
Benefits and Drawbacks of Adopting a Secure Programming Language:
Rust as a Case Study

Kelsey R. Fulton, Anna Chan, Daniel Votipka†, Michael Hicks, and Michelle L. Mazurek
University of Maryland †Tufts University

Abstract
Programming languages such as Rust and Go were devel-
oped to combat common and potentially devastating memory-
safety-related vulnerabilities. But adoption of new, more se-
cure languages can be fraught and complex. To better under-
stand the benefits and challenges of adopting Rust in partic-
ular, we conducted semi-structured interviews with profes-
sional, primarily senior software developers who have worked
with Rust on their teams or tried to introduce it (n = 16), and
we deployed a survey to the Rust development community
(n = 178). We asked participants about their personal experi-
ences using Rust, as well as experiences using Rust at their
companies. We find a range of positive features, including
good tooling and documentation, benefits for the development
lifecycle, and improvement of overall secure coding skills, as
well as drawbacks including a steep learning curve, limited li-
brary support, and concerns about the ability to hire additional
Rust developers in the future. Our results have implications
for promoting the adoption of Rust specifically and secure
programming languages and tools more generally.

1 Introduction

Secure software development is a difficult and important task.
Vulnerabilities are still discovered in production code on a reg-
ular basis [4,27,38], and many of these arise from highly dan-
gerous violations of memory safety, such as use-after-frees,
buffer overflows, and out-of-bounds reads/writes [28–32].
Despite their long history and the many attempts aimed at
mitigating or blocking their exploitation, such vulnerabili-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2021.
August 8–10, 2021, Virtual Conference.

ties have remained a consistent, and sometimes worsening,
threat [37], with estimates that 60-70% of critical vulnerabili-
ties in Chrome [13], Microsoft products [7] and in other large
critical systems [12] owe to memory safety vulnerabilities.

Overwhelmingly, memory safety vulnerabilites occur in
C and C++ code—while most popular languages enforce
memory safety automatically, C and C++ do not [43, 47].
Relatively recently, Google developed Go [14] and Mozilla
developed Rust [33] to be practical but secure alternatives to
C and C++; these languages aim to be fast, low-level, and
type- and memory-safe [34,40]. Rust and Go have been rising
in popularity—IEEE’s 2019 Top Programming languages list
ranks them 17 and 10, respectively—but C and C++ continue
to occupy top spots (3 and 4). We might wonder: What are
the factors fueling the rise of these secure languages? Is there
a chance they will overtake their insecure counterparts, C and
C++, and if so, how?

In this paper, we attempt to answer these questions for Rust,
in particular. While Go is extremely popular, Rust’s popular-
ity has also risen sharply in the last few years [9,15,34,39,46].
Rust’s “zero-cost abstractions” and its lack of garbage col-
lection make it appropriate for resource-constrained environ-
ments, where Go would be less appropriate and C and C++
have traditionally been the only game in town.

We conducted semi-structured interviews with professional,
primarily senior developers who have actively worked with
Rust on their product teams, and/or attempted to get their com-
panies to adopt Rust (n = 16). We also surveyed participants
in Rust development community forums (n = 178). We asked
participants about their general programming experience and
experiences using and adopting Rust both personally and at
a company. We also asked about the benefits and drawbacks
of using Rust in both settings. By asking these questions, we
aim to understand the challenges that inhibit adoption, the net
benefits (if any) that accrue after adoption, and what tactics
have been (un)successful in driving adoption and use.

Our survey population likely represents those who view
Rust at least somewhat positively, since we would not expect
those who tried Rust and abandoned it to be members of Rust

forums. That said, our survey population comprised people
with a variety of general and Rust-specific development expe-
rience. 26% of respondents had used Rust for less than one
year and they often held similar opinions to more experienced
Rust users. Our results uncovered a wide variety of specific
challenges and benefits which can provide novel insights into
the human factors of secure language adoption.

Participants largely perceived Rust to succeed at its goals
of security and performance. Other key strengths identified
by participants include an active community, high-quality
documentation, and clear error messages, all of which make
it easy to find solutions to problems. Further, participants
indicated that overall Rust benefits the development cycle in
both speed and quality, and using Rust improved their mental
models of secure programming in ways that extend to other
languages.

However, participants also noted key drawbacks that can
inhibit adoption, most seriously a steep learning curve to
adjust to the paradigms that enforce security guarantees. Other
concerns included dependency bloat, limited library support,
slow compile times, high up-front costs, worries about future
stability and maintenance, and apprehension about the ability
to hire Rust programmers going forward. For our participants,
these negatives, while important, were generally outweighed
by the positive aspects of the language.

Lastly, participants offered advice for others wanting to ad-
vocate adoption of Rust or other secure languages: be patient,
pick projects playing to the language’s strengths, and offer
support and mentorship during the transition.

Analyzing our findings, we offer recommendations aimed
at supporting greater adoption of Rust in particular and se-
cure languages generally. The popularity of Rust with our
participants highlights the importance of the ecosystem —
tooling, documentation, community — when developing se-
cure languages and tools that users will actually want to use.
Our results also suggest that perhaps the most critical path
toward increased adoption of Rust in particular is to flatten
its learning curve, perhaps by finding ways to gradually train
developers to use Rust’s ownership and lifetimes. Further, we
find that much of the cost of adoption occurs up front, while
benefits tend to accrue later and with more uncertainty; secu-
rity advocates should look for ways to rebalance this calculus
by investing in a pipeline of trained developers and contribut-
ing to the longevity and stability of the Rust ecosystem.

2 Background

Rust is an open-source systems programming language cre-
ated by Mozilla, with its first stable release in 2014. Rust’s
creators promote its ability to “help developers create fast,
secure applications” and argue that Rust “prevents segmenta-
tion faults and guarantees thread safety.” This section presents
Rust’s basic setup and how it aims to achieve these benefits.

For those with a deeper interest, we recommend the tutorial
offered in the official Rust Programming Language Book [21].

2.1 Core features and ecosystem
Rust is a multi-paradigm language, with elements drawn from
functional, imperative, and object oriented languages. Rust’s
traits abstract behavior that types can have in common, sim-
ilarly to interfaces in Java of typeclasses in Haskell. Traits
can be applied to any type, and types need not specifically
mention them in their definitions. Objects can be encoded
using traits and structures. Rust also supports generics and
modules, and a sophisticated macro system. Rust’s variables
are immutable by default: once a value is bound to a vari-
able, the variable cannot be changed unless it is specifically
annotated as mutable. Immutability eases safe code composi-
tion, and plays well with ownership, described shortly. Rust
also enjoys local type inference: types on local variables are
generally optional, and can be inferred from their initializer.
Rust also supports tagged unions (“enums”) and pattern
matching, which allow it to, for example, avoid the need for
a null value (the “billion dollar mistake” [19]).

Rust has an integrated build system and package man-
ager called Cargo, which downloads library packages, called
crates, as needed, during builds. Rust has an official commu-
nity package registry called crates.io. At the time of writing,
Crates.io lists more than 49,000 crates.

2.2 Ownership and Lifetimes
To avoid dangerous, security-relevant errors involving ref-
erences, Rust enforces a programming discipline involving
ownership, borrowing, and lifetimes.

Ownership. Most type-safe languages use garbage col-
lection to prevent the possibility of using a pointer after its
memory has been freed. Rust prevents this without garbage
collection by enforcing a strict ownership-based programming
discipline involving three rules, enforced by the compiler:
1. Each value in Rust has a variable that is its owner.
2. There can only be one owner at a time for each value.
3. A value is dropped when its owner goes out of scope.
An example of these rules can be seen in Listing 1. In this
example, a is the owner of the value “example.” The scope
of a starts when a is created on line 3. The scope of a ends
on line 5, so the value of a is then dropped. In the second
block of code, x is the initial owner of the value “example.”
Ownership is then transferred to y on line 11, which is why
the print on line 13 fails. The value cannot have two owners.

Borrowing. Since Rust does not allow values to have more
than one owner, a non-owner wanting to use the value must
borrow a reference to a value. A borrow may take place so
long as the following invariant is maintained: There can be (a)
just one mutable reference to a value x, or (b) any number of

1 {
2 //make a mutable string and store it in a
3 let mut a = String::from("example");
4 a.push_str(" , text"); //append to a
5 }
6 //scope is now over so a’s data is dropped
7

8 {
9 //make a mutable string and store it in x

10 let x = String::from("example");
11 let y = x; //moved ownership to y
12 println!("y is {}", y); //allowed
13 println!("x is {}", x); //fails
14 }

Listing 1: Examples of how ownership works in Rust

immutable references to x (but not both). An example of the
rules of borrowing can be seen in Listing 2. In this example, a
mutable string is stored in x. Then, immutable references are
made (“borrowed”) on lines 6 and 8. However, the attempt to
mutate the value on line 10 fails since x cannot be mutated
while it has borrowed (immutable) references. Line 12 fails
in the attempt to make a mutable reference: x cannot have
both a mutable and an immutable reference. Once we reach
line 13, the immutable references to x have gone out of scope
and been dropped. x is once again the owner of the value and
possesses a mutable reference to the value, so line 14 does not
fail. In the second code block, starting on line 15, a mutable
reference is made to the value. Attempts to make a second
mutable reference on lines 19 and 21 fail because only one
mutable reference can be made to a value at a time.

The ownership and borrowing rules are enforced by a part
of the Rust compiler called the borrow checker. By enforcing
these rules the borrow checker prevents vulnerabilities com-
mon to memory management in C/C++. In particular, these
rules prevent dangling pointer dereferences and double-frees
(only a sole, mutable reference may be freed), and data races
(a data race requires two references, one mutable).

Unfortunately, these rules also prevent programmers from
creating their own doubly-linked lists and graph data struc-
tures. To create complex data structures, Rust programmers
must rely on libraries that employ aliasing internally. These li-
braries do so by breaking the rules of ownership, using unsafe
blocks (explained below). The assumption is that libraries are
well-vetted, and Rust programmers can treat them as safe.

Lifetimes. In a language like C or C++, it is possible to
have the following scenario: (1) you acquire a resource; (2)
you lend a reference to the resource; (3) you are done with
the resource, so you deallocate it; (4) the lent reference to the
resource is used. Rust prevents this scenario using a concept
called lifetimes. A lifetime names a scope, and a lifetime
annotation on a reference tells the compiler the reference
is valid only within that scope. For example, the lifetime of
variable a in Listing 1 ends on line 5 where the scope of a

1 {
2 //make a mutable string and store it in x
3 let mut x = String::from("example");
4 {
5 //make immutable reference to x
6 let y = &x; //allowed
7 //make second immutable reference to x
8 let z = &x; //alllowed
9 println!("x is {}. y is {}", x, y) //allowed

10 x.push_str(" , text"); //fails
11 //make mutable reference to x
12 let mut a = &mut x; //fails
13 } //drops y and z; x owner again
14 x.push_str(" , text"); //allowed
15 {
16 //make mutable reference to x
17 let mut a = &mut x; //allowed
18 a.push_str(" , text"); //allowed
19 x.push_str(" , text"); //fails
20 //make second mutable reference to x
21 let mut b = &mut x; //fails
22 } //drops a; x is owner again
23 }

Listing 2: Examples of how borrowing works in Rust

ends. Similarly, the lifetime of a in Listing 2 ends on line 22.

2.3 Unsafe Rust
Since the memory guarantees of Rust can cause it to be
conservative and restrictive, Rust provides escape hatches
that permit developers to deactivate some, but not all, of
the borrow checker and other Rust safety checks. We
use the term unsafe blocks to refer generally to unsafe
Rust features. Unsafe blocks allows the developer to:
• Dereference a raw pointer
• Call an unsafe function or method
• Access or modify a mutable global variable
• Implement an unsafe trait
• Access a field of a union
Unsafe functions and methods are not safe in all cases or for
all possible inputs. Unsafe functions and methods can also
refer to code that a developer wants to call that is in another
language. Unsafe traits refer to traits with at least one unsafe
variant. Lastly, unions are like structs but only one field in
a union is used at a time. To use unsafe blocks, the relevant
code construct is labeled with keyword unsafe.

3 Method

To understand the benefits and drawbacks to adopting Rust,
we conducted semi-structured interviews with senior and pro-
fessional software engineers working at technology compa-
nies who were using Rust or attempting to get Rust adopted.
To examine the resulting findings in a broader ecosystem,
we then distributed a survey to the Rust community through

Sect. Description and Example Questions

1 Technical Background (General, and Rust)
• How long have you been programming?
• How long have you been programming in Rust?

2 Learning and using Rust
• How easy or difficult did you find Rust to learn?
• How would you rate the quality of available Rust docs?
• When I encounter a problem or error while working in Rust,

I can easily find a solution to my problem?

3 Work (general), and using Rust for work
• Did anyone at your employer have apprehensions about

using Rust?
• What one piece of advice would you give to someone who

is trying to get Rust adopted?

4 Comparing Rust to other familiar languages
• How would you rate the quality of Rust compiler and run-

time error messages compared to [chosen language]?

5 Rust likes/dislikes & unsafe blocks
• Which of the following describes your use of unsafe blocks

while programming in Rust?

6 Porting and interoperating with legacy code
• What language(s) have you ported from?

7 Demographics about participants
• Please select your highest completed education level

Table 1: Survey sections and example questions.

various online platforms.

3.1 Interviews and Surveys

Interview protocol. From February through June 2020,
we conducted 16 semi-structured interviews via video-
conferencing software.

Each interview included two phases. Phase one asked the
participants how they discovered and learned Rust, as well
as about instances when they or their company decided to
use Rust for projects (or not) and why. In the second phase,
we asked more technical questions about programming with
Rust, including what features of the language/ecosystem they
like/dislike compared to other familiar languages, as well as
opinions about features relating to Rust’s security, such as
ownership and unsafe blocks.

Each session lasted about an hour, giving participants a
chance to share detailed experiences. The full interview pro-
tocol is given in Appendix A.

Survey. The survey was designed to mirror the interviews,
with closed-item answer choices inspired by answers from
the open-ended interview questions. The survey was broken
into seven sections; Table 1 tabulates the sections and pro-
vides some example questions. The full survey is given in
Appendix B. It was active from July to September 2020.

Recruitment. To recruit for the interviews, we contacted
a longtime member of the core Rust team and asked them to
connect us with software engineers who were active members
or leaders of teams using or adopting Rust at their employ-
ers. From these initial referrals, we snowball-sampled more
interviewees (asked participants to refer us to peers). We also
recruited participants referred to us by colleagues, and con-
tacted people and companies quoted or listed on the Rust web-
site [35]. We focused on recruiting participants with senior,
leadership, or other heavily involved roles in the Rust adoption
process. We interviewed participants until we stopped hearing
substantially new ideas, resulting in a total of 16 participants.
This sample size aligns with qualitative best practices [16].

To recruit participants for the survey, we advertised
on several Rust forums and chat channels: Reddit
channel r/rust; Rust Discord community channels
embedded, games-and-graphics, os-dev, gui-and-ui,
and science-and-ai; Rust Slack beginners channel; Rust
Facebook Group; and the official Rust Users Forum. Those
who wanted to participate were directed to follow a link in
the notice that took them directly to the survey.

Ethics. Both the interview and the survey were approved
by University of Maryland’s ethics review board. We obtained
informed consent before the interview and the survey. Given
that we were asking questions about their specific companies
and the work they were doing, participants were informed that
we would not disclose the specific company they worked for.
They were reminded that they could skip a question or stop
the interview or survey at any time if they felt uncomfortable.

3.2 Data analysis
Once the interviews were complete, two team members tran-
scribed the audio recordings and then analyzed them using
iterative open coding [8]. The interviewer and the other team
member independently coded the interviews one at a time,
developing the codebook incrementally and resolving dis-
agreements after every transcript. This process continued
until a reasonable level of inter-rater reliability was reached
measured with the Krippendorff’s α statistic [22]. After seven
interviews, the two researchers achieved a Krippendorff’s
α = 0.80, calculated using ReCal2 [11]. This level of agree-
ment is above the commonly recommended thresholds of
0.667 [18] or 0.70 [23] for exploratory research and meets the
more general minimum threshold recommended by Krippen-
dorff of 0.8 [22]. Once a reliable codebook was established,
the remaining nine interviews were evenly divided among the
two researchers and coded separately.

We report the results of our closed-response survey ques-
tions using descriptive statistics. While we did not have any
questions as specific attention checks, we evaluated the re-
sponses for completeness to ensure that we removed all low-
quality responses. We did not remove many responses as can
be seen in Section 4. Since our work is exploratory, we did

not have any hypotheses, so we do not make any statistical
comparisons. Free response questions from the survey were
analyzed by one researcher using the same codebook from
the interview. When new codes were added to the codebook,
they were back-applied to the interviews.

Throughout the following sections, we use I to indicate how
many interview participants’ answers match a given statement,
and use S to denote how many survey participants’ answers
do, either as a percentage (closed-item questions) or count
(open-ended ones). We report on interview and survey results
together, as the results generally align. We report participant
counts from the interviews and open-ended items for context,
but not to indicate broader prevalence. If a participant did not
voice a particular opinion, it does not necessarily mean they
disagreed with it; they simply may not have mentioned it.

3.3 Limitations
Our goal with the interviews was to recruit people who had
substantial experience, and preferably a leadership role, in
attempting to adopt Rust at a company or team. We believe we
reached the intended population. Only one interviewee failed
to see Rust adopted at their employer, but all interviewees
faced similar adoption challenges.

For the surveys, our goal was to reach a broad variety of de-
velopers with a range of Rust experiences, in order to capture
the widest range of benefits and drawbacks. We did reach par-
ticipants with a wide range of Rust experience, in part because
we targeted many Rust forums, including some specifically
for beginners. However, because all of these forums are about
Rust, we may not have reached people who have tried Rust but
abandoned it, or those who considered it but decided against
it after considering potential pros and cons. In addition, these
forums are likely to overrepresent Rust enthusiasts compared
to those who use the language because they are required to.
Further, there could be self-selection bias: because we stated
our goal of exploring barriers and benefits to adopting Rust
when recruiting, those with particular interest in getting Rust
adopted may have been more likely to respond.

Taken together, these limitations on our survey population
suggest that our results may to some extent overstate Rust’s
benefits or may miss some drawbacks that drive people away
from the language entirely. Nonetheless, our results uncovered
a wide variety of challenges and benefits that provide novel
insights into the human factors of secure language adoption.
Given the general difficulty of recruiting software develop-
ers [36], and the particular difficulty of reaching this specific
subpopulation, we consider our sample sufficient.

4 Participants

Interview participants. We interviewed 16 people who
were active members of teams using or adopting Rust at their

company. Our participants mostly held titles related to soft-
ware development (I = 12) and worked at large technology
companies (more than 1000 employees, I = 9), as shown in
Table 1 in Appendix C. Most of them had worked in software
development for many years and were members of, several
leading, teams building substantial project(s) in Rust at their
employers. Many were Rust evangelists at their companies.
Their companies develop social media platforms, bioinformat-
ics software, embedded systems, cloud software, operating
systems, desktop software, networking software, software for
or as research, and cryptocurrencies.

Survey respondents. We received 203 responses to our
survey. We discarded 25 (12%) incomplete surveys, which left
178 complete responses. Respondents were predominantly
male (88%), young (57% below the age of 30 and 88% below
the age of 40), and educated (40% had a bachelor’s degree
and 28% had a graduate degree). Our participants were rel-
atively experienced programmers (53% had more than 10
years of programming experience and 85% had at least 5
years). Seventy-two percent of our participants were currently
employed in the software engineering field and worked in
a variety of application areas, as shown in Table 2 in Ap-
pendix C. Additionally, our participants had used a variety of
languages in the prior year, as shown in Figure 1.

Our survey participants were fairly experienced at program-
ming in Rust (37% had been programming in Rust at least
2 years and 74% at least 1 year). Ninety-three percent of re-
spondents had written at least 1000 lines of code and 49% had
written at least 10,000 lines of code. Forty-six percent had
only used Rust for a hobby or project, 2% had only used it in
a class, 14% had maintained a body of Rust code, and 38%
had been paid to write Rust code. Most of our respondents
were currently using Rust (93%), while some had used it on
projects in the past but were not currently using it (7%). While
our survey participants had a broad variety of experiences,
they may underrepresent people who tried and turned away
from Rust—such people would probably not be members of
the Rust forums in which we advertised. As such, our results
may overstate Rust’s benefits or may miss some drawbacks
that drive people away from the language entirely. Neverthe-
less, we believe our results offer practical insights relevant to
the adoption of secure programming languages.

Survey respondents’ companies. Nearly half of our re-
spondents were using Rust for work (49%). Of those using
Rust for work, most were using Rust as a part of a company
or large organization (84%), rather than as a freelance assign-
ment. We gathered further details about these 87 respondents’
companies. They were primarily small (53% of the 87 worked
for companies with 100 or fewer employees and 74% worked
for a company with less than 1000 employees). They mostly
developed alone (50%) or in small teams of two to five people
(40%) at their companies, and their companies had legacy
codebases of varying sizes (88% had 500,000,000 or fewer

Figure 1: Languages used in the past year by survey partici-
pants (counts), companies that had adopted Rust, and compa-
nies that considered but didn’t adopt Rust. Ordered according
to the IEEE 2019 top programming languages list [20].

lines of code and 64% had 1,000,000 or fewer lines of code).
A variety of languages were used at respondents’ companies
(whether they had adopted Rust or not), as shown in Figure 1.

5 How is Rust being used?

This section and the next two analyze our interview and survey
results. We first examine how our participants are using Rust.

5.1 Applications
Interview participants reported using Rust in a variety of ap-
plication areas, including databases (I = 3); low-level systems
such as operating systems, device drivers, virtual machine
management systems, and kernel applications (I = 5); data
processing pipelines (I = 1); software development applica-
tions such as monitoring resource usage (I=2); and compilers
and programming languages tools (I = 2).

Participants did not always consider Rust the best tool for
the job. When asked to select application areas for which Rust
is not a strong fit, they most frequently mentioned mobile (I =
1, S = 44%), GUI (I = 3, S = 37%), and web applications (I = 3,
S = 17%). For example, I9 said “Strongly typed languages like

Figure 2: Interview and survey participants porting (survey n
= 123) to Rust from and interoperating (survey n = 84) Rust
with other languages. Languages are ordered via ranking on
the IEEE 2019 top programming languages list [20].

Rust. . . lend themselves much more to systems programs. . .
and less to web applications and things that you want to
be very flexible.” Interestingly, 13 survey participants who
selected web development as a bad fit for Rust also chose web
development as one of the things they do for work. Several
participants mentioned that Rust is a poor fit for prototyping
or one-off code (I = 6, S = 3%). I4 explained, “I still prototype
everything in C++ because it just works faster . . . [Rust’s]
not a great prototyping language.”

5.2 Porting and interoperating
Because Rust is relatively new, using it often requires porting
or interoperating with legacy code written in other languages.

Most participants had ported code from another language
into Rust (I = 14, S = 69%). They had ported from a variety
of languages (Figure 2). Interview participants found porting
code from Python to be easy (I = 5); similarly, where 70%
of survey respondents who had ported from Python (n=33)
found it either somewhat or extremely easy. In contrast, fewer
participants found porting from C (I = 2; S = 54%, n = 41)
and C++ (I = 2; S = 52%, n = 44) somewhat or extremely
easy. I11 said porting from C++ is “much harder because. . .
you structure your data with movability [mutability].”

Many participants had written code to interoperate with
Rust (I = 13, S = 47%), starting from a variety of languages

(Figure 2). Ease of interoperation varied by language some-
what differently than ease of porting. Almost three-quarters
of participants who had interoperated with C found it at least
somewhat easy (I = 6; S = 70%, n = 44). A majority also rated
Python somewhat or extremely easy (I = 2; S = 53%, n = 17).
Less than half considered C++ at least somewhat easy (I = 2;
S = 43%, n = 23). I6 attributes this to the fact that “the C++
side is just the Wild West. There’s rampant aliasing . . . and
none of that is going to play by Rust’s rules.”

5.3 Unsafe blocks

As described in Section 2, unsafe blocks allow the program-
mer to sidestep borrow-checking, which can be too restrictive
in some cases. Because unsafe blocks may potentially com-
promise Rust’s safety guarantees, we investigate how they are
used and what if any error-mitigation strategies exist.

Unsafe blocks are common and have a variety of uses.
Most participants had used unsafe blocks (I = 15, S = 72%).
Use-cases included foreign-function interfacing (I = 11, S =
70%), increasing code performance (I = 3, S = 40%), kernel-
level interaction (I = 1, S = 35%), hardware interaction (I
= 4, S = 34%), and memory management (I = 4, S = 28%).
For example, I14 uses unsafe blocks to “wrap all of our. . .
code for accessing hardware,” since they had to do things
like “write values into this offset relative to the base address
register,” which is prohibited by Rust ownership rules.

Few companies have unsafe-code reviews. To avoid in-
troducing problems Rust otherwise guarantees against, com-
panies may implement a procedure to check that “unsafe”
code is actually safe. However, unsafe-review policies were
uncommon at our participants’ employers (I = 7, S = 28%).
Where specific policies do exist, the most common approach
is a thorough code review (I = 2, S = 68%). For example, at
S118’s company, the review policy is “pretty simple: pay extra
close attention to unsafe blocks during code review.” To help
code reviewers, developers use comments to explain why the
code is actually safe (I = 5, S = 21%). I5 commented, “I guess
the only formal thing is that every unsafe block should have a
comment saying why it is in fact safe.” These comments may
aim to explain important safety invariants [3].

6 Benefits and drawbacks of Rust

This section explores benefits and drawbacks of Rust related
to technical aspects of the language, learning the language,
the Rust ecosystem, and Rust’s effect on development.

6.1 Technical benefits of Rust

Participants largely are motivated by, and agree with, Rust’s
claims of performance and safety [34].

Safety is important. Many participants identified Rust’s
safety assurances as benefits. They listed memory safety (I =
10, S = 90%), concurrency safety (I = 6, S = 84%), immutabil-
ity by default (I = 4, S = 74%), no null pointers (I = 3, S =
81%), Rust’s ownership model (I = 2, S = 75%), and lifetimes
(I = 2, S = 55%). As I5 said about Rust’s strengths, “The
safety guarantees, like 100%.. . . That’s why I use it. That’s
why I was able to convince my boss to use it.”

So is performance. Participants were also drawn to Rust’s
promise of high performance. Respondents explicitly listed
performance (I = 7, S = 87%) and, less explicitly, lack of
garbage collection (I = 3, S = 63%) as reasons to like the
language. I1 describes the appeal of Rust: “it gives you the
trifecta of performance, productivity, and safety.”

6.2 Learning Rust: Curiosity vs. reality
We next review participants’ experiences learning Rust.

Most chose to learn Rust because it is interesting or
marketable. Most participants selected, as their primary
reason(s) to learn Rust, curiosity (I = 2, S = 90%). Other said
they had heard about it online or it was suggested by a friend
(I = 12, S = 25%). Participants also believed knowing Rust
was a marketable or useful job skill (I = 7, S = 22%).

Rust is hard to learn. Possibly the biggest drawback of
Rust is its learning curve. Most participants found Rust more
difficult to learn than other languages (I = 7, S = 59%). I14
said Rust has “a near-vertical learning curve.”

Asked how long it took to learn to write a compilable pro-
gram without frequently resorting to the use of unsafe blocks,
a plurality of participants said one week to one month (I = 2,
S = 41%), less than one week (I = 0, S = 27%), or one to six
months (I = 3, S = 25%). Notably, six survey participants were
not yet able to do this. Interviewees had similar experiences.
I3 “didn’t feel fully comfortable with Rust until about three
months in, and really solid programming without constantly
looking stuff up until about like six months in.” Five intervie-
wees said it takes longer to get Rust code to compile than
another language they are comfortable with. Survey partic-
ipants agreed (S = 55%, Figure 3). S161 commented, “You
spend 3–6 months in a cave, breathing, eating and sleeping
Rust. Then find like-minded advocates who are prepared to
sacrifice their first born to perpetuate the unfortunate senti-
ment that Rust is the future, while spending hours/days/weeks
getting a program to compile and run what would take many
other ‘lesser’ languages a fraction of the time.”

The borrow checker and programming paradigms are
the hardest to learn. Seven interviewees reported that the
biggest challenges in learning Rust were the borrow checker
and the overall shift in programming paradigm. A few survey
participants (S = 3) noted this in free-response as something
they explicitly did not like about Rust. S136 did not like “hav-
ing to redesign code that you know is safe, but the compiler

Figure 3: Likert-style responses comparing Rust to a language survey participants were most comfortable with. Green bars
advantage Rust; gold bars advantage the other language. Questions with a ∗ have been flipped in polarity for consistency.

doesn’t.” I8 echoes this frustration: “There are new paradigms
that Rust sort of needs to teach the programmer before they
can become super proficient. And that just makes the learning
curve a little bit higher, and that did frustrate a number of peo-
ple, . . . because it’s something that’s sufficiently different from
other things they’re used to.” This could pose a problem for
adoption, if the frustration of learning these new paradigms
turns developers away from Rust altogether.

6.3 Rust ecosystem: Good and getting better
The Rust ecosystem influences organizational adoption, be-
cause it provides needed support for large projects. Partici-
pants identified a variety of current benefits and drawbacks.

Tools are easy to use and well supported, but slow.
Asked how Rust’s tooling compared to the other language
they were most comfortable programming in, 75% of survey
participants found it either very good or good (Figure 3). Also
in Figure 3, most survey participants found Rust’s compiler
and runtime error messages to be good or very good compared
to their reference language (S = 92%). Beginners (less than
one year of experience, n = 47) felt this way, too (S = 87%). A
large majority (I = 8, S = 97%) listed the compiler’s descrip-
tive error messages as a major problem-solving benefit. I9
comments: “Most of the time the compiler is very, very good
at telling you exactly what the problem is.” When it doesn’t,
“Rust is an exercise in pair programming with the compiler,”
wrote S176. Participants also liked the crates ecosystem (I =
4, S = 83%). For example, I7 said, “I also just love the cargo
tooling; it’s so easy to get crates.” While participants like the
tooling, they dislike that Rust has a long build time (I = 4, S =
55%). I16 said, “Compile times are pretty bad. . . I don’t think
Rust will ever get close to like Go level of compile speed."

Easy to find solutions. Despite the challenging learning
curve, participants report it is easy to find solutions to prob-
lems they encounter when developing in Rust (I = 14, S =

79% overall, 70% of beginners). Participants attribute this to
good compiler errors (discussed above), good official docu-
mentation (I = 3, S = 91%), and the helpfulness of the Rust
developer community, in-person and online (I = 5, S = 46%).
I5 notes the “very accessible documentation and kind of an
active community. . . on Stack Overflow and so forth. I feel
like if I have a problem with Rust, I Google it and there’s
always an answer.”

Rust lacks libraries and infrastructure and causes depen-
dency bloat. Despite the high quality of available tools
and libraries, Rust still lacks some critical libraries and infras-
tructure, perhaps in part because it is fairly new. When asked
what they dislike about the language, many participants noted
the lack of available libraries (I = 3, S = 39%). I4 agrees:“It
feels like you’re reinventing a lot of infrastructure, right? So,
I’ve felt that it’s slower [to develop with].” Additionally, par-
ticipants complained about a tendency toward dependency
bloat (I = 4, S = 34%). I4 agrees: “You know (cargo) goes and
pulls every dependency ever.. . . That part’s bad. It encour-
ages dependency bloat, which, in a security focused area, is
also the exact opposite of what you want."

6.4 Mostly positive impact on development

We find Rust offers development-cycle benefits that may in
part offset its learning curve and upfront adoption costs.

Rust improves confidence in code. A key benefit men-
tioned by participants is that once Rust code compiles, devel-
opers can be fairly confident that the code is safe and correct.
Four interview participants mentioned that they spend less
time debugging in Rust than in other languages; this was
supported in the survey, when 89% of respondents (87% of
beginners) slightly or strongly agreed they spend less time
debugging compiled Rust code than code in another language
they are comfortable with. Interviewees also mentioned that

Rust makes them more confident their production code is bug-
free (I = 9); 90% of survey respondents slightly or strongly
agreed. I16 said, “The thing that I like the most about Rust
overall is the fact that if the compiler is okay with your code
then it will probably mostly be working.”

Rust improves productivity in the development cycle.
While the initial time to design and develop a solution in Rust
is sometimes long and/or hard to estimate due to unforeseen
conflicts with the borrow checker, interview participants felt
— and survey participants agreed or strongly agreed — that
Rust reduced development time overall, from the start of a
project to shipping it, compared to other languages they were
comfortable with (I = 7, S = 45%). I1 said, “They see how
well these projects go in comparison to the C++ projects;. . .
and they’ve seen quantitatively that the Rust projects they’ve
been working on have been a dramatically better experience
and more predictable and a faster lifecycle.”

Additionally, five interview participants noted that they
could more quickly design and implement bug-free code in
Rust than in another language they were comfortable with.
This is echoed in the survey, where 61% of participants agreed
or strongly agreed, as shown in Figure 3. 81% of survey par-
ticipants also strongly or slightly disagreed that maintaining
code is more difficult in Rust than in other languages. The
reported improvement in developer productivity and code
quality resulting from the use of Rust means that companies
and organizations can ship better-quality code in less time.

Rust improves safe development in other languages.
Most participants report Rust has had at least a minor posi-
tive effect on their development in another language they’re
comfortable with (I = 10, S = 88%). These participants said
Rust causes them to think about ownership (I = 5, S = 68%
of 155), data structure organization (I = 6, S = 59%), use of
immutability (I = 0, S = 48%), iteration patterns (I = 1, S =
45%), memory lifetimes (I = 4, S = 37%), and aliasing (I = 2,
S = 25%). This is encouraging, as it shows developers carry
over the safety paradigms that they are forced to consider in
Rust when working in other languages. This is exemplified
by S40, who said, “Once you learn Rust, you are one with
the borrow checker — it never leaves you. I now see many of
the unsafe things I have been doing in other languages for
years, (but probably not all of them, as I am human and not a
compiler).”

Notably, a few participants volunteered that Rust has even
made them stop using C++ altogether (I = 2, S = 2). S26 said,
“It has made me stop working with C++. I really do feel that
Rust replaces C++’s use cases well.”

Overall, these results hint that the high cost of learning
Rust can be worth it, providing longer-term benefits in other
applications. This means developers may write more secure
code in other languages, and organizations may get benefit
out of investing time in their developers learning Rust.

7 Organizational adoption of Rust

While the Rust benefits identified by our participants may
also apply to organizations, many participants mentioned ex-
periencing pushback from teammates or managers (I = 9, S =
41%). Notably, some participants’ attempts at adoption were
unsuccessful (I = 1, S = 20%).

Participants identified several organization-level apprehen-
sions about adopting Rust. We divide these into two cate-
gories: those that may apply to any change in programming
language, and those that are specific to Rust. Rust-specific
concerns closely mirror the drawbacks of adopting Rust indi-
vidually our participants identified above.

7.1 Apprehensions about any new language

Unfamiliarity with the language. Many participants cited
unfamiliarity with Rust as one reason people were worried
about adopting or did not adopt Rust at their company (I = 2,
S = 69%). Any change to an unfamiliar language could create
uncertainty or apprehension.

Avoiding unnecessary changes. Participants also reported
a general desire to avoid unnecessary change. In particular,
several participants’ companies are reluctant to add any new
languages (I = 2, S = 46%). As I2 explained, “Not wanting
to have too many languages in play at the company simulta-
neously, and so just a general conservatism there around not
wanting to pick up new languages willy nilly.”

Business pressures. Some participants said their compa-
nies were concerned about using or did not want to use Rust
because there was time pressure to deliver a product, and they
did not want to invest the time to get a new language and its
infrastructure up and running (I = 1, S = 38%).

Lack of fit with existing codebase and ecosystem. Par-
ticipants reported that lack of compatibility with the existing
development ecosystem (I = 2, S = 27%) or interoperability
with the existing codebase (I = 4, S = 27%) were concerns for
their employers. As I6 said, “It’s very different for your devel-
opers or your managers who are managing a large, mature
C++ ecosystem. They’re much more skeptical of Rust. Maybe
not on its merits, but just in the practical terms of how do I
integrate this with my huge existing ecosystem?”

7.2 Apprehensions specific to Rust

Rust’s steep learning curve. The difficulty of learning
Rust was among the biggest concerns participants encoun-
tered at their companies (I = 3, S = 50%). I14 said one worry
was “how are we going to ramp programmers up? And I think
Rust in particular has this reputation of having a very steep
learning curve.” Some participants’ companies were also con-
cerned about potential reduction in developer productivity (I

= 3, S = 29%) or difficulty maintaining Rust code (I = 1, S =
23%). At I7’s company, for example, “the main concern was
that it would be taking too long to use Rust.”

Rust’s maturity and maintenance. Since Rust is rela-
tively new, some participants cited company concerns about
the maturity and maintenance of its tooling and ecosystem, as
well as whether it would be around long-term (I = 4, S = 29%).
As I1 said, “If [developers are] launching a new codebase in
a new language, it’s going to take them a year, maybe three
years, to develop the things, and they care where the ecosys-
tem will be at that point.” Other comments reflected a lack
of trust in the Rust toolbase (I = 3, S = 8%). I14’s company
worried, “How well supported is the tool chain? How mature
is the compiler? . . . Rust is a new language.”

Difficulty hiring Rust developers. Stemming possibly
from the newness and the difficulty of learning Rust, some
participants reported their companies worried about the abil-
ity to hire Rust developers (I = 5, S = 42%). I11, for example,
said, “Do we really want to keep this thing in Rust? It’s hard
to find a new person for the team. . . because we don’t have
. . . a huge pool of Rust programmers.”

7.3 Ways to encourage adoption

Despite these apparent apprehensions, many participants’
companies still adopted Rust (I = 15, S = 49%). We report
their suggestions for enabling adoption.

Pick projects carefully. Participants suggest that advo-
cates pick initial projects for Rust carefully. Projects should
fit Rust’s strengths (I = 5, S = 2), both in terms of language de-
sign and available tooling. S62 recommended, “Pick projects
that are suitable for Rust, based on how mature the ecosystem
(crates) is at supporting that type of project.” S99 similarly
commented, “Don’t try to port paradigms or design patterns
from other languages.” Participants also advise starting small
(I = 5, S = 12). S95 said, “Start small. There are many little
problems that Rust programs solve well, which builds trust.”

Demonstrate value. Participants argue that adoption
hinges on demonstrating the value of using Rust. Most im-
portantly, participants said advocates must argue that Rust
offers a measurable improvement over the company’s current
language (I = 6, S = 10). While Rust touts its guarantees
for safety and correctness, companies want to know the time
and effort they allot to tackle the Rust learning curve will
result in a major benefit. For example, S65 suggests, “If you
give a presentation about Rust, focus on concepts unique to
Rust and what they offer; what matters is the idea that some-
how it’s possible to write safe, concurrent & fast software
thanks to those concepts.” This echoes results from Haney et
al. suggesting security advocates must demonstrate value to
motivate people to take appropriate security actions [17].

Participants emphasize being clear and straightforward
about Rust’s drawbacks, while arguing that the benefits out-
weigh them. I3 recommends “rewrit[ing] [code] in Rust and
swap[ping] it in.. . . And then you say look, this provides the
same API. You didn’t even know.” If advocates can show their
managers and teammates that using Rust had no negative ef-
fect on the codebase, they may be less apprehensive about its
effect on productivity and timelines. Other participants recom-
mend using a prototype to show that Rust is worth adopting
(I = 4, S = 4). As I11 said, “We’re gonna do a prototype. If
doesn’t work we’ll just kill it”

Account for upfront costs. Another strategy suggested
by participants is to be clear about, and attempt to mediate,
upfront costs, including additional time to design for the own-
ership paradigm as well as challenges related to tooling and
dependencies (all discussed above). Participants suggest advo-
cates spend time significant time planning tooling (I = 4, S =
2). I14 specifically advised to “invest in your tooling upfront.
Everybody starts out with Cargo, and Cargo is wonderful for
what it does, but it has problems.” Due to the steep learning
curve, participants also suggest that advocates budget enough
time to get started (I = 3, S = 1). For example, I5 advised, “Fac-
tor in the learning curve and ramping up period that you’re
going to need to do. Because with initial adoption, you’re
probably not going to be able to hire like Rust programmers
. . . for a decent size project, and . . . it does take a long time
to kind of become productive in Rust, especially compared to
some other languages, but if you are expecting that then over
the long term you’re gonna get big advantages.”

Be helpful and have a good support system. Given the
steep learning curve, participants emphasize the need for ad-
vocates to be willing and able to help new developers (I = 4,
S = 2). They recommend the advocate themselves be a knowl-
edgeable Rust developer (I = 2, S = 8): S118 suggests “Make
yourself an expert (e.g., via personal projects and study) and
share your expertise generously. People will feel more com-
fortable with an unfamiliar language if they have a friendly,
helpful expert on their team. Finally, be patient. . . . Being
friendly, helpful, and humble usually works better than be-
ing pushy, righteous, and evangelical.” Similarly, S73 said,
“Make sure you are willing to mentor aggressively for a long
time.” Further, some participants suggest a formal support
system for teaching and mentoring new Rust developers (I
= 3, S = 3). I8 advised, “Try to just have some good support
for newer engineers.. . . If you do happen to have a couple
engineers who are more proficient in Rust and are willing to
help, . . . have those engineers help the newer ones.”

Be persistent but patient. Companies may not always buy
in to adopting Rust immediately. Some participants suggest
advocates for Rust be persistent (I = 1, S = 3). S84 suggested
adopters should “keep at it and try to get coworkers to pick
it up as well. Strength in numbers.” However, participants
also suggested advocates be patient (I = 3, S = 5) and not

“expect [their employer] to agree to making any changes at
first.” Advocates need to “give Rust time and be patient, the
memory model and lack of OOP combine to make it difficult
for existing programmers to jump into.” This advice — which
ties into the steep learning curve and lack of language maturity
discussed in Section 7.2 above — aligns well with Haney et
al.’s finding that building relationships and trust helps with
the adoption of secure systems and technologies [17].

8 Discussion and recommendations

Our results demonstrate that there are drawbacks to adopting
Rust but, at least for our participants (many of whom are
Rust enthusiasts), the benefits appear to outweigh them. This
section summarizes what we can learn from Rust’s success
to date, and recommends steps toward improving adoption or
use of Rust itself, as well as other secure languages and tools.

Making secure tools and languages appealing. All but
one survey respondent said they would either probably or
definitely use Rust again in the future (S = 99%) and many
survey participants felt that their employer would likely use
Rust again (S = 88%). This mirrors the results of the Stack
Overflow Developer Survey, where Rust has been the “most
loved” language for the last five years in a row [46].

Our results shed some light on why this might be. We con-
firmed that to a large extent, Rust is perceived to meet its
motivating goals of security and performance. Further, Rust’s
tools provide high-quality feedback (e.g., error messages),
the language boasts good documentation, and it has an ac-
tive and helpful online community; all of these were deemed
important in prior studies of language adoption [25]. Good
documentation and a responsible and attentive community
are also known to be important for encouraging adoption of
secure APIs and programming patterns [1, 2].

Flatten the learning curve. Participants overwhelmingly
report that learning Rust had a positive effect on their devel-
opment skills in other languages, including by internalizing
memory safety-relevant concepts such as ownership and life-
times. Rust caused participants to shift their programming
mental models, which echoes prior work showing that “mind-
shifts are required when switching paradigms” [45].

Unfortunately, our participants also report that Rust can be
very difficult to learn (Section 6.2) precisely because of the
difficulty of adhering to these concepts (as enforced by Rust’s
ownership and lifetime rules). As observed with other security
tools, Rust’s learning curve may be turning some developers
and/or organizations away from using it [48].

Finding ways to flatten this curve could have a big impact.
For example, it may make sense to develop a version of Rust
that allows users to incrementally learn the difficult concepts
of ownership and borrow checking, rather than forcing them
on users all at once. We speculate that Go may be easier
to learn for developers given its garbage collected memory

model, which removes some of the burden of memory man-
agement from the developers. Could we create a version of
Rust with garbage collection as a learning tool?

Reduce the risk of investment. Several of the drawbacks
we identified interact in ways that may multiply the perception
of risk related to adoption. Much of the cost of adoption occurs
up front: the steep learning curve, the relative immaturity
of the ecosystem, the slower initial development time, and
the inherent challenge of making a large change. Benefits
accrue later: improvements in security-minded programming,
shorter debugging time and eventually shorter development
time overall, and enforced avoidance of key security problems,
since Rust is type- and memory-safe. The perceived difficulty
of hiring experienced Rust developers, as well as concerns
about longevity and future maintenance, may make these
future-term benefits seem too uncertain to be worth the risk.

Educators and security advocates who want to incentivize
secure programming languages should look for ways to im-
prove this calculus, perhaps by investing in a pipeline of
trained Rust developers (reducing learning curve and improv-
ing hiring prospects), by developing libraries to contribute
to the increasing stability of the ecosystem, or perhaps by
developing models and templates for common porting and
interoperability challenges. Our participants offer suggestions
for action within organizations, such as “starting small” to
demonstrate value, and implementing mentoring support for
transitioning to Rust. Security advocates could help, by creat-
ing and publishing detailed case studies that illuminate bene-
fits and costs of adopting secure tools in real systems, and by
creating and supporting mentoring networks for these tools.

Improve the culture around unsafe code. Rust’s mem-
ory safety-related security benefits come simply by virtue of
using the language, but only as long as unsafe blocks are used
correctly; the more often and more carelessly they are used,
the greater the risk of a security hole. Our participants report
that unsafe blocks in Rust code are being used frequently,
often with only rudimentary vetting processes; prior studies
have come to similar conclusions [3, 10]. While many par-
ticipants/companies do recognize the risks of unsafe code,
we encourage the adoption of more, and more formal, review
procedures to more thoroughly mitigate these risks.

Reaching non-enthusiasts. While our participants had a
variety of general- and Rust-specific development experience,
our sample overrepresents people who show active interest
in Rust (as indicated by their adoption efforts and/or mem-
bership in a community forum). Future work could explore
recruitment strategies to target developers who failed in their
adoption efforts and/or lost interest in Rust programming.

9 Related work

Programming language adoption. Chen et al. [5] identi-
fied features relevant to a language’s adoption success, includ-
ing institutional support, technology support, and the ability
for users to add features. Meyerovich et al. [24] proposed a so-
ciological approach to understanding why some programming
languages succeed while others fail. In follow-on work includ-
ing both project analysis and surveys of developers, they find
that open-source libraries, existing code, and prior experience
strongly influence developers’ selection of languages, while
features like performance, reliability, and simple semantics do
not [25]. Further, they find that developers tend to prioritize
expressivity over correctness. Many of these findings align
with our results on the importance of the overall ecosystem to
language adoption.

Shrestha et al. [45] studied Stack Overflow questions to
understand when and why programmers have difficulty learn-
ing a new language, finding that interference from previous
languages was common, since programmers often attempt
to relate a new programming language to ones they know.
Our findings suggest that the significant departure from prior
experience contributes to Rust’s steep learning curve.

Secure tool adoption. Other researchers have investigated
factors affecting secure tool adoption by developers. Xiao
et al. [50] explored the social factors influencing secure tool
adoption, finding that company culture influences adoption
and use of security tools through encouragement or discour-
agement to try new tools and managerial intervention in the
security process. In follow-on work, researchers surveyed
developers about why they chose (not) to use security tools
and found that the biggest predictor of adoption was peers
demonstrating the use and benefits of the tool [49]. Haney et
al. [17] found that security advocates promoting tool adoption
must first establish trust by being truthful about risks. These
recommendations align with the suggestions our participants
offered to Rust advocates.

Other researchers have focused on the adoption of specific
tools. Sadowski et al. [44] focused on static analysis tools
by building Tricorder which integrates static analysis into
developer workflow. They found that developers were gener-
ally happy with the results from the static analysis tools and
the number of mistakes in the codebase reduced. Christakis
et al. [6] explored the factors and features that make a pro-
gram analyzer appealing to developers by interviewing and
surveying developers at Microsoft, finding that the biggest
pain-point in using a program analyzer is that the default
rules do not match developer wants and developers most want
security issues detected.

Real-world Rust usage. Evans et al. [10] studied Rust li-
braries and applications to uncover how unsafe blocks are
used in real-world scenarios and found that less than 30% of
Rust libraries contain unsafe blocks, but the most downloaded

libraries are more likely than average to use unsafe blocks.
Similarly, Astrauskas et al. [3] examine what they call the
Rust hypothesis: unsafe blocks should be used sparingly, easy
to review, and hidden behind a safe abstraction. They find
only partial adherence: a large portion of unsafe blocks relate
to interoperation, leaving the unsafe blocks publicly accessi-
ble and most unsafe blocks are used to call unsafe functions.
Qin et al. [41] explored how and why programmers use un-
safe blocks, along with the types of security and concurrency
bugs found in real Rust programs. They found a number of
memory safety issues, all involving the use of unsafe blocks.
We explore the use of unsafe blocks, along with mitigation
procedures, from the developer’s perspective.

Perhaps closest to our work are studies of Rust’s usability.
Luo et al. [42] developed an educational tool, RustViz, that
allows teachers to demonstrate ownership and borrowing by
visual example. Mindermann et al. [26] studied the usability
of Rust cryptography APIs in a controlled experiment, find-
ing that half of the major cryptography libraries in Rust focus
on usability and misuse avoidance. Zeng et al. [51] explored
Rust adoption by analyzing Reddit and Hacker News posts
relating to Rust, hypothesizing three main barriers to Rust’s
adoption: tooling which is not promoted by the language
developers, difficulty representing complex pointer aliasing
patterns, and the high cost of integrating Rust into an existing
language ecosystem or toolchain. Our interview and survey
study complements this work by asking developers to report
on their experiences, positive and negative, with more con-
sistency than can be observed via forum posts but without
direct access to specific challenges at the time they occurred.
Further, we explore both personal and organizational contexts.
Our findings are similarly complementary, identifying both
benefits and drawbacks to the tooling and situating the steep
learning curve within the eventual benefits.

10 Conclusion

Secure programming languages are designed to alleviate com-
mon vulnerabilities that are otherwise difficult to eliminate,
such as out-of-bound reads and writes or use-after-free errors.
However, these languages cannot provide any security guar-
antees if they are not adopted. To understand the benefits and
hindrances that influence adoption in practice, using Rust as
a case-study, we interviewed 16 professional, mostly senior,
software engineers who had adopted or tried to adopt Rust on
their teams and surveyed 178 members of the Rust developer
community. We asked about personal and professional expe-
riences with adopting and using Rust. Participants reported
a variety of benefits and drawbacks to adopting Rust, includ-
ing upfront costs like a steep learning curve and longer-term
benefits like shorter development cycles and improved mental
models of code security. Participants also discussed reasons
their employers were skeptical about Rust adoption, and sug-
gested strategies for championing adoption in the workplace.

11 Acknowledgments

We thank the anonymous reviewers who provided helpful
comments on drafts of this paper. This project was supported
by NSF grant CNS-1801545.

References

[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson
Garfinkel, Doowon Kim, Michelle L Mazurek, and
Christian Stransky. Comparing the usability of cryp-
tographic apis. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 154–171, 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. You
Get Where You’re Looking for: The Impact of Infor-
mation Sources on Code Security. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
289–305, May 2016.

[3] Vytautas Astrauskas, Christoph Matheja, Federico Poli,
Peter Müller, and Alexander J Summers. How do pro-
grammers use unsafe rust? PACMPL, 4(OOPSLA):1–27,
2020.

[4] Yung-Yu Chang, Pavol Zavarsky, Ron Ruhl, and Dale
Lindskog. Trend analysis of the cve for software vul-
nerability management. In Proceedings of the 2011
IEEE Third International Conference on Privacy, Se-
curity, Risk and Trust and 2011 IEEE Third Interna-
tional Conference on Social Computing, pages 1290–
1293. IEEE, 2011.

[5] Yaofei Chen, Rose Dios, Ali Mili, Lan Wu, and Kefei
Wang. An empirical study of programming language
trends. IEEE Software, 22(3):72–79, 2005.

[6] Maria Christakis and Christian Bird. What develop-
ers want and need from program analysis: an empirical
study. In Proceedings of the 31st IEEE/ACM interna-
tional conference on automated software engineering,
pages 332–343, 2016.

[7] Catalin Cimpanu. Microsoft: 70 percent of
all security bugs are memory safety issues.
https://www.zdnet.com/article/microsoft-70-
percent-of-all-security-bugs-are-memory-
safety-issues/, 2019.

[8] Juliet Corbin and Anselm Strauss. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage publications, 2014.

[9] Ryan Donovan. Why the developers who use Rust love
it so much. https://stackoverflow.blog/2020/

06/05/why-the-developers-who-use-rust-
love-it-so-much/, 2020.

[10] Ana Nora Evans, Bradford Campbell, and Mary Lou
Soffa. Is rust used safely by software developers? In
Proceedings of the ACM/IEEE International Conference
on Software Engineering, pages 246–257, 2020.

[11] Deen G Freelon. ReCal: Intercoder reliability calcula-
tion as a web service. International Journal of Internet
Science, 5(1):20–33, 2010.

[12] Alex Gaynor. What science can tell us about C
and C++’s security. https://alexgaynor.net/
2020/may/27/science-on-memory-unsafety-and-
security/, 2020. Presentation at Enigma.

[13] Google. Chrome: 70% of all security bugs are memory
safety issues. https://www.chromium.org/Home/
chromium-security/memory-safety, 2020.

[14] Google. Go Programming Language. https://
golang.org/, 2020.

[15] Jake Goulding. What is Rust and why is it so popular?
https://stackoverflow.blog/2020/01/20/what-
is-rust-and-why-is-it-so-popular/, 2020.

[16] Greg Guest, Arwen Bunce, and Laura Johnson. How
many interviews are enough? an experiment with data
saturation and variability. Field Methods, 18(1):59–82,
2006.

[17] Julie M. Haney and Wayne G. Lutters. "It’s Scary. . . It’s
Confusing. . . It’s Dull": How Cybersecurity Advocates
Overcome Negative Perceptions of Security. In Proceed-
ings of the Symposium on Usable Privacy and Security,
2018.

[18] Andrew F Hayes and Klaus Krippendorff. Answering
the call for a standard reliability measure for coding
data. Communication Methods and Measures, 1(1):77–
89, 2007.

[19] C. A. R. (Tony) Hoare. Null References: The
Billion Dollar Mistake. https://www.infoq.com/
presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare/, 2009. Presentation
at QCon.

[20] IEEE. The Top Programming Languages. https:
//spectrum.ieee.org/static/interactive-the-
top-programming-languages-2019, 2020.

[21] Steve Klabnik and Carol Nichols. The Rust Pro-
gramming Language Book. https://doc.rust-lang.
org/1.9.0/book/README.html, 2020.

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://golang.org/
https://golang.org/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://doc.rust-lang.org/1.9.0/book/README.html
https://doc.rust-lang.org/1.9.0/book/README.html

[22] Klaus Krippendorff. Reliability in Content Analysis :
Some Common Misconceptions and Recommendations.
2015.

[23] Matthew Lombard, Jennifer Snyder-Duch, and
Cheryl Campanella Bracken. Content analysis in
mass communication: Assessment and reporting of
intercoder reliability. Human Communication Research,
28(4):587–604, 2002.

[24] Leo A. Meyerovich and Ariel S. Rabkin. Socio-PLT:
Principles for Programming Language Adoption. In Pro-
ceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software, page 39–54, 2012.

[25] Leo A Meyerovich and Ariel S Rabkin. Empirical anal-
ysis of programming language adoption. In Proceedings
of the Conference on Object oriented programming sys-
tems languages & applications, pages 1–18, 2013.

[26] Kai Mindermann, Philipp Keck, and Stefan Wagner.
How usable are Rust cryptography APIs? In Proceed-
ings of the 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS), pages 143–
154. IEEE, 2018.

[27] Mitre. CVE. https://cve.mitre.org/, 2020.

[28] Mitre. CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer. https://cwe.
mitre.org/data/definitions/119.html, 2020.

[29] Mitre. CWE-125: Out-of-bounds Read. https://cwe.
mitre.org/data/definitions/125.html, 2020.

[30] Mitre. CWE-416: Use After Free. https://cwe.
mitre.org/data/definitions/416.html, 2020.

[31] Mitre. CWE-476: NULL Pointer Dereference. https:
//cwe.mitre.org/data/definitions/476.html,
2020.

[32] Mitre. CWE-787: Out-of-bounds Write. https://cwe.
mitre.org/data/definitions/787.html, 2020.

[33] Mozilla. Rust Programming Language. https://www.
rust-lang.org/, 2020.

[34] Mozilla. The Rust programming language.
https://developer.mozilla.org/en-US/docs/
Mozilla/Rust, 2020.

[35] Mozilla. Rust Programming Language Production.
https://www.rust-lang.org/production, 2020.

[36] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
Emanuel von Zezschwitz, and Matthew Smith. “If
You Want, I Can Store the Encrypted Password”: A

Password-Storage Field Study with Freelance Develop-
ers. In Proceedings of the Conference on Human Factors
in Computing Systems, pages 140:1–140:12, 2019.

[37] NIST. CWE Over Time. https://nvd.nist.
gov/general/visualizations/vulnerability-
visualizations/cwe-over-time, 2020.

[38] NIST. National Vulnerability Database. https://nvd.
nist.gov/general, 2020.

[39] Jeffrey M Perkel. Why scientists are turning to Rust?
Nature, 588:186–186, 2020.

[40] Rob Pike. Go at Google: Language design in the ser-
vice of software engineering. https://talks.golang.
org/2012/splash.article, 2020.

[41] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and
Yiying Zhang. Understanding Memory and Thread
Safety Practices and Issues in Real-World Rust Pro-
grams. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation, page
763–779, 2020.

[42] Vishnu Reddy, Marcelo Almeida, Yingying Zhu, Ke Du,
Cyrus Omar, et al. RustViz: Interactively Visual-
izing Ownership and Borrowing. arXiv preprint
arXiv:2011.09012, 2020.

[43] Andrew Ruef, Michael Hicks, James Parker, Dave Levin,
Michelle L Mazurek, and Piotr Mardziel. Build it, break
it, fix it: Contesting secure development. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 690–703, 2016.

[44] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan,
Emma Soderberg, and Collin Winter. Tricorder: Build-
ing a Program Analysis Ecosystem. In Proceedings of
the 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, volume 1, pages 598–
608, 2015.

[45] Nischal Shrestha, Colton Botta, Titus Barik, and Chris
Parnin. Here We Go Again: Why Is It Difficult for De-
velopers to Learn Another Programming Language? In
Proceedings of the ACM/IEEE International Conference
on Software Engineering, 2020.

[46] StackOverflow. Developer Survey Results.
https://insights.stackoverflow.com/survey/
2020#technology-most-loved-dreaded-and-
wanted-languages-loved, 2020.

[47] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In Proceedings of
the IEEE Symposium on Security and Privacy, pages
48–62, 2013.

https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://www.rust-lang.org/
https://www.rust-lang.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Rust
https://developer.mozilla.org/en-US/docs/Mozilla/Rust
https://www.rust-lang.org/production
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general
https://nvd.nist.gov/general
https://talks.golang.org/2012/splash.article
https://talks.golang.org/2012/splash.article
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved

[48] Jim Witschey, Shundan Xiao, and Emerson Murphy-Hill.
Technical and personal factors influencing developers’
adoption of security tools. In Proceedings of the ACM
Workshop on Security Information Workers, pages 23–
26, 2014.

[49] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson
Murphy-Hill, Chris Mayhorn, and Thomas Zimmer-
mann. Quantifying developers’ adoption of security
tools. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 260–271,
2015.

[50] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill.
Social influences on secure development tool adoption:
why security tools spread. In Proceedings of the 17th
ACM conference on Computer supported cooperative
work & social computing, pages 1095–1106, 2014.

[51] Anna Zeng and Will Crichton. Identifying barriers
to adoption for Rust through online discourse. arXiv
preprint arXiv:1901.01001, 2019.

A Interview protocol

Most interviews were conducted by one interviewer; some
interviews were assisted by a second interviewer. The sec-
ond interviewer took notes and asked some additional and
follow-up questions. Each interview was audio recorded, with
permission.

Rust Background
• How did you initially learn about Rust?

• Why did you/your team/your company decide to adopt
Rust?

• Was it hard to convince the necessary people/groups
(bosses, team members, others?) at your company to use
Rust?

– What concerns did they have?

– What were they excited about?

• Have any attitudes/policies of (team members, manage-
ment) changed since you attempted this project in Rust?

– How so?

• Can you please describe at a high level the project you/y-
our team/your company are/is working on in Rust?

– Is the project currently ongoing?

* If yes, would you (briefly) characterize it as
going well? Why (not)?

* If no, did you finish it?

· If no, why do you think you weren’t able
to complete the project?

· If yes, do you consider the outcome a suc-
cess? Why (not)?

– Why did you pick this project to write in Rust?

• Can you tell me more about what happened when you
tried to adopt Rust?

– How long did it take you/did you spend trying/do
you think you’ll need to complete this project in
Rust?

– What went particularly well when adopting Rust
at your company/on your team?

– What went particularly poorly when adopting Rust
at your company/on your team?

– Did you receive positive feedback from adopting
Rust?

* From whom?

* What were they happy about?

– Did you receive negative feedback from adopting
Rust?

* From whom?

* What were they happy about?

– What would you do differently if you were to at-
tempt another project in Rust?

* Would you even try again at all?

• What would you tell someone in your position at a differ-
ent company that is also thinking about adopting Rust?

Experiences with Rust (Only ask if they are pro-
grammer/familiar with coding)

• Have you ever felt like there was a programming task or
something you wanted to program in Rust but could not
get it to work?

– What was it?

– What did you try in order to debug/fix this prob-
lem?

• Can you tell me how Rust specific things affect your
ability to fit a problem specification into a solution in
Rust?

– Ownership?

– Lifetimes?

• Can you tell me more about your process of going from
a problem specification to a solution in Rust?

• Do you find it difficult to find a solution to a program-
ming problem in Rust?

– Why?

• How easy is it for you to find solutions to any problems
or errors you encounter while programming in Rust?

• What features do you like most about the Rust program-
ming language?

– Libraries/APIs?

– Online community?

• What features do you like least about the Rust program-
ming language?

– Libraries/APIs?

– Online community?

• In your opinion, what are the biggest strengths of Rust?

– Libraries/APIs?

– Online community?

• In your opinion, what are the biggest weaknesses of
Rust?

– Libraries/APIs?

– Online community?

• Have you ever used unsafe blocks in this project?

– Why did you use them?

– What solutions did you try before using the unsafe
blocks?

• Does this project code interoperate with any other code
from another language?

– What was hard about getting the code to interoper-
ate?

– What was easy about getting the code to interoper-
ate?

• Did you/the team port code from another programming
language to Rust for this project?

– What language did you port from?

– What was hard about porting your code to Rust?

– What was easy about porting your code to Rust?

– Did you feel like it was easier to write this code in
the original language or Rust?

B Survey

Technical Background
1. How long have you been programming? [Less than a

year, 1 - 5 years, 5 - 10 years, More than 10 years]

2. Are you currently employed in a software engineering
field? [Yes, Maybe, No]

3. Which of the following currently describe(s) what you
do for work? (Check all that apply) (Only show if
they answered yes or maybe to question 2) [Operating
systems programming, Embedded systems program-
ming, Firmware development, Web development,
Network programming, Databases programming,
Game development, Data science, DevOps, Desk-
top/GUI applications development, Library devel-
opment, Mobile application development, CS/Tech-
nical research, CS/Technical education, Other [text
box]]

4. Approximately how many employees work for your em-
ployer? (Only show if they answered yes or maybe to
question 2) [1 - 100, 100 - 999, 1000 or more]

5. Which of the following programming languages have
you been using for the last year (in a substantive manner),
and/or expect to use in the near term? (Check all that
apply) [Python, C++, Java, C, C#, PHP, R, Javascript,
Swift, Go, Haskell, Other (Please comma separate if
more than 1) [text box]]

6. Please rate your level of comfort and experience using
the following programming languages.

1 - I have never used the programming language.

2 - I have used the programming language sparingly (e.g.
modifications to others’ programs or small toy programs)

3 - I have written a few thousand lines of code in the
programming language.

4 - I am comfortable writing in it.

5 - I have programmed in this language a lot and know
it very well.

[Python, C++, Java, C, C#, PHP, R, Javascript, Swift,
Go, Haskell]

7. To what extent have you used the Rust programming
language? [I have used Rust for hobby projects, I
have used Rust in a class, I have maintained a body
of Rust code, I have been paid to write Rust code, I
have never used Rust]

8. What were the main reason(s) that you decided to learn
Rust? (Check all that apply) [Rust was assigned for
a class, Rust was assigned for a paid job, Curiosity

about Rust, Rust was suggested by a friend, To learn
a marketable job skill, Other [text box]]

9. How long have you been programming in Rust? (Total
time which you have actively spent working on Rust
projects) [Less than a year, 1- 2 years, 2 - 5 years,
More than 5 years]

10. How many lines of code (LOC) do you estimate you
have written in Rust? [0 - 1000 LOC, 1000 - 10k LOC,
10k - 50k LOC, 50k - 100k LOC, More than 100k
LOC]

11. Which best describes your current use of Rust? [I am
currently using Rust for projects., I have used Rust
in the past for projects, but I am not using it cur-
rently., I am not currently using Rust for projects.]

12. If it were up to you to choose, how would you feel about
using Rust for future projects? [I would definitely want
to use Rust in the future., I probably want to use
Rust in the future., I probably do not want to use
Rust in the future., I definitely do not want to use
Rust in the future.]

13. Notwithstanding your general interest in using Rust in
the future, for which of the following tasks/application-
s/projects would you not choose Rust? (Check all that
apply) [GUI applications, Web applications, Mobile
applications, Writing compiler code, Writing graph-
ics code, Writing testing code, Other [text box]]

Learning and Using Rust

1. Which of the following describes the primary way(s) you
learned Rust? (Check all that apply) [Followed a Rust
tutorial, Worked through “The Rust Programming
Language” on-line text, Asked questions about Rust
through on-line forums, Asked questions about Rust
to coworkers/group-mates/friends, Studied Rust in a
class, Attended a Rust workshop/bootcamp, Wrote a
small Rust program from scratch, Ported some exist-
ing code to Rust, Other [text box]]

2. How easy or difficult did you find Rust to learn? [Very
difficult, Slightly difficult, Neither difficult nor easy,
Slightly easy, Very easy]

3. How long after learning and using Rust did it take before
you could quickly and easily write a program that com-
piled and ran (without frequently resorting to the use of
unsafe blocks)? [Less than 1 week, 1 week - 1 month,
1 month - 6 months, 6 months - 1 year, More than 1
year, I am not yet able to quickly and easily write a
program that compiles and runs.]

4. Approximately how long did it take for you to feel com-
fortable in Rust writing:

• A small program (Less than 10,000 lines of code)
[1 week, 1 week - 1 month, 1 month - 6 months,
6 months - 1 year, More than 1 year, N/A]

• A large program (More than 10,000 lines of code)
[1 week, 1 week - 1 month, 1 month - 6 months,
6 months - 1 year, More than 1 year, N/A]

• Library code [1 week, 1 week - 1 month, 1 month
- 6 months, 6 months - 1 year, More than 1 year,
N/A]

• An application [1 week, 1 week - 1 month, 1
month - 6 months, 6 months - 1 year, More than
1 year, N/A]

5. How would you rate the quality of available Rust doc-
umentation? [Very poor, Poor, Average, Good, Very
good, I don’t know]

6. How would you rate the quality of advice from the Rust
online community (For example: reddit, Stack Overflow,
etc)? [Very poor, Poor, Average, Good, Very good, I
don’t know]

7. To what extent do you agree with the following state-
ment: When I encounter a problem or error while work-
ing in Rust, I can easily find a solution to my problem?
[Strongly disagree, Disagree, Neither agree nor dis-
agree, Agree, Strongly agree, I don’t know]

8. Which of the following make(s) the process of find-
ing a solution to your problems or errors easy? (Check
all that apply) (Only show if the answer to 7 is agree
or strongly agree) [Availability of examples in of-
ficial documentation, Availability of examples on
Stack Overflow, Availability of examples on other
online tutorials, Availability of knowledgable team-
mate/friend, Availability of descriptive compiler/er-
ror messages, Strong understanding of the language,
Other [text box]]

9. Which of the following make(s) the process of finding a
solution to your problems or errors difficult? (Check all
that apply) (Only show if the answer to 7 is disagree or
strongly disagree) [Lack of examples in official doc-
umentation, Lack of examples on Stack Overflow,
Lack of examples on other online tutorials, Lack
of knowledgable teammate/friend, Lack of descrip-
tive compiler/error messages, Lack of strong under-
standing of the language, Other [text box]]

Using Rust for Work
1. Are you, personally, currently writing Rust code for

work? [Yes, No]

2. Which of the following most accurately describes how
you are writing Rust code for work? (Only show if the
answer to 1 is yes) [I am writing Rust code as part of
a company or large organization., I am writing Rust
code as part of a freelance assignment.]

3. Have you or anyone on your team tried to get Rust
adopted at your employer? (Only show if the answer
to 1 is no) [Yes, No]

4. What were the major reasons your employer stated for
deciding against using Rust? (Check all that apply)
(Only show if the answer to 3 is yes) [Insufficient secu-
rity, Inadequate performance, Lack of interoperabil-
ity with existing codebase, Difficulty of maintainabil-
ity, Lack of compatibility with development ecosys-
tem, Difficulty of learning the language, Potential
reduction in productivity of developers, Unfamiliar-
ity with the language, Inability to hire Rust develop-
ers, Lack of trust in Rust toolbase, Concern about
the long-term development and support of the lan-
guage, Time pressure to deliver a product, Not want-
ing another new language at the company, Other
[text box]]

5. Did anyone at your employer/on your team have appre-
hensions about using Rust? (Only show if the answer
to 2 is I am writing code as part of a company or large
organization) [Yes, No]

6. What were the major apprehensions of your employ-
er/teammate(s) about using Rust? (Check all that ap-
ply) (Only show if the answer to 5 is yes) [Insufficient
security, Inadequate performance, Lack of interop-
erability with existing codebase, Difficulty of main-
tainability, Lack of compatibility with development
ecosystem, Difficulty of learning the language, Poten-
tial reduction in productivity of developers, Unfamil-
iarity with the language, Inability to hire Rust devel-
opers, Lack of trust in Rust toolbase, Concern about
the long-term development and support of the lan-
guage, Time pressure to deliver a product, Not want-
ing another new language at the company, Other
[text box]]

7. Other than Rust, what language(s) do you primarily use
at your employer (in terms of largest number of projects
and/or lines of code)? (Check all that apply) (Only show
if the answer to 2 is I am writing code as part of a com-
pany or large organization [Python, C++, Java, C, C#,
PHP, R, Javascript, Swift, Go, Haskell, Other [text
box]]

8. What language(s) do you primarily use at your employer
(in terms of largest number of projects and/or lines of
code)? (Check all that apply) (Only show if the answer

to 1 is no and 3 is yes [Python, C++, Java, C, C#, PHP,
R, Javascript, Swift, Go, Haskell, Other [text box]]

9. What are the primary conditions under which you have
developed using Rust at your employer? (Only show if
the answer to 2 is I am writing code as part of a company
or large organization) [Developing alone, Developing
in teams of 2 - 5 people, Developing in teams of more
than 5 people]

10. Approximately how much legacy code at your em-
ployer was written in another language? (Only show
if the answer to 2 is I am writing code as part of a
company or large organization) [Less than 100,000
lines of code, 100,000 - 1,000,000 lines of code,
1,000,001 - 500,000,000 lines of code, 500,000,001 -
1,000,000,000 lines of code, More than 1,000,000,000
lines of code]

11. Which best describes your employer’s future use of Rust
after the completion of current project(s), if any? (Only
show if the answer to 2 is I am writing code as part of a
company or large organization) [I am certain that my
employer will use Rust again in the future., I think
my employer will use Rust again in the future., I do
not think my employer will use Rust again in the
future., am certain my employer will not use Rust
again in the future.]

12. What one piece of advice would you give to someone
who is just starting out in writing Rust at an employer
similar to yours? (Only show if the answer to 2 is I am
writing code as part of a company or large organization)
[text box]

13. What one piece of advice would you give to someone
who is trying to get Rust adopted at an employer similar
to yours? (Only show if the answer to 3 is yes) [text box]

Comparing Rust to Other Languages

1. The next set of questions will ask you to compare your
opinions about and experiences with Rust to those of
another language. This language should be among those
you are most comfortable programming in; it can be
your favorite, or perhaps the one you are using most right
now. Please choose it from the list below. [Python, C++,
Java, C, C#, PHP, R, Javascript, Swift, Go, Haskell,
N/A (Rust is the only language I program in), Other
[text box]]

2. How would you rate the quality of Rust debugging
tools compared to [chosen language]? [Very poor, Poor,
Average, Good, Very good]

3. How would you rate the quality of Rust testing tools
compared to [chosen language]? [Very poor, Poor, Av-
erage, Good, Very good]

4. How would you rate the quality of Rust compiler and
run-time error messages compared to [chosen lan-
guage]? [Very poor, Poor, Average, Good, Very good]

5. To what extent do you agree with the following state-
ment: I can more quickly design and fully implement
code in Rust (well-tested, few if any bugs) than in [cho-
sen language]? [Strongly disagree, Slightly disagree,
Neither agree nor disagree, Slightly agree, Strongly
agree]

6. To what extent do you agree with the following state-
ment: I find it more difficult to prototype in Rust (i.e.,
get the basic working, but there may be bugs and miss-
ing corner cases) than in [chosen language]? [Strongly
disagree, Slightly disagree, Neither agree nor disagree,
Slightly agree, Strongly agree]

7. To what extent do you agree with the following state-
ment: I spend more time getting my Rust code to com-
pile than code in [chosen language]? [Strongly disagree,
Slightly disagree, Neither agree nor disagree, Slightly
agree, Strongly agree]

8. To what extent do you agree with the following state-
ment: Once I get it to compile. I spend less time debug-
ging my Rust code than code in [chosen language]?
[Strongly disagree, Slightly disagree, Neither agree
nor disagree, Slightly agree, Strongly agree]

9. To what extent do you agree with the following
statement: Rust code is more difficult to main-
tain than code in [chosen language]? [Strongly dis-
agree, Slightly disagree, Neither agree nor disagree,
Slightly agree, Strongly agree]

10. To what extent do you agree with the following state-
ment: Rust makes me more confident that my pro-
duction code is bug-free than programming in [cho-
sen language]? [Strongly disagree, Slightly disagree,
Neither agree nor disagree, Slightly agree, Strongly
agree]

11. To what extent do you agree with the following state-
ment: Rust reduces the amount of time from the start
of a project to shipping the project compared to [cho-
sen language]? [Strongly disagree, Slightly disagree,
Neither agree nor disagree, Slightly agree, Strongly
agree]

Rust Language/Ecosystem
1. Recall recent experiences developing with Rust. What

are some things about Rust - both language and ecosys-
tem - that you liked? (Check all that apply) [Traits,
Slices, Enums, Memory safety, Concurrency safety,
Immutability by default, Pattern matching, No null
pointers, Closures, Generics, Ownership, Lifetimes,
Performance, Crates ecosystem, Lack of garbage col-
lection, Other [text box]]

2. Recall recent experiences developing with Rust. What
are some things about Rust - both language and ecosys-
tem - that you disliked? (Check all that apply) [Depen-
dency bloat, Lack of available libraries, Long build
time, Code size, Prototyping in Rust, Missing fea-
tures (Please elaborate below) [text box], Other [text
box]]

3. Which of the following describes your use of unsafe
blocks/code while programming in Rust? (Check all
that apply) [I have used unsafe code for foreign func-
tion interface (FFI) code., I have used unsafe code to
enhance the performance of my code., I have used
unsafe code for kernel-level/low-level interaction., I
have used unsafe code for hardware interaction., I
have used unsafe code to allow for memory man-
agement., I have used unsafe code in another way.
(Please elaborate below) [text box], I have never used
unsafe code.]

4. Does your employer/team/do you have a system for the
review and use of unsafe blocks? (Only show if the an-
swer to 3 is not I have never used unsafe blocks) [Yes
[text box], No]

5. To what extent has Rust positively affected how you
program in [chosen language]? [No effect at all, Minor
effect, Some effect, Moderate effect, Major effect]

6. How has Rust affected how you work in [chosen lan-
guage]? (Check all that apply) (Only show if the an-
swer to 5 is not no effect at all) [Made me think about
ownership, Made me think about aliasing, Made me
think about memory lifetimes, Made me think about
data structure organization, Made me think about
the use of generics, Made me think about the use
of immutability, Made me think about iteration pat-
terns within my code, Other [text box]]

Porting and Interoperating with Legacy Code
1. Have you ever tried to port code from another language

into Rust? [Yes, No]

2. What language(s) have you ported from? (Check all
that apply) (Only show if they answered yes or maybe

to question 2) [Python, C++, Java, C, C#, PHP, R,
Javascript, Swift, Go, Haskell, Other [text box]]

3. How easy or difficult was it to port code from[chosen
language] to Rust? [Extremely easy, Somewhat easy,
Neither easy nor difficult, Somewhat difficult, Ex-
tremely difficult]

4. Have you ever written Rust code intended to interoperate
with code in another programming language? [Yes, No]

5. What language(s) have you tried to interoperate with?
(Check all that apply) (Only show if they answered yes
or maybe to question 4) [C, C++, Other [text box]]

6. How easy or difficult was it to achieve the interoperation
between [chosen language] and Rust? [Extremely easy,
Somewhat easy, Neither easy nor difficult, Some-
what difficult, Extremely difficult]

Background of Participants
1. Please select your gender: [Male, Female, Non-binary,

Other [text box], Prefer not to answer]

2. Please select your age: [18 - 29, 30 - 39, 40 - 49, 50 - 59,
60 - 69, Over 70, Prefer not to answer]

3. Please select your highest completed education level:
[Some high school, High school diploma/GED, Some
college, Bachelor’s degree, Master’s degree, PhD]

C Demographic tables

ID Title Company Size
(# employees)

I1 aid in Rust adoption ≥ 1000
I2 group director 100 - 999
I3 software engineer ≥ 1000
I4 software engineer ≥ 1000
I5 senior engineer 100-999
I6 principal software engineer ≥ 1000
I7 system engineer ≥ 1000
I8 software engineer ≥ 1000
I9 co-founder and CTO < 100
I10 instrumentation engineer 100 - 999
I11 engineering manager ≥ 1000
I12 research software engineer 100 - 999
I13 research software engineer 100 - 999
I14 software engineer ≥ 1000
I15 principal engineer < 100
I16 software engineer ≥ 1000

Table 1: Interviewee demographics.

Area # of participants (%)

Web development 73 (54%)
Library development 51 (38%)
Network programming 44 (32%)
DevOps 33 (24%)
Databases programming 28 (21%)
Data science 27 (20%)
Embedded systems programming 27 (20%)
Desktop/GUI apps development 26 (19%)
OS programming 25 (18%)
Other 24 (18%)
Mobile application development 19 (14%)
Firmware development 16 (12%)
CS/Technical research 14 (10%)
Game development 9 (7%)
CS/Technical education 7 (5%)

Table 2: Survey participants who worked in each area of
software development. Multiple selection was allowed.

	Introduction
	Background
	Core features and ecosystem
	Ownership and Lifetimes
	Unsafe Rust

	Method
	Interviews and Surveys
	Data analysis
	Limitations

	Participants
	How is Rust being used?
	Applications
	Porting and interoperating
	Unsafe blocks

	Benefits and drawbacks of Rust
	Technical benefits of Rust
	Learning Rust: Curiosity vs. reality
	Rust ecosystem: Good and getting better
	Mostly positive impact on development

	Organizational adoption of Rust
	Apprehensions about any new language
	Apprehensions specific to Rust
	Ways to encourage adoption

	Discussion and recommendations
	Related work
	Conclusion
	Acknowledgments
	Interview protocol
	Survey
	Demographic tables

