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Abstract—Dynamic software updating (DSU) techniques
show great promise in allowing vital software services to be
upgraded without downtime, avoiding dropped connections and
the loss of critical program state. For multithreaded programs,
DSU systems must balance correctness and timeliness. To
simplify reasoning that an update is correct, we could limit
updates to take place only when all threads have blocked at
well-defined update points. However, several researchers have
pointed out that this approach poses the risk of delaying
an update for too long, even indefinitely, and therefore have
developed fairly complicated mechanisms to mitigate the risk.
This paper argues that such mechanisms are unnecessary by
demonstrating empirically that many multithreaded programs
can be updated with minimal delay using only a small number
of manually annotated update points. Our study of the time
taken for all of the threads in six real-world, event-driven
programs to reach their update points ranged from 0.155 to
107.558 ms, and most were below 1 ms.

I. INTRODUCTION

As users have become increasingly dependent on software
services, the cost of bringing those services down for main-
tenance has grown considerably. Dynamic software updating
(DSU) aims to address this problem by allowing programs
to be updated with minimal service disruption. However,
although DSU systems excel at preserving the running state
of programs during an update, they are often unable to avoid
all disruption. In particular, at the time that an update is
applied, there may be a period during which a server is
briefly unavailable while waiting for all threads to reach a
state in which the system can safely be updated.

Finding ways to apply multithreaded updates with mini-
mal delay has been a fruitful topic for the research commu-
nity, and a variety of solutions have been proposed. Most of
this research has followed a common theme: updates should
be supported at as many points during program execution
as possible. However, in our opinion this goal has a serious
drawback: developers must reason about the correctness of
all possible update timings, and that task becomes harder to
do the more update points and threads there are. Moreover,
many of the proposed techniques also employ complex
program analyses or other mechanisms that are difficult to
use, scale poorly, and/or impose run-time overhead.

We are researching and building DSU systems [5], [3]
that take the opposite point of view: they only support
updates at a few, developer-identified quiescent points, i.e.,
program locations that are reached between iterations of

event-processing loops and at which there is typically less
in-flight state. For example, the code below shows a typical
thread body to which we have added an update point.

1 void ∗thread entry(void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 qbench update(); /∗ update point ∗/
5 /∗ loop body: typically handles a single program event ∗/
6 }
7 }

We refer to the state in which all program threads have
reached an update point as full quiescence. While full
quiescence is attractive because it reduces the programmer’s
reasoning burden, one concern is that reaching full quies-
cence may significantly delay the application of an update,
and may degrade the program’s performance in the process.

In this paper, we present a small empirical study that
shows that, for many programs, simple modifications allow
quiescent points to be reached sufficiently often to support
updates with little delay. This result suggests that rather than
use mechanisms that are hard to implement and hard to
reason about, we can instead ask programmers to modify
programs in simple ways to make DSU more effective.

For our study, we added quiescent points to Apache
httpd, icecast, memcached, suricata, iperf, and space tyrant.
We chose programs covering a wide range of domains
including media streaming, caching, intrusion detection, and
gaming. We chose the quiescent points according to our
experience updating multithreaded programs [3], [8], [11].
We linked each modified program with a library, QBench,
with which we measured the time the program took to reach
full quiescence under various workloads.

Reaching quiescence may be delayed by blocking calls,
e.g., those that perform I/O. We found that two simple
program changes could effectively overcome this delay.
First, the DSU runtime can interrupt some blocked calls by
sending a signal to the process; several updating systems do
this “for free” since signals are used to alert a process that
an update is available. Second, for the remaining blocking
calls, we changed the programs to use alternative, interrupt-
ible implementations of some system functions (specifically,
pthread cond wait and sleep) and added code to redirect
control flow back to an update point when a blocking call is
interrupted. All of these changes, and the implementation of
QBench, are described in detail in Section II. On average,



programs needed 22 lines of code to be changed including
adding update points. With these changes, the median time to
quiescence with workload was 0.200ms (0.169ms w/o load),
with a worst case of 107.558ms (w/o load) for icecast, and
a best case of 0.078ms (w/o load) for space tyrant. These
results are described in detail in Section III.

In summary, we found that, for a representative suite of
benchmark programs, reaching full quiescence can be done
quickly given proper run-time support and a small number
of program changes. While more experience is needed to see
if this result generalizes, we believe it suggests that simple
mechanisms may be sufficient to properly balance the safety
and timeliness of dynamic updates.

II. ACHIEVING FULL QUIESCENCE

To test our hypothesis that full quiescence permits suffi-
ciently timely dynamic updates, we modified several multi-
threaded programs to include appropriate update points, and
then measured the time it took to reach full quiescence. We
describe our approach here, along with the QBench library
we developed to implement quiescence and measure the time
required to achieve it.

A. Basic approach

For each program we must add a handful of calls to
qbench update to identify legal update points. The semantics
of qbench update is simple: if no update has been requested,
it is a no-op; otherwise, the calling thread blocks until all
other threads have also called qbench update. In detail, we
request an update by sending a program the SIGUSR2 signal.
QBench installs a signal handler that sets a flag indicating
that an update has been requested. A qbench update call
blocks if the flag is set. Once all threads have blocked,
the system has reached full quiescence. In an actual DSU
system, the update would take effect at this point. For our
study, QBench instead reports the quiescence time, which is
the elapsed time from when the first thread reaches an update
point (marking the start of reduced program availability) to
when the last thread has. Then it simply unsets the flag and
releases all of the threads to continue their execution, so we
can verify the program operates as expected.

Quiescence is achieved when all threads have reached
an update point, which we track by maintaining a thread
count and ensuring that each thread hits an update point.
To determine when all threads have reached qbench update
(and to store other thread-specific metadata described later),
we replace calls to pthread create with calls to QBench’s
qbench pthread create, which tracks the lifetime of each
thread. QBench maintains a count of threads and stores the
metadata for all threads in a doubly linked list. Each thread
also stores a pointer to its own metadata using thread-local
storage, which permits constant time access. When a thread
dies, a callback is invoked to clean up thread-local data.
QBench provides a cleanup function for a thread’s metadata

that unlinks it from the global list and decrements the global
thread count.

B. Avoiding blocking

Achieving full quiescence may be delayed or thwarted
by blocking calls. For example, a call to qbench update may
be preceded by a call that reads from a socket. If this call
blocks, the thread will not reach its update point until data is
available. Worse still, one thread could hold a mutex when it
reaches its update point, but then another thread could block
on the same mutex prior to reaching its own update point,
delaying full quiescence indefinitely.

To avoid these problems, the programmer must ensure
that all blocking calls that appear on any path to an update
point are interruptible. This requirement immediately rules
out the second situation above: the program is not permitted
to hold any locks when it reaches an update point, because
pthread mutex lock is not interruptible (nor would it be sen-
sible to make it so). Fortunately, we found that no quiescent
points in the programs we considered ever held a lock.

For the benchmark programs in our study, blocking calls
that could inhibit quiescence fell into two categories: block-
ing I/O calls and calls to pthread mutex wait. We found that
in both cases, we could interrupt the call and the program
would either behave correctly with no changes, or we could
make it behave correctly with a few small modifications.

1) Blocking on I/O: Mature server programs are often
written to deal with interrupted blocking calls, so adding
update points to such programs requires little or no change.
Consider the following example.

1 void ∗thread entry(void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 qbench update();
5 res = accept(sockfd, addr, addrlen);
6 if (res == −1 && errno == EINTR)
7 continue;
8 /∗ ... handle connection ∗/
9 }

10 }

Under normal circumstances an accept call will block until
a connection is accepted. However, if a signal is received
the call will be interrupted, returning −1 and setting the
errno to EINTR.1 In the above code snippet, the programmer
has accounted for this possibility by returning control to the
start of the loop so as to retry the accept. Because an operator
initiates a program update by sending the process a SIGUSR2
signal, adding the update point to line 4 in the example
ensures the blocked accept call will be released and will
reach the update point quickly when the update is signaled.

1POSIX supports auto-restarting interrupted, “slow” system calls [10]
(i.e., without returning EINTR), which would defeat our scheme. We
disable that feature by excluding SA RESTART from the configuration
mask used when installing the signal handler.



Note that signals are normally handled by a program’s
main thread, so only that thread’s blocking calls are in-
terrupted. To interrupt blocking I/O calls in all threads,
QBench’s main signal handler sends a signal to any other
thread that has not already reached its update point and is
not waiting on a condition variable; how we handle the latter
situation is described next.

2) Blocking on condition variables: We observed that the
threads in our benchmark programs often coordinate using
condition variables, blocking on calls to pthread cond wait.
As a matter of good style, programmers guard against
spurious wake-ups of such calls by placing them in loops,
as the following non-highlighted code on lines 6–7 shows:

1 void ∗thread entry(void ∗arg) {
2 /∗ thread init code ∗/
3 while (1) {
4 qbench update();
5 pthread mutex lock(&mutex);
6 while (! input is ready() && !qbench update requested()) {
7 qbench pthread cond wait(&cond, &mutex);
8 }
9 pthread mutex unlock(&mutex);

10 if (qbench update requested())
11 continue; /∗ reaches qbench update ∗/
12 /∗ ... handle connection ∗/
13 }
14 }

To allow an update to interrupt this idiomatic use of con-
dition variables, we first modify the condition to check
whether an update has been requested, as shown in the high-
lighted code on line 6. We also modify the code following
the condition variable loop to jump back to the start of the
loop if an update is requested (lines 10-11). This ensures that
an update is reached if pthread cond wait wakes. One straight-
forward way to force the pthread cond wait call on line 7 to
wake up would be to replace it with pthread cond timedwait
with a short timeout. But this approach incurs some un-
necessary delay and potentially expensive polling over-
head. Therefore, we replace the pthread cond wait call with
a call to qbench pthread cond wait, which (before calling
pthread cond wait) notes the condition variable argument in
the global list of threads so that it can later be signaled by
another thread once an update has been requested.

These solutions for waking a thread blocking on I/O or
condition variables require that another thread be available
to signal the process or condition variable (e.g., since
pthread cond signal cannot safely be called from a signal
handler). This presents a problem if the thread that receives
the initial updating signal is blocked on a condition variable
and so may not wake up to signal other threads. For this
reason, QBench launches one additional thread that sleeps
during the vast majority of execution, but periodically wakes
and checks the update-requested flag. If an update was
requested, it will attempt to signal any threads that have
not yet reached an update point.

While the above two circumstances cover the vast ma-
jority of blocking calls, we note that one of our bench-
mark programs, Suricata, required custom code to be called
from a signal handler to unblock one of its threads (as
we describe in Section III-A). POSIX requires that the
same signal handler function be used for all threads in a
process. To compensate, QBench provides a library function,
qbench thread update callback that allows the developer to
provide a callback function to be executed for the current
thread when an update signal is received.

III. RESULTS

This section presents the results of a study in which we
used QBench to measure the quiescence behavior of six
multithreaded programs. We found that the changes required
to support full quiescence were small (an average of 22
lines per program), and quiescence could be achieved fairly
quickly (in less than 1ms in most cases).

A. Experimental setup

The first three columns of Table I describe the size and
thread structure of our subject programs. This subsection
describes each program briefly, the workload that we used
to test it, and how we needed to modify it to achieve full
quiescence rapidly.

Apache httpd: Apache httpd is a widely-used web server.
We configured httpd to use thread-based concurrency with 3
worker threads. To achieve full quiescence quickly, we first
needed to make the standard changes described in Section II
and summarized in columns 4–6 of Table I. We report the
number of update points and lines of code changed for
each program and keep a separate count of the changes that
include calls to our library. In the remainder of this section,
we describe only the changes given in the Manual Changes
column, i.e., those that tweak existing program code beyond
adding/substituting calls to QBench.

For httpd, the only such change was modifying a loop
written to immediately retry an interrupted poll operation to
break out of the loop if an update is requested.

For our experiments with httpd, we used a workload of
downloading a large file from the server.

Icecast: Icecast is a streaming audio server that is popular
for hosting Internet radio stations. In its standard configura-
tion, it runs with 6 threads, all of which quiesce without
modification. Several of the threads use sleep operations
to reduce polling; it turns out these sleep times are the
dominant component of the time to reach full quiescence.

For icecast, we selected a workload that corresponds to re-
ceiving an audio stream from an outside source and forwards
it to connected clients. We used the Ezstream command-line
tool to generate a source mp3 stream, connected 5 mplayer
clients, and requested an update mid-stream.



Table I
THREAD INFORMATION

LoC Upd Changed Required w/Load (ms) w/o Load (ms)
Program Total # of Threads Points LoC (†) Manual Chgs All Chgs Upd only All Chgs Upd only
httpd-2.2.22 232651 2 + c∗, c = 3 5 7 (5) 3 (Cond. Var. Loop) 0.185 0.230 0.123 0.150
icecast-2.3.2 17038 6 12 3 (3) 1 (Thread Sleeps) 105.152 954.32 107.558 986.265
iperf-2.0.5 3996 3 + n◦, n = 1 5 8 (3) 1 (Cond. Var. Loop) 0.193 DNQ 0.169 DNQ
memcached-1.4.13 9404 2 + c∗, c = 4 4 27 (4) 2 (libevent changes) 0.166 DNQ 0.155 DNQ
space-tyrant-0.354 8721 3 + 2n◦, n = 5 6 8 (6) 1 (Thread Sleeps) 0.426 20.583 0.078 20.304
suricata-1.2.1 260344 8 + c∗, c = 3 7 11 (6) 1 (libpcap break) 0.503 68.098 0.378 DNQ

∗Configurable: c workers ◦Varies by n connected clients †Calls to QBench excluding update DNQ = Does not quiesce.

Iperf: Iperf is a program that measures the network
performance (e.g., bandwidth, delay jitter, and datagram
loss) between two machines. Although the same executable
is used for both client and server modes, we only modified
the server code to reach update points during execution. Iperf
has 3 threads at startup and an additional thread for each
connected client. The main thread has a conditional wait in
a while loop. We added an additional update-request–flag
check to jump back to the update point when needed. We
measured iperf quiescence times while a client (running on
the same machine) performed a network measurement.

Memcached: Memcached is a high-performance, dis-
tributed caching server that uses libevent to drive its main
thread and a configurable number of worker threads. We
added an additional libevent handler for the main-thread
event loop to respond to SIGUSR2 and break out of libevent.
Upon return, the main thread sends a byte on the notification
sockets for each worker and then reaches an update point.
The notifications cause each worker thread to enter its event
handler, where it sees that an update was requested ands
returns from libevent to reach an update point. Effectively,
these update points were placed at quiescent points, although
the style is different from the other programs.

Our test requests an update to a Memcached instance
under load from the memslap Memcached benchmark.

Space Tyrant: Space Tyrant is a server for a text-based,
multiplayer space strategy game. At startup, Space Tyrant
has 3 threads and creates 2 more for each connected
player. Space Tyrant implements long sleep operations using
loops that check for server-shutdown events between shorter
sleeps. We added an additional update-request-flag to jump
back to the update point when needed. Space Tyrant’s
threads required no additional modification. We updated
Space Tyrant with 5 concurrent telnet client connections.

Suricata: Suricata is a network intrusion detector that
monitors the packets that pass through a network interface.
By default, Suricata is configured to use 11 threads. One
thread required special treatment: It calls into libpcap’s
blocking pcap dispatch function to process packets. libpcap
provides a function pcap breakloop that can be called from a
signal handler to interrupt pcap dispatch. We install a thread-
specific handler function (cf. Section II-B2) to break out of
the loop when an update signal is received.

In our tests we ran Suricata with a default set of 7,946

packet analysis rules. We requested an update as Suricata
processed the packets produced by a constant stream of 10
concurrent http requests and one large file download.

B. Quiescence times

The four rightmost columns of Table I report the median
quiescence times of 11 benchmark runs. All tests were run
on a machine with an Intel Core 2 Duo T5550 processor
with 2GB of memory. For each program, we measured the
time taken to reach full quiescence under two workloads:
while the server was idle (i.e., no connected clients) and
while performing the (program-dependent) work described
in the previous section. The idle workloads were used to
reveal problematic cases where threads block indefinitely
waiting for input. We also measured the quiescence times
when using only update points and no other QBench calls.

The table shows we were able to reach full quiescence
quickly for both workloads when using QBench; limiting
ourselves only to update points would fail to quiesce some
programs. Without using our library with Suricata, the
quiescence time is variable depending on the rate of traffic
filling the input buffers. Nearly all programs quiesced in
under 1ms (for both workloads); Icecast’s longer times are
due to sleep operations inserted by the programmers.

C. Threats to validity

For this study, we did not actually apply dynamic updates
to the benchmark programs, so we cannot be sure that the
quiescent points inserted are the ones that would be used in
practice. However, the choice of quiescent points is largely
dictated by the structure of the code (usually at the beginning
of each thread’s event loop), so it is unlikely that we might
find a preferred point that would be reached less often.

In our study, we ensured that blocking operations that
occur at the beginning of event handling, when it is safe
to immediately jump back to the beginning of the loop,
are interruptible. A blocking I/O operation in the middle
of event-handling could delay full quiescence if clients are
extremely slow or stalled. Our current experiments do not
attempt to force this situation to occur, so we do not know
whether this is a problem in practice for these programs.

It is also possible that our observations for this particular
selection of programs do not generalize to most other
programs. To avoid this risk, we have attempted to consider



at a wide variety of program types. It may also be useful to
specifically look for programs that are implemented in such
a way that they would not work well in this approach.

IV. PRIOR WORK

Here we summarize prior work on multithreaded program
updates, focusing on how that work controls update timing.
We find that while some prior work is insufficiently flexible,
much prior work is perhaps overly concerned with minimiz-
ing update times. The results of our study suggest that such
concerns may not be warranted.

Several systems [1], [6], [11] forbid updates to any code
that is actively running. Some synchronization is needed to
ensure that all threads satisfy this condition. Unfortunately,
as we have observed in prior work [4], this safety condition
is insufficient to ensure update safety, and it provides no
guarantee that an update is applied in a timely manner. For
example, if a program’s main function is modified by an
update, the update will be delayed indefinitely because main
is always running.

STUMP [8] lifts the restriction against updates of active
code: instead, any update may take effect when all threads
have reached programmer-identified update points. To po-
tentially reduce delay at update time, STUMP implements
a relaxed synchronization protocol that permits an update
whenever it appears as if the update took effect at legal
update points. A static analysis determines which program
points are equivalent to update points [9] and incorpo-
rates this information into the synchronization protocol.
Unfortunately, in the worst case, there is no guarantee
that meaningful opportunities for updating will be created.
Moreover, it may be difficult for a developer to understand
the results of the analyses, e.g., to understand why it did not
permit more update points. Finally, the static analysis itself
is fairly intricate, and may not scale to large programs. The
reported update times for STUMP for the same programs
used in our study (icecast, space tyrant, and memcached)
are higher—1,068ms, 6ms, and 1ms, respectively—though
the experimental setup is different.

UpStare [7] supports immediate updates, with no syn-
chronization, by allowing threads to update at any point
during program execution. To provide this support, UpStare
requires the developer to create a mapping between each
program point in the old version of a changed function and
the corresponding point in its new version; such a mapping
could require a significant manual effort, depending on the
size and complexity of the change. UpStare prevents block-
ing library calls from delaying an update by substituting
versions that include special handling when an update has
been requested; we use a similar, but simpler, approach in
this paper. The UpStare paper does not report update times
for any multithreaded programs.

POLUS [2] supports immediate updates by permitting
contemporaneous threads to execute code from different

program versions. When a thread accesses a piece of shared
state, POLUS uses developer-provided, bidirectional trans-
formation functions to ensure that each thread sees the
representation of state that it expects. With this approach,
however, the developer must additionally puzzle out the
possible multi-version executions and reason that thread
interactions via bi-directional transformations will make
sense. POLUS was applied to one multithreaded program,
Apache httpd. The authors report (for a different hardware
configuration) update times on the order of 15ms, but these
also include time to transform any in-flight state.

V. CONCLUSIONS

In this study, we found that, for a diverse set of benchmark
programs, explicit update points at quiescent program points
were able to support multithreaded updates quickly and
with little implementation complexity. This finding suggests
that DSU systems that do not rely on complex program
transformation or analysis (i.e., those most likely to see real-
world adoption) may be sufficient to bring runtime updates
to a non-trivial set of programs. We plan to continue this line
of research to better understand the limits of this technique.

This research was supported by the partnership between
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ences and NSF grant CCF-0910530.
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