversaries, because it
lacks the feedback loop present in our model.

O’Neill et al. [26], based on Wittbold and Johnson [31],
improve on batch-job models by introducing strategies. The
strategy functions of O’Neill et al. are deterministic, whereas
ours are probabilistic. And their model does not support
wait-adaptive adversaries. So our model of interactivity
subsumes theirs.

Clark and Hunt [7], following O’Neill et al., investigate
a hierarchy of strategies. Stream strategies, at the bottom
of the hierarchy, are equivalent to having agents provide all
their inputs before system execution as a stream of values.
So with stream strategies, adversaries must be non-adaptive.
Clark and Hunt show that, for deterministic systems, non-
interference against a low-adaptive adversary is the same
as noninterference against a non-adaptive adversary. This
result does not carry over to quantification of information
flow; low-adaptive adversaries derive much more gain than
non-adaptive ones, as shown in [18]. At the top of Clark
and Hunt’s hierarchy, strategies may be nondeterministic,
whereas our model’s are probabilistic. Probabilistic choice
refines nondeterministic choice [22], so in that sense our
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model is a refinement of Clark and Hunt’s. But probabili-
ties are essential for information-theoretic quantification of
information flow. Clark and Hunt do not address quantifi-
cation, instead focusing on the more limited problem of
noninterference. Nor does their model support wait-adaptive
adversaries.

Previous work has considered how the defender’s interests
can affect the leakage of information in a system. Mardziel
et al. [20] consider a defender that, in order to minimize
secrecy loss, they can refuse to answer a query involving
secret data. They propose a technique to track how accurate
the adversary’s belief about the secret is, and they implement
query analysis and belief tracking via abstract interpretation
using probabilistic polyhedra, whose design permits trading
off precision with performance while ensuring estimates of
a querier’s knowledge are sound. In another work, Mardziel
et al. [19] use techniques based on belief-tracking to guide
multiple defenders in the choice of whether, and to what
extend, participate in multiparty computation. Their work
considers that each of a set of various defenders holds a
secret and must decide whether or not it is safe to cooperate
with each other on the computation of a function whose
result will be publicly available and may, thus, leak secret
information. Rastogi et al. [29] also consider multiparty
computations where several agents interact as both defenders
and adversaries with respect to each other. They analyze
whether automatic optimization of protocols for these com-
putations can produce leakage of information via the state
of intermediate variables in protocol execution. None of the
works above, however, contemplate scenarios involving both
dynamic secrets and active adversaries.

been foundations

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described how to view quantification of
information flow in terms of a game between an adversary
and defender with distinct goals. We showed that both
adversary gain and defender loss are necessary to quantify
vulnerability of the secret and that if the distinction is
ignored, incorrect conclusions can follow. We also showed
how to use worst- and best-case measures of loss as means
of bounding loss in the face of the most catastrophic and
most lucky defenders, respectively. We also showed how
sound overestimation of adversary gain can lead to unsound
underestimation of defender loss.

We have made, however, some strong assumptions as to
the knowledge of the adversary and essentially imposed
behavior of the defender. It is important in the definitions
of gain and loss in our model that only one party optimizes
their actions whereas the other’s behavior is fixed. When
we define gain, we assume the defender’s behavior is a
strategy sampled from a distribution known to the adversary.
Likewise, defender loss uses the adversary strategy that
is optimized for this assumption. When we define worst-

and best-case defender loss, we instead fix the adversary’s
strategy and optimize the defender’s.

Our simple approach would not work for situations were
both parties are attempting to optimize against each other’s
actions without knowing (or being able to probabilistically
predict) them ahead of time. Such situations lead to the
notion of equilibrium, a pair of defender/adversary strategies
η, α such that neither can be changed unilaterally to improve
that party’s gain (or loss). In some cases equilibria strategies
can be found be repeatedly optimizing a strategy against its
opponent’s until the two converge to a steady state (hence
the term “equilibrium”). The examples of this paper, and
(we conjecture) essentially any example where the goal of
the adversary involves learning the defender’s secret, do not
exhibit deterministic equilibria; if the defender does not pick
their secret randomly, a trivial adversary strategy exists to
take advantage of the fact. Our present methods do not let
us reason about optimizing non-deterministic strategies.

We are presently working on lifting the deterministic
restriction. This would allow us to reason about information
flow in terms of equilibria between defender and adversary
and free us from the assumption that the adversary knows
exactly the distribution over defender strategies.
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APPENDIX

A. Expressing existing metrics

Our model here is an extension of the model in [18] which
itself extends various models for quantifying information
flow. Expressing more limited models is useful to ground
the extensions in already familiar frames. We summarize
in this section how to express vulnerability, g-vulnerability,
and guessing entropy in our model with varying limits on
adversary power.

Low-adaptivity: The ability of an adversary to influence
the system is modeled using low inputs. This ability can be
restricted to model situations without adaptive adversaries by
setting L = ∅ or alternatively defining adversary strategies
such that they ignore observations: α : (L,O) 7→ f(L).
In either way, the adversary lose any ability to adaptively
influence the observation process.

Wait-adaptivity: An import element of adversaries in-
troduced in [18] is their ability to adaptively wait for
the right time to attack (exploit). This is modeled by an
adversary strategy producing an exploit instead of a low
input. This power can be restricted by defining adversary
strategies so that they only output an exploit at time T and
no other time.

Dynamics: Our model allows the secret to change over
time based on the history up to that point. We can restrict the
model by defining high-input strategies in a manner that lets
them pick only the initial high value, but keeps it constant
thereafter.

We will use the term static model to refer to scenarios in
which the adversary and model is restricted as noted above.
We then define existing metrics using a static variant of our
model.

Vulnerability [30]: The notion of vulnerability corre-
sponds to an equality gain function (i.e., a guess).
gain_vul:(H·h,A·e,O):→
if h = e then 1 else 0

The goal of the attacker assumed in vulnerability is
evident from gain_vul; they are directly guessing the
secret, and they only have one chance to do it.

Theorem 2. In a static model, the vulnerability (written V)
of the secret conditioned on the observations is equivalent
to dynamic gain using the gain_vul gain function.

GTgain_vul (· · ·) = V (Xh | XO)

In the above we use Xh and XO to designate the random
variables representing the initial/last/only high value and the
string of observations, respectively. We also omit the loss
function as it does not influence gain.

g-vulnerability [3]: Generalized gain functions can be
used to evaluate metrics in a more fine-grained manner,
leading to a metric called g-vulnerability. This metric can
also be expressed in terms of the static model. Let gainfunc

be a generalized gain function, taking in the secret and an
adversary exploit and returning a real number between 0 and
1, then we have:
gain_gen_gain:(H·h,A·e,O) 7→

let g ← gainfunc h e in g

The difference between expected gain and g-vulnerability
are non-existent in the static model. The gain of a system
corresponds exactly to g-vulnerability of gainfunc, written
Vgainfunc (· · ·).

Theorem 3. In a static model the g-vulnerability
of gainfunc is equivalent to dynamic gain using
gain_gen_gain gain function.

GTgain_gen_gain (· · ·) = Vgainfunc (Xh | XO)

Guessing-entropy [21]: Guessing entropy, characteriz-
ing the expected number of guesses an optimal adversary
will need in order to guess the secret, can also be expressed
in terms of the static model. We let exploits be strings of
highs (really permutations of all highs), E def

= H|H| . The
exploit permutation corresponds to an order in which the
secret is to be guessed. We then define expected gain to be
proportional to how early in that string of guesses the secret
appears.
pos_of:(h,H) 7→

// compute the position of h in H //
// assuming strings are 1-indexed //

gain_guess_ent:(H·h,A·e,O) 7→
let pos ← pos_of(h, e) in -pos

Note that we negate the gain as an adversary would opti-
mize for the minimum number of guesses, not the maximum.
Guessing entropy, written HG, is related to dynamic gain as
follows.

Theorem 4. In a static model, guessing entropy is
equivalent to (the negation of) dynamic gain using the
gain_guess_ent gain function.

−GTgain_guess_ent (· · ·) = HG (Xh | XO)
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