What is Programming Languages
Research?

Michael Hicks

University of Maryland

“uMm

A Conversation, circa 2014

l We need to hire in PL this year!

... have a nagging concern: Isn’t PL a
solved problem?

1 Um, no, there’s lots to do.

Really? What is it that you PL people are
working on?

i
ﬁ

i
ﬁ

We work on Programming Languages!

OK. but...

Don’t modern languages work pretty F 2=
well? And aren’t they often developed by k.

non-academics? *

Yes, but there are still big research

~f . contributions still to make.
gy
Doing what? h

[should start a blog ...

o o

Whatis PL. Research?

The Programming Languages

Enthusiast

HOME ABOUT THE PL ENTHUSIAST

+ Ranking CS Departments by The PL Enthusiast Turns One!

Publication Productivity, Interactively

BY MICHAEL HICKS | MAY 27, 2015 - 2:00 PM Jump to Comments

What is PL research and how is it
useful?

If you are in the world of programming languages research,
the announcement that UW had hired Ras Bodik away from Berkeley was

big news. Quoting UW’s announcement:

Ras’s arrival creates a truly world-class programming languages group in
UW CSE that crosses into systems, databases, security, architecture, and

other areas. Ras joins recent hires Emina Torlak, * Alvin Cheung, Xi Wang,

and Zach Tatlock, and senior faculty members Dan Grossman and Mike

Ernst.

And there’s also Luis Ceze, a regular publisher at PLDI, who ought to be
considered as part of this group. With him, UW CSE has 8 out of 54 faculty
with strong ties to PL. Hiring five PL-oriented faculty in three years, thus
making PL a significant fraction of the faculty’s expertise, is (highly) atypical.
What motivated UW CSE in its decision-making? I don’t know for sure, but I
suspect they see that PL-oriented researchers are making huge inroads on

important problems, bringing a useful perspective to unlock new results.

In this post, I argue why studying PL (for your PhD, Masters, or just for fun)
can be interesting and rewarding, both because of what you will learn, and
because of the increasing opportunities that are available, e.g., in terms of

impactful research topics and funding for them.

What is PL Research?

When your hear that someone’s research area is programming languages,
what do you think they do?

Search

Enter your email address to subscribe to
this blog and receive notifications of new
posts by email.

Join 2,299 other subscribers

Subscribe

on Evaluating

1 Evaluations (for Fuzz

= Hugo van der Sanden on

Evaluating F rical Evaluations

(for Fuzz Tes

PL research views the programming
language as having a central place in
solving computing problems.

A PL researcher:

+ develops general abstractions, or
building blocks, for solving problems,
or classes of problems,

+ considers software behavior 1n a
rigorous and general way, e.g., to

-

P

-

4

P

prove that (classes of) programs enjoy
oroperties we want, and/or eschew

properties we don’t.

Whatis PL. Research?

The Programming Languages
Enthusiast * The ethos of PL research is to not just

L)

HOME ABOUT THE PL ENTHUSIAST

find solutions to important problems,
but to find the best expression of those
solutions, typically in the form of a

kind of language, language extension,

rosts

BY MICHAEL HICKS | MAY 27, 2015 - 2:00 PM | Jump to Comments . 1 ﬂ;mnn e e 1 ° b 1 2
What i . 1brary, program analysis, Or
at is PL research and how is it - 5o P
llseflll? ,l‘in(?l\d:&i:\stkv ‘ :
\'Lpar::]g o s m :
» Teaching Programming Languages transfor atlon
= Teach t Scale with Clickers

If you are in the world of programming languages research,

= Teaching Programming Languages

the announcement that UW had hired Ras Bodik away from Berkeley was

big news. Quoting UW’s announcement:

X/
0’0

Ras’s arrival creates a truly world-class programming languages group in

UW CSE that crosses into systems, databases, security, architecture, and

o 5 o S D this blog and receive notifications of new
other areas. Ras joins recent hires Emina Torlak, * Alvin Cheung, Xi Wang,

The hope is for simple, understandable
Ttk iy s G s solutions that are also general: By

And there’s also Luis Ceze, a regular publisher at PLDI, who ought to be

iy v e being part of (or acting at the level of)

with strong ties to PL. Hiring five PL-oriented faculty in three years, thus

ent C
What motivated UW CSE in its decision-making? I don’t know for sure, but I = Matt D. on Sof

making PL a significant fraction of the faculty’s expertise, is (highly) atypical.

suspect they see that PL-oriented researchers are making huge inroads on Programmi

a language, they apply to many (and
many sorts of) programs, and
possibly many sorts of problems.

important problems, bringing a useful perspective to unlock new results.

In this post, I argue why studying PL (for your PhD, Masters, or just for fun)
can be interesting and rewarding, both because of what you will learn, and
because of the increasing opportunities that are available, e.g., in terms of

impactful research topics and funding for them.

What is PL Research?

When your hear that someone’s research area is programming languages, e
what do you think they do?

= Hugo van der Sanden on

T —— T

Example: Improving Program Efficiency

* Quicksort in Haskell
sort :: (Ord a) => [a] —> [a]
sort (x:xs) = lesser ++ Xx:greater
where lesser sort [y | y <= xs, y < xl

greater = sort [y | y <- xs, y >= x]
sort = []
5 — E—— |
+ Parallelize it
sort :: (Ord a) => [a] —> [a]

sort (x:xs) = force greater "par
(force lesser "pseq (lesser ++ x:greater))
where lesser = sort [y | vy <- xs, y < X]
greater = sort [y | y <- xs, y >= x]
sort _ = []

Thought Process

Two halves of input list can be constructed in parallel
OK because each activity is independent

This should be a win for small XS on n>1 cores
assuming par and pseq manage parallel resources
efficiently

IMPROVING IMPLICIT PARALLELISM

Josk ManveL CALDERON TrILLA

ABSTRACT

We propose a new technique for exploiting the inherent parallelism
in lazy functional programs. Known as implicit parallelism, the goal
of writing a sequential program and having the compiler improve
its performance by determining what can be executed in parallel has
been studied for many years. Our technique abandons the idea that a
compiler should accomplish this feat in ‘one shot” with static analysis
and instead allow the compiler to improve upon the static analysis
using iterative feedback.

We demonstrate that iterative feedback can be relatively simple
when the source language is a lazy purely functional programming
language. We present three main contributions to the field: the auto-
matic derivation of parallel strategies from a demand on a structure,
and two new methods of feedback-directed auto-parallelisation. The
first method treats the runtime of the program as a black box and uses
the ‘wall-clock’ time as a fitness function to guide a heuristic search
on bitstrings representing the parallel setting of the program. The
second feedback approach is profile directed. This allows the compiler
to use profile data that is gathered by the runtime system as the pro-
gram executes. This allows the compiler to determine which threads
are not worth the overhead of creating them.

Our results show that the use of feedback-directed compilation can
be a good source of refinement for the static analysis techniques that
struggle to account for the cost of a computation. This lifts the burden
of ‘is this parallelism worthwhile?” away from the static phase of
compilation and to the runtime, which is better equipped to answer
the question.

Doctor of Philosophy

University of York
Computer Science

September 2015

Thought Process, Generalized

* Automatically pick components
of a program to parallelize

* Choose those such that the
meaning of the program is
preserved, and the performance
is likely to improve.

PL research lifts problems
to the level of the language,
turning a one-off solution
into a general one

Example: Authenticated Data Structure

Queries

>

Responses

Trusted Client Untrusted Server
Not much storage Plenty of storage

Merkle tree (1988): Complete tree, where server
answers queries with evidence the answer is correct

Since then, separate papers on: sets, dictionaries, range
trees, graphs, skip lists, B-trees, hash trees, ...

ADS Construction,

Authenticated Data Structures, Generically

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi
University of Maryland, College Park, USA

Abstract
An authenticated data structure (ADS) is a data structure whose
operations can be carried out by an untrusted prover, the results of
which a verifier can efficiently check as authentic. This is done
by having the prover produce a compact proof that the verifier
can check along with each operation’s result. ADSs thus support
outsourcing data maintenance and processing tasks to untrusted
servers without loss of integrity. Past work on ADSs has focused
on particular data structures (or limited classes of data structures),
one at a time, often with support only for particular operations.
This paper presents a generic method, using a simple exten-
sion to a ML-like functional programming language we call \e
(lambda-auth), with which one can program authenticated oper-
ations over any data structure defined by standard type construc-
tors, including recursive types, sums, and products. The program-
mer writes the data structure largely as usual and it is compiled to
code to be run by the prover and verifier. Using a formalization of
Ae we prove that all well-typed e programs result in code that is
secure under the standard cryptographic assumption of collision-
resistant hash functions. We have implemented Ae as an extension
to the OCaml compiler, and have used it to produce authenticated
versions of many interesting data structures including binary search
trees, red-black+ trees, skip lists, and more. Performance experi-
ments show that our approach is efficient, giving up little compared
to the hand-optimized data structures developed previously.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages): Language Constructs and Features—Data types and struc-
tures

General Terms Sccurity, Programming Languages, Cryptogra-
phy

1. Introduction

Suppose data provider would like to allow third parties to mirror its
data, providing a query interface over it to clients. The data provider
wants to assure clients that the mirrors will answer queries over the
data truthfully, even if they (or another party that compromises a
mirror) have an incentive to lie. As examples, the data provider
might be providing stock market data, a certificate revocation list,
the Tor relay list, or the state of the current Bitcoin ledger [22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post onservers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm. org

POPL 14, January 22-24, 2014, San Diego, CA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. .. $15.00.
http://dx.doi.org/10.1145/2535838.2535851

Such a scenario can be supported using authenticated data
structures (ADS) [5, 24, 31]. ADS computations involve two roles,
the prover and the verifier. The mirror plays the role of the prover,
storing the data of interest and answering queries about it. The
client plays the role of the verifier, posing queries to the prover
and verifying that the returned results are authentic. At any point
in time, the verifier holds only a short digest that can be viewed as
summarizing the current contents of the data: an authentic copy of
the digest is provided by the data owner. When the verifier sends
the prover a query, the prover computes the result and returns it
along with a proof that the returned result is correct; both the proof
and the time to produce it are linear in the time to compute the
query result. The verifier can attempt to verify the proof (in time
linear in the size of the proof) using its current digest, and will
accept the returned result only if the proof verifies. If the verifier is
also the data provider, the verifier may also update its data stored
at the prover; in this case, the result is an updated digest and the
proof shows that this updated digest was computed correctly. ADS
computations have two properties. Correctness implies that when
both parties execute the protocol correctly, the proofs given by the
prover verify correctly and the verifier always receives the correct
result. Security' implies that a computationally bounded, malicious
prover cannot fool the verifier into accepting an incorrect result.

Authenticated data structures can be traced back to Merkle [18];
the well-known Merkle hash tree can be viewed as providing an
authenticated version of a bounded-length array. More recently, au-
thenticated versions of data structures as diverse as sets [23, 27],
dictionaries [1, 12], range trees [16], graphs [13], skip lists [11, 12],
B-trees [21], hash trees [26], and more [15] have been proposed. In
cach of these cases, the design of the data structure, the supporting
operations, and how they can be proved authentic have been recon-
sidered from scratch, involving a new, potentially tricky proof of
security. Arguably, this state of affairs has hindered the advance-
ment of new data-structure designs as previous ideas are not easily
reused or reapplied. We believe that ADSs will make their way into
systems more often if they become easier to build.

This paper presents Ae (pronounced “lambda auth™), a language
for programming authenticated data structures. \e represents the
first generic, language-based approach to building dynamic authen-
ticated data structures with provable guarantees. The key observa-
tion underlying Ae’s design is that, whatever the data structure or
operation, the computations performed by the prover and verifier
can be made structurally the same: the prover constructs the proof
at key points when executing a query, and the verifier checks a proof
by using it to “replay” the query, checking at each key point that the
computation is self-consistent.

Ae implements this idea using what we call authenticated types,
written o7, with coercions auth and unauth for introducing and
climinating values of an authenticated type. Using standard func-

"This property is sometimes called soundness but we eschew this term to
avoid confusion withits standard usage in programming languages.

eneralized

* Simple language extension,
data structure written mostly
as usual. Different code
generated for client and server

“ Expresses many prior ADSs

“ Proved that type correctness
implies authenticity

“ Adversary can only fool
client by inverting one-wa

hash

One proof for all!

Elements of PL. Research

Design: What feature, analysis, transformation, etc.?

Mathematics and proof: What does it mean? Why is
what you are doing correct?

Implementation: How do you implement this
language, analysis, transtormation ... ?

Empirical evaluation: Does the design/implementation
work (most of the time)?

Pl. Research Toolbox

Language specification (what features, syntax)
Semantics (operational, denotational)

Static reasoning (logics, types, static analysis)
Dynamic reasoning (tests, monitors, profiles)

Implementation (compilation, interpretation, services)

What's Next: A Tour

A

[t is probably wrong (hopefully only a little)

Disclaimer: This is my perspective

[t is not comprehensive

But it will give you some sense of the field

Implementation

Machines Don’t Run our Programs

fib:
mov edx, [esp+8]

8B542408 83FA0077 06B80000 0000C383 cmp edx, 0

ja @f

FA027706 B8010000 00C353BB 01000000 mov eax, 0
B9010000 008D0419 83FA0376 078BD989 =
C14AEBF1 5BC3 | e

cmp edx, 2
ja @Qf

mov eax, 1
ret

@@:

push ebx
mov ebx, 1
mov ecx, 1

@@:
lea eax, [ebx+ecx]
cmp edx, 3
jbe @f
mov ebx, ecx
mov ecx, eax
dec edx
jmp @b

@aQ:
pop ebx
ret

T — —

Other Programs Make it Possible

Three main implementation strategies:
Interpreter: Runs any program in language O

Compiler: Converts a program in language Q to one in
language L, for which you have a machine or interpreter

Hybrid: A just-in-time (JIT) compiler compiles the
program as 1t interprets it

Run-time Services

Various components support language abstractions
Garbage collector frees unneeded memory
Thread system runs different threads

Libraries implement key (parts of) language
abstractions (e.g., strings, numbers, networking)

Research Directions

Compiler/interpreter optimization: Register allocation, memory hierarchy
optimization, use of special hardware (e.g., GPUs), partial evaluation, ...

Garbage collection algorithms: Parallel, concurrent, incremental, space-
efficient, real-time, hybrid, ...

JIT implementation & optimization: fast tracing/ profiling, on-stack
replacement, ...

Domain-specific techniques: Probabilistic programming, neural nets, ...
The POPL'19 paper (language implementation not POPL’s main theme):

Efficient parameterized algorithms for data packing, Krishnendu
Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati, Andreas
Pavlogiannis

Formal Semantics

To work with programs, we must know what they mean
Semantics comes from the Greek semaino, “to mean”

Most language semantics are informal. But we can do
better by making them formal. Two main styles:

Operational semantics (like an interpreter)
Denotational semantics (like a compiler)

Formal semantics is a key PL tool

Operational Semantics

Evaluation is described as transitions (aka reductions) in
some abstract machine; a definitional interpreter

The meaning of a program is its fully reduced form

let x=2 in x+3 — 243 — 5
Can model many programming language features

Concurrency, non-determinism, run-time cost, higher-
order functions, probabilistic choice, ...

This is the most popular style of semantics

Denotational Semantics

The meaning of a program is defined as a mathematical
object, e.g., a function or number

Typically define an interpretation function []

Meaning of program fragment given by meaning of its
components; [el+e2] =[el] + [e2]

Gets interesting when we try to find denotations of
loops or recursive functions, cyclic heap state

Particularly usetul tor equational reasoning

Research Directions

PL researchers frequently use operational semantics to
model new languages and language features

Or model features in a new way, to facilitate some
other advance (e.g., proof of a property)

Also, new techniques for semantics modeling,
particularly for domain-specific computations

Some POPL19 Papers

Skeletal semantics and their interpretations, Martin Bodin, Philippa Gardner, Thomas
Jensen, Alan Schmitt

A calculus for Esterel: if can, can. if no can, no can. Spencer P. Florence, ShuHung You,
Jesse A. Tov, Robert Bruce Findler

Familial monads and structural operational semantics, Tom Hirschowitz

Game semantics for quantum programming, Pierre Clairambault, Marc De Visme,
Glynn Winskel

Exploring C semantics and pointer provenance, Kayvan Memarian, Victor B. F. Gomes,
Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, Peter Sewell

ISA semantics for ARMv8a, RISCyv, and CHERIMIPS, Alasdair Armstrong, Thomas
Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth
Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel
Krishnaswami, Peter Sewell

Static Reasoning

Static Analysis

Goal: establish property R of (all of) a program P’s
executions. Examples:

R = no run-time failures, or R = always terminates

But: Reasoning via the semantics directly — testing — is
infeasible (i.e., infinite number of runs)

Many static analysis algorithms/techniques: type
systems, dataflow analysis, abstract interpretation,
symbolic execution, constraint-based analysis, ...

Soundness and Completeness

Suppose a static analysis S attempts to prove property R
of program P. For example,

R = program has no run-time errors (e.g., div-by-zero)

S(P) = true implies P has no run-time errors

Soundness and Completeness

Analysis S 1s sound iff
for all P,

SE = e —
P exhibits R

Analysis S is complete
iff for all P,

P exhibits R =
S(P) = true

Exhibit R

Do not exhibit R

Programs with no error

Tool C
(neither)

Programs with an error

Tool B (coTpIete)

Abstract Interpretation

Rice’s Theorem: Any non-trivial property R is
undecidable (not both sound and complete)

L Abstract the behavior of the program, so that

Proof about abstraction = proof about real thing

Seminal papers: Cousot and Cousot, 1977, 1979

Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints: Most cited POPL paper ever!

Example

Abstract semantics

= £ - () F
o) = = :)
o= ()
, , 6 . 0
Abstraction function
B

Abstract domain = {-,0,+,?}
Need for ? arises because of the abstraction

Abstract Domains, and Semantics

Many abstract domains developed

Signs (previous slide), intervals [[,u] where [< n < u,
convex polyhedra, octagons, pentagons, ...

Abstract semantics for language constructs
Basic constructs (sequence, assignment, etc.) easy

Key challenge is loops: Need to ensure their analysis
terminates (idea: “widening”)

It’s All Al, but Details Matter

All static analyses can be view as abstract interpretation

Easy to relate to data flow analysis, symbolic
execution, typing (later), etc.

But
precise setup can differ significantly, with

different precision/performance tradeoffs

Research Directions: Static Analysis

Analyses for new properties

Side-channel freedom, data-race freedom, proper resource
use, tainting, bias-freedom in ML-inferred algorithms, ...

Implementation methods,

often to better trade off performance and precision: new /
faster abstract domains, new heuristics / search, connections
to machine learning methods, ...

Analyses for new applications

Some POPL’19 papers

A true positives theorem for a static race detector, Nikos Gorogiannis, Peter W. O'Hearn,
Ilya Sergey

Concerto: a framework for combined concrete and abstract interpretation, John Toman,
Dan Grossman

AZ2l: abstract? interpretation, Patrick Cousot, Roberto Giacobazzi, Francesco Ranzato

An abstract domain for certifying neural networks, Gagandeep Singh, Timon Gehr,
Markus Piischel, Martin Vechev

Context-, flow-, and field-sensitive dataflow analysis using synchronized Pushdown
systems, Johannes Spath, Karim Ali, Eric Bodden

Fast and exact analysis for LRU caches, Valentin Touzeau, Claire Maiza, David Monniaux,
Jan Reineke

Refinement of path expressions for static analysis, John Cyphert, Jason Breck, Zachary
Kincaid, Thomas Reps

Formal Verification

This is a static analysis with a very specific property —
functional correctness

Given program P and a spec ¢ relating inputs to
outputs. Prove that P meets the spec, ie ¥Vx. d(x,P(x))

Lots of approaches to do this based on ideas like
verification condition generation, weakest
preconditions, dependent types, etc.

Differ in details. Notable: What logic used.

Program Synthesis

Don’t prove the program — construct it automatically!

Given a spec ¢ relating inputs to outputs. Find a
program P that meets the spec, ie Vx. d(x,P(x))

Many methods being explored

explicit search, symbolic search, hybrid search, type-
directed search, derivational synthesis, domain-
specific synthesis, ...

Some POPL’19 papers

Verification

Decoupling lock-free data structures from memory reclamation for static analysis,
Roland Meyer, Sebastian Woltf

Pretend synchrony: synchronous verification of asynchronous distributed programs,
Klaus v. Gleissenthall, Rami Gokhan Kici, Alexander Bakst, Deian Stefan, Ranjit Jhala

Synthesis

Bayesian synthesis of probabilistic programs for automatic data modeling, Feras A.
Saad, Marco F. CusumanoTowner, Ulrich Schaechtle, Martin C. Rinard, Vikash K.
Mansinghka

Structuring the synthesis of heap-manipulating programs, Nadia Polikarpova, Ilya
Sergey

Hamsaz: replication coordination analysis and synthesis, Farzin Houshmand, Mohsen
Lesani

Type Systems

* Atype system is Types and

Programming

“ a tractable syntactic method for proving Languages
the absence of certain program behaviors
by classifying phrases according to the
kinds of values they compute. — Pierce

“ They are good for

“ Detecting errors (don’t add an integer and a string)
« Abstraction (hiding representation details)

* Documentation (tersely summarize an API)

“ Designs trade off precision, efficiency, readability

Example Type System

ex=nle+e T :=1nt | bool
true | false | e=¢
if e then e else ¢

Judoment ' = e

means
“expression ¢ has type 7”
Examples P e
— true : bool “true has type bool”
— 1+ 2 :1nt

— if 1 =1 then true else false : bool
if ... then 1 else false : ? error

— if true then 1 else false : ? doesn’t check

Rules of Inference

—e:1 | means “expression ¢ has type 1”

Axioms
1 :int — true : bool — false : bool
Premise | el:int F e2:int —el:T et) o
Conclusion el +e2 :int el =e2 : bool
el and e2
must have
— e : bool el el same type T

— if ethenel elsee2 : t

NB: Operational semantics often also expressed using rules of inference

Soundness

If - e: T then either

e reduces to a value v of type 7, or e diverges”
(for our example, values v are 7, true, false)

Reduction often defined as operational semantics

Corollary: e will never get “stuck”

i.e., never fails to reduce a non-value

which constitutes a “run-time error”

Proof by induction on typing derivation

*Divergence not possible in this simple language, but is for real ones!

T'ypes and Static Analysis

Relating to Al, a type is an abstract domain

Proving P is well-typed is a static analysis of P

By type safety, analysis is sound (but not complete)

Viewed as a static analysis, types need not be present in
(or even defined by) the language

Analysis becomes a kind of type inference

Propertes by Typing

Idea: Formulate an operational semantics for which

violation of a property R results in a stuck program. Eg,
The program divides by zero, dereferences a null
pointer, or accesses an array out of bounds
A thread attempts to dereference a pointer without
holding a lock
The program uses tainted data (i.e., from an
adversary) where untainted data expected
A program dereferences a dangling pointer

Formulate a type system to enforce R; prove type satety

Example: ADS

Exprse = v |letx =e;ines | vy v2 | case v vy vy

| prj, v | prj, v | unroll v | auth v | unauth v

<L m, auth v > —; LT >
< m, unauth v > — LT >
& m, auth v > —p K m,(hash (v),v) >
& m,unauth (h,v) > —p <KLwQ[(v)], v>
< m, auth v > —v K m,hashv >

hash S = h

< [so] @7, unauth h > —v <K 7,80 >

I'Fv:m I'Fv:m
I'Finj, v:7 + 7 I'Finj, v:7 + 7

I'Fv:m +m I'tvy:m — 71 I'Fove im0 =71
I'Fcasevwvi v : 7

I'Fov:r I'Fov:er
'+ auth v : o1 I' = unauth v : 1

T — T

Define language extension for using
recursive hashes, the key ADS feature

Define operational semantics that
models one-way nature of hashes,
with variants for verifier (client),
prover (server), and “ideal”

Define type system that ensures
proper use of hashed values

Prove security (in the style of type
safety): Only by finding a hash
collision can the server fool the client

Research Directions: Types

Type systems have a strong connection to
formal logic: Ideas go back and forth

Type system development is a central PL
activity

add precision (e.g., dependent and
refinement types),

prove new properties (e.g., abstraction,
free theorems),

support new language constructs and /
or domain-specific properties

arXiv:1802.03292v1 [cs.LO] 7 Feb 2018

Mathematical Logic in Computer Science

Assaf Kfoury

June 1, 2017 (last update: February 1, 2018)

1 Introduction

Others have written about the influences of mathematical logic on computer science. I single out two
articles, which I have read and re-read over the years:

1. “Influences of Mathematical Logic on Computer Science,” by M. Davis [29],

2. “On the Unusual Effectiveness of Logic in Computer Science,” by J. Halpern, R. Harper, N.
Immerman, P. Kolaitis, M. Vardi, and V. Vianu [60].

The first of these two articles takes stock of what had already become a productive cross-fertilization
by the mid-1980’s; it is one of several interesting articles of historical character by M. Davis (27, 28, 30]
which all bring to light particular aspects of the relationship between the two fields. The second article
gives an account of this relationship in five areas of computer science by the year 2000. More on the
second article, denoted by the acronym UEL, in Section 3 below.

I wanted to write an addendum to the two forementioned articles, in the form of a timeline of significant
moments in the history relating the two fields, from the very beginning of computer science in the
mid-1950’s till the present. The result is this paper. One way of judging what I produced is to first
read the penultimate section entitled ‘Timeline’, Section 5 below, and then go back to earlier sections
whenever in need of a justification for one of my inclusions or one of my omissions.

Disclaimer: This is not a comprehensive history, not even an attempt at one, of mathematical logic
in computer science. This is a personal account of how I have experienced the relationship between
the two fields since my days in graduate school in the early 1970’s. So it is a personal perspective and
I expect disagreements.

Notation and Organization: I use italics for naming areas and topics in mathematical logic and
computer science, for book titles, and for website names; I do not use italics for emphasis. Single
quotes are exclusively for emphasis, and double quotes are for verbatim quotations. I pushed all
references and, as much as possible, all historical justifications into footnotes.

Acknowledgments: I updated the text whenever I received comments from colleagues who took
time to read earlier drafts. Roger Hindley, Aki Kanamori, and Pawel Urzyczyn provided documents
of which I was not aware. I corrected several wrong dates and wrong attributions, and made several
adjustments, some minor and some significant, after communicating with Martin Davis, Peter Gacs,
Michael Harris, Roger Hindley, Aki Kanamori, Phokion Kolaitis, Leonid Levin, Pawel Urzyczyn, and
Moshe Vardi. I owe special thanks to all of them.

Some POPL19 Papers

Intersection types and runtime errors in the pi-calculus, Ugo Dal Lago,
Marc de Visme, Damiano Mazza, Akira Yoshimizu

Sound and complete bidirectional type-checking for higher-rank
polymorphism with existentials and indexed types, Joshua Dunfield,
Neelakantan R. Krishnaswami

Exceptional asynchronous session types: session types without tiers,
Simon Fowler, Sam Lindley, J. Garrett Morris, Sdra Decova

Polymorphic symmetric multiple dispatch with variance, Gyunghee Park,
Jaemin Hong, Guy L. Steele Jr., Sukyoung Ryu

Abstracting extensible data types: or, rows by any other name, J. Garrett
Morris, James McKinna

Dynamic Reasoning

Dealing with False Alarms

Recall Rice’s theorem: no sound and complete static
analysis (for interesting properties/languages)

Type systems reject sate programs; static analyses
emit false alarms

Idea: Alarm if property R is violated during execution

Do so during testing, and / or during deployment
(e.g., dynamic typing)

Hybrid Reasoning

Most type systems do not try to prove that an index to an
array is always within its bounds
Compiler adds a dynamic check (monitor) if unsure

Trades added precision with run-time overhead (and
chance of failure)

Such type systems combine static and dynamic
reasoning

Gradual typing: Hybrid support for static types (proved
once and for all) and dynamic types (checked at run-time)

Gradual Typing is Popular

@ Dart "%%

3 flow- -typed

Some POPL19 Papers

Adventures in monitorability: from branching to linear time and back again,
Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ing6lfsdéttir, Karoliina
Lehtinen

Modular quantitative monitoring, Rajeev Alur, Konstantinos Mamouras, Caleb
Stanford

Gradual type theory, Max S. New, Daniel R. Licata, Amal Ahmed

Gradual typing: a new perspective, Giuseppe Castagna, Victor Lanvin, Tommaso
Petrucciani, Jeremy G. Siek

LWeb: information flow security for multitier web applications, James Parker,
Niki Vazou, Michael Hicks

From fine- to coarse-grained dynamic information flow control and back, Marco
Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, Deian Stefan

&

50 as you can see ...

PL has a substantial toolbox of
mathematics and implementation
techniques that are widely applicable

With these: We can make it more
general, more elegant, more direct, more
efficient, more reliable, more secure ...

Wow! Thanks for getting me up to date...

Recap: What is PL. Research?

The Programming Languages

Enthusiast

ABOUT THE PL ENTHUSIAST

HOME

A

« Ranking CS Departments by o Search

s 8
/rical Evaluations
ag)
gurity is
~sue

aming Languages

Publication Productivity, Interactiy

BY MICHAEL HICKS | MAY 27, 2015 - 2:00

What is PL resear”
useful?

rogramming

Ifyou 2~

QO™

UW CSE that crosses into systems, datt .
this blog and receive notifications of new

other areas. Ras joins recent hires Emin 5 .
posts by email.
and Zach Tatlock, and senior faculty me i
Ernst. Join 2,299 other subscribers

And there’s also Luis Ceze, a regular publis,

considered as part of this group. With him,
with strong ties to PL. Hiring five PL-orientt
making PL a significant fraction of the facult
What motivated UW CSE in its decision-mak
suspect they see that PL-oriented researchers

important problems, bringing a useful perspe

Atobe
of 54 faculty

& years, thus

ss (highly) atypical.

¢ know for sure, but I

king huge inroads on

0 unlock new results.

In this post, I argue why studying PL (for your /hD, Masters, or just for fun)

can be interesting and rewarding, both because of what you will learn, and

because of the increasing opportunities that are available, e.g., in terms of

impactful research topics and funding for them.

What is PL Research?

When your hear that someone’s research area is programming languages,

what do you think they do?

Subscribe

ming Lang

ks on Evaluating

aluations (for Fuzz

= Hugo van der Sanden on

cal Evaluations

—

PL research views the programming
language as having a central place in
solving computing problems.

A PL researcher:

+ develops general abstractions, or
building blocks, for solving problems,
or classes of problems,

+ considers software behavior 1n a
rigorous and general way, e.g., to
prove that (classes of) programs enjoy

P

properties we want, and/or eschew

4

properties we don'’t.

