
Wys?: A DSL for Verified
Secure Multi-party Computations

Aseem Rastogi1, Nikhil Swamy1, and Michael Hicks2

1 Microsoft Research
{aseemr,nswamy}@microsoft.com

2 University of Maryland
mwh@cs.umd.edu

Abstract. Secure multi-party computation (MPC) enables a set of mu-
tually distrusting parties to cooperatively compute, using a cryptographic
protocol, a function over their private data. This paper presents Wys?,
a new domain-specific language (DSL) for writing mixed-mode MPCs.
Wys? is an embedded DSL hosted in F?, a verification-oriented, effect-
ful programming language. Wys? source programs are essentially F?

programs written in a custom MPC effect, meaning that the program-
mers can use F?’s logic to verify the correctness and security properties
of their programs. To reason about the distributed runtime semantics of
these programs, we formalize a deep embedding of Wys?, also in F?. We
mechanize the necessary metatheory to prove that the properties verified
for the Wys? source programs carry over to the distributed, multi-party
semantics. Finally, we use F?’s extraction to extract an interpreter that
we have proved matches this semantics, yielding a partially verified im-
plementation. Wys? is the first DSL to enable formal verification of
MPC programs. We have implemented several MPC protocols in Wys?,
including private set intersection, joint median, and an MPC-based card
dealing application, and have verified their correctness and security.

1 Introduction

Secure multi-party computation (MPC) enables two or more parties to compute
a function f over their private inputs xi so that parties don’t see each others’
inputs, but rather only see the output f(x1, ..., xn). Using a trusted third party
to compute f would achieve this goal, but in fact we can achieve it using one of
a variety of cryptographic protocols carried out only among the participants [12,
26,58,65]. One example use of MPC is private set intersection (PSI): the xi could
be individuals’ personal interests, and the function f computes their intersection,
revealing which interests the group has in common, but not any interests that
they don’t. MPC has also been used for auctions [18], detecting tax fraud [16],
managing supply chains [33], privacy preserving statistical analysis [31], and
more recently for machine learning tasks [19,21,30,38,44].

Typically, cryptographic protocols expect f to be specified as a boolean
or arithmetic circuit. Programming directly with circuits and cryptography is

2 Rastogi et al.

painful, so starting with the Fairplay project [40] many researchers have designed
higher-level domain-specific languages (DSLs) for programming MPCs [6,14,17,
19, 23, 27, 29, 34, 37, 39, 45, 48, 49, 52, 56, 61]. These DSLs compile source code to
circuits which are then given to the underlying cryptographic protocol. While
doing this undoubtedly makes it easier to program MPCs, these languages still
have several drawbacks regarding both security and usability.

This paper presents Wys?, a new MPC DSL that addresses several problems
in prior DSLs. Unlike most previous MPC DSLs, Wys? is not a standalone
language, but is rather an embedded DSL hosted in F? [59], a full-featured,
verification-oriented, effectful programming language. Wys? has the following
two distinguishing elements:

1. A program logic for MPC. (§2 and §3.) In their most general form, MPC
applications are mixed-mode: they consist of parties performing (potentially dif-
ferent) local, in-clear computations (e.g. I/O, preprocessing inputs) interleaved
with joint, secure computations. Wys? is the first MPC DSL to provide a pro-
gram logic to formally reason about the correctness and security of such applica-
tions, e.g., to prove that the outputs will not reveal too much information about
a party’s inputs [41].3

To avoid reasoning about separate programs for each party, Wys? builds on
the basic programming model of the Wysteria MPC DSL [52] that allows applica-
tions to be written as a single specification. Wys? presents a shallow embedding
of the Wysteria programming model in F?. When writing Wys? source pro-
grams, programmers essentially write F? programs in a new Wys effect, against
a library of MPC combinators. The pre- and postcondition specifications on
the combinators encode a program logic for MPC. The logic provides observ-
able traces—a novel addition to the Wysteria semantics—which programmers
can use to specify security properties such as delimited release [55]. Since Wys?

programs are F? programs, F? computes verification conditions (VCs) for them
which are discharged using Z3 [2] as usual.

We prove the soundness of the program logic—that the properties proven
about the Wys? source programs carry over when these programs are run by
multiple parties in a distributed manner—also in F?. The proof connects the
pre- and postconditions of the Wys? combinators to their distributed semantics
in two steps. First, we implement the combinators in F?, proving the validity
of their pre- and postconditions against their implementation. Next, we reason
about this implementation and the distributed runtime semantics through a deep
embedding of Wys? in F?. Essentially, we deep-embed the Wys? combinator
abstract syntax trees (ASTs) as an F? datatype and formalize two operational
semantics for them: a conceptual single-threaded semantics that models their
F? implementation, and the actual distributed semantics that models the multi-
party runs of the programs. We prove, in F?, that the single-threaded semantics

3 Our attacker model is the “honest-but-curious” model where the attackers are the
participants themselves, who play their roles in the protocol faithfully, but are moti-
vated to infer as much as they can about the other participants’ secrets by observing
the protocol. §2.3 makes the security model of Wys? more precise.

Wys?: A DSL for Verified Secure Multi-party Computations 3

is sound with respect to the distributed semantics (§3). While we use F?, the
program logic is general and it should be possible to embed it in other verification
frameworks (e.g., in Coq, in the style of Hoare Type Theory [46]).

2. A full-featured, partially verified implementation (§3.) Wys?’s implementa-
tion is, in part, formally verified. The hope is that formal verification will reduce
the occurrence of security threatening bugs, as it has in prior work [15, 36, 50,
63,64].

We define an interpreter in F? that operates over the Wys? ASTs produced
by a custom F? extraction for the Wys effect. While the local computations are
executed locally by the interpreter, the interpreter compiles secure-computation
ASTs to circuits, on the fly, and executes them using the Goldreich, Micali and
Wigderson (GMW) multi-party computation protocol [26]. The Wys? AST (and
hence the interpreter) does not “bake in” standard F? constructs like numbers
and lists. Rather, inherited language features appear abstractly in the AST, and
their semantics is handled by a foreign function interface (FFI). This permits
Wys? programs to take advantage of existing code and libraries available in F?.

To prove the interpreter behaves correctly, we prove, in F?, that it correctly
implements the formalized distributed semantics. The circuit library and the
GMW implementation are not verified—while it is possible to verify the circuit
library [4], verifying a GMW implementation is an open research question. But
the stage is set for verified versions to be plugged into the Wys? codebase. We
characterize the Trusted Computing Base (TCB) of the Wys? toolchain in §3.5.

Using Wys? we have implemented several programs, including PSI, joint
median, and a card dealing application (§4). For PSI and joint median we im-
plement two versions: a straightforward one and an optimized one that improves
performance but increases the number of adversary-observable events. We for-
mally prove that the optimized and unoptimized versions are equivalent, both
functionally and w.r.t. privacy of parties’ inputs. Our card dealing application
relies on Wys?’s support for secret shares [57]. We formally prove that the card
dealing algorithm always deals a fresh card.

In sum, Wys? constitutes the first DSL that supports proving security and
correctness properties about MPC programs, which are executed by a partially
verified implementation of a full-featured language. No prior DSL provides these
benefits (§5). The Wys? implementation, example programs, and proofs are
publicly available on Github at https://github.com/FStarLang/FStar/tree/
stratified_last/examples/wysteria.4

2 Verifying and deploying Wys? programs

We illustrate the main concepts of Wys? by showing, in several stages, how to
program, optimize, and verify the two-party joint median example [32, 53]. In
this example, two parties, Alice and Bob, each have a set of n distinct, locally

4 This development was done on an older F? version, but the core ideas of what we
present here apply to the present version as well.

4 Rastogi et al.

sorted integers, and they want to compute the median of the union of their sets
without revealing anything else; our running example fixes n = 2, for simplicity.

2.1 Secure computations with as sec

In Wys?, as in its predecessor Wysteria [52], an MPC is written as a single
specification that executes in one of the two computation modes. The primary
mode is called sec mode. In it, a computation is carried out using an MPC
protocol among multiple principals. Here is the joint median in Wys?:

1 let median a b in a in b =
2 as sec {a, b} (fun () → let cmp = fst (reveal in a) > fst (reveal in b) in
3 let x3 = if cmp then fst (reveal in a) else snd (reveal in a) in
4 let y3 = if cmp then snd (reveal in b) else fst (reveal in b) in
5 if x3 > y3 then y3 else x3)

The four arguments to median are, respectively, principal identifiers for Alice and
Bob, and Alice and Bob’s secret inputs expressed as tuples. In Wys?, values
specific to each principal are sealed with the principal’s name (which appears in
the sealed container’s type). As such, the types of in a and in b are, respectively,
sealed {a} (int ∗ int) and sealed {b} (int ∗ int). The as sec ps f construct indicates
that thunk f should be run in sec mode among principals in the set ps. In this
mode, the code has access to the secrets of the principals ps, which it can reveal
using the reveal coercion. As we will see later, the type of reveal ensures that
parties cannot reveal each others’ inputs outside sec mode.5 Also note that the
code freely uses standard F? library functions like fst and snd. The example
extends naturally to n > 2 [3].

To run this program, both Alice and Bob would start a Wys? interpreter
at their host and direct it to run the median function Upon reaching the as sec

thunk, the interpreters coordinate with each other to compute the result using
the underlying MPC protocol. §2.5 provides more details.

2.2 Optimizing median with as par

Although median gets the job done, it can be inefficient for large n. However,
it turns out if we reveal the result of comparison on line 2 to both the parties,
then the computation on line 3 (resp. line 4) can be performed locally by Alice
(resp. Bob) without the need of cryptography. Doing so can massively improve
performance: previous work [32] has observed a 30× speedup for n = 64.

This optimized variant is a mixed-mode computation, where participants
perform some local computations interleaved with small, jointly evaluated se-
cure computations. Wys?’s second computation mode, par mode, supports such
mixed-mode computations. The construct as par ps f states that each principal
in ps should locally execute the thunk f, simultaneously; any principal not in

5 The runtime representation of sealed a v at b’s host is an opaque constant • (§2.5).

Wys?: A DSL for Verified Secure Multi-party Computations 5

the set ps simply skips the computation. Within f, while running in par mode,
principals may engage in secure computations via as sec.

Here is an optimized version of median using as par:

1 let median opt a b in a in b =
2 let cmp = as sec {a, b} (fun () → fst (reveal in a) > fst (reveal in b)) in
3 let x3 = as par {a} (fun () → if cmp then fst (reveal in a) else snd (reveal (in a))) in
4 let y3 = as par {b} (fun () → if cmp then snd (reveal in b) else fst (reveal (in b))) in
5 as sec {a, b} (fun () → if reveal x3 > reveal y3 then reveal y3 else reveal x3)

The secure computation on line 2 only computes cmp and returns the result
to both the parties. Line 3 is then a par mode computation involving only Alice
in which she discards one of her inputs based on cmp. Similarly, on line 4, Bob
discards one of his inputs. Finally, line 5 compares the remaining inputs using
as sec and returns the result as the final median.

One might wonder whether the par mode is necessary. Could we program the
local parts of a mixed-mode program in normal F?, and use a special compiler to
convert the sec mode parts to circuits and pass them to a GMW MPC service?
We could, but it would complicate both writing MPCs and formally reasoning
that the whole computation is correct and secure. In particular, programmers
would need to write one program for each party that performs a different local
computation (as in median opt). The potential interleaving among local compu-
tations and their synchronization behavior when securely computing together
would be a source of possible error and thus must be considered in any proof.
For example, Alice’s code might have a bug in it that prevents it from reaching
a synchronization point with Bob, to do a GMW-based MPC. For Wys?, the
situation is much simpler. Programmers may write and maintain a single pro-
gram. This program can be formally reasoned about directly using a SIMD-style,
“single-threaded” semantics, per the soundness result from §3.4. This semantics
permits reasoning about the coordinated behavior of multiple principals, without
worry about the effects of interleavings or wrong synchronizations. Thanks to
par mode, invariants about coordinated local computations are directly evident
since we can soundly assume the lockstep behavior (e.g., loop iterations in the
PSI example in §4).

2.3 Embedding a type system for Wys? in F?

Designing high-level, multi-party computations is relatively easy using Wyste-
ria’s abstractions. Before trying to run such a computation, we might wonder:

1. Is it realizable? For example, does a computation that is claimed to be exe-
cuted only by some principals ps (e.g., using an as par ps or an as sec ps) only
ever access data belonging to ps?

2. Is it correct? For example, does median opt correctly compute the median of
Alice and Bob’s inputs?

3. Is it secure? For example, do the optimizations in median opt, which produce
more visible outputs, potentially leak more about the inputs?

6 Rastogi et al.

By embedding Wys? in F? and leveraging its extensible, monadic, dependent
type-and-effect system, we address each of these three questions. We define a new
indexed monad called Wys for computations that use MPC combinators as sec

and as par. Using Wys along with the sealed type, we can ensure that protocols are
realizable. Using F?’s capabilities for formal verification, we can reason about a
computation’s correctness. By characterizing observable events as part of Wys,
we can define trace properties of MPC programs to reason about their security.

To elaborate on the last: we are interested in application-level security prop-
erties, assuming that the underlying cryptographic MPC protocol (GMW [26] in
our implementation) is secure. In particular, the Wys monad models the ideal be-
havior of sec mode—a secure computation reveals only the final output and noth-
ing else. Thus the programmer could reason, for example, that optimized MPC
programs reveal no more than their unoptimized versions. To relate the proofs
over ideal functionality to the actual implementation, as is standard, we rely on
the security of the cryptographic protocol and the composition theorem [20] to
postulate that the implementation securely realizes the ideal specification.

The Wys monad. The Wys monad provides several features. First, all DSL code
is typed in this monad, encapsulating it from the rest of F?. Within the monad,
computations and their specifications can make use of two kinds of ghost state:
modes and traces. The mode of a computation indicates whether the computa-
tion is running in an as par or in an as sec context. The trace of a computation
records the sequence and nesting structure of outputs of the jointly executed
as sec expressions—the result of a computation and its trace constitute its ob-
servable behavior. The Wys monad is, in essence, the product of a reader monad
on modes and a writer monad on traces [43,62].

Formally, we define the following F? types for modes and traces. A mode
Mode m ps is a pair of a mode tag (either Par or Sec) and a set of principals
ps. A trace is a forest of trace element (telt) trees. The leaves of the trees record
messages TMsg x that are received as the result of executing an as sec thunk. The
tree structure represented by the TScope ps t nodes record the set of principals
that are able to observe the messages in the trace t.

type mtag = Par | Sec
type mode = Mode: m:mtag → ps:prins →mode
type telt = TMsg : x:α → telt | TScope: ps:prins → t:list telt → telt
type trace = list telt

Every Wys? computation e has a monadic computation type Wys t pre post.
The type indicates that e is in the Wys monad (so it may perform multi-party
computations); t is its result type; pre is a precondition on the mode in which e

may be executed; and post is a postcondition relating the computation’s mode,
its result value, and its trace of observable events. When run in a context with
mode m satisfying the precondition predicate pre m, e may produce the trace tr,
and if and when it returns, the result is a t-typed value v validating post m v tr.
The style of indexing a monad with a computation’s pre- and postcondition is
a standard technique [7,47,59]—we defer the definition of the monad’s bind and

Wys?: A DSL for Verified Secure Multi-party Computations 7

return to the actual implementation and focus instead on specifications of Wys?

specific combinators. We describe as sec, reveal, and as par, and how we give them
types in F?, leaving the rest to the online technical report [54]. By convention,
any free variables in the type signatures are universally prenex quantified.

Defining as sec in Wys?.

1 val as sec: ps:prins → f:(unit →Wys a pre post) →Wys a
2 (requires (fun m →m=Mode Par ps ∧ pre (Mode Sec ps)))
3 (ensures (fun m r tr → tr=[TMsg r] ∧ ∃t. post (Mode Sec ps) r t)))

The type of as sec is dependent on the first parameter, ps. Its second argument
f is the thunk to be evaluated in sec mode. The result’s computation type has
the form Wys a (requires φ) (ensures ψ), for some precondition and postcondition
predicates φ and ψ, respectively. We use the requires and ensures keywords for
readability—they are not semantically significant.

The precondition of as sec is a predicate on the mode m of the computation
in whose context as sec ps f is called. For all the ps to jointly execute f, we require
all of them to transition to perform the as sec ps f call simultaneously, i.e., the
current mode must be Mode Par ps. We also require the precondition pre of f to
be valid once the mode has transitioned to Mode Sec ps—line 2 says just this.

The postcondition of as sec is a predicate relating the initial mode m, the
result r:a, and the trace tr of the computation. Line 3 states that the trace
of a secure computation as sec ps f is just a singleton [TMsg r], reflecting that
its execution reveals only result r. Additionally, it ensures that the result r is
related to the mode in which f is run (Mode Sec ps) and some trace t according
to post, the postcondition of f. The API models the “ideal functionality” of secure
computation protocols (such as GMW) where the participants only observe the
final result.

Defining reveal in Wys?. As discussed earlier, a value v of type sealed ps t encap-
sulates a t value that can be accessed by calling reveal v. This call should only
succeed under certain circumstances. For example, in par mode, Bob should not
be able to reveal a value of type sealed {Alice} int. The type of reveal makes the
access control rules clear:

val unseal: sealed ps α →Ghost α

val reveal: x:sealed ps α →Wys α
(requires (fun m →m.mode=Par =⇒ m.ps ⊆ ps ∧ m.mode=Sec =⇒ m.ps ∩ ps 6= ∅))
(ensures (fun m r tr → r=unseal x ∧ tr=[]))

The unseal function is a Ghost function, meaning that it can only be used in
specifications for reasoning purposes. On the other hand, reveal can be called
in the concrete Wys? programs. Its precondition says that when executing in
Mode Par ps’, all current participants must be listed in the seal, i.e., ps’ ⊆ ps.
However, when executing in Mode Sec ps’, only a subset of current participants is
required: ps’ ∩ ps 6= ∅. This is because the secure computation is executed jointly

8 Rastogi et al.

by all of ps’, so it can access any of their individual data. The postcondition of
reveal relates the result r to the argument x using the unseal function.

Defining as par in Wys?.

1 val as par: ps:prins → (unit →Wys a pre post) →Wys (sealed ps a)
2 (requires (fun m →m.mode=Par ∧ ps ⊆ m.ps ∧ can seal ps a ∧ pre (Mode Par ps)))
3 (ensures (fun m r tr →∃t. tr=[TScope ps t] ∧ post (Mode Par ps) (unseal r) t)))

The type of as par enforces the current mode to be Par, and ps to be a subset
of current principals. Importantly, the API scopes the trace t of f to model the
fact that any observables of f are only visible to the principals in ps. Note that
as sec did not require such scoping, as there ps and the set of current principals
in m are the same. The can seal predicate enforces that a is a zero-order type (i.e.
closures cannot be sealed), and that in case a is already a sealed type, its set of
principals is a subset of ps.

2.4 Correctness and security verification

Using the Wys monad and the sealed type, we can write down precise types for our
median and median opt programs, proving various useful properties. We discuss the
statements of the main lemmas and the overall proof structure. By programming
the protocols as a single specification using the high-level abstractions provided
by Wys?, our proofs are relatively straightforward—in all the proofs of this
section, F? required no additional hints. In particular, we rely heavily on the
view that both parties execute (different fragments of) the same code, thus
avoiding the unwieldy task of reasoning about low-level message passing.

Correctness and security of median. We first define a pure specification of median
of two int tuples:

let median of (x1, x2) (y1, y2) = let (, m, ,) = sort x1 x2 y1 y2 in m

Further, we capture the preconditions using the following predicate:

let median pre (x1, x2) (y1, y2) = x1 < x2 ∧ y1 < y2 ∧ distinct x1 x2 y1 y2

Using these, we prove the following top-level specification for median:

val median: in a:sealed {a} (int ∗ int) → in b:sealed {b} (int ∗ int) →Wys int
(requires (fun m →m = Mode Par {a, b})) (∗ should be called in the Par mode ∗)
(ensures (fun m r tr → let in a, in b = unseal in a, unseal in b in

(median pre in a in b =⇒ r = median of in a in b) ∧ (∗ functional correctness ∗)
tr = [TMsg r])) (∗ trace is just the final value ∗)

This signature establishes that when Alice and Bob simultaneously execute
median (in Par mode), with secrets in a and in b, then, if and when the protocol
terminates, (a) if their inputs satisfy the precondition median pre, then the result
is the joint median of their inputs and (b) the observable trace consists only of
the final result, as there is but a single as sec thunk in median, i.e., it is secure.

Wys?: A DSL for Verified Secure Multi-party Computations 9

Correctness and security of median opt. The security proof of median opt is par-
ticularly interesting, because the program intentionally reveals more than just
the final result, i.e., the output of the first comparison. We would like to verify
that this additional information does not compromise the privacy of the parties’
inputs. To do this, we take the following approach.

First, we characterize the observable trace of median opt as a pure, specification-
only function. Then, using relational reasoning, we prove a noninteference with
delimited release property [55] on these traces. Essentially we prove that, for
two runs of median opt where Bob’s inputs and the output median are the same,
the observable traces are also the same irrespective of Alice’s inputs. Thus, from
Alice’s perspective, the observable trace does not reveal more to Bob than what
the output already does. We prove this property symmetrically for Bob.

We start by defining a trace function for median opt:

let opt trace a b (x1,) (y1,) r = [
TMsg (x1 > y1); (∗ observable from the first as sec ∗)
TScope {a} []; TScope {b} []; (∗ observables from two local as par ∗)
TMsg r] (∗ observable from the final as sec ∗)

A trace will have four elements: output of the first as sec computation, two empty
scoped traces for the two local as par computations, and the final output.

Using this function, we prove correctness of median opt, thus:

val median opt: in a:sealed {a} (int ∗ int) → in b:sealed {b} (int ∗ int) →Wys int
(requires (fun m →m = Mode Par {a, b})) (∗ should be called in the Par mode ∗)
(ensures (fun m r tr → let in a = unseal in a in let in b = unseal in b in

(median pre in a in b =⇒ r = median of in a in b) ∧ (∗ functional correctness ∗)
tr = opt trace a b in a in b r (∗ opt trace precisely describes the observable trace ∗)

The delimited release property is then captured by the following lemma:

val median opt is secure for alice: a:prin → b:prin
→ in a1:(int ∗ int) → in a2:(int ∗ int) → in b:(int ∗ int) (∗ possibly diff a1, a2 ∗)
→ Lemma (requires (median pre in a1 in b ∧ median pre in a2 in b ∧

median of in a1 in b = median of in a2 in b)) (∗ but same median ∗)
(ensures (opt trace a b in a1 in b (median of in a1 in b) = (∗ ensures .. ∗)

opt trace a b in a2 in b (median of in a2 in b))) (∗ .. same trace ∗)

The lemma proves that for two runs of median opt where Bob’s input and
the final output remain same, but Alice’s inputs vary arbitrarily, the observable
traces are the same. As such, no more information about information leaks about
Alice’s inputs via the traces than what is already revealed by the output. We
also prove a symmetrical lemma median opt is secure for bob.

In short, because the Wys monad provides programmers with the observable
traces in the logic, they can then be used to prove properties, relational or
otherwise, in the pure fragment of F? outside the Wys monad. We present more
examples and their verification details in §4.

10 Rastogi et al.

Fig. 1. Architecture of an Wys? deployment

2.5 Deploying Wys? programs

Having defined a proved-secure MPC program in Wys?, how do we run it?
Doing so requires the following steps (Figure 1). First, we run the F? compiler
in a special mode that extracts the Wys? code (say psi.fst), into the Wys? AST
as a data structure (in psi.ml). Except for the Wys? specific nodes (as sec, as par,
etc.), the rest of the program is extracted into FFI nodes that indicate the use
of, or calls into, functionality provided by F? itself.

The next step is for each party to run the extracted AST using the Wys?

interpreter. This interpreter is written in F? and we have proved (see §3.5) that
it implements a deep embedding of the Wys? semantics, also specified in F?

(Figures 5 and 6, §3). The interpreter is extracted to OCaml by the usual F?

extraction. Each party’s interpreter executes the AST locally until it reaches
an as sec ps f node, where the interpreter’s back-end compiles f, on-the-fly, for
particular values of the secrets in f’s environment, to a boolean circuit. First-
order, loop-free code can be compiled to a circuit; Wys? provides specialized
support for several common combinators (e.g., fst, snd, list combinators such as
List.intersect, List.mem, List.nth etc.).

The circuit is handed to a library by Choi et al. [22] that implements the
GMW [26] MPC protocol. Running the GMW protocol involves the parties in ps

generating and communicating (XOR-based) secret shares [57] for their secret
inputs, and then cooperatively evaluating the boolean circuit for f over them.
While our implementation currently uses the GMW protocol, it should be pos-
sible to plugin other MPC protocols as well.

One obvious question is how both parties are able to get this process off
the ground, given that they don’t know some of the inputs (e.g., other parties’
secrets). The sealed abstraction helps here. Recall that for median, the types of
the inputs are of the form sealed {a} (int ∗ int) and sealed {b} (int ∗ int). When the

Wys?: A DSL for Verified Secure Multi-party Computations 11

Principal p Principal set s FFI const c, f
Constant c ::= p | s | () | true | false | c

Expression e ::= as par e1 e2 | as sec e1 e2 | seal e1 e2 | reveal e | ffi f ē
| mkmap e1 e2 | project e1 e2 | concat e1 e2
| c | x | let x = e1 in e2 | λx.e | e1 e2 | fix f.λx.e | if e1 then e2 else e3

Fig. 2. Wys? syntax

program is run on Alice’s host, the former will be a pair of Alice’s values, whereas
the latter will be an opaque constant (which we denote as •). The reverse will
be true on Bob’s host. When the circuit is constructed, each principal links their
non-opaque inputs to the relevant input wires of the circuit. Similarly, the output
map component of each party is derived from their output wires in the circuit,
and thus, each party only gets to see their own output.

3 Formalizing and implementing Wys?

In the previous section, we presented examples of verifying properties about
Wys? programs using F?’s logic. However, these programs are not executed using
the F? (single-threaded) semantics; they have a distributed semantics involving
multiple parties. So, how do the properties that we verify using F? carry over?

In this section, we present the metatheory that answers this question. First,
we formalize the Wys? single-threaded (ST) semantics, that faithfully models
the F? semantics of the Wys? API presented in §2. Next, we formalize the
distributed (DS) semantics that multiple parties use to run Wys? programs.
Then we prove the former is sound with respect to the latter, so that properties
proved of programs under ST apply when run under DS. We have mechanized
the proof of this theorem in F?.

3.1 Syntax

Figure 2 shows the complete syntax of Wys?. Principals and principal sets are
first-class values, and are denoted by p and s respectively. Constants in the
language also include () (unit), booleans, and FFI constants c. Expressions e
include the regular forms for functions, applications, let bindings, etc. and the
Wys?-specific constructs. Among the ones that we have not seen in §2, expression
mkmap e1 e2 creates a map from principals in e1 (which is a principal set) to the
value computed by e2. project e1 e2 projects the value of principal e1 from the
map e2, and concat e1 e2 concatenates the two maps. The maps are used if an
as sec computation returns different outputs to the parties.

Host language (i.e., F?) constructs are also part of the syntax of Wys?,
including constants c for strings, integers, lists, tuples, etc. Likewise, host lan-
guage functions/primitives can be called from Wys?—ffi f ē is the invocation of

12 Rastogi et al.

Map m ::= · | m[p 7→ v]
Value v ::= p | s | () | true | false | sealed s v | m | v | (L, λx.e) | (L, fix f.λx.e) | •
Mode M ::= Par s | Sec s

Context E ::= 〈〉 | as par 〈〉 e | as par v 〈〉 | as sec 〈〉 e | as sec v 〈〉 | . . .
Frame F ::= (M,L,E, T)
Stack X ::= · | F,X

Environment L ::= · | L[x 7→ v]
Trace element t ::= TMsg v | TScope s T

Trace T ::= · | t, T
Configuration C ::= M ;X;L;T ; e

Par component P ::= · | P [p 7→ C]
Sec component S ::= · | S[s 7→ C]

Protocol π ::= P ;S

Fig. 3. Runtime configuration syntax

S-aspar
e1 = as par s (L1, λx.e) M = Par s1 s ⊆ s1

X1 = (M ;L; seal s 〈〉;T), X

M ;X;L;T ; e1 → Par s;X1;L1[x 7→ ()]; ·; e

S-parret
X = (M1;L1; seal s 〈〉;T1), X1

can seal s v T2 = append T1 [TScope s T]

M ;X;L;T ; v →M1;X1;L1;T2; sealed s v

S-assec
e1 = as sec s (L1, λx.e) M = Par s

X1 = (M ;L; 〈〉 T), X

M ;X;L;T ; e1 → Sec s;X1;L1[x 7→ ()]; ·; e

S-secret
M = Sec X = (M1;L1; 〈〉;T), X1

T1 = append T [TMsg v]

M ;X;L; ·; v →M1;X1;L1;T1; v

Fig. 4. Wys? ST semantics (selected rules)

a host-language function f with arguments ē. The FFI confers two benefits. First,
it simplifies the core language while still allowing full consideration of security
relevant properties. Second, it helps the language scale by incorporating many
of the standard features, libraries, etc. from the host language.

3.2 Single-threaded semantics

We formalize the semantics in the style of Hieb and Felleisen [24], where the
redex is chosen by (standard, not shown) evaluation contexts E, which prescribe
left-to-right, call-by-value evaluation order. The ST semantics, a model of the F?

semantics and the Wys? API, defines a judgment C → C ′ that represents a single
step of an abstract machine (Figure 4). Here, C is a configuration M ;X;L;T ; e.
This five-tuple consists of a mode M , a stack X, a local environment L, a trace T ,
and an expression e. The syntax for these elements is given in Figure 3. The value
form v represents the host language (FFI) values. The stack and environment
are standard; trace T and mode M were discussed in the previous section.

Wys?: A DSL for Verified Secure Multi-party Computations 13

P-par
C C′

P [p 7→ C];S −→ P [p 7→ C′];S

∀p ∈ s. P [p].e = as sec s (Lp, λx.e)
s 6∈ dom(S) L = combine L̄p

P ;S −→ P ;S[s 7→ Sec s; ·;L[x 7→ ()]; ·; e]
P-enter

P-sec
C → C′

P ;S[s 7→ C] −→ P ;S[s 7→ C′]

P-exit
S[s] = Sec s; ·;L;T ; v

P ′ = ∀p ∈ s. P [p 7→ P [p] / (slice v p v)] S′ = S \ s
P ;S −→ P ′;S′

Fig. 5. Distributed semantics, multi-party rules

L-aspar1
e1 = as par s (L1, λx.e) p ∈ s
X1 = (M ;L; seal s 〈〉;T), X

Par p;X;L;T ; e1 Par p;X1;L1[x 7→ ()]; ·; e

L-parret
X = (M ;L1; seal s 〈〉;T1), X1

T2 = append T1 T v1 = sealed s v

Par p;X;L;T ; v Par p;X1;L1;T2; v1

L-aspar2
p 6∈ s

Par p;X;L;T ; as par s (L1, λx.e) Par p;X;L;T ; sealed s •

Fig. 6. Distributed semantics, selected local rules (the mode M is always Par p)

For space reasons, we focus on the two main Wys? constructs as par and
as sec. Our technical report [54] shows other Wys? specific constructs.

Rules S-aspar and S-parret (Figure 4) reduce an as par expression once its
arguments are fully evaluated—its first argument s is a principal set, while the
second argument (L1, λx.e) is a closure where L1 captures the free variables of
thunk λx.e. S-aspar first checks that the current mode M is Par and contains
all the principals from the set s. It then pushes a seal s 〈〉 frame on the stack,
and starts evaluating e under the environment L1[x 7→ ()]. The rule S-asparret
pops the frame and seals the result, so that it is accessible only to the princi-
pals in s. The rule also creates a trace element TScope s T , essentially making
observations during the reduction of e (i.e., T) visible only to principals in s.

Turning to as sec, the rule S-assec checks the precondition of the API, and
the rule S-assecret generates a trace observation TMsg v, as per the postcondi-
tion of the API. As mentioned before, as sec semantics models the ideal, trusted
third-party semantics of secure computations where the participants only ob-
serve the final output. We can confirm that the rules implement the types of
as par and as sec shown in §2.

3.3 Distributed semantics

In the DS semantics, principals evaluate the same program locally and asyn-
chronously until they reach a secure computation, at which point they synchro-
nize to jointly perform the computation. The semantics consists of two parts:

14 Rastogi et al.

(a) a judgment of the form π −→ π′ (Figure 5), where a protocol π is a tuple
(P ;S) such that P maps each principal to its local configuration and S maps a
set of principals to the configuration of an ongoing, secure computation; and (b)
a local evaluation judgment C C ′ (Figure 6) to model how a single principal
behaves while in par mode.

Rule P-Par in Figure 5 models a single party taking a step, per the local
evaluation rules. Figure 6 shows these rules for as par. (See technical report [54]
for more local evaluation rules.) A principal either participates in the as par

computation, or skips it. Rules L-aspar1 and L-parret handle the case when
p ∈ s, and so, the principal p participates in the computation. The rules closely
mirror the corresponding ST semantics rules in Figure 4. One difference in the
rule L-asparret is that the trace T is not scoped. In the DS semantics, traces
only contain TMsg elements; i.e., a trace is the (flat) list of secure computation
outputs observed by that active principal. If p 6∈ s, then the principal skips the
computation with the result being a sealed value containing the opaque constant
• (rule L-aspar2). The contents of the sealed value do not matter, since the
principal will not be allowed to unseal the value anyway.

As should be the case, there are no local rules for as sec—to perform a secure
computation parties need to combine their data and jointly do the computa-
tion. Rule P-enter in Figure 5 handles the case when principals enter a secure
computation. It requires that all the principals p ∈ s must have the expression
form as sec s (Lp, λx.e), where Lp is their local environment associated with the
closure. Each party’s local environment contains its secret values (in addition to
some public values). Conceptually, a secure computation combines these environ-
ments, thereby producing a joint view, and evaluates e under the combination.
We define an auxiliary combine function for this purpose:

combine v (•, v) = v
combine v (v, •) = v
combine v (sealed s v1, sealed s v2) = sealed s (combine v v1 v2)
...

The rule P-enter combines the principals’ environments, and creates a new
entry in the S map. The principals are now waiting for the secure computation
to finish. Rule P-sec models a stepping rule inside the sec mode.

The rule P-exit applies when a secure computation has completed and re-
turns results to the waiting principals. If the secure computation terminates with
value v, each principal p gets the value slice v p v. The slice v function is analo-
gous to combine, but in the opposite direction—it strips off the parts of v that
are not accessible to p:

slice v p (sealed s v) = sealed s •, if p 6∈ s
slice v p (sealed s v) = sealed s (slice v p v), if p ∈ s
...

In the rule P-exit, the / notation is defined as:

M ;X;L;T ; / v = M ;X;L; append T [TMsg v]; v

Wys?: A DSL for Verified Secure Multi-party Computations 15

That is, the returned value is also added to the principal’s trace to note their
observation of the value.

3.4 Metatheory

Our goal is to show that the ST semantics faithfully represents the semantics of
Wys? programs as they are executed by multiple parties, i.e., according to the
DS semantics. We do this by proving simulation of the ST semantics by the DS
semantics, and by proving confluence of the DS semantics. Our F? development
mechanizes all the metatheory presented in this section.

Simulation. We define a slice s C function that returns the corresponding pro-
tocol πC for an ST configuration C. In the P component of πC , each principal
p ∈ s is mapped to their slice of the protocol. For slicing values, we use the same
slice v function as before. Traces are sliced as follows:

slice tr p (TMsg v) = [TMsg (slice v p v)]
slice tr p (TScope s T) = slice tr p T, if p ∈ s
slice tr p (TScope s T) = [], if p 6∈ s

The slice of an expression (e.g., the source program) is itself. For all other
components of C, slice functions are defined analogously.

We say that C is terminal if it is in Par mode and is fully reduced to a value
(i.e. when C = ;X; ; ; e, e is a value and X is empty). Similarly, a protocol
π = (P, S) is terminal if S is empty and all the local configurations in P are
terminal. The simulation theorem is then the following:

Theorem 1 (Simulation of ST by DS). Let s be the set of all principals. If
C1 →∗ C2, and C2 is terminal, then there exists some derivation (slice s C1) −→∗
(slice s C2) such that (slice s C2) is terminal.

To state confluence, we first define the notion of strong termination.

Definition 1 (Strong termination). If all possible runs of protocol π termi-
nate at πt, we say π strongly terminates in πt, written π ⇓ πt.

Our confluence result then says:

Theorem 2 (Confluence of DS). If π −→∗ πt and πt is terminal, then π ⇓ πt.

Combining the two theorems, we get a corollary that establishes the sound-
ness of the ST semantics w.r.t. the DS semantics:

Corollary 1 (Soundness of ST semantics). Let s be the set of all principals.
If C1 →∗ C2, and C2 is terminal, then (slice s C1) ⇓ (slice s C2).

Now suppose that for a Wys? source program, we prove in F? a postcondi-
tion that the result is sealed alice n, for some n > 0. By the soundness of the ST
semantics, we can conclude that when the program is run in the DS semantics,

16 Rastogi et al.

it may diverge, but if it terminates, alice’s output will also be sealed alice n, and
for all other principals their outputs will be sealed alice •. Aside from the corre-
spondence on results, our semantics also covers correspondence on traces. Thus
the correctness and security properties that we prove about a Wys? program
using F?’s logic, hold for the program that actually runs.

3.5 Implementation

The formal semantics presented in the prior section is mechanized as an induc-
tive type in F?. This style is useful for proving properties, but does not directly
translate to an implementation. Therefore, we implement an interpretation func-
tion step in F? and prove that it corresponds to the rules; i.e., that for all input
configurations C, step(C) = C ′ implies that C → C ′ according to the semantics.
Then, the core of each principal’s implementation is an F? stub function tstep

that repeatedly invokes step on the AST of the source program (produced by the
F? extractor run in a custom mode), unless the AST is an as sec node. Functions
step and tstep are extracted to OCaml by the standard F? extraction process.

Local evaluation is not defined for as sec, so the stub implements what amounts
to P-enter and P-exit from Figure 5. When the stub notices the program has
reached an as sec expression, it calls into a circuit library we have written that
converts the AST of the second argument of as sec to a boolean circuit. This
circuit and the encoded inputs are communicated to a co-hosted server that
implements the GMW MPC protocol [22]. The server evaluates the circuit, co-
ordinating with the GMW servers of the other principals, and sends back the
result. The circuit library decodes the result and returns it to the stub. The stub
then carries on with the local evaluation. Our FFI interface currently provides
a form of monomorphic, first-order interoperability between the (dynamically
typed) interpreter and the host language.

Our F? formalization of the Wys? semantics, including the AST specification,
is 1900 lines of code. This formalization is used both by the metatheory as well
as by the (executable) interpreter. The metatheory that connects the ST and
DS semantics (§3) is 3000 lines. The interpreter and its correctness proof are
another 290 lines of F? code. The interpreter step function is essentially a big
switch-case on the current expression, that calls into the functions from the
semantics specification. The tstep stub is another 15 lines. The size of the circuit
library, not including the GMW implementation, is 836 lines. The stub, the
implementation of GMW, the circuit library, and F? toolchain (including the
custom Wys? extraction mode) are part of our Trusted Computing Base (TCB).

4 Applications

In addition to joint median, presented in §2, we have implemented and proved
properties of two other MPC applications, dealing for online card games and
private set intersection (PSI).

Wys?: A DSL for Verified Secure Multi-party Computations 17

Card dealing. We have implemented an MPC-based card dealing application in
Wys?. Such an application can play the role of the dealer in a game of online
poker, thereby eliminating the need to trust the game portal for card dealing.
The application relies on Wys?’s support for secret shares [57]. Using secret
shares, the participating parties can share a value in a way that none of the
parties can observe the actual value individually (each party’s share consists of
some random-looking bytes), but they can recover the value by combining their
shares in sec mode.

In the application, the parties maintain a list of secret shares of already
dealt cards (the number of already dealt cards is public information). To deal a
new card, each party first generates a random number locally. The parties then
perform a secure computation to compute the sum of their random numbers
modulo 52, let’s call it n. The output of the secure computation is secret shares
of n. Before declaring n as the newly dealt card, the parties needs to ensure
that the card n has not already been dealt. To do so, they iterate over the list of
secret shares of already dealt cards, and for each element of the list, check that it
is different from n. The check is performed in a secure computation that simply
combines the shares of n, combines the shares of the list element, and checks the
equality of the two values. If n is different from all the previously dealt cards,
it is declared to be the new card, else the parties repeat the protocol by again
generating a fresh random number each.

Wys? provides the following API for secret shares:

type Sh: Type →Type
type can sh: Type →Type
assume Cansh int: can sh int

val v of sh: sh:Sh α →Ghost α
val ps of sh: sh:Sh α →Ghost prins

val mk sh: x:α →Wys (Sh α)
(requires (fun m →m.mode = Sec ∧ can sh α))
(ensures (fun m r tr → v of sh r = x ∧ ps of sh r = m.ps ∧ tr = [])

val comb sh: x:Sh α →Wys α (requires (fun m →m.mode = Sec ∧ ps of sh x = m.ps))
(ensures (fun m r tr → v of sh x = r ∧ tr = [])

Type Sh α types the shares of values of type α. Our implementation currently
supports shares of int values only; the can sh predicate enforces this restriction
on the source programs. Extending secret shares support to other types (such as
pairs) should be straightforward (as in [52]). Functions v of sh and ps of sh are
marked Ghost, meaning that they can only be used in specifications for reasoning
purposes. In the concrete code, shares are created and combined using the mk sh

and comb sh functions. Together, the specifications of these functions enforce
that the shares are created and combined by the same set of parties (through
ps of sh), and that comb sh recovers the original value (through v of sh). The
Wys? interpreter transparently handles the low-level details of extracting shares
from the GMW implementation of Choi et al. (mk sh), and reconstituting the
shares back (comb sh).

18 Rastogi et al.

In addition to implementing the card dealing application in Wys?, we have
formally verified that the returned card is fresh. The signature of the function
that checks for freshness of the newly dealt card is as follows (abc is the set of
three parties in the computation):

val check fresh: l:list (Sh int){∀ s’. mem s’ l =⇒ ps of sh s’ = abc}
→ s:Sh int{ps of sh s = abc}
→Wys bool (requires (fun m →m = Mode Par abc))

(ensures (fun r → r ⇐⇒ (∀ s’. mem s’ l =⇒ not (v of sh s’ = v of sh s))))

The specification says that the function takes two arguments: l is the list of
secret shares of already dealt cards, and s is the secret shares of the newly dealt
card. The function returns a boolean r that is true iff the concrete value (v of sh)
of s is different from the concrete values of all the elements of the list l. Using
F?, we verify that the implementation of check fresh meets this specification.

PSI. Consider a dating application that enables its users to compute their com-
mon interests without revealing all of them. This is an instance of the more
general private set intersection (PSI) problem [28].

We implement a straightforward version of PSI in Wys?:

let psi a b (input a:sealed {a} (list int)) (input b:sealed {b} (list int)) (l a:int) (l b:int) =
as sec {a,b} (fun () → List.intersect (reveal input a) (reveal input b) l a l b)

where the input sets are expressed as lists with public lengths.
Huang et al. [28] provide an optimized PSI algorithm that performs much

better when the density of common elements in the two sets is high. We im-
plement their algorithm in Wys?. The optimized version consists of two nested
loops – an outer loop for Alice’s set and an inner loop for Bob’s – where an
iteration of the inner loop compares the current element of Alice’s set with the
current element of Bob’s. The nested loops are written using as par so that both
Alice and Bob execute the loops in lockstep (note that the set sizes are public),
while the comparison in the inner loop happens using as sec. Instead of naive
l a ∗ l b comparisons, Huang et al. [28] observe that once an element of Alice’s
set ax matches an element of Bob’s set bx, the inner loop can return immedi-
ately, skipping the comparisons of ax with the rest of Bob’s set. Furthermore, bx

can be removed from Bob’s set, excluding it from any further comparisons with
other elements in Alice’s set. Since there are no repeats in the input sets, all the
excluded comparisons are guaranteed to be false. We show the full code and its
performance comparison with psi in the technical report [54].

As with the median example from §2, the optimized PSI intentionally reveals
more for performance gains. As such, we would like to verify that the optimiza-
tions do not reveal more about parties’ inputs. We take the following stepwise
refinement approach. First, we characterize the trace of the optimized imple-
mentation as a pure function trace psi opt la lb (omitted for space reasons), and
show that the trace of psi opt is precisely trace psi opt la lb.

Then, we define an intermediate PSI implementation that has the same
nested loop structure, but performs l a ∗ l b comparisons without any optimiza-

Wys?: A DSL for Verified Secure Multi-party Computations 19

tions. We characterize the trace of this intermediate implementation as the pure
function trace psi, and show that it precisely captures the trace.

To show that trace psi does not reveal more than the intersection of the input
sets, we prove the following lemma.

Ψ la0 la1 lb0 lb1
def
= (∗ possibly diff input sets, but with ∗)

la0 ∩ lb0 = la1 ∩ lb1 ∧ (∗ intersections the same ∗)
length la0 = length la1 ∧ length lb0 = length lb1 (∗ lengths the same ∗)

val psi interim is secure: la0: → lb0: → la1: → lb1: → Lemma
(requires (Ψ la0 la1 lb0 lb1)) (ensures (permutation (trace psi la0 lb0) (trace psi la1 lb1)))

The lemma essentially says that for two runs on same length inputs, if the
output is the same, then the resulting traces are permutation of each other.6 We
can reason about the traces of psi interim up to permutation because Alice has no
prior knowledge of the choice of representation of Bob’s set (Bob can shuffle his
list), so cannot learn anything from a permutation of the trace.7 This establishes
the security of psi interim.

Finally, we can connect psi interim to psi opt by showing that there exists a
function f, such that for any trace tr=trace psi la lb, the trace of psi opt,
trace psi opt la lb, can be computed by f (length la) (length lb) tr. In other words,
the trace produced by the optimized implementation can be computed using a
function of information already available to Alice (or Bob) when she (or he)
observes a run of the secure, unoptimized version psi interim la lb. As such, the
optimizations do not reveal further information.

5 Related work

Source MPC verification. While the verification of the underlying crypto proto-
cols has received some attention [4,5], verification of the correctness and security
properties of MPC source programs has remained largely unexplored, surpris-
ingly so given that the goal of MPC is to preserve the privacy of secret inputs.
The only previous work that we know of is Backes et. al. [9] who devise an
applied pi-calculus based abstraction for MPC, and use it for formal verifica-
tion. For an auction protocol that computes the min function, their abstraction
comprises about 1400 lines of code. Wys?, on the other hand, enables direct
verification of the higher-level MPC source programs, and not their models, and
in addition provides a partially verified toolchain.

Wysteria. Wys?’s computational model is based on the programming abstrac-
tions of a previous MPC DSL, Wysteria [52]. Wys?’s realization as an embed-
ded DSL in F? makes important advances. In particular, Wys? (a) enhances the
Wysteria semantics to include a notion of observable traces, and provides the

6 Holding Bob’s (resp. Alice’s) inputs fixed and varying Alice’s (resp. Bob’s) inputs,
as done for median in §2.4, is covered by this more general property.

7 We could formalize this observation using a probabilistic, relational variant of F? [10].

20 Rastogi et al.

novel capability to prove security and correctness properties about mixed-mode
MPC source programs, (b) expands the programming constructs available by
drawing on features and libraries of F?, and (c) adds assurance via a (partially)
proved-correct interpreter.

Verified MPC toolchain. Almeida et al. [4] build a verified toolchain consisting
of (a) a verified circuit compiler from (a subset of) C to boolean circuits, and
(b) a verified implementation of Yao’s [65] garbled circuits protocol for 2-party
MPC. They use CompCert [36] for the former, and EasyCrypt [11] for the latter.
These are significant advances, but there are several distinctions from our work.
The MPC programs in their toolchain are not mixed-mode, and thus it cannot
express examples like median opt and the optimized PSI. Their framework does
not enable formal verification of source programs like Wys? does. It may be
possible to use other frameworks for verifying C programs (e.g. Frama-C [1]),
but it is inconvenient as one has to work in the subset of C that falls in the
intersection of these tools. Wys? is also more general as it supports general n-
party MPC; e.g., the card dealing application in §4 has 3 parties. Nevertheless,
Wys? may use their verified Yao implementation for the special case of 2 parties.

MPC DSLs and DSL extensions. In addition to Wysteria several other MPC
DSLs have been proposed in the literature [14,17,27,29,34,37,39,48,49,52,56,61].
Most of these languages have standalone implementations, and the (usability/s-
calability) drawbacks that come with them. Like Wys?, a few are implemented
as language extensions. Launchbury et al. [35] describe a Haskell-embedded
DSL for writing low-level “share protocols” on a multi-server “SMC machine”.
OblivC [66] is an extension to C for two-party MPC that annotates variables
and conditionals with an obliv qualifier to identify private inputs; these programs
are compiled by source-to-source translation. The former is essentially a shallow
embedding, and the latter is compiler-based; Wys? is unique in that it combines
a shallow embedding to support source program verification and a deep embed-
ding to support a non-standard target semantics. Recent work [19, 21] compiles
to cryptographic protocols that include both arithmetic and boolean circuits;
the compiler decides which fragments of the program fall into which category. It
would be interesting work to integrate such a backend in Wys?.

Mechanized metatheory. Our verification results are different from a typical ver-
ification result that might either mechanize metatheory for an idealized lan-
guage [8], or might prove an interpreter or compiler correct w.r.t. a formal se-
mantics [36]—we do both. We mechanize the metatheory of Wys? establishing
the soundness of the conceptual ST semantics w.r.t. the actual DS semantics, and
mechanize the proof that the interpreter implements the correct DS semantics.

General DSL implementation strategies. DSLs (for MPC or other purposes) are
implemented in various ways, such as by developing a standalone compiler/in-
terpreter, or by shallow or deep embedding in a host language. Our approach

Wys?: A DSL for Verified Secure Multi-party Computations 21

bears relation to the approach taken in LINQ [42], which embeds a query lan-
guage in normal C# programs, and implements these programs by extracting
the query syntax tree and passing it to a provider to implement for a particular
backend. Other researchers have embedded DSLs in verification-oriented host
languages (e.g., Bedrock [13] in Coq [60]) to permit formal proofs of DSL pro-
grams. Low? [51] is a shallow embedding of a small, sequential, well-behaved
subset of C in F? that extracts to C using a F?-to-C compiler. Low? has been
used to verify and implement several cryptographic constructions. Fromherz et
al. [25] present a deep embedding of a subset of x64 assembly in F? that allows
efficient verification of assembly and its interoperation with C code generated
from Low?. They design (and verify) a custom VC generator for the deeply
embedded DSL, that allows for the proofs of assembly crypto routines to scale.

6 Conclusions

This paper has presented Wys?, the first DSL to enable formal verification of
efficient source MPC programs as written in a full-featured host programming
language, F?. The paper presented examples such as joint median, card dealing,
and PSI, and showed how the DSL enables their correctness and security proofs.
Wys? implementation, examples, and proofs are publicly available on Github.

Acknowledgments We would like to thank the anonymous reviewers, Catalin
Hriţcu, and Matthew Hammer for helpful comments on drafts of this paper.
This research was funded in part by the U.S. National Science Foundation under
grants CNS-1563722, CNS-1314857, and CNS-1111599.

References

1. Frama-c. https://frama-c.com/
2. Z3 theorem prover. z3.codeplex.com
3. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked el-

ement. In: Cachin, C., Camenisch, J.L. (eds.) Advances in Cryptology - EURO-
CRYPT 2004 (2004)

4. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Grégoire, B., Laporte, V.,
Pereira, V.: A fast and verified software stack for secure function evaluation. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’17 (2017)

5. Almeida, J.B., Barbosa, M., Barthe, G., Davy, G., Dupressoir, F., Grégoire, B.,
Strub, P.Y.: Verified implementations for secure and verifiable computation (2014)

6. Araki, T., Barak, A., Furukawa, J., Keller, M., Lindell, Y., Ohara, K., Tsuchida,
H.: Generalizing the spdz compiler for other protocols. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. CCS ’18
(2018)

7. Atkey, R.: Parameterised notions of computation. Journal of Functional Program-
ming 19, 335–376 (2009). https://doi.org/10.1017/S095679680900728X, http://
journals.cambridge.org/article_S095679680900728X

22 Rastogi et al.

8. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The poplmark challenge. In: Proceedings of the 18th International
Conference on Theorem Proving in Higher Order Logics. pp. 50–65. TPHOLs’05,
Springer-Verlag, Berlin, Heidelberg (2005)

9. Backes, M., Maffei, M., Mohammadi, E.: Computationally Sound Abstraction and
Verification of Secure Multi-Party Computations. In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010) (2010)

10. Barthe, G., Fournet, C., Grégoire, B., Strub, P., Swamy, N., Béguelin, S.Z.:
Probabilistic relational verification for cryptographic implementations. In: The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. pp. 193–206
(2014). https://doi.org/10.1145/2535838.2535847, http://doi.acm.org/10.1145/
2535838.2535847

11. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Proceedings of the 31st Annual Con-
ference on Advances in Cryptology. CRYPTO’11 (2011)

12. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC (1990)

13. Bedrock, a coq library for verified low-level programming. http://plv.csail.mit.
edu/bedrock/

14. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS (2008)

15. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Implement-
ing TLS with verified cryptographic security. In: IEEE Symposium on Security
& Privacy (Oakland). pp. 445–462 (2013), http://www.ieee-security.org/TC/
SP2013/papers/4977a445.pdf

16. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs
board evaluated a tax fraud detection system based on secure multi-party compu-
tation. In: Financial Cryptography and Data Security. Springer Berlin Heidelberg
(2015)

17. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Computer Security - ESORICS 2008 (2008)

18. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.:
Financial cryptography and data security. chap. Secure Multiparty Computation
Goes Live (2009)

19. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: Hycc:
Compilation of hybrid protocols for practical secure computation. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’18 (2018)

20. Canetti, R.: Security and composition of multiparty cryptographic protocols.
J. Cryptol. 13(1), 143–202 (Jan 2000). https://doi.org/10.1007/s001459910006,
http://dx.doi.org/10.1007/s001459910006

21. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: Ezpc: Pro-
grammable, efficient, and scalable secure two-party computation for machine learn-
ing. Cryptology ePrint Archive, Report 2017/1109 (2017), https://eprint.iacr.
org/2017/1109

Wys?: A DSL for Verified Secure Multi-party Computations 23

22. Choi, S.G., Hwang, K.W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-party
computation of boolean circuits with applications to privacy in on-line market-
places (2011), http://eprint.iacr.org/

23. Crockett, E., Peikert, C., Sharp, C.: Alchemy: A language and compiler for homo-
morphic encryption made easy. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’18 (2018)

24. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoretical computer science 103(2), 235–271 (1992)

25. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy, N.:
A verified, efficient embedding of a verifiable assembly language. In: 46th ACM
SIGPLAN Symposium on Principles of Programming Languages. POPL’19 (2019)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
(1987)

27. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: CCS (2012)

28. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

29. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX (2011)

30. Juvekar, C., Vaikuntanathan, V., Chandrakasani, A.: GAZELLE: A low latency
framework for secure neural network inference. In: USENIX Security 18 (2018)

31. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu (2015)

32. Kerschbaum, F.: Automatically optimizing secure computation. In: CCS (2011)
33. Kerschbaum, F., Schroepfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh,

S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain
management. Computer (2011)

34. Laud, P., Randmets, J.: A domain-specific language for low-level secure multiparty
computation protocols. In: Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. CCS ’15

35. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ICFP (2012)

36. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM (2009)
37. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient ram-model se-

cure computation. In: IEEE Symposium on Security and Privacy (Oakland) (2014)
38. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via

minionn transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’17 (2017)

39. Malka, L.: Vmcrypt: modular software architecture for scalable secure computa-
tion. In: CCS (2011)

40. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security (2004)

41. Mardziel, P., Hicks, M., Katz, J., Hammer, M., Rastogi, A., Srivatsa, M.: Knowl-
edge inference for optimizing and enforcing secure computations. In: Proceedings
of the Annual Meeting of the US/UK International Technology Alliance (2013)

42. Meijer, E., Beckman, B., Bierman, G.: Linq: Reconciling object, relations and
xml in the .net framework. In: Proceedings of the 2006 ACM SIGMOD In-
ternational Conference on Management of Data. pp. 706–706. SIGMOD ’06,
ACM, New York, NY, USA (2006). https://doi.org/10.1145/1142473.1142552,
http://doi.acm.org/10.1145/1142473.1142552

24 Rastogi et al.

43. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92
(Jul 1991). https://doi.org/10.1016/0890-5401(91)90052-4, http://dx.doi.org/

10.1016/0890-5401(91)90052-4

44. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: IEEE S&P (2017)

45. Mood, B., Gupta, D., Carter, H., Butler, K.R.B., Traynor, P.: Frigate: A validated,
extensible, and efficient compiler and interpreter for secure computation. In: IEEE
EuroS&P (2016)

46. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP (2008)

47. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, polymorphism
and separation. J. Funct. Program. 18(5-6), 865–911 (2008), http://ynot.cs.

harvard.edu/papers/jfpsep07.pdf

48. Nielsen, J.D.: Languages for Secure Multiparty Computation and Towards Strongly
Typed Macros. Ph.D. thesis (2009)

49. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: PLAS (2007)

50. PolarSSL verification kit. http://trust-in-soft.com/

polarssl-verification-kit/ (2015)
51. Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,

Zanella-Béguelin, S., Delignat-Lavaud, A., Hriţcu, C., Bhargavan, K., Fournet,
C., Swamy, N.: Verified Low-level Programming Embedded in F* (ICFP) (2017)

52. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: A programming language for
generic, mixed-mode multiparty computations. In: Proceedings of the 2014 IEEE
Symposium on Security and Privacy (2014)

53. Rastogi, A., Mardziel, P., Hammer, M., Hicks, M.: Knowledge inference for opti-
mizing secure multi-party computation. In: PLAS (2013)

54. Rastogi, A., Swamy, N., Hicks, M.: WYS*: A DSL for Verified Secure Multi-party
Computations (2019), https://arxiv.org/abs/1711.06467

55. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Software
Security - Theories and Systems, Second Mext-NSF-JSPS International Sympo-
sium, ISSS 2003, Tokyo, Japan, November 4-6, 2003, Revised Papers (2003)

56. Schropfer, A., Kerschbaum, F., Muller, G.: L1 - an intermediate language for
mixed-protocol secure computation. In: COMPSAC (2011)

57. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(Nov 1979)

58. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental poker. Springer (1980)
59. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,

Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K., Be-
guelin, S.Z.: Dependent types and multi-monadic effects in F*. In: POPL (2016)

60. The Coq development team: The Coq proof assistant, http://coq.inria.fr
61. VIFF, the virtual ideal functionality framework. http://viff.dk/
62. Wadler, P.: Monads for functional programming. In: Advanced Functional Pro-

gramming, First International Spring School on Advanced Functional Program-
ming Techniques-Tutorial Text. pp. 24–52. Springer-Verlag, Berlin, Heidelberg
(1995), http://dl.acm.org/citation.cfm?id=647698.734146

63. Yang, J., Hawblitzel, C.: Safe to the last instruction: Automated verification of a
type-safe operating system. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’10 (2010)

Wys?: A DSL for Verified Secure Multi-party Computations 25

64. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of ACM SIGPLAN 2011 Conference on Programming
Language Design and Implementation (2011)

65. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)
66. Zahur, S., Evans, D.: Obliv-c: A language for extensible data-oblivious computa-

tion. Unpublished (2015), http://oblivc.org/downloads/oblivc.pdf

