
What is Programming Languages
Research?
Michael Hicks
University of Maryland

UM

A Conversation, circa 2014

We need to hire in PL this year!

… I have a nagging concern: Isn’t PL a
solved problem?

Um, no, there’s lots to do.

Really? What is it that you PL people are
working on?

We work on Programming Languages!

OK, but …
Don’t modern languages work pretty

well? And aren’t they often developed by
non-academics?

Yes, but there are still big research
contributions still to make.

Doing what?

I should start a blog …

What is PL Research?
PL research views the programming
language as having a central place in
solving computing problems.

A PL researcher:
❖ develops general abstractions, or

building blocks, for solving problems,
or classes of problems,

❖ considers software behavior in a
rigorous and general way, e.g., to
prove that (classes of) programs enjoy
properties we want, and/or eschew
properties we don’t.

What is PL Research?
❖ The ethos of PL research is to not just

find solutions to important problems,
but to find the best expression of those
solutions, typically in the form of a
kind of language, language extension,
library, program analysis, or
transformation.

❖ The hope is for simple, understandable
solutions that are also general: By
being part of (or acting at the level of)
a language, they apply to many (and
many sorts of) programs, and
possibly many sorts of problems.

Example: Improving Program Efficiency

❖ Quicksort in Haskell

❖ Parallelize it

sort :: (Ord a) => [a] -> [a]
sort (x:xs) = lesser ++ x:greater
 where lesser = sort [y | y <- xs, y < x]
 greater = sort [y | y <- xs, y >= x]
sort _ = []

sort :: (Ord a) => [a] -> [a]
sort (x:xs) =
 (lesser ++ x:greater))
 where lesser = sort [y | y <- xs, y < x]
 greater = sort [y | y <- xs, y >= x]
sort _ = []

 force greater `par`
 (force lesser `pseq`

sort :: (Ord a) => [a] -> [a]
sort (x:xs) = lesser ++ x:greater
 where lesser = sort [y | y <- xs, y < x]
 greater = sort [y | y <- xs, y >= x]
sort _ = []

Thought Process

sort :: (Ord a) => [a] -> [a]
sort (x:xs) = force greater `par`
 (force lesser `pseq` (lesser ++ x:greater))
 where lesser = sort [y | y <- xs, y < x]
 greater = sort [y | y <- xs, y >= x]
sort _ = []

❖ Two halves of input list can be constructed in parallel

❖ OK because each activity is independent

❖ This should be a win for small xs on n>1 cores
assuming par and pseq manage parallel resources
efficiently

Thought Process, Generalized
❖ Automatically pick components

of a program to parallelize

❖ Choose those such that the
meaning of the program is
preserved, and the performance
is likely to improve.

PL research lifts problems
to the level of the language,
turning a one-off solution
into a general one

Example: Authenticated Data Structure

❖ Merkle tree (1988): Complete tree, where server
answers queries with evidence the answer is correct

❖ Since then, separate papers on: sets, dictionaries, range
trees, graphs, skip lists, B-trees, hash trees, …

ADS Construction, Generalized
❖ Simple language extension,

data structure written mostly
as usual. Different code
generated for client and server

❖ Expresses many prior ADSs

❖ Proved that type correctness
implies authenticity

❖ Adversary can only fool
client by inverting one-way
hash

❖ One proof for all!

Elements of PL Research

❖ Design: What feature, analysis, transformation, etc.?

❖ Mathematics and proof: What does it mean? Why is
what you are doing correct?

❖ Implementation: How do you implement this
language, analysis, transformation ... ?

❖ Empirical evaluation: Does the design/implementation
work (most of the time)?

PL Research Toolbox

❖ Language specification (what features, syntax)

❖ Semantics (operational, denotational)

❖ Static reasoning (logics, types, static analysis)

❖ Dynamic reasoning (tests, monitors, profiles)

❖ Implementation (compilation, interpretation, services)

What’s Next: A Tour
❖ Disclaimer: This is my perspective

❖ It is not comprehensive

❖ It is probably wrong (hopefully only a little)

❖ But it will give you some sense of the field

Implementation

Machines Don’t Run our Programs

and data in a more readable form such as decimal, octal, or hexadecimal which is translated to internal format
by a program called a loader or toggled into the computer's memory from a front panel.

Although few programs are written in machine language, programmers often become adept at reading it
through working with core dumps or debugging from the front panel.

Example: A function in hexadecimal representation of 32-bit x86 machine code to calculate the nth Fibonacci
number:

8B542408 83FA0077 06B80000 0000C383
FA027706 B8010000 00C353BB 01000000
B9010000 008D0419 83FA0376 078BD989
C14AEBF1 5BC3

Second-generation languages provide one abstraction level on top of the machine code. In the early days of
coding on computers like the TX-0 and PDP-1, the first thing MIT hackers did was write assemblers.[1]

Assembly language has little semantics or formal specification, being only a mapping of human-readable
symbols, including symbolic addresses, to opcodes, addresses, numeric constants, strings and so on. Typically,
one machine instruction is represented as one line of assembly code. Assemblers produce object files that can
link with other object files or be loaded on their own.

Most assemblers provide macros to generate common sequences of instructions.

Example: The same Fibonacci number calculator as above, but in x86 assembly language using MASM syntax:

fib:
mov edx, [esp+8]
cmp edx, 0
ja @f
mov eax, 0
ret

@@:
cmp edx, 2
ja @f
mov eax, 1
ret

@@:
push ebx
mov ebx, 1
mov ecx, 1

@@:

lea eax, [ebx+ecx]
cmp edx, 3
jbe @f
mov ebx, ecx
mov ecx, eax
dec edx

jmp @b

@@:
pop ebx
ret

Assembly

Low-level programming language - Wikipedia https://en.wikipedia.org/wiki/Low-level_programming_language

2 of 4 9/19/18, 1:15 PM

and data in a more readable form such as decimal, octal, or hexadecimal which is translated to internal format
by a program called a loader or toggled into the computer's memory from a front panel.

Although few programs are written in machine language, programmers often become adept at reading it
through working with core dumps or debugging from the front panel.

Example: A function in hexadecimal representation of 32-bit x86 machine code to calculate the nth Fibonacci
number:

8B542408 83FA0077 06B80000 0000C383
FA027706 B8010000 00C353BB 01000000
B9010000 008D0419 83FA0376 078BD989
C14AEBF1 5BC3

Second-generation languages provide one abstraction level on top of the machine code. In the early days of
coding on computers like the TX-0 and PDP-1, the first thing MIT hackers did was write assemblers.[1]

Assembly language has little semantics or formal specification, being only a mapping of human-readable
symbols, including symbolic addresses, to opcodes, addresses, numeric constants, strings and so on. Typically,
one machine instruction is represented as one line of assembly code. Assemblers produce object files that can
link with other object files or be loaded on their own.

Most assemblers provide macros to generate common sequences of instructions.

Example: The same Fibonacci number calculator as above, but in x86 assembly language using MASM syntax:

fib:
mov edx, [esp+8]
cmp edx, 0
ja @f
mov eax, 0
ret

@@:
cmp edx, 2
ja @f
mov eax, 1
ret

@@:
push ebx
mov ebx, 1
mov ecx, 1

@@:

lea eax, [ebx+ecx]
cmp edx, 3
jbe @f
mov ebx, ecx
mov ecx, eax
dec edx

jmp @b

@@:
pop ebx
ret

Assembly

Low-level programming language - Wikipedia https://en.wikipedia.org/wiki/Low-level_programming_language

2 of 4 9/19/18, 1:15 PM

Other Programs Make it Possible

Three main implementation strategies:

❖ Interpreter: Runs any program in language Q

❖ Compiler: Converts a program in language Q to one in
language L, for which you have a machine or interpreter

❖ Hybrid: A just-in-time (JIT) compiler compiles the
program as it interprets it

Run-time Services

❖ Various components support language abstractions

❖ Garbage collector frees unneeded memory

❖ Thread system runs different threads

❖ Libraries implement key (parts of) language
abstractions (e.g., strings, numbers, networking)

Research Directions
❖ Compiler/interpreter optimization: Register allocation, memory hierarchy

optimization, use of special hardware (e.g., GPUs), partial evaluation, …

❖ Garbage collection algorithms: Parallel, concurrent, incremental, space-
efficient, real-time, hybrid, …

❖ JIT implementation & optimization: fast tracing/profiling, on-stack
replacement, …

❖ Domain-specific techniques: Probabilistic programming, neural nets, …

❖ The POPL’19 paper (language implementation not POPL’s main theme):

❖ Efficient parameterized algorithms for data packing, Krishnendu
Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati, Andreas
Pavlogiannis

Semantics

Formal Semantics
❖ To work with programs, we must know what they mean

❖ Semantics comes from the Greek semaino, “to mean”

❖ Most language semantics are informal. But we can do
better by making them formal. Two main styles:

❖ Operational semantics (like an interpreter)

❖ Denotational semantics (like a compiler)

Formal semantics is a key PL tool

Operational Semantics
❖ Evaluation is described as transitions (aka reductions) in

some abstract machine; a definitional interpreter

❖ The meaning of a program is its fully reduced form
❖ let x=2 in x+3

❖ Can model many programming language features

❖ Concurrency, non-determinism, run-time cost, higher-
order functions, probabilistic choice, …

❖ This is the most popular style of semantics

⟶ 2+3 ⟶ 5

Denotational Semantics
❖ The meaning of a program is defined as a mathematical

object, e.g., a function or number

❖ Typically define an interpretation function ⟦ ⟧

❖ Meaning of program fragment given by meaning of its
components; ⟦e1+e2⟧ = ⟦e1⟧ + ⟦e2⟧

❖ Gets interesting when we try to find denotations of
loops or recursive functions, cyclic heap state

❖ Particularly useful for equational reasoning

Research Directions

❖ PL researchers frequently use operational semantics to
model new languages and language features

❖ Or model features in a new way, to facilitate some
other advance (e.g., proof of a property)

❖ Also, new techniques for semantics modeling,
particularly for domain-specific computations

Some POPL’19 Papers
❖ Skeletal semantics and their interpretations, Martin Bodin, Philippa Gardner, Thomas

Jensen, Alan Schmitt

❖ A calculus for Esterel: if can, can. if no can, no can. Spencer P. Florence, ShuHung You,
Jesse A. Tov, Robert Bruce Findler

❖ Familial monads and structural operational semantics, Tom Hirschowitz

❖ Game semantics for quantum programming, Pierre Clairambault, Marc De Visme,
Glynn Winskel

❖ Exploring C semantics and pointer provenance, Kayvan Memarian, Victor B. F. Gomes,
Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, Peter Sewell

❖ ISA semantics for ARMv8a, RISCv, and CHERIMIPS, Alasdair Armstrong, Thomas
Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth
Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel
Krishnaswami, Peter Sewell

Static Reasoning

Static Analysis
❖ Goal: establish property R of (all of) a program P’s

executions. Examples:

❖ R = no run-time failures, or R = always terminates

❖ But: Reasoning via the semantics directly — testing — is
infeasible (i.e., infinite number of runs)

❖ Many static analysis algorithms/techniques: type
systems, dataflow analysis, abstract interpretation,
symbolic execution, constraint-based analysis, …

Soundness and Completeness
❖ Suppose a static analysis S attempts to prove property R

of program P. For example,

❖ R = program has no run-time errors (e.g., div-by-zero)

❖ S(P) = true implies P has no run-time errors

Soundness and Completeness
❖ Analysis S is sound iff

for all P,

❖ S(P) = true ⟹
P exhibits R

❖ Analysis S is complete
iff for all P,

❖ P exhibits R ⟹
S(P) = true

Exhibit R Do not exhibit R

Abstract Interpretation
❖ Rice’s Theorem: Any non-trivial property R is

undecidable (not both sound and complete)

❖ Abstract the behavior of the program, so that

❖ Proof about abstraction ⟹ proof about real thing

❖ Seminal papers: Cousot and Cousot, 1977, 1979

Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints: Most cited POPL paper ever!

e ::= n | e + e

❖ Abstract domain = {-,0,+,?}
❖ Need for ? arises because of the abstraction

Example

+ - 0 +

- - - ?

0 - 0 +

+ ? + +

Abstract semantics

↵(n) =

8
<

:

� n < 0
0 n = 0
+ n > 0

Abstraction function

Abstract Domains, and Semantics

❖ Many abstract domains developed

❖ Signs (previous slide), intervals [l,u] where l ≤ n ≤ u,
convex polyhedra, octagons, pentagons, …

❖ Abstract semantics for language constructs

❖ Basic constructs (sequence, assignment, etc.) easy

❖ Key challenge is loops: Need to ensure their analysis
terminates (idea: “widening”)

It’s All AI, but Details Matter

❖ All static analyses can be view as abstract interpretation

❖ Easy to relate to data flow analysis, symbolic
execution, typing (later), etc.

❖ But

❖ precise setup can differ significantly, with

❖ different precision/performance tradeoffs

Research Directions: Static Analysis
❖ Analyses for new properties

❖ Side-channel freedom, data-race freedom, proper resource
use, tainting, bias-freedom in ML-inferred algorithms, …

❖ Implementation methods,
❖ often to better trade off performance and precision: new/

faster abstract domains, new heuristics/search, connections
to machine learning methods, …

❖ Analyses for new applications

Some POPL’19 papers
❖ A true positives theorem for a static race detector, Nikos Gorogiannis, Peter W. O'Hearn,

Ilya Sergey

❖ Concerto: a framework for combined concrete and abstract interpretation, John Toman,
Dan Grossman

❖ A2I: abstract2 interpretation, Patrick Cousot, Roberto Giacobazzi, Francesco Ranzato

❖ An abstract domain for certifying neural networks, Gagandeep Singh, Timon Gehr,
Markus Püschel, Martin Vechev

❖ Context-, flow-, and field-sensitive dataflow analysis using synchronized Pushdown
systems, Johannes Späth, Karim Ali, Eric Bodden

❖ Fast and exact analysis for LRU caches, Valentin Touzeau, Claire Maïza, David Monniaux,
Jan Reineke

❖ Refinement of path expressions for static analysis, John Cyphert, Jason Breck, Zachary
Kincaid, Thomas Reps

Formal Verification
❖ This is a static analysis with a very specific property —

functional correctness

❖ Given program P and a spec φ relating inputs to
outputs. Prove that P meets the spec, ie ∀x. φ(x,P(x))

❖ Lots of approaches to do this based on ideas like
verification condition generation, weakest
preconditions, dependent types, etc.

❖ Differ in details. Notable: What logic used.

Program Synthesis

❖ Don’t prove the program — construct it automatically!

❖ Given a spec φ relating inputs to outputs. Find a
program P that meets the spec, ie ∀x. φ(x,P(x))

❖ Many methods being explored

❖ explicit search, symbolic search, hybrid search, type-
directed search, derivational synthesis, domain-
specific synthesis, …

Some POPL’19 papers
❖ Verification

❖ Decoupling lock-free data structures from memory reclamation for static analysis,
Roland Meyer, Sebastian Wolff

❖ Pretend synchrony: synchronous verification of asynchronous distributed programs,
Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian Stefan, Ranjit Jhala

❖ Synthesis

❖ Bayesian synthesis of probabilistic programs for automatic data modeling, Feras A.
Saad, Marco F. CusumanoTowner, Ulrich Schaechtle, Martin C. Rinard, Vikash K.
Mansinghka

❖ Structuring the synthesis of heap-manipulating programs, Nadia Polikarpova, Ilya
Sergey

❖ Hamsaz: replication coordination analysis and synthesis, Farzin Houshmand, Mohsen
Lesani

Type Systems
❖ A type system is

❖ a tractable syntactic method for proving
the absence of certain program behaviors
by classifying phrases according to the
kinds of values they compute. —Pierce

❖ They are good for
❖ Detecting errors (don’t add an integer and a string)
❖ Abstraction (hiding representation details)
❖ Documentation (tersely summarize an API)

❖ Designs trade off precision, efficiency, readability

Example Type System

“expression e has type τ”

⊢ e : τ

e ::= n | e + e
 | true | false | e = e
 | if e then e else e

τ ::= int | bool

means

Examples
⊢ true : bool
⊢ 1 + 2 : int
⊢ if 1 = 1 then true else false : bool
⊢ if … then 1 else false : ? error
⊢ if true then 1 else false : ? doesn’t check

Judgment

“true has type bool”

Rules of Inference

⊢ n : int

⊢ e1 : int ⊢ e2 : int
⊢ e1 + e2 : int

⊢ e : τ

⊢ true : bool ⊢ false : bool

⊢ e1 : τ ⊢ e2 : τ
⊢ e1 = e2 : bool

⊢ e : bool ⊢ e1 : τ ⊢ e2 : τ
⊢ if e then e1 else e2 : τ

Axioms

Premise

Conclusion

“expression e has type τ”means

e1 and e2
must have

same type τ

NB: Operational semantics often also expressed using rules of inference

Soundness
❖ If ⊢ e : τ then either

❖ e reduces to a value v of type τ, or e diverges*
❖ (for our example, values v are n, true, false)
❖ Reduction often defined as operational semantics

❖ Corollary: e will never get “stuck”
❖ i.e., never fails to reduce a non-value

❖ which constitutes a “run-time error”

❖ Proof by induction on typing derivation
*Divergence not possible in this simple language, but is for real ones!

Types and Static Analysis
❖ Relating to AI, a type is an abstract domain

❖ Proving P is well-typed is a static analysis of P
❖ By type safety, analysis is sound (but not complete)

❖ Viewed as a static analysis, types need not be present in
(or even defined by) the language

❖ Analysis becomes a kind of type inference

Properties by Typing
• Idea: Formulate an operational semantics for which

violation of a property R results in a stuck program. Eg,
❖ The program divides by zero, dereferences a null

pointer, or accesses an array out of bounds
❖ A thread attempts to dereference a pointer without

holding a lock
❖ The program uses tainted data (i.e., from an

adversary) where untainted data expected
❖ A program dereferences a dangling pointer

• Formulate a type system to enforce R; prove type safety

Example: ADS
❖ Define language extension for using

recursive hashes, the key ADS feature

❖ Define operational semantics that
models one-way nature of hashes,
with variants for verifier (client),
prover (server), and “ideal”

❖ Define type system that ensures
proper use of hashed values

❖ Prove security (in the style of type
safety): Only by finding a hash
collision can the server fool the client

Research Directions: Types
❖ Type systems have a strong connection to

formal logic: Ideas go back and forth

❖ Type system development is a central PL
activity

❖ add precision (e.g., dependent and
refinement types),

❖ prove new properties (e.g., abstraction,
free theorems),

❖ support new language constructs and/
or domain-specific properties

Some POPL’19 Papers
❖ Intersection types and runtime errors in the pi-calculus, Ugo Dal Lago,

Marc de Visme, Damiano Mazza, Akira Yoshimizu

❖ Sound and complete bidirectional type-checking for higher-rank
polymorphism with existentials and indexed types, Joshua Dunfield,
Neelakantan R. Krishnaswami

❖ Exceptional asynchronous session types: session types without tiers,
Simon Fowler, Sam Lindley, J. Garrett Morris, Sára Decova

❖ Polymorphic symmetric multiple dispatch with variance, Gyunghee Park,
Jaemin Hong, Guy L. Steele Jr., Sukyoung Ryu

❖ Abstracting extensible data types: or, rows by any other name, J. Garrett
Morris, James McKinna

Dynamic Reasoning

Dealing with False Alarms

❖ Recall Rice’s theorem: no sound and complete static
analysis (for interesting properties/languages)

❖ Type systems reject safe programs; static analyses
emit false alarms

❖ Idea: Alarm if property R is violated during execution

❖ Do so during testing, and/or during deployment
(e.g., dynamic typing)

Hybrid Reasoning
❖ Most type systems do not try to prove that an index to an

array is always within its bounds
❖ Compiler adds a dynamic check (monitor) if unsure
❖ Trades added precision with run-time overhead (and

chance of failure)
❖ Such type systems combine static and dynamic

reasoning

❖ Gradual typing: Hybrid support for static types (proved
once and for all) and dynamic types (checked at run-time)

Gradual Typing is Popular

Reticulated

Typed

Some POPL’19 Papers
❖ Adventures in monitorability: from branching to linear time and back again,

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, Karoliina
Lehtinen

❖ Modular quantitative monitoring, Rajeev Alur, Konstantinos Mamouras, Caleb
Stanford

❖ Gradual type theory, Max S. New, Daniel R. Licata, Amal Ahmed

❖ Gradual typing: a new perspective, Giuseppe Castagna, Victor Lanvin, Tommaso
Petrucciani, Jeremy G. Siek

❖ LWeb: information flow security for multitier web applications, James Parker,
Niki Vazou, Michael Hicks

❖ From fine- to coarse-grained dynamic information flow control and back, Marco
Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, Deian Stefan

So as you can see …

PL has a substantial toolbox of
mathematics and implementation
techniques that are widely applicable

With these: We can make it more
general, more elegant, more direct, more
efficient, more reliable, more secure …

Wow! Thanks for getting me up to date…

Recap: What is PL Research?
PL research views the programming
language as having a central place in
solving computing problems.

A PL researcher:
❖ develops general abstractions, or

building blocks, for solving problems,
or classes of problems,

❖ considers software behavior in a
rigorous and general way, e.g., to
prove that (classes of) programs enjoy
properties we want, and/or eschew
properties we don’t.

Check it

out!

