
Automating Object Transformations
for Dynamic Software Updating

Stephen Magill ∗

IDA Center for Computing Sciences
sbmagil@super.org

Michael Hicks
University of Maryland, College Park

mwh@cs.umd.edu

Suriya Subramanian
Intel Corporation

suriya@alumni.cs.utexas.edu

Kathryn S. McKinley
Microsoft Research & The University of Texas at Austin

mckinley@cs.utexas.edu

Abstract
Dynamic software updating (DSU) systems eliminate costly
downtime by dynamically fixing bugs and adding features
to executing programs. Given a static code patch, most
DSU systems construct runtime code changes automati-
cally. However, a dynamic update must also specify how
to change the running program’s execution state, e.g., the
stack and heap, to make it compatible with the new code.
Constructing such state transformations correctly and auto-
matically remains an open problem. This paper presents a
solution called Targeted Object Synthesis (TOS). TOS first
executes the same tests on the old and new program ver-
sions separately, observing the program heap state at a few
corresponding points. Given two corresponding heap states,
TOS matches objects in the two versions using key fields that
uniquely identify objects and correlate old and new-version
objects. Given example object pairs, TOS then synthesizes
the simplest-possible function that transforms an old-version
object to its new-version counterpart. We show that TOS is
effective on updates to four open-source server programs for
which it generates non-trivial transformation functions that
use conditionals, operate on collections, and fix memory
leaks. These transformations help programmers understand
their changes and apply dynamic software updates.

∗Most of the work was completed while this author was at the University
of Maryland, College Park.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming; I.2.2 [Artificial In-
telligence]: Program Synthesis

General Terms Algorithms, Languages, Theory

Keywords Dynamic Software Update, DSU, Hot-Swapping,
Program Synthesis, State Transformation, Object Correla-
tion, Object Matching

1. Introduction
Suppose you are running an on-line service and a memory
leak in your server software causes it to regularly run out
of memory and crash. Eventually you discover the one-line
fix: the Connection class’s close method should unlink some
metadata when a connection closes. To apply this fix in a
standard deployment, you stop your server and restart the
patched version, but this disrupts active users. With dynamic
software updating (DSU) support in an extended Virtual Ma-
chine such as LiveRebel [16] you can do better. You apply
a dynamic patch to the Connection class of your running sys-
tem to prevent further leaks without disrupting current users.
In some DSU-enhanced VMs, such as Jvolve [14], you can
do better still. You include state transformation code in the
dynamic patch that traverses the heap and unlinks the useless
metadata left reachable by the bug.

An important goal toward furthering the adoption of DSU
systems is to make them easy to use, i.e., to minimize the
effort required to produce a correct dynamic patch from two
versions of a system. As a step in this direction, many DSU
systems employ simple syntactic, type-based tool support
for constructing a dynamic patch from the old and new
program versions [1, 8, 13, 14]. For example, if the bytecode
for method m of class C changes, Jvolve will include C.m in
the dynamic patch. If C’s field definitions change, in type
or number, Jvolve creates a default object transformation
function that it applies to all C objects when it applies the

patch. This function retains the values of unchanged fields
and initializes the rest with a default value, e.g., null.

While tool support for identifying changed code is highly
effective, existing support for constructing state transforma-
tion code is rarely sufficient, and the programmer must there-
fore modify the generated code. For example, in Jvolve the
programmer must add code that unlinks the leaked meta-
data in our example. Unfortunately, the cases that require
manual intervention are often challenging to get right. For
the above example, the Connection transformer cannot sim-
ply unlink all connection metadata unconditionally. Instead,
it must use appropriate context by examining the running
program’s heap and stack to identify and unlink only the
metadata that is logically dead. Transformations that move
objects between collections or partition single objects into
several objects—examples we observe in practice—require
similar care in their construction. Thus, writing state trans-
formation code for DSU systems is a programming task
unique to DSU, and it can be a time-consuming, error-prone
process.

To ease this burden on programmers, we have developed a
general-purpose approach for synthesizing object transform-
ers that we call Targeted Object Synthesis (TOS). Our devel-
opment is in the context of a DSU system for Java, called
Jvolve, but our techniques are readily adaptable to other
DSU systems. Furthermore, the techniques that we design
for finding heap object correlations between different pro-
gram versions may be useful for other program understand-
ing tasks, such as bug detection and testing.

TOS works in two phases, matching and synthesis—the
matching phase creates examples by pairing objects in two
snapshots taken at equivalent points during the execution of
the old and new programs, respectively, while the synthesis
phase generates a function that transforms the old object of
a matched example pair to the new object.

The matching phase begins by running both the old and
new versions of the program on the same inputs and tak-
ing heap snapshots at corresponding program points. Given
a class C whose fields changed between versions, we first
reduce the heap snapshots such that they only include C
objects and objects to which they refer, directly or transi-
tively. TOS matching seeks to correlate objects in the old and
new versions. TOS identifies key fields in the objects that (1)
uniquely identify the object in a given heap (i.e., each object
of class C differs on the values of its key fields) and (2) there
exist objects in both heaps with the same values for these
fields. We use a greedy algorithm which, in our experience,
usually succeeds in finding a set of key fields. In the case that
no key fields exist, matching uses the most distinguishing set
of fields it can find to pair up most objects, and then applies
a lightweight form of synthesis to find a function that pairs
up the remaining objects.

With example pairs of corresponding old o and new o′

objects (o,o′) in hand, the synthesis phase searches for func-

tions that are consistent with the examples, i.e., functions
δ for which δ (o) = o′ for all matched pairs. Functions δ

assign an expression to each new-version object field one
at a time, where the expressions may reference any of the
old object’s fields (or fields reachable from them). These ex-
pressions may contain constants, simple functions (e.g., the
concatenation or partitioning of string expressions), and con-
ditionals (e.g., if the value to assign to a field depends on
the current value of another field). While these expression
forms are sufficient for our examples, additional expression
forms can be readily supported, expanding expressiveness
at the cost of increasing the search space. For collections,
we recursively invoke synthesis to generate transformations
between objects that make up each collection, mapping the
resulting function over the old collection objects to produce
the new one. When many functions are possible for a given
set of examples, synthesis chooses the simplest. We care-
fully designed the transformation language to make impor-
tant operations efficient, such as intersecting a set of candi-
date functions.

As far as we are aware, the TOS matching algorithm is
new. No prior work attempts to map heap objects from un-
structured heap snapshots of different program-version exe-
cutions. The TOS synthesis algorithm is inspired by recent
work on synthesizing string and Excel table data transforma-
tion functions from input and output examples [5, 6]. TOS
matching creates examples automatically, whereas this prior
work requires users to provide examples. TOS functions are
a superset of string transformations. Whereas Excel table
functions focus on filters and numerics, TOS data transfor-
mations focus on a more general problem, the transformation
of heap objects.

We demonstrate our approach by synthesizing trans-
formation functions for updates to several open-source
Java servers, including JavaEmailServer (a POP and SMTP
server), CrossFTP (an FTP server), Azureus (a Bittorrent
client), and JEdit (a graphical text editor). In one case,
changed objects do not have the key fields that matching
requires. In all the others, we show that TOS produces cor-
rect transformation functions. These functions include object
field additions, string partitioning, partitioning a collection
based on a predicate, and deleting objects due to memory
leaks. In fact, to our knowledge no prior DSU system has
considered the need to correct the residual effects of bugs,
such as a memory leak, and our synthesized functions are the
first demonstration of this capability. TOS represents a sub-
stantial step toward realizing the promise of DSU technology
by reliably automating the most programmer-intensive step.

2. Overview
This section presents an overview of synthesizing state trans-
formation functions for dynamic software updates using
TOS. We begin with some background on DSU, present
an example dynamic update taken from an actual program

a1 a2

a3 a4

Ver. 1

Ver. 2

δ

Figure 1. Program trace at update point after a2.

change, and show how TOS synthesizes this dynamic update
automatically.

2.1 Dynamic software updating
Suppose an old version of a program is actively running, and
a new version becomes available that fixes some bugs or adds
some new features. In many cases, we would like to update
the running program without shutting it down since stopping
it would degrade the user experience or the program contains
useful program state that is costly to recreate. For example,
users may have active connections or the program may cache
state, such as recent queries and network state.

To use a typical DSU system, we must construct a dy-
namic patch [8] that specifies the changed code and a state
transformation function, which modifies heap objects and
other program state, as necessary, to work with the new code.
For example, if the old program version maintains a list of
Connection objects and the new version adds some fields to
the Connection class, the state transformation function must
initialize the values of the new fields for the existing objects.
In some systems, the state transformer may also update the
control state of the program, e.g., examining and modifying
the existing stack and program counter as necessary [10, 14].
We implement TOS for Jvolve [14], which performs DSU in
a Java Virtual Machine (Jikes RVM), but the TOS design
generalizes to other DSU systems.

Figure 1 depicts a dynamically updated program’s exe-
cution. The circles represent the program’s state, the labels
a1,a2,a3,a4 represent actions, e.g., messages sent to and
from client applications. Each gray circle represents a state
in which a dynamic update is permitted—not every program
state may be amenable to certain dynamic updates, as dis-
cussed below. In this trace, the program starts executing at
version 1, and after executing actions a1 and a2, it applies a
dynamic patch. As a result, the code of the program is up-
dated to version 2, and the state transformation function δ

is applied to transform the current state. A patch could have
been applied in the initial state or the one after a3, if a patch
were available at those times.

Most DSU systems work in three steps. First, when a
patch becomes available and the program reaches an ac-
ceptable state, the DSU system dynamically loads the new
and changed code. Second, it redirects existing references to
the new definitions. Finally, it executes the state transforma-
tion function to update the existing state. Jvolve implements
these steps within a modified virtual machine. It uses stan-

public class v131 User {
private final String username, domain, password;
private String [] forwardAddresses;
}
public class JvolveTransformers {

...
public static void
jvolveObject(User n, v131 User o) {

n.username = o.username;
n.domain = o.domain;
n.password = o.password;
int len = o.forwardAddresses.length;
n.forwardAddresses = new EmailAddress[len];
for (int i = 0; i < len; i++) {

String [] parts = o.forwardAddresses[i]. split (”@”);
n.forwardAddresses[i] = new EmailAddress(parts[0], parts[1]);

}}}

Figure 2. User object transformer, JES 1.3.1–1.3.2 update

dard classloading to load new versions of classes. For classes
whose only change is to the code of methods, Jvolve sim-
ply modifies the metadata for that class to point to the new
method definitions (which the JIT may subsequently opti-
mize). For each class whose objects’ state requires modifi-
cation (e.g., because the new version adds fields), the patch
must include an object transformation method. At update
time, the garbage collector finds all objects that require
transformation. It executes the object transformation method
on each old object, creating and initializing a corresponding
object that conforms to the new class’s type specification.

When a dynamic patch becomes available, the system
may choose not to apply it immediately. A policy adopted by
many DSU systems is to delay updates while changed code
is actually executing or referenced by the call stack. While
this delay makes sense, it is not sufficient to avoid trouble.
Hayden et al. [7] studied several years’ worth of changes to
three server programs and found that dynamic updates de-
rived from actual releases sometimes fail even while adher-
ing to this “activeness” restriction. Other work [8] suggests
that simply asking programmers to specify a few program
points (dubbed update points) at which updates are permit-
ted makes the system easier to reason about. Hayden et al.’s
study finds this approach to be effective: updates were ap-
plied promptly (e.g., roughly every 10 ms) and never failed.
Jvolve and several other systems [8, 10, 13] support this ap-
proach. TOS uses update points to create correlated pairs of
heap snapshots, as explained in Section 2.4.

2.2 JavaEmailServer example
We now present an example Jvolve dynamic update and sub-
sequently show how TOS synthesizes it. Figure 3 illustrates
code from versions 1.3.1 and 1.3.2. of JavaEmailServer
(JES), a simple SMTP and POP e-mail server, that we
obtained from the JES open-source repository. In the old

public class User {
private final String username, domain, password;
private String [] forwardAddresses;
public User (...) {...}
public String [] getForwardedAddresses() {...}
public void setForwardedAddresses(String[] f)
{...}
}
public class ConfigurationManager {

private User loadUser(...) {
...
User user = new User(...);
String [] f = ...;
user.setForwardedAddresses(f);
return user;

}
}

public class User {
private final String username, domain, password;
private EmailAddress[] forwardAddresses;
public User (...) {...}
public EmailAddress[] getForwardedAddresses() {...}
public void setForwardedAddresses(EmailAddress[] f)
{...}
}
public class ConfigurationManager {

private User loadUser(...) {
...
User user = new User(...);
EmailAddress[] f = ...;
user.setForwardedAddresses(f);
return user;

}
}
public class EmailAddress {

public EmailAddress(String username, String domain) {
isEmpty = false;
username = username;
domain = domain;

}
...
private String username = ””;
private String domain = ””;
private boolean isEmpty = true;
}

(a) Version 1.3.1 (b) Version 1.3.2

Figure 3. An update to JavaEmailServer (JES) User and ConfigurationManager classes

version of the User class, forwardedAddresses is an array of
strings. In the new version, forwardedAddresses is an array of
EmailAddress objects. This difference requires a correspond-
ing change to the types of other methods in the User class,
and to the loadUser method code of the ConfigurationManager
class, which sets the field by calling setForwardedAddresses.

A Jvolve dynamic patch for this update contains the new
versions of the User and ConfigurationManager classes. No
object transformer is needed for the ConfigurationManager
class because only its methods have changed, not its fields.
Figure 2 illustrates the object transformer method for User
objects. The transformer is a static method jvolveObject in the
class JvolveTransformers. The method takes the old-version
object and an allocated uninitialized new-version object as
arguments. Both have the same class name. To distinguish
them, Jvolve renames the old object’s class to v131 User.
The transformation method copies the first three fields from
the old to the new version.1 The object transformer allocates
and populates an array of EmailAddress objects to replace the
existing array of String objects.

1 Jvolve relaxes the Java language restrictions on private field accesses
during an update.

Given two program versions, Jvolve and other DSU
systems automatically construct the code portion of a dy-
namic patch by syntactically comparing the old and new
class files. However, generating the object transformer in
Figure 2 is well beyond the reach of current techniques.
Jvolve produces the first three lines, but then inserts the line
n.forwardedAddresses = null. Ginseng [13], POLUS [4], and
DLpop [8] do slightly better: they generate the loop, but the
loop body simply assigns each element to null. TOS gener-
ates the correct object transformer for JES in its entirety.

2.3 Snapshot Collection
TOS infers object transformers based on example pairs of
(old-version, new-version) objects and uses the test cases al-
ready present in a programs test suite to produce these ex-
amples. It does this by executing each test case twice—once
with the old version and once with the new version of the
code. At every update point encountered during execution, it
records a heap snapshot, which records types and field val-
ues for all live objects. Figure 4 depicts this process. The
shaded circles are the update points at which we take heap
snapshots. Thus each version in the figure will produce three
snapshots and these will later be compared to find example
pairs for synthesis.

a1 a2

a1 a2

Ver. 1

Ver. 2

compare

a3

a3

compare

Figure 4. Comparing old and new heaps at update points.

Snapshot collection is generally straightforward once the
programmer marks the update points (which is already re-
quired for dynamic updating). Even far-reaching, complex
changes to code can be accommodated since update points
tend to be close to the root of the control-flow graph, in code
that is quite stable. For example, our JavaEmailServer code
has an update point at the end of the main processing loop
for the thread that handles sending outgoing messages. If a
test case involves sending specific messages at specific inter-
vals, then the same number of snapshots will be created dur-
ing each run. Futhermore, these snapshots will correspond
in the sense that the lists of sent and pending messages will
be the same. Changes to the send routine, or the details of
the protocol used to send messages, do not affect this cor-
respondence. Only updates that alter the high-level message
processing semantics are problematic—for example, if the
server switched from sending all pending messages at once
to a model where message sends are spaced out (perhaps to
implement a rate-limited send). Such changes require great
care because an existing invariant—that there are no pend-
ing messages when the update point is reached—no longer
holds in new program versions. These updates are best left
to the programmer, so we do not view the failure of TOS to
cope with them as a significant shortcoming.

2.4 Matching
TOS works in two steps, matching and synthesis. Matching
takes as input the snapshots produced by the test runs and
the class C for which we want to generate an object trans-
former. It then produces pairs of (old-version, new-version)
objects that serve as examples to guide synthesis. Early in
the matching process we also prune each snapshot to include
only C objects and objects to which they refer, directly or
transitively. This linear pass through the heap significantly
reduces the input size to TOS matching.

In general, TOS requires that (1) the test input generate
the same number of snapshots when run using each program
version; and (2) the ith snapshot for a given input will al-
ways contain the same set of objects of class C; and (3) the
corresponding snapshots have the same number of C objects
(though the number of instances of other classes may differ).
Intuitively, the program must behave deterministically with
respect to the objects in C, and the role of those objects in the
two versions must be the same. The JES example illustrates
this point. The email server itself is non-deterministic. Net-
work events and the order in which requests are processed

vary from one run to the next. However the set of forwarded
addresses behaves deterministically since it is read from the
same configuration file in both versions and does not vary
across runs. For all our real-world applications and test in-
puts, these requirements were met.

The goal of the matching phase is to produce a uniform
one-to-one mapping between objects in each pair of corre-
sponding snapshots. It does this primarily by identifying a
class’s key fields.

Definition The fields ~f of a class C are key fields if objects
of class C have two properties.

1. No pair of C objects in the same snapshot have the same
values for all the fields ~f .

2. For each object in snapshot σold , there is exactly one
object in the corresponding snapshot σnew that has the
same values for fields ~f .

As an example, Figure 5 illustrates a snapshot pair from
JES with three objects of class User in the old (top) and new
(bottom) snapshots. In this case, TOS generates the mapping
{(user[0]old , user[0]new), (user[1]old , user[1]new), (user[2]old ,

user[2]new)} using key field username. This field is key be-
cause the values john, alice , and pat uniquely identify each
object in both σold and σnew and there exists only one old and
new object with the same value. Neither domain nor password
are key fields because multiple objects in the same snapshot
have the same value.

If user [2]. username was john instead of pat, then there
is no single key field, since none of the primitive fields
username, domain, or password have unique values. In this
case, matching searches for a set of fields that all together
satisfy the given criteria. Given the modified user[2] snap-
shots, matching would find that together the fields username
and domain impose a one-to-one mapping on all the objects.

If no set of key fields exists, our matching algorithm em-
ploys two refinements, described in Section 3. First, it at-
tempts to use referent object field values as potential key
fields. If this attempt fails, it uses the set of key fields/paths
that is most discriminatory (i.e., it comes the closest to pro-
ducing a one-to-one matching), and then refines any objects
not yet matched by using a lightweight form of synthesis.

2.5 Synthesis
The matching phase ultimately produces a list of example
pairs of objects of a class C. Synthesis then proceeds in
roughly two steps. (1) For each example pair, the algorithm
synthesizes a set of candidate functions. (2) It intersects the
set of candidate functions to produce a function consistent
with all examples. In our implementation, the algorithm
proceeds by synthesizing an initializer for each field, one at
a time. The description given here, for simplicity, presents
the process as working for the entire transformer method at
once.

Old Version Heap Objects JES Heap
user[0] user[1] user[2]
john
yahoo.com
poorpassword
[”john@cs.umd.edu”, ”john−alice@yahoo.com”]

alice
yahoo.com
poorpassword
[”john−alice@yahoo.com”]

pat
intel .com
poorpassword
NULL

New Version Heap Objects JES Heap
user[0] user[1] user[2]
john
yahoo.com
poorpassword
forwardedAddresses[0] =

[username = ”john”, domain = ”cs.umd.edu”]
forwardedAddresses[1] =

[username = ”john−alice”, domain = ”yahoo.com”]

alice
yahoo.com
poorpassword
forwardedAddresses[0] =

[username = ”john−alice”,
domain = ”yahoo.com”]

pat
intel .com
poorpassword
NULL

Figure 5. JES heap example for User Class with fields, in order, username, domain, password, and forwardedAddresses.

The first step proceeds as follows. For each example
pair, synthesis seeks a set of functions ∆ such that each
δ ∈ ∆ is consistent with the example, i.e., o′ = δ (o) for the
example (o,o′). Each δi ∈ ∆ assigns each new-version field
one at a time. For example, consider the two User objects
in Figure 5 that correspond to user[0]. For this example,
synthesis will first infer δ0 that assigns the constants john,
yahoo.com, and poorpassword to each of the new object’s
fields username, domain, and password, respectively. It also
infers δ1 that copies the corresponding fields from the input
object, i.e., n.username := o.username, n.domain := o.domain,
etc. For fields of type String, it also considers assigning the
concatenation of other strings, e.g., those that are substrings
of old-version fields.

For fields that are collections, we invoke synthesis re-
cursively. The algorithm matches two collections and then
matches the set of objects in the two collections. It then
generates a transformation function between the collection
pairs from a transformation function for the object pairs. For
forwardedAddresses, each String has the form ”x@y” and is
mapped to an EmailAddress object whose username, domain,
and isEmpty fields are ”x”, ”y”, and false, respectively, where
the first two fields are substrings of the input string. Once the
algorithm establishes an element-wise function, it simply it-
erates over the old collection and maps each element to one
in the new collection.

Once synthesis generates ∆ for each pair of objects of
class C, it intersects them to produce a ∆̂ that is consistent
with all the examples. During this step, synthesis discards
overly-specific functions, e.g., it discovers that δ1 described
above is consistent with all three of the matched pairs but
δ0 is not, and discards it. If |∆̂| = 1, then synthesis chooses
δ ∈ ∆̂ for the object transformer. If |∆̂|> 1, it picks the δ ∈ ∆

that is intuitively the simplest and most general function. For
example, we mark functions that contain assignments from

old fields to new fields as more general than functions that
assign constants. If |∆̂| = 0 then no one function works for
all examples. In this case, synthesis picks the function that
works for the most examples and then iteratively seeks a
function that works for the remaining examples along with
a conditional expression that distinguishes between the two
cases.

2.6 Discussion
A key difference between TOS and prior work on learning
from examples is that in prior work, the user identifies partic-
ular example pairs, whereas in our work, the user must pro-
duce matching executions—created by running the old and
new program versions on the same inputs—from which TOS
automatically identifies examples. While automatic match-
ing is simpler than identifying example object pairs directly,
there is a risk that it will not pair up truly corresponding ob-
jects, in which case the synthesized transformation function
will be incorrect. To reduce the likelihood of this case, we
place strong restrictions on the inputs to matching, as de-
scribed in the third paragraph of Section 2.4: snapshots in
both versions must be taken at the same update points in
both versions, there must be an equal number of snapshots,
and when synthesizing a transformer for class C, there must
be an equal number of C objects in corresponding snapshots.
These restrictions ensure that C objects are playing the same
role in the old and new execution, so if we update the old
program at one of these update points, executing the synthe-
sized transformer would bring the program to an equivalent
state.

Note that while corresponding snapshots must contain the
same number of C objects, where C is the changed class,
the number of other objects can vary. For example, a buggy
implementation of C may fail to null its field f of class D,
inducing a memory leak. Thus in the old and new snapshots,
the number of C objects will be the same, but the number

of D objects may differ. As we show in our experiments,
inferring the transformer method for such a leaky class C
can end up correcting the memory leak by nulling the dead
objects.

Because TOS generates a solution specific to the ex-
amples it is given, the developer must snapshot executions
that produce a sufficient number of objects. For conditional
transformers, the input must produce objects that cover the
range of possible variations; i.e., if there are N conditions,
TOS needs at least an example pair for each of the N con-
ditions. These examples could come from a single snapshot
with N instances of the object in both the old and new ver-
sion or from multiple snapshots which each contain one or
two instances but together provide N examples. If there are
too few examples, then synthesis may infer a function that is
overly specific.

In our experience (described in Section 5), it was easy
to provide enough examples for synthesis, and most experi-
ments required just one (well-chosen) test. TOS fails in two
of our test cases. In one case we could not reproduce a mem-
ory leak we were aiming to fix, leading to a failure during
the snapshot collection phase. In the other case, the changed
objects did not have key fields and so the matching phase
failed. Despite these limitations, our approach adds value:
the developer needs to run tests anyway, and if these tests are
sufficiently deterministic and cover the relevant behaviors of
a changed class, TOS can be used to infer object transform-
ers for that class.

3. Matching
Now we present the TOS matching algorithm in detail; the
next section describes the synthesis algorithm. The goal of
matching is to produce example pairs (o,o′) of correspond-
ing old and new objects taken from heap snapshot pairs. The
synthesis phase takes these pairs as input and searches for a
function δ such that δ (o) = o′ for all the example pairs. The
functions are class based, thus all old objects o must have the
same class C and all new objects must have the same class
C′. We first assume C =C′, and then consider C 6=C′, when
matching recursively during synthesis.

We describe our algorithm using the following notation.
A snapshot σ is just a set of objects; we use the two terms
interchangeably. We write ~X to denote a list of Xs; ~X ::
X to denote concatenating the element X to the end of the
list ~X ; and ~X(i) to denote the ith element of the list ~X . We
sometimes refer to a list as a tuple (e.g., when its length
is known to be fixed). We write o.~f to denote the tuple ~v
where o. fi = vi for 0 < i ≤ n. We write values~f (σ) for the
set of value tuples assigned to fields ~f by objects in σ , i.e.,
values~f (σ) = {~v | o ∈ σ ∧o.~f =~v}. Finally, we write ~σ�~f=~v
for {o | o ∈ σ ∧o.~f =~v}.

Figure 6 gives the pseudocode for the matching algorithm
in the function called match. The input to match is a pair
of lists of object sets (~σold , ~σnew). The object set ~σold(i)

contains objects collected from the ith snapshot taken while
running the old program, while σ ′=~σnew(i) contains objects
collected from the corresponding snapshot of a run of the
new program.

As mentioned earlier, we first prune the snapshots to in-
clude only objects of classes C that changed between the
old and new version and objects to which these objects di-
rectly or transitively refer. We assume that this pruning has
happened prior to the call to match. We also assume that
there are the same number of snapshots for the old and new
program executions (|~σold | = |~σnew|), and that each corre-
sponding pruned snapshot has the same number of objects
(|~σold(i)| = |~σnew(i)|). If these conditions do not hold then
matching fails for the class in question. The match function
returns a list of object pairs (o,o′), the first from an old snap-
shot and the second from a new snapshot, which serves as
input for synthesis.

3.1 Key fields
The match function first calls get keyfields (line 2) to search
for key fields that partition the objects in corresponding
pruned snapshots. Given a list of fields kfs, and the old and
new snapshots, match calls the function split on keyfields ,
which returns a pair of object set lists whose ith elements
correspond. In particular, each object o ∈ ~σold(i) and o′ ∈
~σnew(i) have the same values for fields in kfs. Ideally, the
size of ~σold(i) and ~σnew(i) returned by split on keyfields will
be 1 for all i. In this case (as checked on line 4), each object
is uniquely identified by the fields kfs in every snapshot and
there is a corresponding object in the old (respectively, new)
snapshot with the same field values. The size of a set will
be greater than 1 if there are multiple objects in a single
snapshot that contain the same values for fields in kfs. If
sets are non-singleton, match uses lightweight synthesis to
complete the partition.

The function get keyfields iteratively adds new fields to
the list kfs. When it reaches a fixed point, it returns the
list. The first nested loop (line 12) considers each possible
relevant field f for objects of class τ . The function assigns
each field a score based on how well f , when added to the
current fields in kfs ’ , distinguishes the objects. The inner
loop (line 15) considers each pair of snapshots and computes
the set V, which contains the distinct tuples of kfs ’ fields’
values in old-version objects. Line 17 then considers each
of the tuples ~v in set V. It must be the case that we have
the same number of old and new objects with values ~v in
fields kfs ’ . This requirement preserves the ability to discover
a bijection between the objects. The larger |V | is, the finer
the partition induced by splitting on kfs ’ . Synthesis prefers
finer partitions, which indicate more effective key fields.
Thus match adds |V | to score and then chooses the field that
maximizes score. If a field f leads to the condition on line
17 being violated, then match assigns f a score of 0 and
proceeds to the next field.

1 match(~σold , ~σnew) =
2 kfs := get keyfields (~σold , ~σnew)
3 (~σ ′old , ~σ ′new) = split on keyfields(kfs,~σold ,~σnew)
4 if ∃i. |~σ ′old(i)|> 1 then
5 (~σ ′old ,~σ

′
new) := synthesis match(~σ ′old , ~σ ′new)

6 return {(o,o′) | ∃i.0 < i≤ length(~σ ′new)∧o ∈ ~σ ′old(i)∧o′ ∈ ~σ ′new(i)}

7 get keyfields (~σold , ~σnew) =
8 kfs := []
9 currscore := 0

10 repeat {
11 prevkfs := kfs ;
12 for each field f 6∈ kfs {
13 kfs′ := kfs :: f
14 score(f) = 0
15 for each i ∈ 1..length(~σnew) {
16 V := valueskfs′(~σold(i))
17 if ∀~v ∈V. |σold(i)�kfs′=~v|= |σnew(i)�kfs′=~v| then
18 score(f) := score(f)+ |V|
19 else {
20 score(f) = 0
21 break
22 } }
23 }
24 let g be the f that maximizes score(f)
25 if score(g) > currscore {
26 kfs := kfs :: g
27 currscore := score(g)
28 }
29 } until (prevkfs = kfs)
30 return kfs
31 }

32 split on keyfields (kfs ,~σold ,~σnew) =
33 if kfs = [] then return (~σold ,~σnew)
34 ~σ ′old := []
35 ~σ ′new := []
36 for each i ∈ 1..length(~σnew) {
37 for each~v ∈ valueskfs(~σold(i)∪~σnew(i)) {
38 ~σ ′old := ~σ ′old :: σold(i)�kfs=~v
39 ~σ ′new := ~σ ′new :: σnew(i)�kfs=~v
40 }
41 }
42 return (~σold ,~σnew)

43 synthesis match(~σold ,~σnew) =
44 ~σ ′old := []
45 ~σ ′new := []
46 for each k ∈ 1..length(~σold) {
47 σ := ~σold(k)
48 σ ′ := ~σnew(k)
49 if |σ | 6= 1∨|σ ′| 6= 1 then
50 while σ ′ 6= /0 {
51 choose o from σ

52 let ∆ =
⋃

oi∈σ ′ synth non branching(o,oi)
53 letfun score(δ) = |σ ′∩δ (σ)|
54 let δ̂ be the element of ∆ that maximizes score

55 let Û = {(o,o′) | (o,o′) ∈ σ ×σ ′∧o′ = δ̂ (o)}
56 for each (o,o′) ∈ Û {
57 ~σ ′old := ~σ ′old :: {o}
58 ~σ ′new := ~σ ′new :: {o′}
59 σ := σ −{o}
60 σ ′ := σ ′−{o′}
61 }
62 }
63 }
64 return (~σ ′old ,~σ

′
new)

Figure 6. Pseudocode for the match function.

Once it scores all the fields, match picks the field g that
maximizes the score. If the best score does better at distin-
guishing objects than it previously did when using just fields
in kfs, it adds g to kfs and continues iterating.

If get fields cannot find a bijection using one or more
primitive fields, we extend it by changing the first nested
loop (line 12) to consider field paths. A field path ~f is a list
of fields, e.g. f1. f2. The value given by o.~f is the value as-
signed to field f2 in the object referenced by o. f1. Beyond
the replacement of f with ~f , the algorithm in Figure 6 is un-
changed. If matching with field paths still does not produce
a bijection, we apply synthesis-based matching, described in
Section 3.3.

3.2 The Old-Version Consistency Check
Note that the description of matching thus far has not made
use of the fact that the objects in the two snapshot lists
are the result of executing different program versions. We

have described the inputs to match as a list of old-version
snapshots and a list of new-version snapshots, but these
could equally well be two lists of old-version snapshots
produced by separate runs of the old version over a single
test case. Performing such an old-old match is useful as a
preprocessing step prior to old-new matching.

Recall that get keyfields assigns to each field f a score,
given by score(f). This score is non-zero if and only if par-
titioning each snapshot on field f produces sets with equal
cardinalities. We use this property in old-new matching as a
heuristic to find fields that are unchanged by the update and
that help pair up corresponding objects. We would also ex-
pect these fields to have non-zero score in an old-old match-
ing, and we use this additional check to ensure that we are
in fact finding unchanged fields. In our implementation, we
first perform an old-old matching and consider only those
fields f with score(f)> 0 as potential key fields for the old-
new matching.

Old-old matching also helps focus synthesis. If a field
f has score 0 in the old-old case, then this field behaves
non-deterministically. As an example, both time-stamps and
nonces would have this property. We do not infer transfor-
mations for these fields because even if we match objects
correctly, the difference between the old and new values for
these fields will not solely be the result of the code change.

Finally, if we fail to produce an old-old matching, then we
can say with certainty that this is not an object for which we
should perform TOS. We can also provide the programmer
with feedback indicating that the failure to synthesize is not
due to the code change’s effect on the object, but rather due
to inherent problems with the role of the object in the given
test case.

3.3 Synthesis-based matching
If key fields do not induce singleton sets, we further decom-
pose the non-singletons, since whenever ~σ ′old(i) and ~σ ′new(i)
contain more than one element each, it is unclear which
pair (o1,o2) with o1 ∈ ~σ ′old(i) and o2 ∈ ~σ ′new(i) to use as an
input-output example for synthesis. In this case, match calls
synthesis match with the two current lists of corresponding
sets to refine the non-singleton sets in the lists.

Synthesis-based matching tries to find a matching that is
witnessed by a transformation function δ that maps objects
in the old set to objects in the new set. We introduce addi-
tional terminology to explain the algorithm. We say that δ is
consistent with the object pair (o,o′) iff o′ = δ (o). We call a
set of pairs U a matching iff for all pairs (o1,o′1) and (o2,o′2)
in U , we have o1 6= o2⇔ o′1 6= o′2. That is, no old-version ob-
ject is paired with multiple new-version objects, nor is any
new-version object paired with multiple old-version objects.

The synthesis match function iterates over each pair of ob-
ject sets, searching for a one-to-one matching between the
old and new objects of each when the sets σ and σ ′ are not
singletons. Consider the non-singleton pair σ and σ ′. The al-
gorithm first chooses an old-version object o (line 51). It may
choose any object since it must eventually find transforma-
tion functions for all objects in ~σold . It then considers each
pair (o,oi), where oi is a new-version object, with the aim of
synthesizing ∆i, a set of transformation functions consistent
with the example (o,oi). The algorithm combines all these
sets of functions into a single set of transformation functions
∆ (line 52). The synthesis procedure used here is restricted
to non-branching transformation functions. These are func-
tions that do not perform case analysis on the old-version
object. (Figure 9 gives pseudocode for this function, which
is explained in the next section.) Without this restriction, the
inferred functions can always create a conditional function
specific only to this one pair, but these functions are not gen-
eral and do not help create sets of examples for synthesis of
general functions.

Line 53 defines a function score that scores possible
transformation functions δ in ∆. The algorithm chooses the

highest-scoring function δ̂ (line 54). The score of a trans-
formation δ is determined by how well it maps objects
in σ to those in σ ′—in the figure we write δ (σ) to mean
{o′ | o ∈ σ ∧ o′ = δ (o)}. Thus a high-scoring function will
map the input set to many objects that match (intersect with)
the output set. The mapping induced by δ̂ is given in Û . Fi-
nally, the loop on line 56 adds the singleton sets comprising
this mapping to ~σ ′old and ~σ ′new (which will be the ultimate
output of this function) and then removes the mapped ele-
ments from the current snapshots σ and σ ′. The algorithm
greedily continues, iteratively choosing transformation func-
tions that maximize the number of example pairs they cover.
Once σ becomes empty, which is sure to happen because
ultimately objects can be matched arbitrarily using constant
functions, the while loop exits and synthesis moves on to
the next snapshot, continuing until it considers all pruned
snapshots.

4. Synthesis
The synthesis phase takes the example pairs produced by
matching and synthesizes a function δ from them such that
for the pair (o,o′), δ (o) = o′.

4.1 Transformation functions δ

A transformation function δ is defined according to the
grammar in Figure 7. Transformation functions take an old-
version object in o, allocate a new-version object in n, assign
values to each of the fields of n, and then return n. Field as-
signments g are of the form n. f := c where c is a conditional
and f is a field path—that is, it is a (possibly empty) list of
field labels l. For n, this path is almost always a single field.
(Section 4.5 discusses the multiple fields case.) Each condi-
tional c specifies one or more cases distinguished by boolean
expressions ei over old-version state (i.e., they can only refer
to objects via o, never n). Each case has an initializer expres-
sion d which is either a constant, a reference to an old field, a
string produced by concatenating one or more (sub)strings,
or a collection produced by map. Here, map(δ ,o. f) takes
the collection at o. f , and transforms these elements using δ .

The string expression substr(o. f , i) splits the string o. f
at positions where a delimiter delim appears and then selects
the ith substring. For example, substr(”foo@bar.com”,2) re-
turns “bar.com” since ‘@’ is a delimiter that splits the string
into two substrings and “bar.com” is the second substring.
Our language of string updates supports a concatenation of
substrings and is sufficient for the examples we considered.
If a more robust string transformation language were needed,
the approach taken by Gulwani [5, 6] or any other example-
based string synthesis technique would work easily.

We have simplified the form of δ to keep the algorithm
tractable. The most obvious restriction is that δ transforms
a single object, rather than multiple objects at once. This re-
striction derives from the nature of the underlying DSU sys-
tem we use, Jvolve. Note that different objects of the same

Updates δ ::= λo. new n; g1; . . . ; gn;ret n
Field Updates g ::= n. f := c
Field Path f ::= ε | f .l
Conditional c ::= case e1⇒ d1, . . . ,en⇒ dn end

Initializer d ::= k | o. f | concat(se1, . . . ,sen)

|map(δ ,o. f)
Integer Constant i, j ∈ Z
Constant k ::= i | null | delim
Delimiter delim ::= \ | / | # | @ | :
String Expression se ::= delim | substr(o. f , i)
Boolean Expression e ::= a | e1∧ e2 | e1∨ e2

Atomic Expression a ::= o. f1 � o. f2 | o. f � k
Operator � ::= = | 6= | . . .

Figure 7. The language over which we perform synthesis.

class will not necessarily be transformed in the same way—
conditionals c may evaluate to different branches for differ-
ent objects and thereby trigger different initializers. Another
restriction is that each field of the new object is initialized in-
dependently, albeit with access to the full contents (i.e., mul-
tiple fields) of the old-version object o. Transformers that are
ruled out by this setup include those that initialize field f ac-
cording to the updated value for field f ′ as well as those that
pass values across the object graph, e.g., setting n. f2:= Foo. f1
when o is not an instance of Foo.

4.2 Synthesis algorithm
Figure 8 gives pseudo-code for the synthesis algorithm. The
main function is synthesize. It takes a set of input-output
examples U (pairs of old-version, new-version objects) and
produces a transformation function that is consistent with
those examples.

Synthesis proceeds one field at a time. For each field,
it synthesizes a conditional update (c in the grammar in
Figure 7) that is capable of producing all the values for that
field seen in the example pairs in U . It first generates the
initializers d and then searches for conditions that indicate
which d to apply.

To find the initializers d, the synthesis algorithm main-
tains a set update fns of initializers it has discovered thus
far, as well as a set not covered that contains all example
pairs that cannot be produced by an initializer in update fns.
During each iteration through the loop on line 5, it chooses
an element from not covered and calls synth field, which re-
turns the set D of all initializers d that are consistent with
that field’s values in the provided example pair. Of these,
we choose d̂, which covers the largest number of pairs in
not covered, and add it to update fns, while removing the
pairs that d̂ covers from not covered.

The loop on line 16 finds the conditions that indicate
which d̂ to apply to a given old-version object. For each

1 synthesize(U) =
2 for each new-version field fi {
3 not covered := U
4 update fns := []
5 while not covered 6= /0 {
6 choose (o,o′) ∈ not covered
7 let D = synth field(fi,o,o′)
8 letfun score(d) =
9 |{(o,o′) | (o,o′) ∈ not covered∧o′. fi = d(o)}|

10 let d̂ be the element of D that maximizes score
11 let Û = {(o,o′) | (o,o′) ∈ not covered∧o′. fi = d̂(o)}
12 update fns := update fns :: (d̂,Û)

13 not covered := not covered − Û
14 }
15 cond := []
16 for i ∈ 1..length(update fns) {
17 let (d̂,Û) = update fns(i)
18 let σin = {o | ∃o′. (o,o′) ∈U ∧ (o,o′) ∈ Û}
19 let σout = {o | ∃o′. (o,o′) ∈U ∧ (o,o′) 6∈ Û}
20 cond := cond :: (synth cond(σin,σout))
21 }
22 c fi := 〈case ĉ1⇒ d̂1, . . . , ĉn⇒ d̂n end〉
23 where ĉ j = cond(j) and (d̂ j,Û j) = update fns(j)
24 }
25 return 〈λo. new n; n. f1 := c f1 ; . . . ; n. fn := c fn ; ret n〉

Figure 8. Main synthesis algorithm.

transformation function d̂, the loop builds σin, containing the
old-version objects from the example pairs consistent with
d̂, and σout, containing the remaining example pairs. It then
calls synth cond to find a condition that separates these two
sets based on values of old-version fields, and adds it to the
list cond.

Finally, the algorithm constructs c fi , the conditional up-
date containing all the logic it just synthesized for field fi.
The update for the class is then the sequence of all these
field updates. We write synthesized code in angle brackets
to distinguish it from the code of the synthesis algorithm.

4.3 Field synthesis
Figure 9 gives the pseudo-code for synth field, which pro-
duces the initializers for a new-version field according to
a given example pair. The figure also shows the code for
synth non branching, which is the function used to perform
synthesis-based matching (Section 3.3). It uses synth field as
a subroutine.

The synth field function takes a field, an old-version ob-
ject o, and a new-version object o′, and returns a set of initial-
izers (from production d in the grammar in Figure 7), where
each initializer can produce the value in o′. f given the object
o. The set is constructed by first checking whether the value
in o′. f is also present in a field in o and if its value can be
copied over. Next, it checks whether o′. f is one of the con-
stants in the synthesis language. If so, it adds this production

1 synth non branching(o,o′) =
2 g := empty field update
3 for each f in o′ {
4 let c set = synth field (f ,o,o′)
5 for each c ∈ c set do { g := g + 〈 ; n. f := c 〉 }
6 }
7 return λo. new n; 〈g〉; ret n
8

9 synth field (f ,o,o′) =
10 ret set := /0
11 if o′. f = o.g for some field g
12 ret set := ret set ∪ {〈o.g〉}
13 if o′. f = k
14 ret set := ret set ∪ {〈k〉}
15 if typeof(o′. f) = String
16 ret set := ret set ∪ string synth(o. f ,o′. f)
17 if o′. f is a collection
18 let σ ′ = multiset of objects in collection o′. f
19 for each collection−valued field o. f2 {
20 let σ = multiset of objects in collection o. f2
21 let δ = collection synth(σ ,σ ′)
22 ret set := ret set ∪ {〈map(δ ,o. f2)〉}
23 }
24 return ret set
25

26 collection synth (σ ,σ ′) =
27 let examples = match([σ],[σ ′])
28 return synthesize(examples)

Figure 9. Non-branching and per-field synth. subroutines.

method to the returned set. Finally, we have two class-based
synthesis checks. If o′. f is a string, we invoke string synthe-
sis to produce a set that describes all possible methods for
construction the string from substrings present in o. We do
not give code for this function since it closely follows Gul-
wani [5]. If o′. f is a collection, then we recursively invoke
synthesis in order to transform the elements of the collection.

4.4 Condition synthesis
Condition synthesis produces a condition that distinguishes
two sets of examples following the basic approach of Gul-
wani [5]. Figure 10 gives the pseudocode. It uses nota-
tion JeK to denote a function from objects to truth values
where JeKo = true if and only if condition e is true when o
(an actual object) is substituted for o (the variable) in e. If
JeKo = true, we will say that e includes o and otherwise we
say that e excludes o. Given a set of objects σin and σout, the
goal of condition synthesis is to return an expression e such
that ∀o ∈ σin JeKo = true and ∀o ∈ σout JeKo = false. If this
is the case, we say that e separates σin and σout.

The construction of e proceeds in a greedy fashion. The
loop at line 4 calls synth conj to synthesize a conjunction
a1 ∧ . . .∧ an, where each ai is an atomic expression. This
expression will exclude all the elements in σout while in-
cluding as many elements of σin as possible. The synth conj

function builds up this conjunction iteratively using the loop
at line 15. Given e = a1 ∧ . . .∧ a j, we first check to see if e
already separates σin and σout. If so, we are done—the code
detects this case when σ ′out = /0. If not, let σ ′in = {o | o ∈
σin∧JeKo= true} and let σ ′out = {o | o∈σout∧JeKo= true}.
Thus σ ′in and σ ′out are the subsets of σin and σout that satisfy
e. We then choose a j+1 to be the atomic expression that max-
imizes rank(a j+1,σ

′
in,σ

′
out). We define the rank of a condi-

tion e as follows.

Definition 1. Let rank(e,σin,σout) = m×n where m = |{o |
o ∈ σin ∧ JeKo = true}| and n = |{o | o ∈ σout ∧ JeKo =
false}|.

Thus, rank(e,σin,σout) is the product of the number of
objects from σin that are included by e and the number of
objects in σout that are excluded.

The atomic expressions we consider are those involving
equality or inequality between pairs of fields (of which there
are a finite number) and equality or inequality with a con-
stant appearing in the object (of which there are a finite
number). Since there are a finite number of possible atomic
expressions, we can simply iterate over them, although our
implementation is able to avoid considering many expres-
sions that are guaranteed to not satisfy the conditions re-
quired. Provided rank(a,σ ′in,σ

′
out) is non-zero, we know that

conjoining a to e will cause some elements of σ ′out to be
excluded, while still including some elements of σin. If no
atomic expression produces a rank greater than zero, then
this indicates a failure to find the necessary condition and
we abort the synthesis process for this field. In this case our
expression language is either insufficient to distinguish the
different examples, or we have simply not considered the
discriminating data (e.g., if it were a global variable). Oth-
erwise we continue adding atomic expressions until we have
excluded all elements of σout and constructed conjunct e.

Returning to the code of synth cond, we know that the
conjunct returned from synth conj excludes all elements of
σout. We add e′ to the current list of disjuncts e, and then add
to σ ′in the set {o | o ∈ σin ∧ Je′Ko = true}, which are all ob-
jects e now includes. If any elements remain, we iterate again
to produce another conjunct that will include them, until the
expression includes all elements of σin (and excludes all el-
ements of σout).

4.5 Discussion
Our synthesis algorithm is engineered to favor simpler, more
general transformations δ over more specialized ones. For
example, suppose class Foo contains an integer-valued field
f and in all our snapshots σ ∈ ~σold we have two Foo objects
o1 and o2 such that o1. f = 1 and o2. f = 2. Likewise, all
snapshots σ ′ ∈~σnew have two Foo objects o′1 and o′2 such that
o′1. f = 1 and o′2. f = 2. In this case, synthesize will produce
the function

λo.new n; case true⇒ n. f := o. f end;ret n

1 synth cond(σin,σout) =
2 σ ′in := /0
3 e := 〈false〉
4 while σ ′in 6= σin {
5 let e′ = synth conj(σin−σ ′in,σout)
6 e := e + 〈 ∨e′〉
7 σ ′in := σ ′in∪{o | o ∈ σin∧ Je′Ko = true}
8 }
9 return e

10

11 synth conj(σin,σout) =
12 σ ′in := σin
13 σ ′out := σout
14 e := 〈true〉
15 while σ ′out 6= /0 {
16 let a be the condition that maximizes rank(a,σ ′in,σ

′
out)

17 if rank(a,σ ′in,σ
′
out) = 0 then abort

18 e := e + 〈 ∧a〉
19 σ ′in := {o | o ∈ σ ′in∧ JeKo = true}
20 σ ′out := {o | o ∈ σ ′out∧ JeKo = true}
21 }
22 return e

Figure 10. Synthesizing conditions.

and not the function

λo.new n;case (o. f = 1) ⇒ n. f := 1,
case (o. f = 2) ⇒ n. f := 2 end;ret n

Line 10 of synthesize (Figure 8) favors initializers that apply
to the most possible objects. Line 16 of synth conj (Figure 10)
similarly aims for simpler, more general conditions.

The algorithm as described assumes that synthesis takes
place on a per-object basis, one field at a time. In fact, it can
also synthesize the contents of a new object’s children, e.g.,
assigning not just n. f := d but n. f1. f2 := d as well. Likewise
it can read children of old objects in initializers d. To support
this extension, we simply consider field paths rather than
fields, up to a specified depth, e.g., on line 2 in Figure 8 and
on line 11 in Figure 9. Matching can be similarly extended,
e.g., using paths on line 12 in Figure 6. Finally, we extend the
synthesis language in Figure 7 to allow object allocation, so
we can allocate and initialize child objects if needed. (Note
that allocation happens implicitly with map when producing
the new collection.) We have found this flexibility useful in
practice, as we discuss in the Azureus example in the next
section.

5. Evaluation
We implemented TOS and used it to synthesize object trans-
formers for several program updates we gathered from the
wild. We choose challenging examples that other systems
cannot handle, and find that TOS handles most. TOS does
fail when the changed objects do not store data that makes it
possible to match them between heaps, but this case is less

common. This section provides a few more details about our
implementation, describes each test program update, and our
experiences with TOS in each case.

5.1 Implementation
We use the Oracle HotSpot JVM to collect heap snapshots
using the agentlib:hprof command line option.2 This op-
tion invokes the heap profiler, which sends the current snap-
shot over a network socket. We wrote a small server that
coordinates snapshots with the application. It initiates snap-
shots at update points and saves them to disk. In particular,
when the application reaches an update point, it calls into a
helper class to trigger a snapshot.

TOS is implemented in Java and comprises roughly 4200
lines of code. About 1300 lines implement matching, 1600
implement synthesis, and the rest is common code.

5.2 Results
In our experiments, we consider two updates to Azureus (a
bittorrent client); three updates to jEdit (a text editor); one
update to JavaEmailServer (a.k.a., JES, an SMTP and POP
mail server); and one update to CrossFTP (an FTP server).
These applications range from 2.3k to 250k source lines of
code. These are actively developed and maintained programs
not built with dynamic software updating in mind.

We chose these applications and updates for the following
reasons. First, dynamic updates for these programs would be
useful. For Azureus, JES, and CrossFTP, dynamic updates
would avoid disruption due to shutdown/restart, e.g., they
would preserve active connections involving e-mail send-
ing or file transfer, and they would preserve important in-
memory state, such as file/metadata caches. Dynamic up-
dates to JEdit are less important (you could save in-progress
work and restart), but would be convenient, e.g., to preserve
the content and layout of onscreen windows. Second, the up-
dates to JES and CrossFTP were also considered in the orig-
inal Jvolve work [14]. We wanted to see if we could use
TOS to generate transformers we previously wrote by hand.
Finally, we found updates to these programs that are rela-
tively interesting, such as updates that do not affect all ob-
jects uniformly (thus requiring conditional transformers) or
updates that fix memory leaks. We focus on the challeng-
ing updates that prior DSU systems cannot handle automat-
ically. We also tested TOS on many simple updates, and in-
clude two of these—the “copy” transformers for CrossFTP
v1.06—as exemplars.

Table 1 summarizes information about the updates and
the inferred transformers. We list the version for which we
synthesize an update and the number of snapshots generated
by our test case. In all but one example, TOS needs only
a single test case. Version 1.08 of CrossFTP required three
test cases. We list the number of classes used by the pro-

2 We use HotSpot only for snapshotting—Jvolve, the VM that TOS targets,
is based on Jikes RVM and does not support snapshotting.

Application SLOC Version # Snaps Classes Heap Obj. Target Obj. Match Synthesis Inferred Type

Azureus 250K r2514 11 1616 1315420 97 0.842 s 0.120 s yes conditional
r120 22 1634 1117463 275 0.002 s 0.000 s no

JEdit 154K r14027 5 3044 703360 30 0.041 s 0.008 s yes constant
150K r13413 5 3221 747849 0 0.000 s 0.000 s no

JES 2.3K 1.3.2 1 911 51802 1 0.020 s 0.022 s yes collection
2.4k 1.3.3 1 902 52210 1 0.001 s 0.007 s yes constant

CrossFTP 13.9K 1.06 1 953 38907 1 0.001 s 0.009 s yes copy1

13.9K 1.06 1 953 38907 1 0.002 s 0.007 s yes copy1

13.9K 1.06 1 953 38907 1 0.002 s 0.009 s yes constant
14K 1.07 1 2417 152531 1 0.044 s 0.013 s yes constant

18.1K 1.08 3 954 116833 1 0.002 s 0.011 s yes conditional

Table 1. Summary of updates and inferred transformers. Each example is the result of a single test case. 1Transformer that
would also have been produced automatically by Jvolve.

gram, the number of object instances present (total across
all snapshots), and the total number of instances of the tar-
get object (target objects changed or transitively referred to
by changed objects). Finally, we list execution times in sec-
onds for matching and synthesis, and indicate if synthesis
succeeded.

Matching and synthesis times are negligible for all exam-
ples. Matching times and effectiveness benefit from focusing
on a single class at a time, since it significantly reduces the
number of objects that TOS considers. TOS restricts itself
to changed objects and objects reachable from changed ob-
jects by a bounded number of field dereferences. This bound
is the same one mentioned in Section 4.5, which discusses
bounding the depth of field paths. Synthesis benefits from
the fact that our language of state transformers is designed
to be small and succinct.

The synthesized functions involve constant updates, con-
ditional updates, string transformations, and collection up-
dates. For JES and CrossFTP, we used the generated update
functions in Jvolve [14] and verified that the system contin-
ued running correctly following the update. We were unable
to get Azureus and jEdit to run reliably using the Jvolve VM,
but this was not due to Jvolve: the Jikes RVM, on which
Jvolve is based, does not run them properly either. Since
we could not run the Azureus and jEdit updates, we per-
formed a manual code review of the transformers produced
by our synthesis algorithm to check that they matched what
we would have written by hand.

TOS fails in two cases to synthesize update functions
because we could not generate snapshots that captured the
changed behavior; we discuss these situations, and all of the
updates, in detail below.

Azureus update SVN r2514 Azureus is a widely used Bit-
Torrent server/client. Version r2514 contains about 250k
lines of code. This update changes two classes and meth-
ods. Figure 11 shows a portion of the update. The added
call to clearServerAdapter nulls the adapter field of the server

object when a peer server is stopped; doing so ensures the
adapter is garbage collected. When we apply this update at
run-time, we would like it to retroactively null adapter fields
that the buggy version neglected to. TOS facilities doing so
by synthesizing a transformer for PEPeerControlImpl objects.

To generate the snapshots, we ran both program versions
in a controlled setting and had them download the same
set of files. TOS performs matching on PEPeerControlImpl
objects. The program contains one such object for each file
it downloads. Matching chooses key field nbPieces, which
is a value proportional to the file size that is highly likely to
be unique across different files.

Synthesis then observes that for these matching ob-
jects the new versions’ server.adapter field is null when
server.bContinue is false, but the two versions match on the
server.adapter field otherwise. It then infers the following

conditional transformer, which has the effect of freeing the
leaked objects:

if (bContinue == false)
server.adapter = null ;

else
server.adapter = server old .adapter;

Note that to generate this transformation function requires
using field paths instead of single fields (cf. Section 4.5).

Azureus update SVN r120 Figure 12 shows update r120
to Azureus. This update modifies the condition under which
Azureus releases the read buffer between a client and its
peer. There are two issues with using TOS to infer this
update. The first is that the read buffer does not contain a
natural key field. Each buffer is identical and does not have
a pointer back to the object using it. This problem manifests
as a failure in the matching process. In such a case, one might
consider adding a ghost field that records the allocation order
and using this as a key field to match objects. Matching
succeeds with this addition. However, the assignment of

class PEPeerControlImpl {
PESharedPortServerImpl server;
boolean bContinue; ...
void stopAll () { ...

// 3. Stop the server
server.stopServer();

+ server.clearServerAdapter();
... }

}
class PESharedPortServerImpl {

void clearServerAdapter() {
adapter = null ;
}
}

Figure 11. Azureus r2514 update

public class PeerSocket ... { ...
// 4. release the read Buffer

− if (readBuffer != null && !readingLength)
+ if (readBuffer != null)

ByteBufferPool.getInstance(). freeBuffer (readBuffer);
... }

Figure 12. Azureus update r120

buffers to clients varies across runs (and is unrelated to
allocation order), which causes synthesis to fail, since the
ith buffer is not associated with the same client in each run.
This transformation is thus not inferable from the objects
themselves, which is a limitation of our approach. However,
it is not surprising that, on occasion, sufficient information
for transformation is not available from the heap.

jEdit JEdit is a text editor for programmers that provides
common and advanced features, such as syntax highlight-
ing, folding, automatic indentation, a built-in macro lan-
guage, macro recording, and plugin support. Here we con-
sider two similar memory leaks fixed in jEdit versions r5178
and r14027. Figure 13 shows the source patch for the leak
fixed in r14027. jEdit calls the function markTokens when it
needs to split a string into tokens based on the type of the
file being edited. Each file type (C, Java, Verilog, etc.) has
special logic to split text in a line and embed it in an object
of type TokenHandler. The leaky jEdit version fails to set the
field TokenMarker.tokenHandler to null.

The inferred object transformer is simple. It sets the leaky
field to null. It is safe to execute the transformer as long as
the markTokens function is not active on stack.

Figure 14 shows a change to jEdit in SVN revision
r13413. The leak is in function HistoryText.showPopupMenu().
jEdit calls showPopupMenu() when the user performs certain
actions, such as right clicking a text field with history. In the
old version, some instances of HistoryText have the boolean
field popup.visible set to true and others set it to false. In the
new version, the field popup is not null only when an ob-
ject also has its popup.visible field set to true. TOS can infer

class TokenMarker {
public LineContext markTokens(...) {

...
tokenHandler.setLineContext(context);

/∗ for GC. ∗/
+ this . tokenHandler = null;

this . line = null ;
return context;

}
}

Figure 13. Update r14027 to jEdit

class HistoryText {
showPopupMenu() {

if (popup != null && popup.isVisible())
{

popup.setVisible(false);
+ popup = null;

return;
}

− popup = new JPopupMenu();
+ popup = new JPopupMenu() {
+ @Override
+ public void setVisible (boolean b) {
+ if (! b) {
+ popup = null;
+ }
+ super.setVisible(b);
+ }
+ };

JMenuItem caption = new JMenuItem(jEdit.getProperty(
” history .caption”));

caption.addActionListener(new ActionListener()
}
}

Figure 14. Update to jEdit: SVN revision r13413

class DataConnectionConfig {
...

+ boolean enableBonjour = true;
+ String listEncoding = ” utf−8”;
}

Figure 15. Update to CrossFTP in version 1.07

this property and generate a transformer that nulls the popup
field of instances that have popup.visible set to false. How-
ever, while creating snapshots we were unable to create a
situation where popup.isVisible () was true during a snapshot,
which would execute instructions controlled by the condi-
tion and exercise the leak. This update is an example that
TOS is capable of handling, but for which we fail due to test
coverage problems.

JavaEmailServer (JES) The collection update is the one
discussed in Section 2 and presented in Figure 3. We
automatically generate a correct update function for it.

The constant update involves the addition of a new field
deliveryAttemptThreshold. This value controls how many times
JES should try to deliver a message before discarding the
message. We automatically generate an initializer that sets
this to the default value. This default value is not present in
the code, but rather in a configuration file that is read dur-
ing JES start-up. Thus it would not have been discovered by
other approaches to transformer generation.

CrossFTP In this Java-based FTP server, the DataConnec-
tionConfig class maintains configuration information about
the connection between the client and the server. Its fields
control what response the server sends to various commands
a client issues. Version 1.07 of CrossFTP adds two new
fields to this class. The boolean field enableBonjour con-
trols whether the server should support the Bonjour protocol
and the String field listEncoding specifies what encoding the
server should use when responding to the LIST command.
There is always only one instance of this object in the heap.
From the heap snapshots, TOS identifies the value of these
fields in the new version and generates the transformation
function that sets these fields accordingly.

For version 1.06, we consider three field updates, two of
which involve copying the old version to the new and one of
which involves a constant initializer. The copy cases involve
fields whose access modifiers have changed. In such cases,
simply copying the old value to the new is a good heuristic
and this transformer would be generated automatically by
Jvolve. Our system also generates the transformer but pro-
vides the added assurance that this update is consistent with
the states observed when running the old and new versions.

In version 1.08, the default port used by a SocketFactory
object is changed. We provide TOS with three snapshots at
each version—two in which non-default ports are configured
and one that has no port configured and thus falls back on
the default port. TOS is able to synthesize the conditional
transformer that changes the port to the new default value if
it was set to the old default value and leaves it unchanged
otherwise.

Discussion These first experiments with TOS show that
good results can be obtained when matching and synthe-
sis work in harmony. If either step fails then TOS fails for
the targeted class. But if matching identifies key fields then
synthesis-based matching can be avoided or reduced and low
TOS run times are observed. For the examples we consid-
ered, most objects do have key fields that matching identifies
and uses to produce good examples for synthesis. Although
it seems intuitive that most programs will encode sufficient
state in changed classes to make matching practical, future
work should explore this question more thoroughly. Our syn-
thesis language is relatively simple, which eases synthesis,
yet it includes common string and data functions. Future
work should explore if the current synthesis language has
sufficient coverage on a wider range of programs.

6. Related work
This paper contributes novel matching and synthesis algo-
rithms. The matching algorithm analyzes unstructured heap
snapshots from different program version executions. While
some recent prior work analyzes a single heap to discover
leaked objects and other inefficiencies [2, 3, 9, 11, 12, 15],
none aligns heap objects from different program versions or
considers how to fix the effects of leaks on the fly.

A lot of related work considers synthesizing code from
specifications, but only recently have researchers consid-
ered the problem of synthesizing data transformation func-
tions. The closest related work is by Gulwani and others
on synthesizing string and Excel spreadsheet data transfor-
mations. These approaches require users to directly specify
the input/output examples whereas TOS requires users to
run the same test on both program versions from which ex-
amples are inferred by matching. Gulwani’s algorithm [5]
synthesizes string functions that include concatenation, sub-
sequence, and finding special symbols. TOS uses this algo-
rithm as a subroutine as part of synthesizing transformations
between objects (cf. Section 4.3). Harris and Gulwani [6]
generate transformations between spreadsheets; their nu-
meric transformations and filters are similar to ours. They
also search structured spreadsheet data to find correlation be-
tween the input and output rows and columns. Our matching
phase serves a similar purpose, but once objects are paired
up, synthesis follows the structure of the new-version ob-
ject, assigning its fields one at a time. A unique feature of
TOS is that it iterates synthesis and matching to produce
transformers for collections of objects.

Many prior dynamic updating systems, including Gin-
seng [13], DLpop [8], POLUS [4], and Jvolve [14], provide
primitive support for generating state transformation code.
For changes that extend classes or structs with new fields,
these systems simply copy the old fields and initialize the
new ones with default values, e.g., null for object references,
or 0 for ints. Systems that provide no direct support for
state transformation, e.g., LiveRebel [16], effectively take
this approach. In all of these cases, synthesis is based en-
tirely on comparing the definitions of changed types/classes.
None of them consider program semantics by analyzing the
code or the heap. By contrast, TOS obtains semantic infor-
mation from program execution to derive data transforma-
tions. In short, while prior systems remove some of the te-
dium of writing transformation functions, they fail to handle
any interesting program changes, which are exactly the cases
which are harder for programmers to write correctly.

7. Conclusions
This paper has presented Targeted Object Synthesis (TOS),
a novel technique that synthesizes object transformer meth-
ods. Object transformers convert old version objects to new
ones during a dynamic software update. TOS is distin-
guished by its generality: whereas prior techniques for syn-

thesizing object transformers follow simple syntactic rules,
TOS produces functions based on observations of actual pro-
gram executions of the old and new program versions. In par-
ticular, TOS takes periodic heap snapshots at corresponding
points during executions of the old and new program when
executing the same inputs. It then matches corresponding
objects between these snapshots, and uses these as examples
to synthesize object transformation functions. We show TOS
is efficacious in synthesizing transformation functions for
actual changes to classes in various Java server applications.
Even when it fails to generate a correct transformer, the
partial results may be useful to developers. This function-
ality eases, but does not eliminate, the programmer burden
of understanding program changes and performing dynamic
software updating. TOS may also be useful for other version
and program understanding scenarios, such as bug detection
and testing.

Acknowledgments We thank the anonymous reviewers for
helpful comments on drafts of this paper. This work is sup-
ported by NSF grants CCF-0910530, CCF-1018271 and
SHF-0910818 and the partnership between UMIACS and
the Laboratory for Telecommunication Sciences. Any opin-
ions, findings and conclusions expressed herein are the au-
thors’ and do not necessarily reflect those of the sponsors.

References
[1] J. Arnold and F. Kaashoek. Ksplice: Automatic rebootless

kernel updates. In EuroSys, 2009.

[2] M. D. Bond and K. S. McKinley. Bell: Bit-Encoding Online
Memory Leak Detection. In ASPLOS, 2006.

[3] M. D. Bond and K. S. McKinley. Leak pruning. In ASPLOS,
2009.

[4] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. POLUS: A
POwerful Live Updating System. In ICSE, 2007.

[5] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In POPL, 2011.

[6] W. R. Harris and S. Gulwani. Spreadsheet table transforma-
tions from examples. In PLDI, 2011.

[7] C. M. Hayden, E. K. Smith, E. A. Hardisty, M. Hicks, and
J. S. Foster. Evaluating dynamic software update safety using
efficient systematic testing. IEEE Transactions on Software
Engineering, 99(PrePrints), Sept. 2011.

[8] M. Hicks and S. M. Nettles. Dynamic Software Updating.
Transactions on Programming Languages and Systems, 27(6):
1049–1096, November 2005.

[9] M. Jump and K. S. McKinley. Cork: Dynamic Memory Leak
Detection for Java. In POPL, 2007.

[10] K. Makris and R. Bazzi. Immediate Multi-Threaded Dynamic
Software Updates Using Stack Reconstruction. In USENIX
ATC, 2009.

[11] N. Mitchell and G. Sevitsky. The causes of bloat, the limits of
health. In OOPSLA, 2007.

[12] N. Mitchell and G. Sevitzky. LeakBot: An Automated and
Lightweight Tool for Diagnosing Memory Leaks in Large
Java Applications. In ECOOP, 2003.

[13] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical
Dynamic Software Updating for C. In PLDI, 2006.

[14] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic
Software Updates: A VM-centric Approach. In PLDI, 2009.

[15] G. Xu and A. Rountev. Detecting inefficiently-used containers
to avoid bloat. In PLDI, 2010.

[16] ZeroTurnaround. LiveRebel. http://www.

zeroturnaround.com/liverebel.

