
Tedsuto: A General Framework for
Testing Dynamic Software Updates

Luı́s Pina
Imperial College London

London, UK
l.pina@imperial.ac.uk

Michael Hicks
University of Maryland
College Park, MD, USA

mwh@cs.umd.edu

Abstract—Dynamic software updating (DSU) is a technique for
patching running programs, to fix bugs or add new features. DSU
avoids the downtime of stop-and-restart updates, but creates new
risks—an incorrect or ill-timed dynamic update could result in
a crash or misbehavior, defeating the whole purpose of DSU.
To reduce such risks, dynamic updates should be carefully
tested before they are deployed. This paper presents Tedsuto,
a general testing framework for DSU, along with a concrete
implementation of it for Rubah, a state-of-the-art Java-based
DSU system. Tedsuto uses system-level tests developed for the old
and new versions of the updateable software, and systematically
tests whether a dynamic update might result in a test failure.
Very often this process is fully automated, while in some cases
(e.g., to test new-version functionality) some manual annotations
are required. To evaluate Tedsuto’s efficacy, we applied it to
dynamic updates previously developed (and tested in an ad hoc
manner) for the H2 SQL database server and the CrossFTP
server— two real-world, multithreaded systems. We used three
large test suites, totalling 446 tests, and we found a variety of
update-related bugs quickly, and at low cost.

I. INTRODUCTION

As on-line services go global, an increasing number of
systems require constant availability, and as a matter of
convenience many other systems would prefer it. An approach
for ensuring high availability is dynamic software updating
(DSU). This technique works by updating a process in place,
patching the existing code and transforming the existing in-
memory execution state. DSU preserves active, long-running
connections (e.g., to databases, or media streaming, FTP and
SSH servers), which can immediately benefit from impor-
tant program updates (e.g., security fixes). It also preserves
in-memory server state, which is valuable for in-memory
databases, gaming servers and other systems that rely on the
relatively low expense and high performance of commodity
RAM to maintain large in-memory datasets. This problem
is acute enough that Facebook uses a custom version of
memcached that keeps in-memory state in a ramdisk to which
it reconnects on a post-update restart [1]. The research commu-
nity has developed general-purpose DSU systems that support
release-level changes to substantial applications [2], [3], [4],
[5], [6], [7].

DSU is not a panacea; it must be done with care. Program
code assumes the execution state adheres to a certain format,
so changing the code at run-time requires corresponding
changes to the execution state, both control (i.e., thread call

1 Object g = null;
2 void f() {
3 process ();
4 cleanup ();
5 }
6 void process () {
7 ...
8 }
9 void cleanup () {

10 g = new Object ();
11 ...
12 g.hashCode();
13 }

1 Object g = null;
2 void f() {
3 process ();
4 cleanup ();
5 }
6 void process () {
7 g = new Object ();
8 ...
9 }

10 void cleanup () {
11 ...
12 g.hashCode();
13 }

Version 0 Version 1

Fig. 1. Java program update example. Code changes are highlighted.

stacks and program counters), and data (i.e., contents and
format of heap objects). As described in Section II, it is
often the programmer’s responsibility to define such state
changes, e.g., by providing migrations that map between the
old representation of an object and a new one, and between
an old control state and a new one.

One challenge with writing migrations is timing: the mi-
gration code may assume certain invariants, and these must
hold for all the circumstances under which an update could
take place. Mistakes in migrations or their timing can result
in crashes, corruption, and other misbehavior. For instance,
consider the program example introduced in Figure 1. Version
1 moves the initialization code from line 10 to line 7. Suppose,
while running version 0, we dynamically update the process

and cleanup methods after returning to f from the call on
line 3. We specify no data or control migration because we
observe that no data formats or running methods (i.e., f) have
changed. However, once the program resumes, f will call
version 1’s cleanup, which crashes on line 12 because the
global variable g was not initialized by version 0’s process.

This paper presents Tedsuto,1 a framework for testing that
dynamic updates are correct before we deploy them on live
systems. As described in Section III, the basic idea is sim-
ple: Tedsuto runs existing system tests many times each,
systematically exploring what happens when an update is
applied at different moments during the test’s execution. Each
such moment when an update can be applied is an update
opportunity. Which moments constitute opportunities depends

1This is a play on the name of the University of Maryland mascot, Testudo.

on the DSU system under test. Many systems apply updates
just prior to calling a changed method [4], [5], [8], [9];
as such, for the example in Figure 1, method f has two
update opportunities: before calling method process, and
before calling method clean. A system test that passes when
running either software version should also pass when being
dynamically updated, no matter which update opportunity is
taken. Tedsuto systematically tries different opportunities; for
our example, it would discover that applying the update at the
second opportunity in f would fail.

Tedsuto can also use system tests that pass only for the new
version, e.g., because they exercise a new feature or bugfix. In
this case, the tester simply indicates (typically via a one-line
annotation in the test code) the last possible moment at which
an update can occur while still passing the test; Tedsuto will
only explore update opportunities to this point.

Finally, Tedsuto employs two novel techniques that test
particular aspects of the updating process: update-point syn-
chronization ensures that preparing the application state for
an update does not lead to hangs or wrong behavior (e.g.,
due to synchronization problems), and control-flow reboots
ensure that DSU-specific code in the old program that supports
control-state transformation works properly.

We have applied our implementation of Tedsuto, described
in Section IV, to the Rubah DSU system for the Java pro-
gramming language [6]. Using Tedsuto required modifying
Rubah in a straightforward manner; many other state-of-the-
art DSU systems can be handled just as easily. We evaluated
Tedsuto’s ability to find DSU-related errors by using it to
test dynamic updates previously developed (and tested in
an ad hoc manner) for H2 [10], an SQL database server,
and CrossFTP [11], an FTP server — two real-world multi-
threaded systems. As described in Section V, with three suites
of system tests—two for H2 and one for CrossFTP—Tedsuto
was able to find 8 new update-related bugs. Adapting the
test suites required little effort: 17 lines in total to support
17 update-specific tests, and no manual effort to support the
remaining 446 backwards-compatible tests. Our experimental
evaluation found that update-synchronization and control-flow
reboots were particularly effective in finding errors.

Prior work, discussed in Section VI, has briefly considered
the problem of dynamic software update testing. Tedsuto
represents a substantial step forward. In short, we make the
following contributions:

• Present the design of the first testing framework for DSU
that is generalizable to state-of-the-art systems, re-uses
existing system tests with low effort, and is able to test
both backwards-compatible updates and new features;

• Introduce five novel and highly effective techniques for
testing updates;

• Describe how to implement Tedsuto for state-of-the-art
DSU systems and provide the details of an implementa-
tion for Rubah;

• Evaluate Tedsuto with an extensive experimental evalua-
tion, by using three large test suites with two production-

1 class Session {
2 User user;

3 String userName; // Added in version 1
4 // Invariant: userName == user.name

5 }

Fig. 2. Example of a class update

ready servers, and show that Tedsuto is effective by
reporting new update-related bugs.

We believe Tedsuto is a promising step toward practical
assurance for real-world DSU.

II. THE NEED FOR DSU TESTING

This section presents background on dynamic software up-
dating, and identifies ways in which dynamic software updates
could fail. Then it shows how existing unmodified system tests
can be used to find update-related errors.

A. Dynamic Software Updating Failures

Dynamic software updating systems work by accomplishing
two tasks. First, they load code into a running program to add
to and/or replace existing classes, methods, etc. Second, they
migrate the running program’s execution state to an equivalent
form that is compatible with the newly loaded code. This state
consists of data, like linked tree and list structures that store
an in-memory database, and control, like the execution stacks
of active threads. Depending on how the code changed, a
migration may need to convert data representations, e.g., when
the new code expects a hash table where the old expected a
tree, and control states, e.g., when the new code refactors an
old function into two. Control and data migrations are typically
specified by the programmer, perhaps with some automated
assistance [2], [3], [6], [12]. For instance, in Rubah, described
in Section IV-A, data migrations are specified using a special
“update class,” and control migrations are specified indirectly
by changing the way the program resumes after an update.

An important element of DSU is timing: The effect of
a dynamic update’s data and control migrations may differ
depending on when the update is performed. To reduce the
chances of update-related crashes, DSU systems often restrict
the moments during a program’s execution at which an update
can take place. We call these moments update opportunities.
Many DSU systems limit update opportunities to program
points at which changed code is not active, i.e., not referenced
from any thread’s callstack [4], [5], [8], [9]. As explained in
Section I with the example in Figure 1, this limitation still
allows programs to crash due to the update process. Other DSU
systems, including Rubah, limit opportunities to moments
when each thread’s execution has reached a programmer-
specified point [2], [3], [6], [12], [13].

Unfortunately, programmers will make mistakes when
changing their program to support updating, and/or when
writing data or control migrations for particular updates. These
mistakes can manifest as a hang, crash, or other misbehavior
when a dynamic update is applied.

1 // Set -up
2 FTPClient c = new FTPClient ();
3 // Test
4 c.sendVersion (0);
5 c.USER("user");
6 c.PASS("wrong");
7 c.PASS("right");
8 assert(c.isConnected ());
9 assert(c.isLoggedIn ());

10 // Tear -down
11 c.QUIT ();

Fig. 3. Simple system test for an FTP server

Consider the example shown in Figure 2, adapted from the
CrossFTP server [11]. The updated program reads the name
of a user trying to authenticate from the field userName,
whereas the old program used field user.name. A dynamic
update must transform the running version’s data from the old
representation of class Session to the new; in particular, it
should copy the value of user.name into the new userName

field, to establish the invariant shown in line 4. Suppose the
programmer forgets to specify such a migration. The new code
will behave incorrectly when accessing field userName; e.g.,
it will crash with a null-pointer exception, deny access to valid
users, or allow access to invalid users.

As another example, recall the update shown in Figure 1.
Here, a control migration must be used to map the program
counter of the taken update opportunity to the appropriate
location in the new version. The mapping is trivial for function
f: Lines 3 and 4 in version 0 map to lines 3 and 4 in version 1,
respectively. For function process, line 7 in version 0 maps
to line 8 in version 1, with the caveat that global variable g

also needs to be (data-)migrated for the update to be correct.
However, suppose the programmer specifies a mapping from
line 10 in version 0 to line 7 is version 1 (as that is the line
of code that moved). Doing so results in incorrect behavior
because the program counter will be moved to version 1’s
process method, but the (version 0) process method was
already executed. As a result, messages may get duplicated.

In short, the behavior of a dynamic update depends on the
control and data migrations specified by the programmer, and
the update opportunity at which these migrations take effect.
Without care, a dynamic update may produce incorrect results.

B. Testing Dynamic Updates

How can we avoid update failures? Gupta et al. have shown
that, in general, establishing that an update is correct is unde-
cidable [14]. Normal program properties are undecidable too
(e.g., termination), so typical software development uses tests
to ensure that a software system will behave as it should when
deployed. Likewise, we can use testing to give us confidence
that a dynamic update, when applied in deployment, will
behave as expected. We can test the correctness of a dynamic
update by running a test and checking the program’s behavior
before, during, and after an update. Since DSU is a whole-
program operation, we can perform DSU tests by starting
from system tests, which check the end-to-end behavior of
a program. For instance, consider the test in Figure 3, and

Updatable
Application

DSU
System

System
Test

DSU
Observer

Tedsuto

IPC

request

1

update

2

update? 3

4

5
Y/N

6

7
reply

8

Fig. 4. Architecture of Tedsuto.

suppose that both the old and new versions (when run without
updating) pass the test. It is possible that, due to bugs in
data/control migrations or other program changes, dynamically
updating from the old to new version during the test run will
cause the test to fail. For instance, consider the update to the
Session class of Figure 2, and suppose that the data migration
fails to initialize the userName field. Dynamically updating the
server on any of the update opportunities generated by lines
5 or 6 of the test will cause it to fail,2 since these commands
cause the FTP server to read the userName field. Updating
the server at other opportunities during the test run will pass
because the new code either initializes the field (when handling
the request at line 4) or never refers to it again (when handling
requests at line 7 and 11).

In summary, it is possible that a test passes when the
target application is updated at some update opportunities, but
not others. As such, a testing strategy for dynamic updates
should explore the behavior of different update opportunities
systematically. This idea provides the basis for the design
of Tedsuto. But Tedsuto goes further, considering tests that
do not necessarily pass for both versions, and it defines
techniques that can test aspects of an update more efficiently
than applying the update end-to-end. We describe Tedsuto in
detail, next.

III. TEDSUTO

Tedsuto is a framework for systematic testing of Dynamic
Software Updates. This section discusses Tedsuto’s architec-
ture and describes the kinds of testing methods it enables.

A. Architecture

Figure 4 shows Tedsuto’s architecture. The updatable ap-
plication and the system test run in separate processes that
communicate through Inter-Process Communication (IPC).
During its execution, the system test will interact with the
updatable application, e.g., by sending it service requests (1).
While processing each request, the execution of the updatable
application triggers several update opportunities (2). Tedsuto
assumes that the DSU system generates a small number of
update opportunities per interaction. This may not be true for
all DSU systems; we discuss in Section IV-C how Tedsuto can
still be used with such systems. For now, let us assume that
each interaction generates a small number of opportunities.

2Each test-server interaction may generate several update opportunities.

1 void allowUpdates ();
2 void disallowUpdates ();
3 void ensureUpdated ();
4 void operation(Object threadID , String label);

Fig. 5. Tedsuto’s API for adapting system tests.

A novel part of Tedsuto is that it employs an update
observer that is queried at every update opportunity to decide
whether to perform an update (3). The update observer, located
in the same process as the system test, then notifies Tedsuto
about the opportunity to perform an update (4). Based on
the information that Tedsuto has about the system test in
execution, it tells the observer whether to take the current
opportunity, and what sort of update to perform (5). The update
observer then sends the decision back for the DSU system (6)
before returning back to the updatable application (7), which
in turn sends the reply back to the system test (8), which can
then continue.

The remainder of this section details the sorts of update tests
that this architecture enables. They are differentiated by the
decision process used at update opportunities (e.g., exhaustive
or operation-specific), the kind of system test being performed
(e.g., backwards-compatible or version-specific), and whether
to perform a full update when the opportunity arises, or a more
localized test (either an update synchronization or a control-
flow reboot).

B. Exhaustive Tests

During a deterministic test, update opportunities can be
matched between different re-executions by the order in which
they happen. For instance, consider two executions of the test
shown in Figure 3 on a server that performs updates only after
FTP commands. Regardless of the update opportunity that
Tedsuto explores, the second update opportunity will happen
on line 5 in both executions. This allows Tedsuto to re-execute
the test and systematically explore all update opportunities.

Of course, not all update opportunities need to be explored.
In particular, in the example we are following, the update
opportunities triggered while setting-up the test (lines 1–2) and
tearing-down (lines 10–11) are not relevant to the test and may
be skipped. Other FTP tests may require an authenticated user
(e.g. to test file permissions) and move lines 4, 5, and 7 to the
test set-up.

The developer can adapt existing system tests to skip explor-
ing uninteresting update opportunities by retrofitting the tests
with Tedsuto’s API, shown in Figure 5. In particular, they can
surround lines 3–9 in Figure 3 with calls to allowUpdates

and disallowUpdates to explore opportunities only during
the main body of the test. Tedsuto automatically supports
tests written in the popular JUnit framework and skips all
opportunities that happen during the setUp and tearDown

methods. Section V describes how we evaluated Tedsuto using
two JUnit frameworks without any effort to integrate them with
Tedsuto’s API.

1 AtomicInteger count;
2 int MAX; // Maximum clients allowed
3
4 // Launch several threads that do:
5 FTPClient c; // Thread -local
6 void run() {
7 while (!stop) {
8 Tedsuto.operation(c, "USER");
9 c.USER("user");

10 Tedsuto.operation(c, "PASS");
11 c.PASS("right");
12 assert(count.incAndGet () < MAX);
13 Tedsuto.operation(c, "QUIT");
14 C.QUIT ();
15 count.dec();
16 }
17 }

Fig. 6. Example that tests the maximum number of connected clients
to an FTP server. The highlighted code represents the code added to
integrate this test with Tedsuto.

C. Update-Specific Tests

So far, we have assumed that system tests should pass both
program versions when not performing an update. However,
this may not always be the case. For example, the new version
may add support for new features and fix bugs. As such some
tests for the new version may not pass on the old version.

For instance, let us consider an example taken from version
1.0.7 (or, v0 for short) to version 1.0.8 (v1) of CrossFTP. When
a client fails authentication in v0, CrossFTP closes the con-
nection at the first wrong password attempt. In v1, CrossFTP
allows the client to retry another PASS command reusing the
same connection. The system test shown in Figure 3 passes in
v1 but fails in v0. This is an important test because it checks
that a new feature works as expected; we would like to adapt
it so we can confirm that the dynamically updated program
supports this new functionality.

Let us assume that the test generates one update opportunity
per line on lines 4–7. Updating at either of the first two update
opportunities, after lines 4 and 5, passes the test. Waiting for
any update opportunity afterwards results in the connection
being closed at line 6 and failing the test: Tedsuto performs
the update too late.

The developer can state the latest point in the test exe-
cution at which an update can be performed using method
ensureUpdated from Tedsuto’s API, shown in Figure 5. In
this case, the developer would add a call to this method after
line 5. We call this annotated test an update-specific test.

Oftentimes, update-specific tests start as existing tests writ-
ten for the new version, which the developer then adapts by
adding annotations or small code changes. Section V reports
the effort required to write 17 update-specific tests for 2
updatable applications; mostly adding one single line of code
per test.

D. Operation-oriented Testing

Exhaustive tests and update-specific tests match update
opportunities between different executions, which means they

only apply to deterministic tests. Tedsuto supports multi-
threaded and nondeterminstic tests by employing a notion of
coverage that is based on the high-level operations carried
out by the test. To see this by example, consider the test in
Figure 6, ignoring the highlighted code for now. This test uses
multiple threads to check whether the server respects the limit
on the number of authenticated clients. The test is composed of
three high-level operations: (1) Sending the USER command;
(2) sending the PASS command, thus becoming authenticated;
and (3) sending the QUIT command to reset the connection
for another iteration of the test. The developer annotates the
test with information about the operations, exposing them to
Tedsuto through method operation on its API. In this case,
it means adding lines 8, 10, and 13, highlighted in Figure 6.

Method operation takes two arguments. The second one is
simply a label that distinguishes the operation from all others.
The first is some object that identifies the thread in the test. In
this case, each thread uses a dedicated FTPClient object to in-
teract with the server; such an object identifies each thread un-
ambiguously. With this information, Tedsuto can reason about
combinations of opportunities during multi-threaded testing.
In this case, for 2 threads, Tedsuto can explore the follow-
ing combinations: USER/USER, USER/PASS, USER/QUIT,
PASS/PASS, PASS/QUIT, and QUIT/QUIT. Tedsuto can now
rerun the same test repeatedly until all combinations are
explored. Currently, Tedsuto does not force any particular
thread scheduling; we plan to explore Tedsuto in this direction
in the future.

Operation annotations are useful even for single threaded
tests: Essentially, they suggest to Tedsuto to take one update
opportunity per annotated operation, even if many more are
available. This gives the tester a way to shrink the testing
space, taking advantage of domain knowledge.

E. Update-point Synchronization

Most DSU systems require all threads to synchronize before
performing an update [2], [3], [4], [5], [6], [12]. That is,
each thread should reach some known program point (e.g., a
function call, a thread/GC safe point, or a manually annotated
point). When all threads reach such update points, the DSU
system performs the update, resuming all threads afterwards.

For instance, consider the code in Figure 6. Consider that
there are several threads executing the loop and that the FTP
server internally uses a lock to implement a maximum number
of clients. Consider also that one thread acquires the lock
and blocks for an update. In the meantime, another thread
blocks waiting for the lock. At this point, the program is
in deadlock: No thread makes progress and the update never
gets performed. And this happened because an update became
available; regular program operation would never result in such
a deadlock.

Tedsuto finds this class of update-related bugs by simply
requiring all threads to synchronize at all update opportunities
during a system test, just to release them immediately after.
We call this technique update-point synchronization. It allows
Tedsuto to explore all the update opportunities in a single test

execution, without performing an actual update. Update-point
synchronization proved very effective: It found 3 of the 8 new
update-related errors that we found using Tedsuto.

F. Control-flow Reboots

In Section II we discussed an example of control mi-
gration, performing the update that Figure 1 shows while
modified code is active. Some DSU systems simply forbid
such updates [2], [5], providing a simpler update model at the
cost of flexibility. More recent DSU systems—UpStare [12],
Kitsune [3], and Rubah [6]—overcome this limitation and
provide support for updating active code. These systems
require the programmer to migrate the control state of the
program between versions, effectively mapping PC positions
and stack frames, which is an error-prone proposition.

Kitsune and Rubah implement control migration by stop-
ping all active threads and then restarting them in the new-
version code. As shown in Figure 7, described in the next
section which presents our implementation of Tedsuto for
Rubah, the control migration code is effectively embedded in
the startup code of each thread. This code, as it executes,
regenerates the stack by taking an alternative path, provided
by the programmer, to the one it would normally take during
startup. If this alternative startup code is erroneous, it could
leave the updated program in an incorrect control state.

It turns out we can test this migration code without per-
forming a complete update. In particular, Tedsuto can initiate
a null update by performing an update synchronization, and
then “rebooting” each thread, causing it to restart. But instead
of restarting at the new version, we restart it at the current
version, and thereby test this alternative startup path. If the
control migration code is correct, the program will return to
the state it was in before the null update, and things will
proceed as expected. Pleasantly, this technique requires just a
single test run to reboot at each update opportunity, rather than
having to run the whole test many times, once per opportunity.
Control-flow reboots are very effective: We found 2 of the 8
new update-related errors using it; Section V presents all the
details.

IV. IMPLEMENTATION

We have implemented Tedsuto for Rubah [6], a DSU system
for dynamically updating Java programs. Therefore, in this
subsection we present some background on how Rubah works
and how the programmer specifies a dynamic update. We then
explain how the concepts of Rubah map to Tedsuto.

A. Rubah

To implement DSU, Rubah uses a strategy called whole
program updates, pioneered by Makris et al.’s UpStare sys-
tem [12] and also adopted by Kitsune [3]. In a nutshell, the
scheme has three parts. First, the code that corresponds to the
new version (constituting the “whole program”) is dynamically
loaded. This takes place only after all program threads reach an
update point, which is a code location designated (in advance)
by the programmer [13]; each time an update point is reached

1 Transfer transfer;
2 Session session;
3 boolean stop;
4
5 public void run() {
6 if (!Rubah.isUpdating()) {
7 transfer.init ();
8 // Parse client version
9 // Negotiate protocol params

10 transfer.flush ();
11 session = new Session ();
12 }
13 Selector s = new Selector();
14 try {
15 while (!stop) {
16 try {
17 Rubah.update("process");
18 Request req = transfer.readRequest(s);
19 Response resp = process(req);
20 transfer.writeResponse(resp);
21 } catch (SQLException e) {
22 transfer.writeException(e);
23 } catch (UpdateRequestedException e) {
24 continue;
25 }
26 }
27 } catch (UpdatePointException e) {
28 throw e;
29 } catch (Throwable e) {
30 logError(e);
31 } finally {
32 if (!Rubah.isUpdateRequested()) {
33 s.close();
34 transfer.close ();
35 session.close ();
36 }
37 }
38 }

Fig. 7. Example adapted from H2 TcpServerThread featuring (gray
highlighted) logic related to update points and control migration.

during execution constitutes an update opportunity. Once the
code is loaded, control migration is performed by unwinding
the stacks of all active threads and then “rewinding” them,
starting from the new code, until they reach the same logical
update point they had reached in the old code. Third, data
changed by the update is migrated as it is accessed during
the new program’s execution. Rubah is implemented using
bytecode transformation; no changes to the VM are required.

In Rubah, control migration is handled by the programmer.
This is done by writing the startup code of each thread to be
cognizant of an “updating mode”. When starting in this mode,
the thread is being rewound following an update; otherwise
it is starting from scratch. Rubah performs data migration
automatically, following a manually-defined transformation
logic: The programmer specifies an update class that defines
how a new version instance is initialized, given an old ver-
sion instance. And, as mentioned already, the programmer is
responsible for designating update points at which threads
synchronize prior to the update taking place. All of these
choices are opportunities for errors that can be uncovered
during testing. Therefore, to make the process more clear, we
present an example that shows all three in action.
Example. We have used Rubah to dynamically update the H2

database management system. Figure 7 shows a simplified ver-
sion of a connection-handling method from H2. The changes
made to support DSU are highlighted—ignore them for now.
The method starts by parsing the client data and negotiating the
protocol parameters (lines 7–11). Then, it enters a loop (lines
15–26) that reads each client command (line 18), executes it
in method process (line 19), and sends the response back
to the client (line 20). The server keeps state about the client
using the session object, declared on line 2.

Note the complex handling of exceptions, typical in server
methods. The server sends recoverable exceptions back to the
client (line 22), and logs non-recoverable exceptions (line 30).
A finally block ensures that the connection is closed when
the server method exits (lines 31–37).
Update Points. The programmer specifies update points as
calls to method Rubah.update. This method will simply
return, doing nothing, when an update is not available. Other-
wise, it initiates (or continues) the update process, as described
below. A good place to put an update point is at a point in
a long-running loop at which a thread is quiescent, meaning
that it has finished processing a unit of work and has not
started to process the next one. State relevant to an update is
not in the middle of being modified, which simplifies writing
the update class. The Rubah.update method takes a string
as its sole argument, which serves as a kind of label—update
points across versions that share the same label are logically
equivalent. For the example in Figure 7, the code related to
update points is in gray. An update point is placed on line 17.

When an update is available, calling Rubah.update throws
an UpdatePointException to unwind the calling thread’s
stack. Unhindered, this exception will ultimately reach a
Rubah-provided wrapper for a thread’s run (or main) method,
where it is caught and the throwing thread is paused. Of
course, the exception may be caught by intervening catch

blocks in the application, so the developer may need to
manually propagate it (line 28). The developer also needs to
ensure that the exception does not change any state by being
propagated, therefore actions within finally blocks must be
guarded to account for possible updates (line 32). When all
threads have been paused after reaching update points, the new
code is loaded, and the control flow and data migration process
is initiated.
Control migration. Rubah restarts each paused thread from
its (possibly updated) run (or main) method. When a thread
executes this method normally, it typically performs actions
that should not be re-performed during control migration.
In our example in Figure 7, lines 7–11 negotiate protocol
parameters with the client, which should not be repeated post
update. To address this issue, Rubah provides API calls that
the developer can use to determine whether a thread is running
for the first time or as a result of an update (i.e., in “updating
mode”). In our example, line 6 guards the initialization code
with a call to Rubah.isUpdating which returns true if
called while performing the control migration and false

otherwise.
Data migration. Prior to restarting each thread, Rubah initi-

ates data migration to convert the existing program’s objects to
use the updated classes. Conceptually, this happens by visiting
each object in the heap that might have been affected by an
update and transforming it according to the logic on the update
class, so that it work with the new version’s code. Rubah
provides a tool that generates a stub update class by analyzing
two versions and matching fields by owner class name, field
name, and field type. The generated code automatically copies
each matched field; the programmer must specify what to
do for unmatched fields. In the example shown in Figure 2,
Rubah automatically copies field user and leaves a comment
reminding the developer that field userName was not matched.

B. Tedsuto for Rubah

Tedsuto requires the target DSU system to provide support
for an update observer, as we explained in Section III-A.
Then, at each update opportunity, Tedsuto interacts with
the observer to decide if it should perform an update or
not. In Rubah, update opportunities map directly to calls to
method Rubah.update, which we redirect to the observer
process. The observer process performs a full update for
exhaustive and update-specific tests. For update synchroniza-
tion tests, the observer initiates quiescence, but then allows
threads to continue in the same version without throwing
an UpdatePointException. For control-flow reboots, the
observer initiates quiescence and then restarts each thread
in updating mode (without updating the code) to test that
the control migration code does not incorrectly corrupt the
program’s state.

C. Tedsuto for other DSU Systems

Although the current implementation of Tedsuto targets
Rubah, Tedsuto can be applied to other update systems with
explicit update points, which are among the most practical
systems yet built and evaluated. These include Kitsune [3],
Ekiden [15], UpStare [12], and Ginseng [2]. Exhaustive tests,
update-specific tests, and update synchronization tests would
all apply; for Kitsune, control-flow reboots would as well.

Some systems define update points implicitly, rather than
explicitly [4], [5], [8], [9]. For example, updates may be
permitted at any point as long as a changed function or method
is not active. All testing techniques would also apply to these
systems (with some engineering effort), with the exception
of control-flow reboots. In particular, for tractability, Tedsuto
should not test updates at all (implicit) opportunities, but at a
representative set of opportunities. To compute this set without
loss of effectiveness we can use a technique from Hayden et
al. [16] which determines, through program analysis, which
update opportunities would have provably the same outcome
for a given update, i.e., the updated program would execute
the same code. Hayden et al. found that for typical updates,
the number of opportunties can be reduced by between 87%
and 95%. To work with Tedsuto, we would simply have to
make these opportunities manifest in the program, and then
coordinate them with the Tedsuto observer.

V. EXPERIMENTAL EVALUATION

We evaluated Tedsuto by testing two programs for which
we previously added support for DSU through Rubah: H2, an
SQL database; and CrossFTP, and FTP server. We show that
Tedsuto requires low effort to use existing tests: We used 3 test
suites, comprising a total of 446 backwards compatible tests
and 17 new update-specific tests that we adapted from existing
tests by changing 5% of the code on 5 files. We also used a
complex benchmark for H2 as a multi-threaded system test,
adapted to use Tedsuto by changing 0.5% of its code. We also
show that Tedsuto is effective: We report 8 new update-related
bugs that we found. Finally, we show that Tedsuto is efficient:
Update-point synchronization and control-flow reboots can be
used as development time tools; exhaustive testing requires
more time to complete each test suite but can still be used to
ensure that a new release can be correctly deployed as a DSU.
This section describes the experiments in detail.

A. Experimental Configuration

All experiments that we describe in this section were run on
a machine equipped with an an Intel Xeon E31280 machine,
3.5 GHz CPU (8 logical cores, 4 physical), 16GB of RAM,
with GNU/Linux Ubuntu 14.04 (kernel 3.13.0-39). All tests
were conducted with Oracle’s JVM version 1.7.0 79-b15
(HotSpot version 24.79-b02).

We performed the experimental evaluation using two appli-
cations previously adapted to support DSU through Rubah [6]:
H2 [10], which is a mature, SQL DBMS written in about 40K
lines of Java; and CrossFTP [11], which is an FTP server
written in about 18K lines of Java. We updated H2 from
version 1.2.121 to version 1.2.123, spanning version 1.2.122;
and CrossFTP from version 1.07 to version 1.11, spanning
versions 1.08 and 1.09. We manually collapsed all releases
into a single update.

We evaluated Tedsuto with a total of 3 test suites and 1
performance benchmark. We used 2 test suites for H2: (1) The
tests that ship with it, called H2-test (14K LoC, 39 tests); and
(2) a JUnit test suite taken from another Java SQL database
called HSQLDB [17] (15K LoC, 300 tests). We adapted a JUnit
test suite for Apache’s MINA FTP server [18] to use with
CrossFTP, called FTP-test (2.7K LoC, 107 tests). Finally, we
used the TPC-C performance benchmark (8K LoC) shipped
with the DaCapo benchmark suite [19] as a multi-threaded
system test for H2, given that TPC-C verifies the invariants of
the benchmark at the database level after its completion. All
values reported are the average of 3 executions.

Adapting each test suite to run with only a subset of its tests
(e.g., to ignore unit tests) independently required some effort,
but this is not directly related with Tedsuto.

B. Manual Effort

Backward-compatible system tests (i.e., those that pass the
old and new software versions) can be used with Tedsuto
with no extra effort. Update-specific tests do require some
manual adjustment (e.g., to indicate the latest point at which
an update can be applied). Operation-oriented testing also

TABLE I
EFFORT REQUIRED TO WRITE UPDATE-SPECIFIC TESTS. EACH TEST WAS
FIRST EXTRACTED FROM ITS ORIGINAL SUITE—WE REPORT NUMBER OF

TESTS PER EXTRACTED FILE. TPC-C IS A BENCHMARK THAT PERFORMS 8
DIFFERENT OPERATIONS, WHICH WE MANUALLY ANNOTATED.

Test Program Extracted Modified
LOC Tests LOC

Login CrossFTP 17 2 2
MD5 CrossFTP 128 10 10
DROP admin H2 36 1 1
SELECT H2 32 1 1
SCOPE ID H2 108 3 3
Benchmark Program Extracted Modified

LOC Operations LOC
TPC-C H2 8231 8 42

TABLE II
TIME REQUIRED TO RUN EACH TEST SUITE TO COMPLETION UNDER

SEVERAL TESTING CONFIGURATIONS. Baseline MEANS THAT TEDSUTO
DOES NOT PERFORM ANY UPDATE. UP-S MEANS UPDATE-POINT

SYNCHRONIZATION AND CF-R MEANS CONTROL-FLOW REBOOTS.

Suite Original Tedsuto time
time Baseline UP-S + CF-R # Opportunities

HSQLDB 4s 6s 216s 1905
H2-test 12s 19s 2541s 23651
FTP-test 6s 13s 29s 257

requires annotating the operations. Table I shows the effort
required to extract tests that fail on the old version, and adding
annotations to turn them into update-specific tests. It also
tabulates the effort required to identify operations performed
by the TPC-C benchmark. As we can see, the effort is very
low, we modified under 0.5% of the total number of lines.

Each update-specific test checks whether a feature, intro-
duced by the new version, works as expected after the update:
Login checks that the same connection supports several login
attempts without dropping; MD5 checks the MD5 command;
DROP admin checks that an administrator can delete herself;
SELECT checks a particular idiom of select queries with a
select sub-query; and SCOPE ID checks IDs automatically
generated by triggers.

C. Performance

Moving the decision whether to explore updates to another
process requires an IPC at every update opportunity, which
adds performance overhead. To measure that overhead, we first
executed all test suites to completion without Tedsuto. Then
we computed a baseline overhead which uses Tedsuto, but
without performing any updates. We also measured the over-
head when performing an update synchronization and control-
flow update at every possible update opportunity during a test
run. Table II shows the results together with the number of
update opportunities per test suite.

Table III reports the time to perform exhaustive testing on
the HSQLDB and FTP-test suites. For these runs, we only
performed updates at opportunities that occurred after the set-
up phase, and before the start of the clean-up phase for each
JUnit test. The table shows how many total opportunities were
explored, how many were avoided, and the overall time to
complete each suite.

TABLE III
TIME REQUIRED TO EXHAUSTIVELY TEST EACH JUNIT TEST SUITE AND

NUMBER OF UPDATE OPPORTUNITIES GENERATED AND EXPLORED. EACH
EXPLORED OPPORTUNITY REQUIRES AN INDIVIDUAL TEST RUN.

Suite Time # Opportunities
(sec) Total Explored

HSQLDB 16374 77521 2431
FTP-test 1654 696 408

The H2-test suite generates an enormous number of update
opportunities and has multi-threaded tests. We thus did not
perform exhaustive testing with it. We did, however, perform
operation-oriented testing with the H2-test suite. Operation-
oriented testing can be configured with a budget of update
opportunities to explore per test, which allows the developer
to control how long tests take. However, we discovered that our
other testing techniques found many more bugs, more quickly,
as we discuss further in Section V-E.

Given a test suite with small, modular, and determinis-
tic tests, such as HSQLDB and FTP-test, the low cost of
update-point synchronization and control-flow reboots allows
developers to use these two techniques to quickly find bugs
during development of a new version. Exhaustive testing has
a higher cost that forbids using it during development, but
still low enough to be used for every version deployed as a
DSU. Performing update-point synchronization and control-
flow reboots can also be used with larger, non-deterministic
tests, such as H2-test, with similar costs to exhaustive testing.

When performing exhaustive testing, each re-execution re-
quired restarting the target program from scratch, including
launching a new JVM instance. This happens because Rubah
does not support reverting updated code back to its old version.
As a result, each re-execution of a test on the FTP-test suite
took around 4.5 seconds; 3 of which just launching a JVM and
starting the CrossFTP server; and around 1 second performing
the update. The test itself took the remaining 0.5 seconds. Time
ratios for the HSQLDB suite are similar.

A possible solution for this problem is to launch several
tests on the same program version, interacting with the same
target server; stop all at the nth opportunity; perform an update
when the last test reaches the nth opportunity; allow all to
complete; and repeat for the n+1th opportunity. This would
require a single execution for all tests for each opportunity
explored. We implemented an early prototype of this idea
and noticed that the overall time to perform exhaustive testing
reduced drastically. However, it required extensive changes to
the original test suite so that tests run concurrently would not
interact (we never got it to work correctly). We leave this for
future work.

D. Bugs found

When developing dynamic updates for H2 and CrossFTP
to use Rubah [6], we performed extensive manual testing
and debugging. Despite this, applying Tedsuto to these pro-
grams revealed 8 new bugs, all of which would have serious
consequences (discussed below) if they manifested during
deployment. Table IV reports the name of each bug together

TABLE IV
BUGS FOUND, GROUPED BY TECHNIQUE AND TEST SUITE. a) AND b)
GROUP SEVERAL BUGS IN RUBAH; WE LIST THEM MULTIPLE TIMES.

H2-Test HSQLDB FTP-test
Update-Point Sync a), d) , e) a) a)
Control-Flow Reboots b) b) b), c), h)
Update-Specific — — g)
Exhaustive — f) —

1 if (Rubah.isUpdating ())
2 xferredOffset = saved.xferredOffset;
3
4 Rubah.update("transfer");
5
6 while (xferredOffset != file.size ()) {
7 // transfer a block and increase the offset
8 try {
9 Rubah.update("transfer");

10 } catch (UpdateRequestedException e) {
11 saved.xferredOffset = xferredOffset;
12 throw e;
13 }
14 }

Fig. 8. Example adapted from CrossFTP that shows a badly placed
update point on line 4.

with the test suite and the technique that found it most quickly.
In several cases, exhaustive and operation-oriented testing
found the bug, too. We discuss why each technique found
each error at the end of this sub-section.

In the following we describe each bug in detail:
a) Internal Data Races in Rubah: Rubah had internal

data races that would manifest only in rare circumstances. For
instance, when launching a thread just before an update took
place, that thread would not stop for the update but keep ex-
ecuting while Rubah performed program-state transformation.
The update would eventually crash due to old code accessing
transformed data. Another example is when performing two
updates in tight sequence, the second update could start before
all threads finished control migration for the first update. In
this case, Rubah would fail to stop all threads for the second
update; the left-out threads would then crash due to accessing
wrong-version data.

b) Resource Leak: Updatable programs should use
interruptible I/O so that an update can be readily applied
even when the program is waiting for I/O. Rubah provides
a drop-in API for interruptible Java I/O calls3 that requires
the developer to provide, and manage the lifetime of, selector
objects. In Figure 7, method method readRequest throws an
UpdateRequestedException when interrupted by an update.
This exception is caught on line 23 and the loop soon reaches
the update point on line 17. When we added support for Rubah
to H2 and CrossFTP, we re-opened each selector between
updates without closing the one used in the previous version,
i.e. we did not add line 33. After some updates, the program
reached the maximum number of selectors and terminated.

c) Wrong Update Point: When retrofitting CrossFTP
with Rubah, we added support for updates to happen while

3In Java, interrupting a socket operation closes the socket; Rubah’s API is
compatible with the socket API but can be safely interrupted for updates.

transferring files. Figure 8 shows how. After the update,
the control migration restores the offset already transferred
(line 2), which was saved before the update (line 11), and
then reaches an update point to complete the control migration
(line 4). An update that takes place after starting the transfer
but before sending any data could reach the update point on
line 4 without setting the state. That update point should be
guarded by line 1.

d) Lock Timeout: H2 implements transaction isolation
through row locks. When attempting to grab an already locked
row, threads spin until the lock becomes available or the
operation times-out. If an update happens at this point, the
thread that holds the lock reaches an update point, and thus
stops executing, while other threads are waiting for the lock.
The other threads will eventually fail the operation after the
time-out expires and only then reach an update point. This bug
then manifests itself as transactions aborting due to either (1)
mis-detecting concurrent operations or (2) triggering a lock
timeout, depending on the particular SQL statement waiting
for the lock.

e) Exclusive Mode: The H2 database supports a feature
called exclusive mode in which a single client has exclusive
access to a particular database. All other clients that try to
connect to that database have to wait until the connected client
exits exclusive mode. Performing an update in this setting
leads to a deadlock: The threads belonging to the exclusive
client reach an update point, and thus stop executing until
the update starts; while the other threads keep waiting for the
exclusive mode to be released without ever reaching an update
point, and thus preventing the update from starting.

f) Function ID Transformation: Internally, H2 repre-
sents prepared CALL statements, which invoke built-in func-
tions on the database, using a distinct integer for each possible
function. One version of H2 added a new built-in function
SCOPE ID to retrieve the IDs generated through database
triggers for each statement. However, this new function had,
in the new version, the same ID — 154 — as another function
AUTOCOMMIT in the old version, which checks whether the
auto-commit flag is set for the current session; AUTOCOMMIT
was given ID 155 in the new version. When an update
is performed after preparing a CALL AUTOCOMMIT state-
ment, a prepared statement could invoke the wrong function
SCOPE ID after the update. We were able to observe this bug
on other test case that checks whether the current session is
read-only through function READONLY.

g) New FTP Command — MD5: CrossFTP adds
support for the MD5/MMD5 commands in one of the versions
we retrofitted. However, the server failed to detect that the
command was available after the update because an in-memory
map structure of available commands was not updated during
the update to contain the new command.

h) Batch FTP commands: We retrofitted CrossFTP in a
way that did not support receiving FTP commands in a batch.
When several commands were included in a single message,
CrossFTP would process the first command and then wait
for more commands from the client, instead of checking if

the received message had any commands left. The original
code used a buffered stream, which only performs a socket
read when empty. The retrofitted code also uses a buffer
but it always reads commands from the socket, thus missing
commands left in the buffer by a previous read.

Discussion: Update-point synchronization and control-flow
reboots perform a large number of updates in tight sequence,
thus revealing data races on corner-cases inside the DSU
system itself (a) and erroneous thread interleaving on multi-
threaded tests (d and e). The sheer number of updates that
these two techniques perform also reveals resource leaks (b).
Control-flow reboots would find the same errors as update-
point synchronization, but at a slightly higher cost. Exhaustive
and operation-oriented testing performs a single update per
execution and would not find these errors. Some errors are sim-
ply caused by taking a rare and erroneous update opportunity
(c and h). Exhaustive testing would also find these two bugs
because it explores all possible update opportunities. Finally,
some errors are due to incorrect data migration between
versions and would only be found by exhaustive testing (f)
or update-specific testing (g), depending if the error is on
modified backwards-compatible code or new features.

E. Operation-Oriented Testing in Practice

We used operation-oriented testing in the adapted TPC-C
benchmark suite. Operation-oriented testing requires specify-
ing a budget of updates to explore per combination, and which
combinations to consider. We applied this technique to H2
and TPC-C, exploring 20 combinations per operation on the
most common, least common, and randomly selected com-
binations (we measured the number of update opportunities
per combination in a pre-run). This technique also discovered
bug (d), but found no additional bugs. One issue is that
it is fairly inefficient: updating on uncommon combinations
required several re-runs until the target combination would
finally happen. We conjecture that a more efficient scheduling
scheme (e.g., along the lines of an explicit state model checker
like CHESS [20]) might make operation-oriented testing more
efficient and effective.

VI. RELATED WORK

Testing updates is a way of ensuring their correctness. The
question of what constitutes a correct dynamic update has been
the subject of prior work. Kramer and Magee [21] propose
that updates are correct if they are “backward compatible,”
i.e., the updated program preserves all observable behaviors
of the old program. Bloom and Day [22] observed that this
is too restrictive because it forbids updates that fix bugs
or add features. Gupta et al. [14] propose that an update
is correct if the updated program eventually reaches some
state of the new program. Hayden et al. [23] argue that any
attempt to define update correctness generally is flawed as
update correctness depends on the particular semantics of
each updatable program. Furthermore, they propose client-
oriented specifications as small programs to specify properties
that must hold before and after the update, and then propose

techniques to verify updatable programs with regards to these
specifications. Tedsuto, instead, uses system tests to ensure
that updates are correct. They also introduce the concept
of backwards-compatible specifications, which are similar to
how Tedsuto uses system tests; and post-update specifications,
which are similar to update-specific tests. They applied their
technique to small, verifiable programs; Tedsuto is applicable
to large, real-world applications.

Tedsuto is implemented for Rubah [6], a DSU system that
requires the programmer to make manual changes to the
program to support updating. We discuss other DSU systems,
and how Tedsuto can be applied to them, in Section IV-C.

Previous work by Hayden et al. [16] considers systematic
testing for the Ginseng DSU system for C programs [2]. This
work does little to develop support for backward-incompatible
tests (though they suggest the idea), and does not work with
multi-threaded programs; Tedsuto handles both. Moreover,
Hayden et al. have no notion of update synchronization tests
or control-flow reboots, which are unique to Tedsuto and, as
our experiments have shown, highly effective.

Our approach of repeating tests to explore different update
opportunities systematically is related to multi-threaded testing
tools [20], [24] that explore a subset of all the possible
potential thread schedules systematically by repeating each test
for each schedule.

VII. CONCLUSION

This paper presented Tedsuto, a practical framework for
testing Dynamic Software Updates (DSU) that is able to test
all aspects of DSU, from installing new code to transforming
the program state. Tedsuto re-uses existing system tests to
find bugs induced by the update process that are dependent
on the instant at which the update happens by automatically
exploring different update opportunities during the execution
of each system test. Tedsuto can check that, after an update,
unmodified features are still supported and modified features
behave correctly.

We implemented Tedsuto using Rubah, our previous system
for updating Java applications, and we applied it to dynamic
updates previously developed (and tested in an ad hoc manner)
for the H2 SQL database server and the CrossFTP server—
two real-world, multi-threaded systems. We found 8 update-
related bugs in short order and at low cost. We argue that
Tedsuto is a general solution for testing DSU, readily applica-
ble to other state-of-the-art DSU systems. We believe Tedsuto
is an important step toward practical assurance for DSU.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for the helpful com-
ments on early drafts of this paper. This work was supported
by the partnership between UMIACS and the Laboratory for
Telecommunication Sciences, and by the EPSRC through grant
EP/L002795/1.

REFERENCES

[1] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani, “Scaling memcache at facebook,” in USENIX
NSDI, 2013. [Online]. Available: https://www.usenix.org/conference/
nsdi13/scaling-memcache-facebook

[2] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic
software updating for C,” in PLDI, 2006.

[3] C. Hayden, E. Smith, M. Denchev, M. Hicks, and J. Foster, “Kitsune:
efficient, general-purpose dynamic software updating for c,” in OOPSLA,
2012. [Online]. Available: http://doi.acm.org/10.1145/2384616.2384635

[4] T. Würthinger, C. Wimmer, and L. Stadler, “Dynamic code
evolution for Java,” in PPPJ, 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1852761.1852764

[5] S. Subramanian, M. Hicks, and K. McKinley, “Dynamic software
updates: a VM-centric approach,” in PLDI, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542478

[6] L. Pina, L. Veiga, and M. Hicks, “Rubah: DSU for Java on
a Stock JVM,” in OOPSLA, 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2660193.2660220

[7] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in EuroSys, 2009. [Online]. Available: http://doi.acm.org/10.
1145/1519065.1519085

[8] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “Polus: A powerful
live updating system,” in ICSE, 2007.

[9] T. Ritzau and J. Andersson, “Dynamic deployment of Java applications,”
in Java for Embedded Systems Workshop, 2000.

[10] “H2 Database Engine,” http://h2database.com/html/main.html, [Online;
accessed 22-January-2016].

[11] “CrossFTP server,” http://www.crossftp.com/crossftpserver.htm, [On-
line; accessed 22-January-2016].

[12] K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic
software updates using stack reconstruction,” in USENIX ATC, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855807.1855838

[13] M. Hicks and S. M. Nettles, “Dynamic software updating,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 27,
no. 6, pp. 1049–1096, November 2005.

[14] D. Gupta, P. Jalote, and G. Barua, “A formal framework for on-line
software version change,” IEEE TSE, 1996. [Online]. Available:
http://dx.doi.org/10.1109/32.485222

[15] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster, “State transfer
for clear and efficient runtime updates,” in HotSWUp, 2011. [Online].
Available: http://dx.doi.org/10.1109/ICDEW.2011.5767632

[16] C. Hayden, E. Smith, E. Hardisty, M. Hicks, and J. Foster, “Evaluating
dynamic software update safety using efficient systematic testing,”
IEEE TSE, 2012. [Online]. Available: http://www.cs.umd.edu/∼mwh/
papers/dsutesting-journal.pdf

[17] “HSQLDB Java Database,” http://hsqldb.org/, [Online; accessed 22-
January-2016].

[18] “Apache FtpServer,” https://mina.apache.org/ftpserver-project/index.
html, [Online; accessed 22-January-2016].

[19] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis,” in OOPSLA, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1167473.1167488

[20] M. Musuvathi, S. Qadeer, and T. Ball, “Chess: A systematic
testing tool for concurrent software,” Microsoft Research, Tech.
Rep. MSR-TR-2007-149, November 2007. [Online]. Available: http:
//research.microsoft.com/apps/pubs/default.aspx?id=70509

[21] J. Kramer and J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE TSE, 1990. [Online]. Available:
http://dx.doi.org/10.1109/32.60317

[22] T. Bloom and M. Day, “Reconfiguration and module replacement in
argus: theory and practice,” Software Engineering Journal, 1993.

[23] C. Hayden, S. Magill, M. Hicks, N. Foster, and J. S. Foster, “Specifying
and verifying the correctness of dynamic software updates,” in VSTTE,
2012.

[24] W. Pugh and N. Ayewah, “Unit testing concurrent software,” in ASE,
2007. [Online]. Available: http://doi.acm.org/10.1145/1321631.1321722

