
LiTEfoot: Ultra-low-power Localization using Ambient Cellular
Signals

Nakul Garg∗, Aritrik Ghosh∗, Nirupam Roy
{nakul22, aghosh98, niruroy}@umd.edu
University of Maryland, College Park

ABSTRACT
In this paper, we introduce a low-power wide-area cellular
localization system, called LiTEfoot. The core architecture of
the radio carefully applies non-linear transform of the entire
cellular spectrum to obtain a systematic superimposition of the
synchronization signals at the baseband. The system develops
methods to simultaneously identify all the base stations that are
active at any cellular band from the transformed signal. The radio
front end uses a simple envelop detector to realize the non-linear
transformation. We build on this low-power radio to implement
a self-localization system leveraging ambient 4G-LTE signals. We
show that the core system can also be extended to other cellular
technologies like 5G-NR and NB-IoT. The prototype achieves a
median localization error of 22 meters in urban areas and 50 meters
in rural areas. It can sense a 3GHz wideband LTE spectrum in 10ms
using non-linear intermodulation while consuming 0.9 mJ of energy
for a PCB-based implementation and 40 𝜇J for CMOS simulation.
In other words, LiTEfoot tags can last for 11 years on a coin cell
while continuously estimating location every 5 seconds. We believe
that LiTEfoot will have widespread implications in city-scale asset
tracking and other location-based services. The radio architecture
can be useful beyond low-power self-localization and can find
application in synchronization and communication on battery-less
platforms.
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Figure 1: LiTEfoot- an ultra-low-power wireless tracker next
to a US quarter for scale.

1 INTRODUCTION
Cargo theft is one of the major perils to supply chains accounting
up to $30 billion in cost per year to transport and retail businesses
[41, 105] adding to inflation and economic crisis. Existing asset
tracking solutions, that focus on large containers or transport
vehicles for cost-effectiveness [4, 63], remains mostly ineffective
as the most common method is ‘pilfering’ or stealing a part of the
cargo than the entire shipment. Organized crime proliferates in
this space leveraging the gap in technology for long-distance asset
tracking at smaller granularity and a lower cost. On the other hand,
a diverse set of other applications await a maintenance-free solution
for wide-area location tracking, including livestock monitoring,
warehouse logistics, and locating children, pets, and people with
mental illness [26, 77]. A location tracking tag of size of a coin
cell that remains operational for years and capable of monitoring
self-location across all roads in the country with little infrastructure
cost seems to be a fitting technological answer. But is it even possible
to meet all these requirements in a practical asset tracking solution?

Asset tracking, geofencing, and location-based services are a major
part of the growing industry that targets smart commercial and
personal application spaces [27]. The solutions generally consist
of a tag that contains a localization module to estimate its current
location and a communication module to periodically update
the location status to the monitoring server [109]. A significant
majority of the solutions relies on Global Positioning System (GPS)
for location estimation for its infrastructure-free self-localization
[17, 36]. However, GPS tracking over a long period of time is
challenging due to its high power consumption. [9] A GPS-enabled
tag, therefore, often comes with sizable battery pack making its
overall form factor to be similar to a smartphone and weights over
200 gram [11], which makes it challenging to incorporate in a
low-power device. Moreover, traditional GPS-based localization
methods, while effective in open-sky environments, falter in urban
canyons and dense cities with skyscrapers [14].
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The need for small, low-cost, and low-power alternatives for asset
tracking has led to the next dominant techniques for commercial
tags which implements proximity-based localization [6, 94]. In
this design the tag can not self-localize, rather it uses a short
range communication with nearby infrastructure which in turn
estimates the location of the tag [44]. For instance, location of
an RFID-enabled tag can be predicted when it comes in range
of RFID readers deployed at specific locations in a building [18].
Naturally, the infrastructure costs of such solutions are suitable for
small controlled environments. Apple AirTag expands the scope
of proximity-based location using the ‘Find My’ network of Apple
as the infrastructure [42]. Here the tag basically functions as a
Bluetooth Low Energy (BLE) beacon to interact with mobile device
in range and the phone updates the tag’s approximate location
on the server using its own GPS. Unfortunately, its location fixes
are unpredictable across long distances as it is conditioned on the
presence of a GPS-enabled Apple device with in a few meters of
range [44]. While the proximity-based location techniques can
lead to a very low-power and small tags for the simplicity of
functionality, it offloads the responsibility to infrastructure. The
lack of standalone location estimate makes it infeasible for asset
tracking over large geographic regions.

Global coverage of cellular infrastructure has opened an interesting
possibility of wide-area localization without investing on dedicated
infrastructure. Popularity of 4G-LTE and enthusiasm around 5G
networks have led to a widespread cellular coverage around the
world. In the United States, mobile networks cover more than 98%
of the population and over 90% of road networks, as reported by
the FCC [23]. Several research works [16, 24, 33] have explored
this opportunity for nation-wide localization techniques [9] and
multiple commercial products are available cellular localization on
smartphones and with tags [22]. However, these systems encounter
following two critical challenges in adapting cellular localization
on a low-power platform.

(a) First challenge is the latency and computational overhead
of scanning wide bandwidth. Active cellular bands are spread
across several GHz of bandwidth and naturally, nearby cells use
different bands. A self-localizing tag aiming to identify signals
from all available cells will require to scan the entire bandwidth.
Low-cost narrow-band radios operating in tune-and-capture mode
can take tens of minutes to complete one round of scanning and
not applicable to dynamic scenarios where the tag can move to
different cells within that time [88]. A real-time localization of a tag
moving on a vehicle in an urban area will require the tag to scan the
spectrum within a few milliseconds. (b) The second challenge is the
downconversion of the passband signal for synchronization and
cell identification. Traditional radios require power-hungry local
oscillators at high-frequencies and sophisticated mixing hardware
to convert the signal to baseband before applying correlation on
synchronization signals [39, 79]. This operation can itself takes tens
of milliWatts of power, which makes the tag last for only a few
hours on a battery source like a coin cell.

In this paper, we proposed an architecture for passive cellular
localization within the power limit of 1 millijoule and with
location update the latency of around 10 milliseconds. This radio

architecture exploits the core opportunity from the non-linear
transform of the cellular downlink broadcast signals.We explore the
behavior of the subcarriers in the cellular synchronization signals
under this transformation and showmethods to recover cell identity
from the systematic superposition of intermodulated frequencies,
which we call spectrum folding. Our low-power radio frontend
uses a simple envelope detector to realize spectrum folding and
onboard algorithms can identify any number of cells operating
at any part of the 3GHz spectrum. We build on radio to realize a
localization system leveraging the ambient 4G-LTE signals. We call
this system LiTEfoot. The prototype achieves a median localization
error of 22 meters in urban areas and 50 meters in rural areas. It
senses a 3GHz wideband LTE spectrum in 10ms using non-linear
intermodulation, consuming 40 J of energy per location inference in
CMOS simulation, and 0.8 mJ in our PCB prototype. This results in
a 625× reduction in energy consumption for the CMOS design and
a 27× reduction for the PCB prototype, compared to GPS, which
consumes 25 mJ per location inference [95].

LiTEfoot presents a new class of low-power receivers tailored to
cellular synchronization signals (see Fig 1). We aim to offer a
solution that ensures broad coverage and operates on minimal
energy, opening up possibilities for applications requiring extensive
geographic reach and energy efficiency. The core ideas of spectrum
folding and the low-power radio can be adapted for applications
in various low-power location-based services and also for channel
synchronization battery-less communication platforms.

The use of non-linearity for implicit signal mixing or passive
downconversion is a proven technique. It has been explored
extensively in various low-power applications to replace
power-hungry oscillators in radio receivers [60, 61, 73, 98, 102].
Notably, MIXIQ [79] proposed a low-power 802.11ax receiver
that modifies OFDM packets to send a helper signal, preserving
IQ data for such implicit baseband downconversion. Saiyan
[39] demonstrated a low-power, long-range receiver for
frequency-modulated signals. These lines of work have shown
remarkable power efficiency when custom base stations are
available to broadcasting specially designed signals. Our work
LiTEfoot is unique in leveraging non-linear transform with
unmodified cellular signals. The core insight lies in a theoretical
analysis of certain auto-/cross-correlation properties that survive
non-linear intermodulation and baseband superimposition of
a signal. LiTEfoot’s system design leverages this insight for
identifying standard cellular synchronization signals (PSS and
SSS) despite their noisy baseband mixture after the non-linear
transformation. This novel architecture enables a single-antenna
ultra-low-power radio, made from simple off-the-shelf components,
to simultaneously detect multiple cell towers’ identity without
requiring to decode the cellular packets. By allowing non-linearity
to intermodulate and fold the spectrum to baseband, LiTEfoot
sacrifices IQ data but gains the ability to sense the entire 3 GHz
LTE spectrum in just 10 ms, a capability crucial for low-power
wide-area localization and wide-band spectrum monitoring as well.

While several opportunities exist in research and application, this
paper focuses on developing the core capabilities and assessing the
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limits of the systems. To this end, we have made the following three
specific contributions at the current stage of this project:
• A novel method for signal searching over a wide frequency
spectrum. We presented the theoretical foundation and the
practical implementation for the non-linear transformation
of spectrum and synchronization signal detection on the
transformed narrow-band signal.

• Development of a signal strength multilateration-based
localization with the low-power radio.

• Prototype development and evaluation of the system with
real-world existing 4G-LTE infrastructure.

2 CELLULAR NETWORKS PRIMER
A. Structure of a Cell

In cellular networks, “cells” are the fundamental geographic
segments served by a stationary transceiver, called a base station or
an eNodeB. In an LTE cellular network, base stations typically use
3-sector cells served by three antennas each covering 120◦ angular
sectors of the cell for improved communication and capacity gain
(see Fig. 2). While omnicells with single antennas covering 360◦
field are also common. LTE defines four types of base stations
with different power and coverage areas – macro, micro, pico, and
femtocells with up to 20 km, 2 km, 200 m, and 30 m of coverage
respectively.
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10 Subframes
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Figure 2: LTE cells and frame structure.

Cells are organization-level concepts and therefore different service
providers can have overlapping regions of their cells. In fact, a
physical cell site or cellular tower can be used by multiple service
providers operating independent base stations each having one or
more antennas serving different sectors of the corresponding cells.
These base stations obviously operate on independent frequency
bands and are non-interfering to each other while communicating
with mobile clients called User Equipments (UE). However, signals
frommultiple base stations of the same or different service providers
are often available at a physical location and can be observed by
scanning across frequency bands.

Operational frequencies: LTE operational frequencies are
organized in over 70 bands allocated with different bandwidths over
a large spectrum ranging from 450 MHz to 3.8 GHz. Some service
providers also use parts of their underutilized 3G bands for 4G LTE
transmissions. Although, typical frequency bands used in the USA

lie between the range of 700 MHz to 3.5 GHz. Within a frequency
band, the bi-directional communication between the base station
and the mobile device is defined by two different duplex modes
– frequency and time division duplex (FDD and TDD). However,
almost all service providers in the USA use frequency division
duplex (FDD) modes where the uplink (i.e., transmission from the
mobile device to the base station) and downlink (i.e., transmission
from the base station to the mobile device) use separate frequencies
predefined per band.

B. Cell Identity
Each individual cell in LTE networks can identified using the
Cell Global Identity (CGI) which is a globally unique identifier
[106]. While the CGI is useful at the network-level operations
and management, at the physical layer mobile devices rely on the
Physical Cell Identity (PCI) for cell identification. The PCI is a
9-bit number ranging from 0 to 504 that locally identifies each
sector antenna. Naturally, this limited number of PCI values are
reused over different cells, but the numbers are carefully assigned to
distant cells during LTE site planning to avoid confusion between
nearby cells [52]. For practical purposes, the PCI numbers can be
successfully used for cell selection and handoffs.

Synchronization Signals: The PCI numbers are created by
combining two numbers between 0-2 and 0-167 which are in turn
used as seeds to two pseudorandom sequences, called Primary
and Secondary Synchronization Signals (PSS and SSS), used for
synchronization and PCI number identification. The Primary
Synchronization Signal (PSS) utilizes the frequency-domain
Zadoff-Chu sequence and is numbered from 0 to 2, while the
Secondary Synchronization Signal (SSS) is formed using maximum
length sequences (m-sequences) and numbered from 0 to 167.
Mobile devices utilize these synchronization signals, which are
emitted by base station antennas, to determine their PCI values.
The PCI is calculated using the formula 𝑃𝐶𝐼 = 3 ∗ 𝑆𝑆𝑆 + 𝑃𝑆𝑆 .

C. Base Station Signal Format
The LTE physical layer maintains the continuous connection model,
especially on the FDD downlink, which operates as a continuous
stream. Apart from carrying user data, the downlink transmissions
contain system information, network parameters, and control
signals that are essential for connection establishment and handoffs,
and maintaining synchronization. The communication stream is
organized as a time-frequency grid of resources, called a radio frame.
Along the time axis, a frame has a duration of 10 milliseconds as
shown in Figure 2. Each frame is subdivided into 1-millisecond
subframes, which are further divided into two slots, each lasting
0.5 milliseconds. One slot contains 7 or 6 Orthogonal Frequency
Division Multiplexing (OFDM) symbols, depending on whether the
normal or extended cyclic prefix is used. Along the frequency axis,
the frame length is defined by the number of OFDM subcarriers
placed at 15 kHz spacing. The total number of subcarriers depends
on the bandwidth of the channel, ranging from 72 in 1.4 MHz to
1200 in 20 MHz channel bandwidth. For the FDD downlinks, the
PSS signal is broadcasted at the central 62 subcarriers of the last
symbol of time slots 0 and 10, and the SSS signal is broadcasted one
symbol before PSS.
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3 SYSTEM DESIGN
In this section, we will discuss in detail the design of LiTEfoot and
the technical contributions.
A. Intermodulated Spectrum Folding
Downconversion, a critical process in RF architecture, traditionally
relies on a mixer to lower high-frequency signals to the baseband by
multiplying them with a carrier wave generated by a local oscillator.
However, an alternate approach involves utilizing a squaring
operation-multiplying it by itself to achieve downconversion
without the need for an external carrier. This technique facilitates
simultaneous wideband mixing and eliminates the need for a
traditional oscillator, which simplifies the overall RF design. By
removing the oscillator, the system becomes less complex, making
it an alternative to modern RF architectures.

We introduce a technique called "intermodulated spectrum folding"
that is built upon the distinct properties of LTE synchronization
signals (PSS and SSS), which consistently exhibit a narrow
bandwidth of 1.4 MHz (1.08 MHz without guard bands) across
all LTE frame bandwidths, ranging from 1.4 MHz to 20 MHz. By
implementing a squaring operation, this method isolates and folds
LTE signals from various bands into the baseband. This process
results in a superimposition of signals through both in-band and
cross-band mixing, as illustrated in Figure 3. These superimposed
signals can then be selectively extracted using a narrowband filter.

…

Baseband filter
Band-1 Band-2 Band-n

…

…

In-band
mixing

Non-linear
transform

Cross-band mixing
(discarded high frequencies)

Superimposed
at baseband

Figure 3: Intermodulation and spectrum folding.

Before reaping the benefits of intermodulated spectrum folding,
it is pivotal to address its inherent challenges, notably the side
effects of intermodulation and signal intermixing. For the effective
implementation of spectrum folding in LiTEfoot, three critical
properties must be ensured: (1) Correlation Preservation Post-
Intermodulation: The technique must maintain the correlation
characteristics of PSS and SSS after intermodulation, essential for
accurate PCI estimation. (2) Interference Mitigation: The system
must be designed to effectively withstand interference from
adjacent carriers and bands that are folded into the baseband,
ensuring that it can clearly distinguish the synchronization signals.
(3) Relative Signal Strength Extraction: Despite signal squaring
and superimposition, extracting relative signal strengths from
overlapping base stations is crucial, enabling applications such
as multilateration for precise location estimation.

Solving these challenges is fundamental to the success of
intermodulated spectrum folding as a strategy for LTE. The

subsequent system design section will explore how LiTEfoot builds
upon spectrum folding, addressing these challenges.

Envelop Detector as Non-linear Channel: The envelope
detector is an efficient way to introduce non-linearity in RF circuits
using a simple passive diode. Consider two sinusoidal signals,
𝑠𝑖𝑛(2𝜋 𝑓1𝑡) and 𝑠𝑖𝑛(2𝜋 𝑓2𝑡), where 𝑓1 and 𝑓2 denote their respective
frequencies. Let 𝑦 (𝑡) = 𝑠𝑖𝑛(2𝜋 𝑓1𝑡) + 𝑠𝑖𝑛(2𝜋 𝑓2𝑡) be the incident
signal at the envelope detector. The envelope detector subjects 𝑦 (𝑡)
to a non-linear squaring operation producing

𝑦2 (𝑡) = 1
2
[cos(2𝜋 (𝑓1 − 𝑓2)𝑡) − cos(2𝜋 (𝑓1 + 𝑓2)𝑡)

+ 2 − cos(2𝜋2𝑓1𝑡) − cos(2𝜋2𝑓2𝑡)]
(1)

The output signal 𝑦2 (𝑡) produces a baseband component 𝑓1 − 𝑓2,
alongside the harmonics 2𝑓1, 2𝑓2 and 𝑓1 + 𝑓2.

Non-linearity in OFDM signals: Extending 𝑦 (𝑡) to an OFDM
signal consisting of 𝑁 subcarriers, each centered around a carrier
frequency 𝑓𝑐 , we can write it as:

𝑦 (𝑡) =
𝑁∑︁
𝑛=1

𝑠𝑖𝑛(2𝜋 (𝑓𝑐 + Δ𝑓𝑛)𝑡), (2)

where Δ𝑓𝑛 is the frequency offset of the 𝑛-th subcarrier from
the carrier frequency. The squaring operation results in a sum of
products of all pairs of subcarriers, which, when expanded, produces
terms like:

𝑦2 (𝑡) = 𝑁

2
+ 1
2

𝑁∑︁
𝑛=1

𝑁∑︁
𝑚=1

[cos(2𝜋 (Δ𝑓𝑛 − Δ𝑓𝑚)𝑡)

− cos(2𝜋 (2𝑓𝑐 + Δ𝑓𝑛 + Δ𝑓𝑚)𝑡)],
(3)

The output includes baseband components, (Δ𝑓𝑛 − Δ𝑓𝑚),
independent of the carrier, and components at twice the carrier
frequency, 2𝑓𝑐 . To isolate the baseband components, we simply
use a low-pass filter, eliminating all the higher frequency terms.
Finally, the filtered output, 𝑦2

𝑙𝑜𝑤𝑝𝑎𝑠𝑠
(𝑡), retains only the baseband

frequencies:

𝑦2
𝑙𝑜𝑤𝑝𝑎𝑠𝑠

(𝑡) = 𝑁

2
− 1
2

𝑁∑︁
𝑛=1

𝑁∑︁
𝑚=1

cos(2𝜋 (Δ𝑓𝑛 − Δ𝑓𝑚)𝑡), (4)

The generation of baseband frequency components results from
the non-linear intermodulation of the subcarriers. Essentially,
it contains the frequency differences of the incoming signals,
effectively downconverting or ‘folding’ the higher frequency
elements into the baseband region.

B. Signal Detection on Folded Spectrum
Mobile devices rely on correlation with the cell-specific
synchronization signals, PSS and SSS, for initial cell identification
and frame timing alignment. The pseudorandom sequences used in
these signals show excellent auto-correlation for noise resilience
and controlled cross-correlation property for robustness to the
efficient separation of signals from different cells and support
the unambiguous identification of the PCI. Spectrum folding
intermodulates the subcarriers of the PSS and SSS signals and
superimposes signals from different cells at the baseband. In this
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section, we show that these signals sufficiently maintain these
properties for successful cell identification in practice.

Correlation properties of PSS2: After the non-linear operation,
the number of unique PSS in LTE reduces from three to two.
Specifically, the Zadoff–Chu sequences for PSS1 and PSS2, originally
distinct due to their respective roots 𝑞 = 29 and 𝑞 = 34, selected
for their good auto and cross-correlation properties under various
timing and frequency offsets [82], become indistinguishable after
undergoing the squaring operation. This is because these sequences,
when squared, produce identical signals, effectively merging PSS1
and PSS2 into a single, non-distinguishable entity. This reduction,
however, does not compromise LiTEfoot’s performance in PCI
estimation. PSS signals are primarily utilized for synchronization
offset estimation, while the SSS serves as the key determinant
for actual PCI estimation. Therefore, despite the non-linear
transformation’s effect on PSS orthogonality, the integrity of PCI
estimation remains unaffected, ensuring robust signal identification
and time synchronization.

Correlation properties of SSS2: An intriguing aspect of SSS
signals is their resilience in maintaining excellent cross-correlation
properties even after undergoing non-linear transformations. The
SSS in LTE systems employs M sequences, renowned for their
wide and flat spectrum due to their pseudorandom nature [113].
The non-linear transformation of SSS preserves the flatness
and wideband characteristics which helps in maintaining good
correlation properties even after the spectrum is intermodulated.
This persistence of correlation is the key in LiTEfoot ensuring the
robustness of our PCI estimation.

PCI Estimation after Spectrum Folding: To estimate PCI from
intermodulated signals, we employ a time-domain correlation
approach similar to a matching filter. This method extracts all the
PCIs by correlating the received signal with squared versions of
the predefined PSS and SSS:

𝑃𝐶𝐼 = {𝑖 | corr
(
𝑥, 𝑃𝑆𝑆2𝑖 ⊕ 𝑆𝑆𝑆2𝑖

)
> 𝑡ℎ𝑟𝑒𝑠ℎ, 𝑖 = 1, ..., 𝑁 } (5)

Here, ⊕ is the concatenation operation and 𝑥 is the received signal.
The PSS and SSS have a constant bandwidth of 1.08 MHz which
is crucial for maintaining signal integrity across LTE’s variable
bandwidth scenarios.

We experimentally validate the correlation performance of the
intermodulated signal (SSS2) for all 504 PCIs in LTE across varying
bandwidths, as shown in the confusion matrix in Figure 4. Our
analysis confirms that the non-linear squaring operation preserves
the orthogonal nature of the PSS and SSS signals, maintaining their
unique cross-correlation and auto-correlation properties. Notably,
we observe a mod 4 ambiguity in the correlation spectrum, seen
as secondary peaks at the ±4 indices relative to the original index.
These secondary peaks, while present, exhibit significantly lower
correlation amplitudes compared to the primary peaks. Importantly,
this mod 4 ambiguity does not compromise LiTEfoot’s ability to
accurately estimate the PCI, as our evaluation confirms that the
highest correlation values consistently align with the correct PCI.
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Figure 4: Confusion matrix for PCI estimation using SSS2

(i.e., the SSS signal after non-linearity).

C. Dealing with Folding Interference
Despite LiTEfoot’s efficient downconversion capabilities
through passive intermodulation, its use of an envelope
detector introduces notable challenges in frequency selectivity.
Unlike active radios, which have the ability to distinguish
and selectively filter frequencies before downconversion, the
envelope detector indiscriminately processes every frequency
that reaches the antenna. This broad, non-selective approach
allows for intermodulation where multiple subcarriers mix
with synchronization signals, as detailed in Equation 4. This
intermodulation introduces unwanted signal components which
degrade the overall signal quality. Such interference is particularly
detrimental as it can significantly deteriorate SSS correlation. In
this section, we outline the three primary sources of interference—
inter-subcarrier, inter-band, and inter-synchronization signal
interference—and propose specific strategies to mitigate these
challenges and enhance system performance.

(1) Inter-subcarrier interference: In LTE networks, which
have bandwidth options ranging from 1.4-20 MHz, a challenge
emerges with the increase in bandwidth. Despite the constant
bandwidth allocated for PSS and SSS, the use of higher bandwidth
configurations by cell towers—aimed at supporting an increased
user base and higher data rates—introduces inter-subcarrier
interference.

As the bandwidth increases, the presence of data subcarriers
also increases, leading to a scenario where these subcarriers
begin to overshadow the PSS and SSS signals. The interference
becomes problematic after non-linear transformation, when the
data subcarriers fold on top of synchronization signals aggressively
compromising the detectability of synchronization signals. For
example, the correlation accuracy drops from 99.7% in a 1.4 MHz
LTE frame to 1.5% in a 10 MHz frame.

To solve this challenge, we leverage the inherent periodicity of
PSS and SSS (10 ms in LTE). Considering the variability of data
subcarriers over frames, we model their amplitude distribution as
Gaussian. This is our core intuition for frame stacking. As shown in
Figure 5, we exploit the sync signal’s periodic stability against the
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background of fluctuating data subcarrier noise. By stacking just 100
frames—a span of 1 second—the Signal-to-Interference-and-Noise
Ratio (SINR) of the sync signal is significantly enhanced, improving
the accuracy of 95%.

650 700 750 800 850 900 950 1000
Samples

0

0.5

1

Am
pli
tu
de

650 700 750 800 850 900 950 1000
Samples

0

0.5

1

Am
pli
tu
de

(a) 1.5 MHz LTE packets stacked (b) 10 MHz LTE packets stacked

Figure 5: LTE packets before and after stacking (a) 1.4 MHz
bandwidth (b) 10 MHz bandwidth. After stacking the PSS and
SSS strength increases in the 10 MHz case whereas the data
fades into a DC bias.

(2) Inter-band interference: Consider two cell towers operating
at different bands with center frequencies 𝑓𝑐1 and 𝑓𝑐2 and
bandwidths Δ𝑓1 and Δ𝑓2. According to Equation 4, the output signal
will consist of frequency differences from inter-band subcarriers,
causing interference.

In LTE, PSS and SSS occupy the central 62 subcarriers, spanning
a bandwidth of 1.4 MHz. Except for the 1.4 MHz bandwidth
option, which includes a 22.85% guard band, LTE bands typically
incorporate a 10% guard band to mitigate interference. Given that
the minimum frequency difference possible between sync signals
from different cell towers will always exceed 1.4 MHz, we simply
employ a low-pass filter with a cutoff frequency of 𝑓𝑐𝑢𝑡𝑜 𝑓 𝑓 = 1.4
MHz to remove all inter-band interference from the received signal.

(3) Inter-synchronization signal interference: PSS and SSS are
designed with robust correlation characteristics, a feature that is
preserved even after non-linear squaring operations. This resilience
ensures that, despite the superposition of multiple synchronization
signals, the accuracy of PCI estimation remains high. The squaring
process, while introducing additional components into the signal,
does not significantly disrupt the distinct correlation patterns of
PSS and SSS. We also extensively evaluate LiTEfoot in the presence
of multiple cell towers in the real world, which we discuss in the
evaluation section.

D. Recovering Base Station Signal Strength
(1) Blind Separation of Weighted Superposition: A key
challenge in multi-cell environments is to independently extract
each cell’s Received Signal Strength Indicator (RSSI) from the
composite received signal, where individual cell contributions are
overlapped and intermodulated.

To address this challenge, we develop a blind source separation
algorithm. Our approach iteratively isolates each cell’s contribution
to the composite signal, as illustrated in Figure ??. The core idea is to
reconstruct and subtract the time-domain PSS-SSS signal, for each

identified PCI, from the received composite signal. We formulate
this as an optimization problem:

𝐸 (𝐴𝑖 ) =
1
𝑁

𝑁∑︁
𝑛=1

(𝑥 (𝑛) − 𝛼𝑖 · 𝑆𝑦𝑛𝑐𝑆𝑖𝑔𝑃𝐶𝐼=𝑖 (𝑛 − 𝛿𝑡𝑖 ))2

Minimize 𝐸 (𝐴𝑖 )
subject to 0 ≤ 𝐴𝑖 ≤ 𝐴max

Here, 𝑥 (𝑛) is the received signal, 𝑆𝑦𝑛𝑐𝑆𝑖𝑔𝑃𝐶𝐼=𝑖 (𝑛) is the PSS-SSS
signal for the i-th PCI, 𝛼𝑖 is the amplitude factor, 𝛿𝑡𝑖 is the time delay
in samples, 𝑁 is the total number of samples, and𝐴𝑚𝑎𝑥 is the upper
amplitude limit. Our objective is to minimize the residual energy
𝐸 (𝐴𝑖 ) by adjusting 𝛼𝑖 . The minimum residual energy indicates the
most accurate subtraction, corresponding to the best estimate of
the cell’s RSSI, as shown in Figure 6(a).

The accuracy of this separation largely depends on correctly
estimating both the amplitude factor 𝛼𝑖 and the time delay 𝛿𝑡𝑖 .
Initially, we assume 𝛿𝑡𝑖 is known from the correlation process
used for PCI identification, though we next refine this with a
super-resolution algorithm for phase-level synchronization.
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Figure 6: (a) Blind Separation of weighted superposition (b)
Linear phase change introduced due to sub-sample offset in
the OFDM subcarriers.

(2) Sub-sample Offset Estimation: Correlation-based
synchronization can only provide sample level time-resolution
[67, 100] which naturally depends on the sampling rate or the
bandwidth of the receiver. Naturally, any sub-sample delay is
missed out and results in poor amplitude estimation. We aim
to resolve this sub-sample offsets to estimate the amplitudes
accurately.

Fortunately, the cyclic prefix, with a duration of 4.7 microseconds
for Frequency Division Duplexing (FDD) LTE, enables us to detect
the sub-sample offsets by introducing a predictable phase change
in the OFDM subcarriers of the signal. For a signal captured with
𝑁 = 62 subcarriers, the frequency domain of the signal reveals
this linear phase change across subcarriers. Figure 6(b) shows an
example of linear phase changes in the subcarriers of PSS and SSS
of a real-world LTE signal.

Let’s say our wireless channel is ℎ = 𝑒− 𝑗2𝜋 𝑓 𝜏 , where 𝜏 represents
the sub-sample delay, and 𝑓 corresponds to the frequency of each
subcarrier. Given a received signal 𝑋 (𝑓 ) and a known reference
signal 𝑆 (𝑓 ) in the frequency domain, the phase difference Δ𝜙
attributable to the sub-sample offset can be calculated as:

Δ𝜙 = ∠
(
𝑋 (𝑓 )
𝑆 (𝑓 )

)
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where ∠ denotes the phase angle of the complex quotient, indicating
the linear phase shift across subcarriers due to sub-sample offsets.
This phase difference directly relates to the sub-sample delay 𝜏 =
Δ𝜙

2𝜋Δ𝑓 , whereΔ𝑓 represents the frequency spacing between adjacent
subcarriers. We correct for 𝜏 to accurately align the PSS and SSS in
time before performing the amplitude estimation.

E. Localization Algorithm
(1) Multilateration with Relative Signal Strengths:
Our localization approach combines open-source databases
(OpenCellID [47], Mozilla Location Services [66], and
CellMapper [12]) for PCI-to-coordinate mapping of cell towers
with a trilateration technique based on relative signal strengths.
We formulate an optimization problem to determine the tag’s
position (𝑥,𝑦) by minimizing the discrepancy between observed
and expected signal strength ratios from multiple cell towers.

Given 𝑛 cell towers with known positions (𝑥𝑖 , 𝑦𝑖 ) and estimated
amplitudes 𝐴𝑖 , we define our objective function as:

𝑓 (𝑥,𝑦) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

(
𝐴𝑖

𝐴 𝑗
−

√︁
(𝑥 − 𝑥𝑖 )2 + (𝑦 − 𝑦𝑖 )2√︁
(𝑥 − 𝑥 𝑗 )2 + (𝑦 − 𝑦 𝑗 )2

)2
This function compares the ratio of amplitudes 𝐴𝑖

𝐴 𝑗
to the ratio of

Euclidean distances for each unique pair of cell towers, summing the
squared differences. By using amplitude ratios rather than absolute
values, we account for real-world signal propagation losses. We
initialize the optimization with the centroid of all observed cell
towers as our starting point.

Eliminating False Positives. Our system achieves near-perfect
recall in PCI identification, leveraging the strong auto-correlation
properties of PSS-SSS signals. However, this high sensitivity can
lead to false positives. To address this challenge, we implement
a refinement strategy that analyzes estimated PCIs along with
their corresponding signal delays. We’ve observed that spurious
peaks often cluster around delays associated with true cells, due
to low-level correlations with other cells’ signals. To filter these
false positives, we group and sort signals by their estimated
amplitude factors, selecting only those with non-zero amplitudes.
This approach effectively balances high recall with improved
precision in our PCI estimations, enhancing the overall accuracy of
our localization system.

(2) Optimization for On-Road Applications: For applications
such as vehicle tracking and urban mobility studies, we enhance
our location estimation by incorporating road constraints. Our
improved algorithm includes a road snapping technique [37],
which aligns estimated positions with nearby drivable roads using
OpenStreetMap [68] data as a sparse graph. We employ a sliding
window optimization process that starts with an initial point
mapped to the k-nearest road points. For each subsequent estimated
point, we identify k candidate points on nearby roads and apply
a distance constraint based on the maximum possible travel. This
constraint is calculated as the product of the time interval between
points and the road’s speed limit (Δ𝑡 ×𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑). We retain only
the candidate points that satisfy this distance constraint, defaulting
to the nearest point on nearby roads if no candidates meet the

criteria. This optimization produces more realistic trajectories
for on-road applications by leveraging the constraint that tags
predominantly travel on known road networks.

F. Extending LiTEfoot to Upcoming Standards
Dual sequence synchronization is a consistent feature in cellular
networks that serves the basic two stage frame and slot
synchronization used in standards starting from beginning (2G
GSM Training Sequence[2], 3G UMTS P-SCH/S-SCH sequence[64],
and PSS/SSS sequence for 4G[1] and 5G[1]). LiTEfoot relies on
the uniqueness of these code sequences after the non-linear
transformation, as described in Equation 4 (Section 3). We have
shown that LiTEfoot architecture holds correct with other cellular
standards and benchmarked its performance for 5G-NR and NB-IoT
in the Evaluation section.

5G-NR expands the PCI range to 1008 values, using 3 PSS values
(m-sequences of length 127) and 336 SSS values (gold sequences
of length 127) [91]. Despite introducing diverse frame structures,
5G maintains key similarities with LTE. Firstly, the frame and
sub-frame durations remain consistent [91]. Secondly, while 5G
allows dynamic placement of synchronization signals, these signals
maintain consistent location within subsequent frames and occupy
144 subcarriers with a 10ms repetition. After the non-linear
transformation, the resulting baseband signal remains independent
of the central frequency, requiring only an adjustment of LiTEfoot’s
low-pass filter cutoff to accommodate 5G’s subcarrier spacing.

NB-IoT, with its 15 kHz subcarrier spacing and 10ms frame length
[85], is also supported by LiTEfoot by adjusting the filter cutoff and
the wait-time for signal acquisition. The correlation properties of
the code sequences naturally improve with each new standard to
support denser deployment of the base stations. It leads to better
post-transformation distinguishability of the sequences showing
LiTEfoot’s potential as a universal, low-power localization system
across current and NextG cellular standards.

4 LITEFOOT PROTOTYPE IMPLEMENTATION
Figure 7 illustrates the system overview, and Figure 8 presents the
PCB prototype of LiTEfoot’s RF frontend. We’ve implemented a
PCB prototype using low-cost COTS components and simulated a
CMOS design to showcase LiTEfoot’s potential for further power
reduction.

ADC

LNA

A A

Baseband
Amplifier

MCU

Impedance 
Matching

Baseband Conversion Sampling and Compute

Baseband Processing

Envelope detection Low-pass
filter

Figure 7: The high-level circuit schematic of LiTEfoot.

RF Frontend: We design a flexible patch antenna with a center
frequency of 1.94 GHz covering LTE bands. Our RF frontend utilizes
a tuned RF architecture [104], comprising of a low-noise amplifier
(LNA), an envelope detector, and a high-impedance amplifier.
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Figure 8: LiTEfoot PCB tag prototype showing the low-power
RF frontend.

Envelope Detector: We implement a Greinacher voltage
doubler circuit [43] using a Skyworks Schottky diode [87] for
RF-to-baseband conversion. A 𝜋 matching network ensures 50Ω
impedance matching. High Q-value capacitors and inductors
minimize losses. The detector’s output passes through a passive
low-pass filter with a 1.4 MHz cutoff.

Baseband Amplification: The tuned RF 20dB amplifier boosts
sensitivity to -70dBm. The high-impedance sub-MHz baseband
amplifier uses a 10-stage cascaded common-source configuration,
achieving 68 dB voltage gain.

ADC:Weuse an ultra-low-power successive approximation register
(SAR) ADC by Texas Instruments [49]. This 12-bit ADC with SPI
interface requires an external serial clock and consumes 585.7 𝜇W
offering the power efficiency required for our prototype.

Baseband Processing: We implement LiTEfoot using the Apollo3
Blue ultra-low-power ARM Cortex-M4 based MCU SoC [5]. It
interfaces with the ADC via SPI and uses Direct Memory Access
for efficient signal transfer. The SoC’s flash stores the code with
zero fetch overhead, while data resides in SRAM and Flash. We
power-gate the unused SRAM banks during idle times. Overall, the
SoC consumes less than 6𝜇A/MHz at 3V during active processing
and approximately 1𝜇A/MHz in deep sleep mode. While we
optimize for power efficiency using the COTS MCU, future
ASIC implementations could further help in reducing the power
consumption [38, 39, 79].

Cost of Prototype: We design the prototype using COTS
components. It includes an Skyworks SMS7630 diodes [48] ($0.60),
an Infineon BGA7M1N6 LNA [93] ($1.11), a TI ADS7042 ADC [49]
($2.79), and an Ambiq Apollo3 [5] ($3.98). Including additional
passive components, the total material cost for a LiTEfoot prototype
is $9.48. This low-cost design, combined with LiTEfoot’s long
battery life and minimal maintenance requirements, enables
economically viable large-scale deployments for wide-area asset
tracking and various IoT applications.

CMOS Simulation: We designed and simulated an Application
Specific Integrated Circuit (ASIC) using TSMC-45nm CMOS
technology to explore further power efficiency. The ASIC layout,
created using Electric VLSI software and simulated with PathWave
Advanced Design System (ADS), demonstrates a potential power
consumption reduction to 112 𝜇W. For the LNA, we implemented
a self-biased inverter architecture [90] optimized for 45nm CMOS,
achieving 15 dB gain while consuming only 89 𝜇W. The transistors

are biased in the low-inversion region at 0.26V with a 25 𝑘Ω
self-biasing resistor. We simulated a 10-bit charge-redistribution
ADC [97] capable of 2 Msps at 3.8 𝜇W, significantly outperforming
the COTS ADC (ADS7042) used in our PCB prototype. These
improvements could enable years of battery life for small tags.

5 EVALUATION
A. Localization Evaluation
We evaluate LiTEfoot’s localization performance through real-world
experiments across urban and rural environments, comparing it
against GPS ground truth. Our experiments cover multiple routes
totaling 54km, with LiTEfoot’s tag mounted in a vehicle alongside
an iPhone 15 running the Matlab mobile application for GPS data
collection. Table 1 summarizes the key characteristics of our test
routes: an urban route (Route 1) covering 1.80 km2 with 35 cell
towers (19.44 cells/km2), and two rural routes (Routes 2 and 3)
spanning 3.60 km2 and 4.05 km2 with 10 and 11 towers respectively
(2.78 and 2.72 cells/km2).

Route
Area
(km2)

Number of
Towers

Cell Density
(cells/km2)

Route 1 1.80 35 19.44
Route 2 3.60 10 2.78
Route 3 4.05 11 2.72

Table 1: Key characteristics of evaluation routes.
Figure 9 shows LiTEfoot’s estimated trajectories (blue) alongside
GPS trajectories (black) for each route and presents the CDF of
absolute location errors. Our results show a median error of 22
meters in the urban area and 50 meters in rural areas. These results
correlates strongly with cell tower density, with the urban route
consisting approx 7 times higher density compared to the rural
routes, directly impacting the localization accuracy.

We note that existing baselines were not suitable for direct
comparison, as many require prior information about cell towers
(e.g., LTE Band, MNC, MCC) or are incompatible with real-world
cell tower setups due to high latency demands, as demonstrated in
next section. This evaluation validates LiTEfoot’s ability to provide
accurate localization in the wild across varied environments.

B. Latency Evaluation
We evaluate LiTEfoot’s sensing latency across LTE bands (spanning
450 MHz to 3 GHz) and compare its performance with existing
localization techniques. The experiment was conducted on a
predefined route in a challenging environment of rural area where
we observed 8 unique LTE bands (2, 4, 5, 12, 13, 14, 41, and 71) with
at least one serving cell each (see Fig. 10).

Baselines: In this experiment we compared LiTEfoot against four
baseline methods: •GPS: Using a COTS module [95]. •Wideband
SDR Search: Scanning the entire LTE band using frequency hopping.
•Targeted Band SDR Search: Pre-selecting six frequencies based on
prior knowledge. •RSSI Method: Implementing Crescendo [19] on
targeted frequencies. Each baseline presents distinct trade-offs. GPS
offers high accuracy but with relatively high latency and power
consumption. SDR-basedmethods provide flexibility but suffer from
long sensing times due to sequential frequency hopping. The RSSI
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Figure 9: LiTEfoot’s estimated trajectories and localization errors for in (a) urban and (b), (c) rural environments. The black
lines denote the GPS trajectory and blue markers denote LiTEfoot’s estimated trajectory. The cell towers that are detected
during the route are shown in red. (d) The empirical CDF of the localization errors.
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Figure 10: Diversity in downlink center frequencies used by
the cells in a 200-meter radius.

method improves on SDR approaches but still requires pre-selection
of frequencies.

Results and Analysis: Table 2 shows the comparison of
latency, accuracy, and power consumption. The results show
the fundamental challenge in cellular-based localization: the vast
number of possible configurations (65,535 in LTE) necessitates
either frequency hopping or prior knowledge of active bands,
creating a significant latency bottleneck. LiTEfoot overcomes
this bottleneck through its spectrum folding technique, enabling
simultaneous sensing of all LTE bands. This approach eliminates
the need for sequential frequency hopping, resulting in exponential
reduction in latency.

Method Latency (s) Error (m) Energy (mJ)

SDR (Wideband search) 66100 38 21 × 104
SDR (Targeted search) 0.66 38 210 [76, 92]
Crescendo [19] 0.66 24 210
GPS [95] 1 2 25
LiTEfoot 0.01 19 0.039

Table 2: Comparison between latency, accuracy, and power
consumption.

C. Power Evaluation
Measurements Methodology: We implemented LiTEfoot on
a custom PCB using low-power COTS components. Power
consumption of individual modules was measured using a
Keysight power monitoring unit [53] for high-precision readings.
Additionally, we performed CMOS simulations to estimate potential

power savings. The RF peripheral in our PCB prototype interfaces
with an Apollo3 MCU.

Power Consumption Analysis: Tables 3, 4, and 5 show the
overall power and energy per inference, along with a breakdown
of power consumption for the RF chain (PCB and 45nm CMOS)
and baseband computation, respectively. In our PCB prototype,
the RF frontend consumes 8738.8 𝜇W, with the LNA being the
most power-intensive component at 8035.2 𝜇W. The total energy
consumption per inference is 902.37 𝜇J, distributed between the RF
frontend (873.88 𝜇J) and baseband compute (28.49 𝜇J). The baseband
compute consumes 2035 𝜇W of power and takes 14.52 ms per
inference, with SSS correlations dominating the time consumption
at 13.02 ms. Our CMOS simulation results demonstrate significant
potential for power reduction. The simulated RF frontend consumes
only 111.8 𝜇W, representing a 98.7% reduction compared to the PCB
prototype. Total energy consumption per inference in the CMOS
simulation is 39.67 𝜇J, a 95.6% reduction from the PCB prototype.
The simulated RF frontend achieves high sensitivity (-70 dBm),
while the ADC simulation shows a power consumption of 3.8 𝜇W
at 2 Msps, further contributing to the overall system efficiency.

Battery Life: We project that the CMOS implementation of LiTE-
foot can operate continuously for 11 years on a standard CR20we32
coin cell battery (220 mAh) with location updates every 5 seconds.

Module Power (𝜇W) Time (s) Energy (𝜇J)

RF frontend (PCB) 8738.8 0.10 (10 frames) 873.88
RF frontend (CMOS) 111.8 0.10 (10 frames) 11.18
Baseband Compute 2035 0.0145 28.49

Total (PCB) 0.1145 902.37
Total (CMOS) 0.1145 39.67

Table 3: Overall power and energy per inference.

D. Micro-Benchmarks
Comparison of 5G-NR, NB-IoT, and LTE Standards: We
evaluate LiTEfoot’s performance across LTE, 5G-NR, and NB-IoT,
each employing distinct PCI encoding methods. LTE, our baseline,
uses 504 unique PCI values from both PSS and SSS. NB-IoT simplifies
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Component PCB prototype (𝜇W) CMOS sim (𝜇W)

LNA 8035.2 89
Envelope Detector 0 0
High Imp. PA 162.9 19
ADC 585.7 3.8

Total RF 8738.8 111.8

Table 4: RF frontend power consumption.

Module Power (𝜇W) Time (ms)

PSS Search (correlations) 2035 0.66
SSS Search (correlations) 2035 13.02
Amplitude Estimation 2035 0.84
Multilateration 2035 2 × 10−6

Total Baseband 2035 14.52

Table 5: Baseband power and time per inference.

this approach, using only the Narrowband SSS (NSSS) to encode
504 NCellID values. In contrast, 5G-NR expands to 1008 unique PCI
values while retaining LTE’s PSS and SSS structure. As we show
in Figure 11, NB-IoT achieves the highest PCI estimation accuracy,
exceeding 95%, due to its narrower bandwidth and simplified
signal structure. 5G-NR initially shows lower accuracy but matches
NB-IoT’s performance with increased frame stacking, due to its
broader bandwidths and fluctuating data subcarriers. LTEmaintains
consistent performance across frame stack above 20. These results
demonstarte LiTEfoot’s adaptability across cellular standards, with
frame stacking proving particularly effective in managing 5G-NR’s
dynamic resource allocation.
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Figure 11: PCI estimation accuracy (F1 score) vs. number of
stacked frames for LTE, 5G-NR, and NB-IoT.

Sub-sample offset correction: We evaluate the effect of
sub-sample offsets due to clock drift or synchronization errors.
Since we do not have any way to synchronize the tag with the
base stations, there could be ground truth timing errors. Figure
12a shows the CDF of phase-offsets for all subcarriers before and
after the sub-sample correction algorithm. As we see, before the
offset correction, sub-sample shifts within ±0.5 sample can result in
phase shifts of ±𝜋 radians. Whereas, after applying our sub-sample
correction, most phase differences are reduced to 0. This benchmark
uses 1000 real-world synchronization signals with varying signal
strengths. We observe there are a few outliers in the CDF when
the phase noise is large compared to the signal strength and the
best-fit slope of the phase is incorrectly estimated.

Impact of speed: We evaluate LiTEfoot’s performance at varying
vehicle speeds in both urban and rural environments, using
GPS-measured ground truth speeds. As shown in Figure 12b,
urban settings demonstrate the minimal impact of speed on
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Figure 12: (a) CDF of phase offsets in measurements before
and after sub-sample offset correction. (b) Localization error
for varying speed of vehicle.

localization accuracy. In contrast, rural environments have
increased localization errors at higher speeds. Urban environments
typically feature a higher density of smaller cells and micro-cells,
which change every few meters, contributing to more robust
localization across various speeds.

E. Ultra-low-power Geofencing
We also evaluate LiTEfoot for geofencing application, which can
enable ultra-low-power tracking for elderly care monitoring and
route enforcement. Our approach focuses on minimizing power
consumption and evaluating continuous PCI monitoring for timely
and accurate alert generations.

To reduce computational load, we implement a hierarchical search
algorithm that leverages the reduced number of unique PSS
signals post non-linear transformation and the periodic nature
of synchronization signals. This algorithm first performs a PSS
search to identify potential time indices, followed by selective
SSS correlation, significantly narrowing the search scope. We
further optimize by focusing on known base stations rather than
continuously searching for new ones, reducing the search space
from thousands to tens of samples in subsequent frames.

We evaluate the alert generation performance in four different
scenarios: two for entry restrictions and two for exit restrictions.
Geofencing boundaries are marked on maps, and the relevant PCI
database is filtered onto the tag. The tag continuously monitors
observed PCI values and generates alerts when entering or exiting
marked locations. Figure 13a illustrates the PCIs detected over time
and marks the event when the tag exits a designated region. Figure
13b shows the overall accuracy of alert generation distance from
marked boundaries across urban and rural settings. Our results
show alert generation within 24 meters of the defined boundaries
in urban environments and 106 meters in rural environments due
to lower cell tower density.

6 RELATEDWORK
Asset tracking: Asset tracking applications span various domains,
from supply chain management to healthcare [10, 32, 40, 62, 69, 75].
GPS and satellite-based systems [17, 36? ] offer global coverage
but face power and indoor limitations. Cellular IoT technologies
like NB-IoT and LTE-M [55, 70] improve on GPS’s battery life and
coverage for wide-area tracking. RFID [103, 108], BLE beacons
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Figure 13: (a) An alert is generated when the tag exits the
boundary of the marked region. (b) Alert generation distance
from the map boundaries.

[6, 59], and acoustics [7, 8, 28, 29, 34, 57, 110] offer low-cost,
short-range tracking solutions for controlled indoor environments,
each with distinct advantages and limitations. LiTEfoot on the other
hand leverages ambient cellular signals for low-power, wide-area
asset tracking without custom infrastructure.

Cellular localization: Ambient cellular signals have been
explored for localization and tracking [24, 25, 56, 71, 83, 84].
RSSI-based approaches [46, 58, 107] achieve 50-200 meter accuracy.
Fingerprinting techniques [13, 21, 45, 54, 80] improve accuracy
to sub-50 meters but require extensive wardriving. Notably,
Crescendo [19] utilizes RSSI distributions within grid cells; and
DeepLoc [86] and DeepFeat [65] use RSSI to train a deep
learning model to achieve sub-20 meter accuracy. TransparentLoc
[114] leverages crowdsourced data for both indoor and outdoor
location estimation. However, these methods typically require
power-intensive downconversion and frequency hopping, limiting
IoT applicability. ISLA [51] offers cellular self-localization but
faces form factor constraints due to multi-antenna requirements.
In contrast, LiTEfoot enables wideband sensing and localization
without power-intensive components, striking a balance between
accuracy and energy efficiency for low-power IoT applications.

Non-linearity based receivers: Recent advancements in
low-power RF receivers [20, 30, 31, 39, 73, 79, 98] have focused
on replacing active components with non-linear envelope detectors
to reduce power consumption in communication [3, 15, 72, 89,
99, 111, 112]. MIXIQ [79] introduced a low-power 802.11ax
receiver by modifying OFDM packets to include a helper tone
and preserve IQ data during downconversion. These systems
primarily rely on the use of a secondary helper signal or changes
in the transmitter. ReMix [101] leveraged non-linear backscatter
circuits for in-body communication and localization. LivingIoT
[50] and Sirius [31] use envelope detectors for direction of
arrival estimation. In contrast to all these approaches, LiTEfoot
operates on unmodified cellular networks, leveraging non-linear
transformations of cellular synchronization signals to enable
wideband sensing and PCI estimation without requiring helper
tones or any protocol modifications. This approach allows LiTE-
foot to achieve ultra-low power consumption while maintaining
compatibility with existing cellular infrastructure.

7 DISCUSSION
Scalable and Sustainable IoT: This paper is a step toward a
broader vision of sustainable ambient intelligence and scalable IoT.
By leveraging existing cellular infrastructure for self-localization,
LiTEfoot enables country-wide scalability without dedicated
anchors. The system’s ultra-low-power design allows tags to
operate for years without battery replacement or maintenance,
minimizing electronic waste and environmental impact. This
substantially reduces the tag’s embodied carbon footprint [74].
LiTEfoot’s wide-bandwidth sensing and low-latency inference
capabilities enable tracking millions of objects across smart cities
and supply chains. We believe this could revolutionize urban
sustainability through real-time air quality monitoring or tracking
personal belongings across vast distances. LiTEfoot paves the
way for sustainable, large-scale tracking solutions that align
technological progress with environmental consciousness.

Communicating locations: Localization trackers often need
a communication module to periodically update location to a
server or nearby hub. Standalone GPS trackers (e.g., [35] and
[95]) often use cellular or satellite communications to do so. LiTE-
foot can incorporate an NB-IoT module for relaying location data.
Using a low-power NB-IoT transmitter [96], which consumes 76
mW to transmit a 140 kb packet in eDRX mode, the system can
intermittently send updates hourly, daily, or monthly depending on
the application. This enables LiTEfoot to operate for approximately
10 years on a coin cell. The same antenna frontend can be shared
between LiTEfoot and the communication unit, maintaining a
compact form factor while providing flexible communication
capabilities.

PCI Distribution: 4G-LTE defines 504 unique PCI numbers
to be used in base stations per network. Cellular networks
are designed to ensure neighboring base stations get unique
PCI numbers [81], while it may repeat in a non-adjacent base
station. So, in theory, a PCI-based localization system can face
ambiguity when a combination of PCI values from observable
base station transmission repeats for two different geographic
locations. However, the probability of such repeating combinations
is significantly small. Moreover, LiTEfoot often senses multiple PCI
values from each service provider operating in a region which
makes the chances of location ambiguity negligible.

PCI database updates: In LTE networks, the PCI value typically
changes infrequently under normal operating conditions. PCI
values remain constant unless there is a network reconfiguration
such as cell outages, recoveries, maintenance, or upgrades [25, 52,
78, 81]. However, LiTEfoot can maintain good accuracy even with
infrequent database changes, as it relies on multiple PCI values per
location. Moreover, the tags can be updated using the same NB-IoT
module used for communication, ensuring long-term reliability
with minimal overhead.

Application scenarios of LiTEfoot: The ultra-low-power design
of the system enables a wide range of long-term tracking
applications. In logistics, LiTEfoot can provide wide-area asset
tracking to combat cargo pilfering, a major supply chain challenge.
For smart cities, LiTEfoot can enable efficient management of
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shared e-scooters and bikes by logging usage and location data,
transmitting only when docked. In agriculture, it facilitates
long-term livestock monitoring and geofencing of large industrial
vehicles with minimal communication needs. Urban services can
benefit from LiTEfoot-equipped smart waste bins or trucks that
log positions and communicate only when necessary. The system’s
20-meter accuracy suffices for these applications. With its ability
to operate for years on a single cell, LiTEfoot opens up possibilities
for persistent, wide-area monitoring across diverse domains, from
supply chain management to environmental sensing.

Limitations and Future Work: Our work reveals opportunities
for further refinement. Like GPS and other RF-based systems, LiTE-
foot’s performance may be affected in metal-enclosed spaces due
to signal attenuation. The system’s accuracy, while sufficient for
many applications, could be enhanced in areas with sparse LTE
coverage. Our current PCB prototype, while functional, leaves
room for optimization; VNA-tuned impedance matching could
significantly improve sensitivity and power efficiency, especially
for the LNA. The localization algorithm currently assumes uniform
transmitting power from cell towers, which may not always
hold true, affecting precision. Implementing time-of-flight based
multilateration could potentially improve accuracy by reducing
reliance on signal strength assumptions. Subtle effects of tag
orientation and placement on signal reception could be mitigated
with improved antenna design. Future ASIC implementations could
further reduce power consumption and form factor.

8 CONCLUSION
LiTEfoot is a novel low-power cellular localization system
leveraging non-linear spectrum transformation for efficient
baseband signal superimposition. It senses a 3 GHz wideband
LTE spectrum in 10 ms using non-linear intermodulation, while
operating in the 𝜇J energy regime and achievingmedian localization
errors of 22 m.
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