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Software has bugs

• To find them, we use testing and code reviews

• But some bugs are still missed
■ Rare features

■ Rare circumstances

■ Nondeterminism
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Static analysis

• Can analyze all possible runs of a program
■ Lots of interesting ideas and tools

■ Commercial companies sell, use static analysis

■ It all looks good on paper,  and in papers

• But can developers use it?
■ Our experience:  Not easily

■ Results in papers describe use by static analysis experts

■ Commercial viability implies you must deal with 
developer confusion, false positives, error management,..
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One Issue:  Abstraction

• Abstraction lets us scale and model all possible runs
■ But it also introduces conservatism

■ *-sensitivities attempt to deal with this

- * = flow-, context-, path-, field-, etc

■ But they are never enough

• Static analysis abstraction ≠ developer abstraction
■ Because the developer didn’t have them in mind
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Symbolic execution: a middle ground

• Testing works
■ But, each test only explores one possible execution

- assert(f(3) == 5)

■ We hope test cases generalize, but no guarantees

• Symbolic execution generalizes testing
■ Allows unknown symbolic variables in evaluation

- y = α;   assert(f(y) == 2*y-1);

■ If execution path depends on unknown, conceptually 
fork symbolic executor

- int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }
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Symbolic Execution Example
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1. int a = α, b = β, c = γ;
2.                   // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5.   x = -2;
6. }
7. if (b < 5) {
8.   if (!a && c)  { y = 1; }
9.   z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0
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Insight

• Each symbolic execution path stands for many 
actually program runs
■ In fact, exactly the set of runs whose concrete values 

satisfy the path condition

• Thus, we can cover a lot more of the program’s 
execution space than testing
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Early work on symbolic execution

• Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 
SELECT–a formal system for testing and debugging 
programs by symbolic execution. In ICRS, pages 234–
245, 1975. 

• James C. King. Symbolic execution and program testing. 
CACM, 19(7):385–394, 1976. (most cited)

• Leon J. Osterweil and Lloyd D. Fosdick. Program testing 
techniques using simulated execution. In ANSS, pages 
171–177, 1976.

• William E. Howden. Symbolic testing and the DISSECT 
symbolic evaluation system. IEEE Transactions on 
Software Engineering, 3(4):266–278, 1977. 
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The problem

• Computers were small (not much memory) and 
slow (not much processing power)
■ Apple’s iPad 2 is as fast as a Cray-2 from the 1980’s

• Symbolic execution can be extremely expensive
■ Lots of possible program paths

■ Need to query solver a lot to decide which paths are 
feasible, which assertions could be false

■ Program state has many bits
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Today

• Computers are much faster, memory is cheap

• There are very powerful SMT/SAT solvers today
■ SMT = Satisfiability Modulo Theories = SAT++

■ Can solve very large instances, very quickly

- Lets us check assertions, prune infeasible paths

■ We’ve used Z3, STP, and Yices

• Recent success:  bug finding
■ Heuristic search through space of possible executions

■ Find really interesting bugs
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Remainder of the tutorial

• The basics, in code

• Scaling up
■ The search space

■ Hard-to-handle features

• Existing tools
■ KLEE: one industrial grade tool

• KLEE lab: using KLEE to find bugs
■ Including vulnerabilities
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Symbolic Execution for IMP

• n ∈ N = integers, X ∈ Var = variables, bv ∈ Bool = {true, false}

• This is a typical way of presenting a language
■ Notice grammar is for ASTs

- Not concerned about issues like ambiguity, associativity, precedence

• Syntax stratified into commands (c) and expressions (a,b)
■ Expressions have no side effects

• No function calls (and no higher order functions)
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a ::= n | X | a0+a1 | a0-a1 | a0×a1
b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1
c ::= skip | X:=a | goto pc | if b then pc | assert b
p ::= c; ...; c



Interpretation for IMP
• See main.ml

• How to extend this to be a symbolic executor?
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Symbolic Variables
• Add a new kind of expression

■ The string is the variable name
■ Naming variables is useful for understanding the output of 

the symbolic executor
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type aexpr = ... | ASym of string

type bexpr = ... | BSym of string



Symbolic Expressions
• Now change aeval and beval to work with symbolic 

expressions
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let rec aeval sigma = function

 | ASym s -> new_symbolic_variable 32 s (* 32-bit *)

 | APlus (a1, a2) ->

   symbolic_plus (aeval sigma a1) (aeval sigma a2)

 | ...

let rec beval sigma = function

 | BSym s -> new_symbolic_variable 1 s (* 1 bit *)

 | BLeq (a1, a2) ->

   symbolic_leq (aeval sigma a1) (aeval sigma a2)

 | ...



Symbolic State
• Previous step function, roughly speaking

• Now we have a couple of issues:
■ We need to keep track of the path condition
■ There may be more than one pc if we fork execution

• Convenient to package all this up in a record, and 
change cstep appropriately
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cstep : sigma -> pc -> (sigma’, pc’)

type state = {

  sigma : (string * symbolic_expr) list;

  pc : int;

  path : symbolic_expr;

}

cstep : state -> state * (state option)



Forking Execution
• How to decide which branches are feasible?

■ Combine path condition with branch cond and ask solver!
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let cstep st = function

 | CIf (b, pc’) ->

   let b’ = beval st.sigma b in

   let t_path_cond = symbolic_and st.path b’ in

   let f_path_cond = symbolic_and st.path (symbolic_not b’) in

   let maybe_t = satisfiable t_path_cond in

   let maybe_f = satisfiable f_path_cond in

   match maybe_t, maybe_f with

   | true, true -> (* true path *), Some (* false path *)

   | true, false -> (* true path *), None

   | false, true -> (* false path *), None

   | false, false -> (* impossible *)



Top-level Driver
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1. create initial state

   - pc = 0, path cond = true, state = empty

2. push state onto worklist

3. while (worklist is not empty)

  3a. st = pull some state from worklist

  3b. st’, st’’ = cstep st

  3c. add st’ to worklist

  3d. add st’’’ to worklist if st’’ = Some st’’’



Path explosion
• Usually can’t run symbolic execution to exhaustion

■ Exponential in branching structure

- Ex: 3 variables, 8 program paths

■ Loops on symbolic variables even worse

- Potentially 2^31 paths through loop!
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1. int a = α, b = β, c = γ;    // symbolic
2. if (a) ... else ...;
3. if (b) ... else ...;
4. if (c) ... else ...;

1. int a = α;    // symbolic
2. while (a) do ...;
3.



Basic search
• Simplest ideas: algorithms 101

■ Depth-first search (DFS)
■ Breadth-first search (BFS)

• Potential drawbacks
■ Neither is guided by any higher-level knowledge

- Probably a bad sign

■ DFS could easily get stuck in one part of the program
- E.g., it could keep going around a loop over and over again

■ Of these two, BFS is a better choice
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Search strategies
• Need to prioritize search

■ Try to steer search towards paths more likely to contain 
assertion failures

■ Only run for a certain length of time
- So if we don’t find a bug/vulnerability within time budget, too bad

• Think of program execution as a DAG
■ Nodes = program states
■ Edge(n1,n2) = can transition from state n1 to state n2

• Then we need some kind of graph exploration 
strategy
■ At each step, pick among all possible paths

22



Randomness
• We don’t know a priori which paths to take, so 

adding some randomness seems like a good idea
■ Idea 1: pick next path to explore uniformly at random 

(Random Path, RP)
■ Idea 2: randomly restart search if haven’t hit anything 

interesting in a while
■ Idea 3: when have equal priority paths to explore, choose 

next one at random
- All of these are good ideas, and randomness is very effective

• One drawback: reproducibility
■ Probably good to use psuedo-randomness based on seed, 

and then record which seed is picked
■ (More important for symbolic execution implementers than 

users)
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Coverage-guided heuristics
• Idea: Try to visit statements we haven’t seen before
• Approach

■ Score of statement = # times it’s been seen and how often
■ Pick next statement to explore that has lowest score

• Why might this work?
■ Errors are often in hard-to-reach parts of the program
■ This strategy tries to reach everywhere.

• Why might this not work?
■ Maybe never be able to get to a statement if proper 

precondition not set up

• KLEE = RP + coverage-guided
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Generational search
• Hybrid of BFS and coverage-guided
• Generation 0: pick one program at random, run to 

completion
• Generation 1: take paths from gen 0, negate one 

branch condition on a path to yield a new path 
prefix, find a solution for that path prefix, and then 
take the resulting path
■ Note will semi-randomly assign to any variables not 

constrained by the path prefix

• Generation n: similar, but branching off gen n-1
• Also uses a coverage heuristic to pick priority
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Combined search
• Run multiple searches at the same time
• Alternate between them

■ E.g., Fitnext

• Idea: no one-size-fits-all solution
■ Depends on conditions needed to exhibit bug
■ So will be as good as “best” solution, which a constant 

factor for wasting time with other algorithms
■ Could potentially use different algorithms to reach different 

parts of the program
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SMT solver performance
• SAT solvers are at core of SMT solvers

■ In theory, could reduce all SMT queries to SAT queries
■ In practice, SMT and higher-level optimizations are critical

• Some examples
■ Simple identities (x + 0 = x, x * 0 = 0)
■ Theory of arrays (read(42, write(42, x, A)) = x)

- 42 = array index, A = array, x = element

■ Caching (memoize solver queries)
■ Remove useless variables

- E.g., if trying to show path feasible, only the part of the path condition 
related to variables in guard are important
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Libraries and native code
• At some point, symbolic execution will reach the 

“edges” of the application
■ Library, system, or assembly code calls

• In some cases, could pull in that code also
■ E.g., pull in libc and symbolically execute it
■ But glibc is insanely complicated

- Symbolic execution can easily get stuck in it

■ ⇒ pull in a simpler version of libc, e.g., newlib

- libc versions for embedded systems tend to be simpler

• In other cases, need to make models of code
■ E.g., implement ramdisk to model kernel fs code
■ This is a lot of work!
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Concolic execution

• Also called dynamic symbolic execution

• Instrument the program to do symbolic 
execution as the program runs
■ I.e., shadow concrete program state with symbolic 

variables

• Explore one path at a time, start to finish
■ Always have a concrete underlying value to rely on
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Concretization

• Concolic execution makes it really easy to 
concretize
■ Replace symbolic variables with concrete values that 

satisfy the path condition

- Always have these around in concolic execution

• So, could actually do system calls
■ But we lose symbolic-ness at such calls

• And can handle cases when conditions too 
complex for SMT solver
■ But can do the same in pure symbolic system
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Resurgence of symbolic exection

• Two key systems that triggered revival of this topic:
■ DART — Godefroid and Sen, PLDI 2005

- Godefroid = model checking, formal systems background

■ EXE — Cadar, Ganesh, Pawlowski, Dill, and Engler, CCS 
2006

- Ganesh and Dill = SMT solver called “STP” (used in 
implementation)

- Theory of arrays

- Cadar and Engler = systems
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Recent successes, run on binaries

• SAGE
■ Microsoft (Godefroid) concolic executor

■ Symbolic execution to find bugs in file parsers

- E.g., JPEG, DOCX, PPT, etc 

■ Cluster of n machines continually running SAGE

• Mayhem
■ Developed at CMU (Brumley et al), runs on binaries

■ Uses BFS-style search and native execution

■ Automatically generates exploits when bugs found
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KLEE

• Symbolically executes LLVM bitcode
■ LLVM compiles source file to .bc file

■ KLEE runs the .bc file

• Works in the style of our example interpreter
■ Uses fork() to manage multiple states

■ Employs a variety of search strategies

■ Mocks up the environment to deal with system calls, 
file accesses, etc.
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KLEE: Coverage for Coreutils
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Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T ). Line 2665 computes
width = (T − input position mod T ) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

input position mod T < T . However, in the pres-
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Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for 
Complex Systems Programs, OSDI 2008



KLEE: Coreutils crashes
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Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
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fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
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over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
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erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
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a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
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ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
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also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s
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(14 out of 393) which require special configuration were not run; from
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version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.
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Other symbolic executors

• Cloud9 — parallel symbolic execution, also 
supports threads

• Pex — symbolic execution for .NET

• jCUTE — symbolic execution for Java

• Java PathFinder — a model checker that also 
supports symbolic execution
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Research tools at UMD

• Otter — symbolic executor for C
■ Better library model than KLEE, support for 

multiprocess symbolic execution

■ Supports directed symbolic execution: give the tool a 
line number, and it try to generate a test case to get 
there

• RubyX — symbolic executor for Ruby

• SymDroid — symbolic executor for Dalvik 
bytecode
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Lab

• Now will try out KLEE

• To get started, go to
■ http://www.cs.umd.edu/~mwh/se-tutorial/

• We will get the basics working and then try to 
reproduce some of the coreutils bugs
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