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Secure Multiparty Computation (MPC) is a subfield of cryptogra-
phy that allows mutually untrusting parties to compute arbitrary
functions over their private inputs while revealing nothing except
the function output. While the idea for MPC is old, it is rapidly
advancing, with high performance cryptographic back ends, and
front-ends based on familiar programming models (e.g., imperative,
functional), and languages (Java, C, and C++) [1, 3, 5, 7, 8, 10].

Unfortunately, while these languages allow the programmer to
effectively express many MPCs, they fall short when confronted
with problems that require non-trivial coordination. Overwhelm-
ingly, MPC languages take the default view that all parties perform
the same synchronized activity, SIMD-style. But this approach has
problems when trying to scale up to many parties, and when the
computation may proceed based on dynamic outcomes.

For example, suppose we wish to implement “March Madness
Millionaires” (MMM) where 𝑁 = 2𝐾 parties take part in a pairwise
competition to see who is the richest, with the winners of one round
pairing up in the next round until there is a final winner; all 𝑁 − 1
contest winners are made public . Unfortunately, 2-party frame-
works like Obliv-C [10] and EMP [8], and N-party languages, such
as PICCO [11], Sharemind [2], Frigate [5], and SCALE-MAMBA [1],
provide no help in coordinating this sort of task; they take the
default view that all parties perform the same synchronized activity.
For MMM, parties are pairwise (not N-way) synchronized to start,
and require coordination after each round. These languages would
allow expressing the “am I richer than you” computation between
two parties, but the coordination logic amongst themmust be coded
up separately, in a separate language. In addition to increasing the
chances of a mistake, using a separate language for coordination
increases the chances that a mistake is security relevant. Ideally, all
of a secure computation should be examined for correctness, and it
is easier to do this if the whole computation is in one place.

To support coordination as part of secure computation, we have
been developing Symphony, a domain-specific language that sup-
ports MPCs with complex coordination. Symphony provides first
class support for coordinating parties. In particular, its first class
shares allow the programmer to elegantly interleave encrypted com-
putation with cleartext local computation, and its par expressions
allow the programmer to easily control which parties are in scope.
SIMD-style sub-computations may take place over bundles, which
allow different parties to have their own private values. Crucially,
Symphony supports a single-threaded interpretation of distributed
programs: The developer can understand her program as if it runs
on a single thread of execution on a single machine, and Symphony

guarantees that this is a faithful understanding of the program,
even when the program is executed in a distributed setting. This
interpretation allows the programmer to reason effectively and to
avoid bugs while coordinating parties in arbitrary ways.

Symphony was inspired by earlier work on Wysteria [6], which
also tackled the coordination problem, and provided a single-threaded
interpretation. For example, Wysteria also has par blocks, and bun-
dles for SIMD computations. However, Symphony is simpler while
still being more powerful. Wysteria places secure computations in
special sec expressions which have complicated rules about their
use. A sec expression is translated to a circuit that is run by anMPC
backend (e.g., Yao [9] or GMW [4]) with its final result revealed.
By contrast, Symphony’s shares are essentially suspended circuits,
built up iteratively by the program; only when passed to a reveal
construct is the circuit executed by the backend. We found that
computations like recursive GCD simply could not be expressed in
Wysteria.

We have formalized Symphony in a core calculus, which we call
𝜆-Symphony. Using it, we proved that the single-threaded semantics
faithfully represents the actual distributed semantics. We note that
Symphony’s simplicity, compared to Wysteria, is also evident in its
formal model, which is far simpler than Wysteria’s.

We have also implemented an interpreter for Symphony and used
it to implement a variety of MPC programs. Our interpreter is writ-
ten in Haskell, and connects to the EMP toolkit for theMPC backend
(implementing Yao’s garbled circuits). We have implemented the
same programs in Obliv-C, a state of the art MPC framework for
two party computation, which uses C as a front end. For a robust
comparison, we have also modified Obliv-C to connect to the EMP
toolkit as an alternative MPC backend. We have measured the gate
counts and end-to-end execution time of both Symphony and Obliv-
C on five different benchmarks: hamming distance, bio-matching,
db-analytics, gcd, and edit-distance. Our preliminary results show
that both gate counts and end-to-end execution time are similar
between Obliv-C and Symphony. (And of course you can’t write
MMM in Obliv-C.)

Symphony is active work. We are working on
• Developing a static type system for Symphony. At present,
Symphony’s interpreter is dynamically checked. This means
that some failures will not be detected until run-time. A
sufficiently powerful type system, for the programs we have
implemented, will require both polymorphically constrained
and dependent types, and poses an interesting challenge.
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• Proving that 𝜆-Symphony enjoys a variant of noninterfer-
ence — the only information releases occur where the pro-
grammer has specified them. We aim to prove this both for
the dynamically typed system and the statically typed one.

• Extending the support to additional backends, in particular
N-party GMW, to complement 2-party Yao’s.

• Implementing more programs, especially those that benefit
from added coordination support. Some examples include
gaussian elimination, K-means, and private set intersection,
as well as multi-round protocols, e.g., for auctions.
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