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ABSTRACT
Robust speech enhancement is a key requirement for many emerg-

ing applications. It is challenging to recover clear speech in com-

modity devices, especially in noisy real-world scenarios. In this

paper, we propose VoiceFind, which uses only two microphones

to spatial filter the desired speech from all interference. Further-

more, to improve the intelligibility of the speech after filtering,

we design a Conditional Generative Adversarial Network (cGAN)

to reconstruct the desired speech from environmental noises and

interference speeches. This is an early attempt to explore this di-

rection. Results from simulation and real-world experiments show

promise.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Hardware→ Beamforming.
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1 INTRODUCTION
Teleconferencing and online audio-video chats have become a part

of our daily necessities. Voice communication over the internet

connection (VoIP) has made it affordable to the masses and fueled

the culture of ubiquitous conversation on mobile devices. The re-

cent pandemic has served as an impetus to the growth of online

voice communication. As a result, multiple people conversing on

smartphones or headphones are a common sight in homes, in pub-

lic places, or on daily commutes. This growing culture of voice

communication in shared spaces underscores the need for techni-

cal innovation in isolating a conversation in a noisy environment.

Noise-cancelling earphones [13] solve one-half of the problem by
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Figure 1: A representative application and overview of VoiceFind.

stopping noise while listening. However, while speaking the am-

bient noise is mixed with the user’s voice and degrades its intel-

ligibility to the person at the other end of the conversation. We

explore a novel direction of using the frequency structures and

unique features of the human voice to recover intelligible speech in

extreme noise conditions. This paper presents our speech recovery

method that combines ideas in analytical spatial filtering and with

generative deep learning approaches. Figure 1 shows an overview

of our system.

The idea of a spatial filter to suppress noise is not new to the re-

search community. Past works have leveraged spatial filtering to

enhance speech coming from a specific angle while suppressing

sounds from other directions. Traditional beamforming methods

combine multiple spatially distributed sensor data for spatial fil-

tering. Barlett (Delay-Sum) beamforming combines signals with

pre-defined delays. Adaptive beamforming such as Minimum Vari-

ance Distortionless Response (MVDR), Linear Constraint Minimum

Variance (LCMV), and Generalized Side Lobe Canceller (GSC) adap-

tively tune their filter weights to suppress any signal coming from

undesired directions. In the past several years, deep learning-based

solutions have demonstrated significant advancement in speech

separation. However, these models do not generalize well in high

noise scenarios [15]. These solutions also suffer from label per-

mutation problems, which means the model cannot identify the

target speech. Instead of only using an audio channel, recently,

UltraSE [24] and Hybrid-Beam [26] solve the label permutation

problem by capturing the ultrasound reflections from the speaker’s

face and estimating the angle of arrival with traditional beamform-

ing. These two methods have shown good spatial speech filtering

ability, but they rely on multimodal signals or a large microphone

array. The requirement of multiple sensors limits their applica-

tion on commodity devices, such as smartphones and headphones,

which commonly have two microphones. To provide a better call

experience, the acoustic industry actively explores speech spatial

https://doi.org/10.1145/3539490.3539600
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filtering. Sony’s voice pickup [2] technology and Apple’s voice

isolation [1] feature use beamforming microphones and AI-based

models to isolate the user’s voice. In this paper, we aim to overcome

the limitations of training-based speech enhancement and intro-

duce a spatial filtering method based on the frequency structure of

the human voice. We believe this approach will complement the

existing solutions.

To enable sound separation and enhancement on commodity de-

vices, we ask the question: Is it possible to spatially filter speech with
only two microphones, without any further hardware attachment on
commodity devices? We propose a system, called VoiceFind, that can
spatially filter human speeches with only two microphones on com-

modity devices. To achieve this goal, we solve two core challenges:

(1) How to emulate a microphone array with only two of them? Tra-
ditional spatial filtering techniques utilize the phase delay between

the recorded signals by microphones caused by propagation in

space and time, thus an array is required. To address this challenge,

we leverage the fact that human speech includes multiple harmonic

frequencies. Instead of using phase difference accumulated in space,

we use the phase accumulated in harmonic frequencies to create a

modified steering vector. Unlike traditional steering vectors whose

resolution depends on the number of sensors and their geometry,

our steering vector treats harmonics present in the speech signal as

virtual sensors. After creating a steering vector, we use the MUSIC

algorithm to compute the direction of arrival (DOA) for all time-

frequency components that are corresponding to the speech signal

and then based on the estimated DOA we keep the time-frequency

component that is coming from the desired direction.

(2)How to improve intelligibility for the separated speech? It is known
that the amplitude of the time-frequency spectrogram is critical for

speech intelligibility. However, spatial filtering only considers the

direction of arrival. With intersection points of two speeches in the

spectrogram, it is highly possible that some portions in the desired

speech also be filtered out. Moreover, environmental non-harmonic

noises can also cause an error in spatial filtering. Therefore, we

design a conditional GAN (cGAN) to reconstruct the desired speech

with the coordination of the spatial filter spectrogram and that of

the raw recorded signal. The strategy is the generator in the GAN

model learns which portions to keep in the spectrogram and what

are the amplitudes in the kept portions, while the discriminator

further improves the reconstructed desired speech by analyzing if

it is a real or fake pair with the clean desired speech. Moreover, we

design a cepstral-based speech filter to remove any non-harmonic

and interference noises before applying cGAN.

This project is a work in progress toward a long-term research

commitment focused around enhancing voice communication on

smart devices. While there are scopes for improvements in signal

shaping and optimized deep learning model, this paper shows the

possibility of using predictable patterns in human voice for spa-

tial noise elimination and speech enhancement. At this stage of

development, VoiceFind makes the following contributions:

• We design a spatial filtering technique for human speech that

only requires two microphones, which can be applied on any

commodity laptops, smartphones, and smartwatches.

• We design a cGAN model to effectively extract only the de-

sired speech from the distorted recorded sound. Furthermore,

we apply a cepstral-based speech filter to remove non-speech

environmental noises.

• We implement the system and evaluate it in both simulated and

real-world environments.

2 CORE INTUITIONS AND PRIMERS
VoiceFind spatially filters human speeches with only two micro-

phones, leveraging the fact that human speech includes multiple

harmonic frequencies. In this section, we first introduce traditional

DoA estimation using an array, then we highlight the harmonic

structure of human speech.
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𝑑

𝜃

𝑑𝑠𝑖𝑛𝜃
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Figure 2: Direction of arrival estimation using a sensor array.

2.1 Direction of Arrival Estimation
When a sound wave travels through space and time, it accumulates

phase. Computing the phase difference between the waves received

at multiple sensors to estimate the Direction of Arrival of a wave is

a highly explored technique. Let’s say there are𝑀 sensors spaced

linearly with a distance 𝑑 apart from each other. There is a sound

wavewith frequency 𝑓 traveling at speed 𝑐 received by these sensors

making an angle of 𝜃 with the normal to the microphone array.

Figure 2 shows the explained setup. It is evident from the Figure

2 that path length is different for each sensor. Path difference 𝐿

with respect to first element is 𝐿(𝑚) = (𝑚 − 1)𝑑𝑠𝑖𝑛(𝜃 ), where
𝑚 corresponds to the element number in an array ranges from

1 to M. Time delay due to this path difference is 𝜏 (𝑚) = 𝐿 (𝑚)
𝑐 =

(𝑚−1)𝑑𝑠𝑖𝑛 (𝜃 )
𝑐 . So, the phase difference𝜓 between the array elements

with respect to the first sensor turns out to be

𝜓 (𝑚) = 𝑒𝑥𝑝 ( 𝑗2𝜋 𝑓 (𝑚 − 1)𝑑𝑠𝑖𝑛(𝜃 )
𝑐

)

This equation shows that the phase difference across sensors in

an array is a function of angle of arrival 𝜃 , frequency of received

signal 𝑓 , and distance between elements in an array 𝑑 . MUSIC

algorithm [20] is one of the most extensively used algorithms in

estimating the direction of arrival of the received signal using an

array of sensors. The direction is estimated by projecting the signal

onto its subspace. Let 𝑋 be the transmitted signal, and 𝑌 (𝑚) be
the signal received by the𝑚𝑡ℎ

sensor. Using the phase difference,

we find 𝑌 (𝑚) = 𝑒𝑥𝑝 ( 𝑗2𝜋 𝑓 (𝑚 − 1)𝑑𝑠𝑖𝑛(𝜃 )/𝑐)𝑋 , where m ranges

from 1 to M corresponds to the element number in an array. This

relation treats the phase values as normalized with respect to the

first sensor. Defining a Mx1 steering vector 𝐴(𝜃 ) in which 𝑚𝑡ℎ

elements is equal to 𝑒𝑥𝑝 ( 𝑗2𝜋 𝑓 (𝑚−1)𝑑𝑠𝑖𝑛(𝜃 )/𝑐). Now we can write

the relation between the transmitted signal and received signal by

the sensory array in a compact matrix form as 𝑌 = 𝐴(𝜃 )𝑋 . By
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finding the eign vectors of 𝑌 , and then with the help of a defined

steering vector estimate the DOA. The problem setup of the MUSIC

algorithm requires having a well-defined steering vector. Moreover,

the estimation accuracy is proportional to the number of sensors.

Instead of using an array of sensors, we propose a new technique

in which multiple frequencies present in the signal are treated as

virtual sensors. In this way, we can enjoy the benefit of a large

sensory array by using only 2 microphones.

2.2 Structure of Human Speech
Instead of using a microphone array, we seek the opportunity to

use the harmonic structure of human speech for DoA estimation.

Human speech is produced when air passing through the lungs is

modulated by the vocal cords and tracts. The vocal cords vibrate

during the pronunciation of a speech which produces voiced signals.

Voiced signals have a harmonic pattern in their frequencies like the

vowels /a/, /e/, /i/, /o/, /u/. Unvoiced signals, on the other hand, do

not have a harmonic structure as they do not require vocal cords and

they are like consonants /f/, /p/, /k/. Figure 3 shows the spectrogram
of recorded sounds of alphabets /f/ and /a/. We see the harmonic

structure of frequencies in the second half of the spectrogram when

the user is speaking /a/. We leverage this harmonic structure to

distinguish and filter human speech from noise (explained in detail

in section 3.2).

Figure 3: Spectrogram of a speech signal pronouncing /f/ and /a/ .

3 SYSTEM DESIGN
The system design of a VoiceFind comprises three modules: a) a

cepstral-based speech filter to remove any noise and non-harmonic

interference by estimating the pitch frequency of the speech signals,

(b) a harmonic-based MUSIC algorithm to spatially filter the desired

speech using harmonics as a virtual sensors and (c) a conditional

GAN to reduce any distortion and generate perceptually pleasant

intelligible speech. Next, we will discuss each module in more detail.

3.1 Cepstral-based Speech Filter
The goal of this module is to remove any noise and non-harmonic

interference signal. For this purpose, we apply the cepstrum tech-

nique which is generally used for pitch estimation of a speech.

Cepstrum is the FFT of a log of a signal spectrum, which is used

for the analysis of periodic structures in signal spectrums [6]. The

frequency of human speech is periodic (has a harmonic structure)

with the pitch of the speech signal. Computing FFT of any periodic

signal gives the peak at the harmonic frequencies of the periodic

signal. We repeat this process for each time window to have pitch

frequency estimates with time, we only keep those frequencies and

their harmonics. This allows us to keep all speech signals coming

from any direction while removing any noise and interference sig-

nals. We only pick those peaks lying inside the human speech pitch

frequency range [50Hz - 400Hz]. Figure 4 is a spectrogram of a hu-

man speech, and on top of that, we have marked pitch frequencies

estimated by this module.

Figure 4: Pitch frequencies estimated by Cepstral-based filter.

3.2 Spatial Filter for Speech
Now that we only have speech signals and their pitch estimates,

our next goal is to spatially filter the desired speech coming from 0
◦
.

This process comprises two steps: 1) Estimate the DOA for all pitch

frequency estimates using the MUSIC algorithm and harmonics

as virtual sensors. 2) Apply mask-based filtering using estimated

DOAs. Next, we discuss both steps in more detail.

3.2.1 Harmonics as virtual sensors. It is established in Section 2.1

and shown in Figure 5 that the phase difference between sensors is a

function of frequency 𝑓 of a transmitted signal, direction of arrival 𝜃 ,

and spacing 𝑑 between consecutive elements of sensors in an array.

Moreover, the performance of a MUSIC algorithm is proportional

to the number of elements in a steering vector which is equal to

the number of sensors in an array. So, to achieve reasonable DOA

accuracy large array of sensors is required. This paper, on the other

hand, proposes a novel steering vector whose length is dependent

not on the number of sensors, but the number of harmonics in

the signal, by exploiting the fact that phase difference is also a

function of the transmitted frequency. Let’s say 𝑆 is a transmitted

signal containing 𝑁 number of different frequencies, and 𝐹 is an

Nx1 vector containing the frequencies present in the signal 𝑆 . Then

𝐴(𝜃 ), the proposed steering vector is defined in such a way that 𝑛𝑡ℎ

element equals to 𝑒𝑥𝑝 ( 𝑗2𝜋𝐹 (𝑛)𝑑𝑠𝑖𝑛(𝜃 )/𝑐). Traditional techniques
keep the frequency 𝑓 constant and develop a steering vector by

changing distance 𝑑 , while we keep the distance 𝑑 constant and

alter the center frequency.

The next step is to formulate a measurement matrix so that we can

use the MUSIC algorithm for DOA estimation with the proposed

steering vector. The development of the measurement matrix is

explained below. For a short time window when harmonic frequen-

cies in a speech remain constant, we can represent a signal 𝑆 in

time-domain as 𝑆 (𝑡) = ∑𝑁
𝑖=1 𝑒𝑥𝑝 ( 𝑗2𝜋𝐹 (𝑖)𝑡). Its frequency domain

representation S(f) is 𝑆 (𝑓 ) = ∑𝑁
𝑖=1 𝛿 (𝑓 − 𝐹 (𝑖)). At the receiver end,

we use 2 microphones. After normalizing the phases with reference

to the first microphone, the frequency domain of received data of
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two microphones can be represented as

𝑌1(𝑓 ) =
𝑁∑︁
𝑖=1

𝛿 (𝑓 − 𝐹 (𝑖))

𝑌2(𝑓 ) =
𝑁∑︁
𝑖=1

𝛿 (𝑓 − 𝐹 (𝑖))𝑒𝑥𝑝 ( 𝑗2𝜋𝐹 (𝑖)𝑑𝑠𝑖𝑛(𝜃 )/𝑐)

Y1 corresponds to first microphone data, and Y2 corresponds to

second microphone data. Nx1 measurement vector ’D’ is created in

such a way that

𝐷 (𝑖) = 𝑌2(𝐹 (𝑖))
𝑌1(𝐹 (𝑖))

Now, we can get D as 𝑒𝑥𝑝 ( 𝑗2𝜋𝐹 (𝑖)𝑑𝑠𝑖𝑛(𝜃 )/𝑐). This equation is

aligned with the problem setup for the MUSIC algorithm. So, now

we can perform eigenvalue decomposition and estimate the di-

rection of arrival. In this way, we can estimate DOA using only

two microphones with harmonics as virtual sensors. However, this

equation only holds when there is no multipath. We argue that

the multipath is negligible when the microphones are close to the

speaker. The errors caused by multipath in spatial filtering will be

recovered by cGAN, which will be introduced in the next section.

Figure 5: Frequency-based spatial filter formulates the measurement matrix
for the MUSIC algorithm by exploiting the fact that phase difference is also a
function of the transmitted frequency.

3.2.2 Binary Mask. To remove all harmonic signals that are not

coming from the desired direction, we rely on binary mask 𝐵. A

binary mask is a binary matrix with a size equal to the speech

spectrogram, 𝐵(𝑓 , 𝑡) = 1∀𝑛𝑓ℎ (𝑡), where 𝑓ℎ (𝑡) is the fundamental

frequency of harmonics coming from desired direction at time 𝑡 ,

and 𝑛 is any positive integer for which 𝑛𝑓ℎ (𝑡) < 𝐹𝑠/2, where 𝐹𝑠
is the sampling rate. We estimate the direction of arrival for all

fundamental frequency estimates and for all time instances. If an

estimated direction is in a pre-defined range of the desired direction,

then we consider it as desired harmonic signal and generate our

binary mask accordingly. After that, element-wise multiplication

of binary mask with received spectrogram returns spatially filtered

signal containing only the harmonics from desired speech.

3.3 cGAN-based Speech Enhancement
Now that we have spatially filtered speech signals, we need an

enhancement block to improve intelligibility and generate a legible

and perceptually pleasant speech. After passing through the cepstral

speech filter and spatial filter, the resultant speech still suffers from

distortions due to the following reasons: a) the overlapping regions

of two speeches get removed by the spatial filter. b) multipath and

environmental noise cause some points to be mistakenly included

or excluded from the filtered spectrogram. These missing regions

and unwanted points induce discontinuity inside the harmonics

and spurious frequencies which decreases the intelligibility of the

speech. We deploy a cGAN-based speech to correct such distortions

and enhancement the speech quality.

Figure 6: cGAN architecture where discriminator learns classifying between
clean and enhanced speech and generator learns beating discriminator by
generating enhanced speech similar to the clean speech.

GAN models are explored in detail for speech enhancement and

have shown significant advancement over the last couple of years

[17]. SEGAN [16] proposed a GAN-based speech enhancement net-

work, and then [17] further improved the performance by proposing

two modifications: iterated SEGAN (iSEGAN) and deep SEGAN

(DSEGAN). In [23], time-frequency masking-based speech enhance-

ment is proposed using GAN. Daniel et al. [12] have proposed a

frequency domain speech enhancement model based on conditional

GAN (cGAN) to learn a mapping from the spectrogram of noisy

speech to an enhanced counterpart. Therefore, we also adopt a

cGAN to further enhance the spectrogram, as shown in Figure 6.

In our model, the generator has two inputs, the spatial filter output,

and the raw recorded signal. After the generator learns how to

improve the spatial filter output based on the raw recorded signal,

i.e., where to add the missing regions and points, the discrimina-

tor discriminates whether the enhanced signal matches with the

clean desired signal or not. Since the output of the spatial filter is

the filtered STFT of the recorded signal, we also use the STFT of

the raw recorded signal and desired signal as the input of cGAN.

The architecture of our GAN model is similar to the one used by

Pix2Pix [8] which has shown great potential in image-to-image

translation. Our problem is similar to the image-to-image trans-

lation, as we convert a distorted speech spectrogram to a clean

speech spectrogram. For the generator, we use an adversarial loss

to enforce the generation of realistic spectrograms and L1 loss to

enforce the conditional dependence of generated speech spectro-

gram on input spatially filtered spectrogram. Then we train our

network for 200 epochs using raw recorded and spatially filtered

spectrograms as input and a clean speech spectrogram as a target.

The result in Figure 7 shows that a) the received signal contains

two overlapping speech signals, b) spatially filtered spectrogram

contains only harmonics corresponding to desired speech but have

some distortions, c) cGAN constructed result demonstrates that

model is able to learn the harmonic structure, and able to generate

realistic speech spectrogram, and d) shows the clean speech for

comparison.
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Figure 7: Spectrogram of (a) raw recorded signal (b) spatial filter (c) cGAN
reconstructed speech and (d) clean speech.

Figure 8: CDF of a STOI score with and without VoiceFind on a (a)
simulated and (b) real-world collected data.

4 EVALUATION
4.1 Experimental Setup and Dataset
We used two microphones separated by 15cm (the average distance

between human ears) for data collection. For data collection, we

recorded 400 words in 6 different voices from 0
◦
to 90

◦
with the

10
◦
step. So, we have 2400 recordings from 10 different directions

where each recording is of 2 seconds. Then training set is created

as follows: For each recording from 0
◦
, we synthetically mix it with

a random recording from any direction between 10
◦
to 90

◦
. For the

testing set, we repeat the same process but with 50 words that are

not present in the training set. The sampling rate of data recording

is 16kHz.

4.2 End-to-End Performance
To evaluate the end-to-end performance of VoiceFind, we compare

the Short-time objective intelligibility measure (STOI) [25], where

it ranges from 0 to 1. The higher STOI the better the intelligibility of

speech.We compare the STOI with and without VoiceFind using sim-

ulated data and real-world data. The data without VoiceFind includes
speeches from all directions, environmental noise, and multipath.

As shown in Figure 8, in both simulated and real-world dataset,

the median STOI increases around 16%, which means VoiceFind
does improve the quality of speech by filtering out the interference

speech and noises.

4.3 Angle Separation between Speeches
We evaluate the performance of VoiceFind with various angle sep-

arations between the desired and interference speech. In spatial

filtering, we set the angled buffer as 10
◦
, which means when the

angle of arrival is within an angle of −5◦ ∼ 5
◦
, we treat it as the

desired speech. As shown in Figure 10 (a)(b), we find only when

the angular separation between two speeches is within 10
◦
, the

performance of VoiceFind is worse than raw recording. As long as

there is a reasonable angle separation between two speeches, our

system improves the quality of speech.

Figure 9: Relative energy in a signal received from different direc-
tions after passing through the spatial filter.

4.4 Environmental Noise
We also evaluate the performance of VoiceFind under regular kinds
of environmental noises, including city traffic, city sidewalk, traffic

horns, cafeteria, restaurant, and tone. As shown in Figure 10 (c),

the STOI improves around 10% under these environmental noises

with VoiceFind, meaning VoiceFind is effective in filtering out non-

harmonic noises.

4.5 Spatial Filter
We evaluate the performance of the spatial filter when the speech

comes from directions of 0
◦
to 90

◦
. Ideally only the speech from 0

◦

should be kept, while others are completely filtered out. However,

same as traditional DoA estimation techniques, it is not possible

to completely filter out the sound from other directions. Each DoA

estimation algorithm has a resolution based on parameters such as

the number of microphones. To evaluate the resolution of VoiceFind,
we compute the relative energy after spatial filtering of a signal

received from different directions with respect to the signal strength

in 0
◦
signal, as shown in Figure 9. We find the signal strength

decreases with the increase of the angle, meaning the larger the

separation between angles of incoming sound, the better the spatial

filter performance.

5 RELATEDWORK
Human voice detection and speech recognition using wearable and

ubiquitous devices is an active field of research [4, 19, 21]. Estimat-

ing the direction of arrival of speech and spatial filtering has also

been explored in various contexts [5, 18, 22, 29]. The fundamentals

of angle of arrival detection and localization are deeply rooted into

the rich literature [9, 11, 28]. MUSIC algorithm [20] is a well ex-

plored AoA estimation technique. The basic idea is that when a sig-

nal from a propagation path is received across an array of antennas,

the AoA introduces a corresponding phase shift across the receivers

in the array. While effective, the MUSIC algorithm requires an array

for AoA estimation. To improve the accuracy with less antenna,

SpotFi [9] uses each frequency component in the WiFi signal to

improve the accuracy. There are several existing works that localize

human voices [22, 27]. These studies have achieved accurate human

voice localization in an indoor environment with strong multipath

by re-tracing the paths using the estimated AoA and room structure.

Although effective, these works cannot eliminate the interference

from another person’s voice in the environment.

Deep learning-based solutions have become an integral part of

speech separation algorithms. The technique in [7] proposed a
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Figure 10: Comparison of STOI score with and without VoiceFind on (left) simulated data (center) real data with an interference speech coming
from different angles. (right) Median STOI score with and without VoiceFind under various noise scenarios.

monaural speech separation technique by jointly optimizing deep

neural networks and recurrent neural networks. Conv-TasNet [10]

trained a convolutional network to learn the ideal time-frequency

magnitudemasking for speech separation. Although these solutions

have shown remarkable performance in speech separation, these

audio-only solutions suffer from label permutation problems. The

models cannot identify a target speech. So, the models are trained to

separate all superimposed speeches which drastically increases the

problem complexity. Recent techniques deal with label permutation

problems by gathering information about the target speech using

complementary modalities. Audiovisual Zooming [14] leverages

video recording of the speaker’s face to identify the target speech

for separation. But keeping a camera at a certain angle, and un-

der allowable lighting limits its practical usability [3]. Moreover,

the recording of a video raises serious privacy concerns. Wang et

al. [26] combine traditional beamforming with a neural network to

eliminate the interference from a voice in other directions, requiring

6 microphones for the MUSIC algorithm. UltraSE [24] uses ultra-

sound sensing as a complementary modality to separate the desired

speaker’s voice from interferences and noise. VoiceFind achieves

both AoA estimation and spatial filtering of the human voice by

using only two microphones.

6 CONCLUSION
In this paper, we use only two microphones to find the direction

of arrival of human speech, and spatial filter the desired speech

from all interference. We also design a cGAN model to reconstruct

human speech after spatial filtering.
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