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IxTeT

● LAAS/CNRS, Toulouse, France
● mid-1990s
● Video:

https://www.cs.umd.edu/~nau/apa/ixtet.mov

https://www.cs.umd.edu/~nau/apa/ixtet.mov
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T-ReX Casper (NASA JPL)

● Planning/control of spacecraft
● NASA JPL, ongoing

● Planning/control of AUVs
● Monterey Bay Aquarium Research 

Institute, ≈ 2005-2010
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Temporal Models

● Constraints on state variables and events
▸ Reflect predicted actions and events

● Actions have duration
▸ preconditions and effects may occur at times 

other than start and end
● Time constraints on goals

▸ relative or absolute

● Exogenous events expected to occur in the future
● Maintenance actions: maintain a property

▸ e.g., track a moving target, keep a door closed
● Concurrent actions

▸ interacting effects, joint effects
● Delayed commitment 

▸ instantiation at acting time
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Outline

✓ Introduction

● 4.2 Representation

▸ Timelines

▸ Actions and tasks

▸ Chronicles

● 4.3 Temporal planning

● 4.4 Constraint management

● 4.5 Acting with temporal models
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Timelines

● Up to now, we’ve used a “state-oriented view”
• Time is a sequence of states s0, s1, s2

• Instantaneous actions transform each state into the next one
• No overlapping actions

● Switch to a “time-oriented view”
▸ Discrete: time points are integers

• t = 1, 2, 3, …
▸ For each state variable x, a timeline

• values of x during different time intervals
▸ State at time t = {state-variable values at time t}
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persistence
requires t1 ≤ t2

Timeline
● A pair  (T,C )

▸ partially predicted evolution of one state variable

● T : temporal assertions
[t1, t2] loc(r1) : (loc1, l)
[t2, t3] loc(r1) = l
[t3, t4] loc(r1) : (l, loc2)

● C : constraints
t1 < t2 < t3 < t4

l ≠ loc1
l ≠ loc2

● If T contains  [t,t′] x : (v,v′)  or  [t,t′] x = v  then C always contains t ≤ t′
▸ To keep the examples from getting cluttered, we’ll often be sloppy and not 

write t ≤ t′ explicitly

2

time

lo
c(
r1
)

loc1
loc2

l

t1 t2 t3 t4

Change

Persistence

change
requires t3 ≤ t4
and  l ≠ loc2
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lo
c(

r) loc1
loc2

loc1

t1 t3t2 t4
time

Consistency

● Let (T,C) be a timeline

● Let (T ′,C′) be a ground instance of (T,C)
▸ (T ′,C′) is consistent if

• T ′ satisfies C′ 
and  

• no state variable in (T,C) has more 
than one value at a time

● (T,C) is consistent if it has at least one
consistent ground instance

● Poll: is this timeline consistent?
▸ T2 = {[t1,t2] loc(r)=loc1,  

[t3,t4] loc(r):(l,loc2)}
▸ C2 = {t1< t3< t2}

lo
c(

r)

loc1

l

t1 t3 t2 t4
time

loc2

lo
c(

r1
)

loc1
loc2

loc1

1 43 9
time

(T1,C1) a ground instance of (T1,C1)

● A consistent timeline:
▸ T1 = {[t1,t2] loc(r)=loc1, [t3,t4] loc(r):(loc1,loc2)}
▸ C1 = {t1< t2< t3}
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Security
● (T,C) is secure if

▸ it’s consistent (has at least one
consistent ground instance)

▸ every ground instance that satisfies 
the constraints is consistent

● In PSP (Chapter 2), analogous to a 
partial plan that has no threats

● Can make a consistent timeline secure 
by adding separation constraints:
▸ r ≠ r1
▸ t2 < t3

▸ t4 < t1

▸ t2 = t3, r = r1 , l = loc1
▸ t4 = t1, r = r1 , l = loc1

● Analogous to resolvers in PSP

● Not secure:
▸ T1 = {[t1,t2] loc(r) = loc1, [t3,t4] loc(r) : (l,loc2)}
▸ C1 = {t1< t2, t3< t4}

● Separation constraints:
▸ t2 < t3

▸ t2 = t3, l = loc1

(T1,C1) a ground instance 

lo
c(

r) loc1
loc2

l

t1 t3t2 t4
time

lo
c(

r1
)

loc1
loc2

loc3

0 4 5 6
time
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Union of Multiple Timelines

● Timelines for k different state variables, all of which are fully ground:
▸ (T1,C1), …, (Tk,Ck)

● Union is (T,C):
▸ T = T1∪…∪Tk 

▸ C = C1∪…∪Ck

● If every (Ti,Ci) is secure, then (T1,C1) ∪ …∪ (Tk,Ck) is also secure

book omits 
this part
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Causal support

● Consider the assertion [t1,t2] loc(r1) = loc1
▸ How did r1 get to loc1 in the first place?

● Let α be either   [t1,t2] x = v1 or   [t1,t2] x : (v1, v2)
● Causal support for α

▸ Information saying α is supported a priori
▸ Or another assertion that produces x = v1 at time t1

▸ [t0,t1] x = v1

▸ [t0,t1] x : (v0, v1)

● A timeline T is causally supported if every assertion α in T has a 
causal support

● Three ways to modify a timeline to add causal support …

time

lo
c(

r1
)

loc1

t1 t2
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Establishing causal support

● Add [t2,t3] loc(r1) = loc2
▸ Supported by the first 

temporal assertion
▸ Supports the second one

time

lo
c(

r1
)

loc1

loc3

t1 t2 t3 t4

Change

Persistence
loc2 loc2

time
lo

c(
r1

)

loc1

loc2

t1 t2 t3 t4

Change

Persistence
loc2

(1) Add a persistence assertion

T = {[t1,t2] loc(r1):(loc1,loc2),  
[t3,t4] loc(r1):(loc2,loc3)}

C = {t1< t2 < t3< t4}
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Establishing causal support

● Add t2 = t3, r = r1, l = loc2

time

loc(r)

loc1
loc2

l
loc(r1)

time

loc(r1)loc1
loc2 loc2

loc(r1)

(2) Add constraints

T = {[t1,t2] loc(r1):(loc1,loc2),  
[t3,t4] loc(r) = l}

C = {t1< t2, t3< t4}

t1 t2 = t3             t4

t1 t2 t3        t4
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Establishing causal support

● Add an action that includes
[t2,t3] loc(r1):(loc1,loc3)

loc4

time
lo

c(
r1

)

loc3

t1 t2 t3 t4

loc1

loc4

time

lo
c(

r1
)

loc3

t1 t2 t3 t4

loc1(3) Add a change assertion
(by adding an action)

T = {[t1,t2] loc(r1) = loc1,  
[t3,t4] loc(r1):(loc3,loc4)}

C = {t1< t2 < t3< t4}
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d
w r

Primitive Tasks (Actions)

leave(r,d,w)
// robot r goes from loading dock d to waypoint w
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty) 

constraints:
te ≤ ts + δ1
adjacent(d,w) 

▸ Action duration te – ts ≤ δ1

● Action or primitive task (or just primitive): 
▸ a triple (head,T,C)

• head is the name and parameters
• (T,C) is the union of a set of timelines

● Always two additional parameters
▸ starting time ts , ending time te

● In each temporal assertion in T,
• left endpoint is like a precondition

ó need for causal support
• right endpoint is like an effect
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Primitive Tasks (Actions)

enter(r,d,w)
// robot r goes from waypoint w to loading dock d 
assertions:

[ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r) 

constraints:
te ≤ ts + δ2
adjacent(d,w) 

▸ Action duration te – ts ≤ δ2

▸ Dock d becomes occupied by r

d
w r

take(k,c,r,d)
// crane k takes container c from robot r
assertions:

[ts,te] pos(c): (r, k) // where c is
[ts,te] grip(k): (empty, c) // what’s in k’s gripper
[ts,te] freight(r): (c,empty) // what r is carrying
[ts,te] loc(r) = d // where r is

constraints:
attached(k,d) 

c

d

r

k
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d

r

p

c

k

Primitive Tasks (Actions)
● leave(r,d,w) robot r leaves dock d to an adjacent waypoint w
● enter(r,d,w) r enters d from an adjacent waypoint w

● take(k,c,r) crane k takes container c from robot r
● put(k,c,r) crane k puts container c onto robot r

● navigate(r,w,w′) r navigates from waypoint w to connected waypoint w′

● stack(k,c,p) crane k stacks container c on top of pile p
● unstack(k,c,p) crane k takes a container c from top of pile p

• w′

• w

d′

k′

p′

c, c′ - containers
d, d′ - loading docks
k, k′ - cranes
p, p′ - piles
r - robot
w, w′ - waypoints



19Nau – Lecture slides for Automated Planning and Acting

Tasks and Methods
● Task: move robot r to dock d

▸ [ts ,te] move(r,d)

● Method:
m-move1(r,d,d′,w,w′)

task: move(r,d)
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(r,w′,w)
[t4,te] enter(r,d,w)

assertions:
[ts,ts+1] loc(r) = d′

constraints:
adjacent(d,w), 
adjacent(d′,w′), d ≠ d′, 
connected(w,w′), 
t1 ≤ t2, t3 ≤ t4

ts

leave

navigate

t1 t3t2 t4 te

enter

ts t1 t2 t3 t4 te

[ts ,te] move(r,d)

d′

d

• w′
r

• w

book omits r
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c

Tasks and Methods
● Task: move container c from pile p to robot r

▸ [ts ,te] load(k,r,c,p)

● Method:
m-load1(k,r,c,p)

task: load(k,r,c,p)
refinement:

[ts,t1] unstack(k,c,p)
[t2,te] put(k,c,r)

assertions:
constraints:

t1 ≤ t2

unstack put

ts t1 t2 te

[ts,te] load(k,r,c,p)

d

k

p

r

c d

k

p

r

d

k

p

r c
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Tasks and Methods

● Task: remove everything
above container c in pile p
▸ [ts ,te] uncover(c,p)

● Method:
m-uncover(c,p,k,d,p′)

task: uncover(c,p)
refinement: [ts,t1] unstack(k,c′,p) // action

[t2,t3] stack(k,c′,p′) // action
[t4,te] uncover(c,p) // recursive uncover

assertions: [ts,ts+1] pile(c) = p
[ts,ts+1] top(p) = c′
[ts, ts+1] grip(k) = empty 

constraints: attached(k,d), attached(p,d),
attached(p′,d), 
p ≠ p′, c′ ≠ c, t1 ≤ t2, t3 ≤ t4

ts

unstack

stack 

t1 t3t2 t4 te

uncover 

ts t1 t2 t3 t4 te

[ts ,te] uncover(c,p)

…

c = c3 - container
p = p1 - pile it’s in
k = k1 - crane
d = d1 - loading dock
p′ = p2 - offload pile

d

k

p p′

c

c′

d

k

p p′

c
c′
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Tasks and Methods
● Task: robot r brings 

container c to pile p
▸ [ts , te] bring(r,c,p)

m-bring(r,c,p,p′,d,d′)
task: bring(r,c,p)

refinement: [ts,t1] move(r,d′ )
[ts,t2] uncover(c,p′)
[t3,t4] load(k′,r,c,p′)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = p′
[ts,t3] freight(r) = empty 

constraints: attached(p′,d′), attached(p,d), d ≠ d′
attached(k′,d′), attached(k,d), k ≠ k′
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

1

move 

t3

t1

t2

ts

uncover

pile(c)=p’ 
cargo(r)=nil

load

move 

unload

t4 t6t5 t7 te

unload

move

load

move

uncover

ts t3 t4 t5 t6 t7 te

pile(c) = p′
cargo(r) = nil

[ts , te] bring(r,c,p)

t1

t2

d′

d

• w′

k

p

r
• w

p′

c

k′
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Chronicles

docked(ship1)=d3

[ts , te] bring(r,c1,d4) 

loc(r1)=d1

ts t0 ts+10                       ts+ δ t1 te

loc(r1)=d1
top(pile-ship1)=c1

= Chronicle ϕ = (A,S,T,C) 
Ø A: temporally qualified tasks
Ø S : a priori supported assertions
Ø T: temporally qualified assertions
Ø C: constraints

= ϕ can include
Ø Current state, future predicted events
Ø Tasks to perform
Ø Assertions and constraints to satisfy

= Can represent
Ø a planning problem
Ø a plan or partial plan

ϕ0:
tasks: [t0,t1] bring(r,c1,d4)
supported: [ts] loc(r1)=d1

[ts] loc(r2)=d2
[ts+10,ts+δ] docked(ship1)=d3
[ts] top(pile-ship1)=c1
[ts] pos(c1)=pallet

assertions: [te] loc(r1)=d1
[te] loc(r2)=d2

constraints: ts = 0 < t0 < t1 < te , 20 ≤ δ ≤ 30
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Outline

✓ Introduction

✓ Representation

● 4.3 Temporal planning

▸ Resolvers and flaws

▸ Search space

● 4.4 Constraint management

● 4.5 Acting with temporal models
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Planning

● Planning problem:
▸ a chronicle ϕ0 that has some flaws

• analogous to flaws in PSP

● To resolve the flaws, add 
▸ assertions
▸ constraints
▸ actions 

ϕ0: tasks: (none)
supported: (none)
assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)
constraints: adjacent(loc3,w1)

adjacent(w1,loc3)
adjacent(loc4,w2)
adjacent(w2,loc4)
connected(w1,w2)

loc4

lo
c(

r1
)

loc3

t1 t2 t3 t4

l

move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l

ϕ1: tasks: [t2,t3] move(r1,loc3)
supported: (none)
assertions: [t1,t2] loc(r1) = l

[t3,t4] loc(r1) : (loc3,loc4)
constraints: adjacent(loc3,w1)

adjacent(w1,loc3)
adjacent(loc4,w2)
adjacent(w2,loc4)
connected(w1,w2)
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Flaws (1)

1.  Temporal assertion α that isn’t causally supported
▸ What causes r1 to be at loc3 at time t3?

● Resolvers:

▸ Add constraints* to support α from an assertion in ϕ
• l = loc3,  t2 = t3

▸ Add a new persistence assertion* to support α
• l = loc3,  [t2,t3] loc(r1) = loc3

▸ Add an action or task to support α
• [t2,t3] move(r1,loc3)

▸ refining it will produce an action that supports α 
(see next slide)

__________
*where the book uses equality constraints, I’ll use substitutions

loc4

lo
c(

r1
)

loc3

t1 t2 t3 t4

lLike an open goal in PSP

loc4

lo
c(

r1
)

l = loc3

t1 t2=t3 t4

l

loc4

lo
c(

r1
)

l = loc3

t1 t2 t3 t4

move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l
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Flaws (2)
2.  Non-refined task

▸ Resolver: refinement method
• Applicable if it matches the task 

and its constraints are consistent with ϕ’s
▸ Applying the resolver:

• Modify ϕ by replacing the task with m

● Example: [t2,t3] move(r1,loc3)
▸ Refinement will replace 

it with something like
[t2,t5] leave(r1,l,w)
[t5,t6] navigate(r,w,w′)
[t6,t3] enter(r1,loc3,w′)

plus constraints

Like a task in HTN planning

move
loc4

lo
c(

r1
)

loc3
t1 t2 t3 t4

l

= Method:
m-move1(r,d,d′,w,w′)

task: move(r,d)
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(r,w′,w)
[t4,te] enter(r,d,w) 

assertions:
[ts,ts+1] loc(r) = d′

constraints:
adjacent(d,w), 
adjacent(d′,w′), d ≠ d′, 
connected(w,w′), 
t1 ≤ t2, t3 ≤ t4
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Flaws (3)
3.  A pair of possibly-conflicting temporal assertions

▸ temporal assertions α and β possibly conflict if they can 
have inconsistent instances

e.g., [t1,t2] loc(r1) = loc1,  [t3,t4]  loc(r) : (l, l′)
↓ ↓                            ↓  ↓       ↓        ↓  ↘

instance: [1,5] loc(r1) = loc1,  [3,8] loc(r1) : (loc2,loc3)

● Resolvers: separation constraints
▸ r ≠ r1
▸ t2 < t3

▸ t4 < t1

▸ t2 = t3, r = r1 , l = loc1
• Also provides causal support for [t3,t4] loc(r) : (l, l′)

▸ t4 = t1, r = r1 , l = loc1
• Also provides causal support for  [t1,t2] loc(r1) = loc1

Like a threat in PSP
loc3

loc2

t1 t2 t3 t4

l

loc(r
)loc(r1)

loc1
loc3

loc2

1 3 5 8

loc(r1)

loc(r1)
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Planning Algorithm

● Like PSP in Chapter 2
▸ Repeatedly selects flaws and chooses resolvers

● In the book, TemPlan uses recursion
▸ Can be rewritten to use a loop
▸ Just programming style, equivalent either way

● Selecting a resolver ρ is an OR-branch
▸ backtracking point

● Selecting a flaw f is an AND-branch
▸ not a backtracking point, must eventually 

select all of them

● If it’s possible to resolve all flaws, at least one of 
the nondeterministic execution traces will do so

TemPlan(ϕ, Σ)
loop:
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Example
● ϕ0 = (A,S,T,C) 

▸ Establishes state-variable values at time t = 0
▸ Flaws: two unrefined tasks

● Select bring(r,c1,p3) to resolve first

ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: (none)
constraints: adjacent(d1,w12), . . .

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

● Note:
▸ [0] x = v means  [0,0] x = v
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4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

d1

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Method instance
● One relevant method

▸ Instantiate c ← c1 and p ← p3 to match bring(r,c1,p3)

ϕ0: tasks: bring(r,c1,p3)
bring(r′,c2,p4)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: (none)
constraints: adjacent(d1,w12), . . .

m-bring(r,c,p,p′,d,d′,k,k′)
task: bring(r,c,p)

refinement: [ts,t1] move(r,d′)
[ts,t2] uncover(c,p′)
[t3,t4] load(k′,r,c,p′)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = p′
[ts,t3] freight(r) = empty 

constraints: attached(p′,d′), 
attached(p,d), d ≠ d′
attached(k′,d′), 
attached(k,d), k ≠ k′
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

m-bring(r,c1,p3,p′1,d3,d1,k3,k1)
task: bring(r,c1,p3)

refinement: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty 

constraints: attached(p′1,d1), 
attached(p3,d3), d3 ≠ d1
attached(k1,d1), 
attached(k3,d3), k3 ≠ k1
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

Poll: did I instantiate p′,d,d′,k,k′ prematurely?
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4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4
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ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)
bring(r′,c2,p4)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty 

constraints: ts<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7
adjacent(d1,w12), . . .

Apply the method instance
● Changes to ϕ0

▸ Remove bring(r,c1,p3)
▸ Add new tasks, assertions, constraints

● Flaws: 6 unrefined tasks, 2 unsupported assertions
● Select bring(r′,c2,p4) to resolve next
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Method instance
● Instantiate r ← r′, c ← c2, p ← p4 to match bring(r′,c2,p4)
● Rename timepoint variables ts,, te, t1, …, t7 to avoid name conflicts

ϕ1: tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)
bring(r′,c2,p4)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty 

constraints: ts<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7
adjacent(d1,w12), . . .

Poll: to get the method instance, I 
substituted r←r′ in m-bring. Should I 
also substitute r←r′ in ϕ1?

m-bring(r,c,p,p′,d,d′,k,k′)
task: bring(r,c,p)

refinement: [ts,t1] move(r,d′)
[ts,t2] uncover(c,p′)
[t3,t4] load(k′,r,c,p′)
[t5,t6] move(r,d)
[t7,te] unload(k,r,c,p)

assertions: [ts,t3] pile(c) = p′
[ts,t3] freight(r) = empty 

constraints: attached(p′,d′), 
attached(p,d), d ≠ d′
attached(k′,d′), 
attached(k,d), k ≠ k′

t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

m-bring(r′,c2,p4,p′2,d4,d2,k4,k2)
task: bring(r′,c2,p4)

refinement: [t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k2,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k4,r′,c2,p4)

assertions: [t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: attached(p′2,d2), 
attached(p4,d4), d4 ≠ d2
attached(k2,d2), 
attached(k4,d4), k4 ≠ k2

t′1 ≤ t′3, t′2 ≤ t′3, t′4 ≤ t′5, t′6 ≤ t′7
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ϕ2:   tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)
[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .

Apply the method instance
● Changes:

▸ Remove bring(r′,c2,p4)
▸ Add tasks, assertions, constraints

● Flaws: 10 unrefined tasks, 4 unsupported assertions
● Select [ts,t3] pile(c1) = p′1 to resolve next
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Resolvers for a temporal assertion
● Four ways to support [ts,t3] pile(c1)=p′1

A. Support from [0] pile(c1)=p′1 by constraining ts = 0
B. Support from [0] pile(c1)=p′1 by adding persistence [0,ts] pile(c1)=p1
C. Add a task [t8,ts] unload(k,r′′,c1,p′1)
D. Add a primitive task [t8,ts] unstack(k,c1,p′1)

ϕ2:   tasks: [ts,t1] move(r,d1)
[ts,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r, d3)
[t7,te] unload(k3,r,c1,p3)
[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: [ts,t3] pile(c1) = p′1
[ts,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: ts<t1≤t3, ts<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .

Poll: Suppose r = r1 here. 
As a side effect, which 
resolvers will also support
[ts,t3] freight(r1) = empty? 
Vote for A, B, C, or D,
or  E (none of them), 

F (more than one), 
G (unsure)
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ϕ2:   tasks: [0,t1] move(r,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r,c1,p′1)
[t5,t6] move(r,d3)
[t7,te] unload(k3,r,c1,p3)
[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1, [0,t3] pile(c1)=p′1
[0] pile(c2)=pʹ2
. . .

assertions: [0,t3] freight(r) = empty
[t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .
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Support the assertion
● Support [ts,t3] pile(c1) = p′1 from [0] pile(c1)=p′1 by constraining ts = 0

▸ Move it to the “supported” list
● Next: support [0,t3] freight(r) = empty
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ϕ3:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t′s,t′1] move(r′,d2)
[t′s,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1, [0,t3] pile(c1)=p′1
[0] pile(c2)=pʹ2
[0,t3] freight(r2) = empty
. . .

assertions: [t′s,t′3] pile(c2) = p′2
[t′s,t′1] freight(r′) = empty 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
t′s<t′1≤t′3, t′s<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .
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● Support [0,t3] freight(r) = empty from [0] freight(r2)=empty by 
constraining r = r2
▸ Move it to the “supported” list

● Next: support [t′s,t′3] pile(c2)=p′2

Support another assertion
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ϕ3:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[0,t′1] move(r′,d2)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r′,c2,p′2)
[t′5,t′6] move(r′,d4)
[t′7,t′e] unload(k2,r′,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0] freight(r2)=empty
[0] pile(c1)=p′1, [0,t3] pile(c1)=p′1
[0] pile(c2)=pʹ2, [0,t′3] pile(c2)=pʹ2
[0,t3] freight(r2) = empty
. . .

assertions: [0,t′1] freight(r′) = empty 
constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,

0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .
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● Support [t′s,t′3] pile(c2)=p′2 from [0] pile(c2)=p′2 by constraining t′s = 0
▸ Move it to the “supported” list

● Next: support [t′s,t′1] freight(r′) = empty

Support another assertion
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ϕ4:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[0,t′1] move(r1,d2)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
[0] freight(r1)=empty
[0,t3] freight(r2) = empty
[0] pile(c1)=p′1, [0,t3] pile(c1)=p′1
[0] pile(c2)=pʹ2, [0,t′3] pile(c2)=pʹ2
[0] freight(r2)=empty
[0,t′1] freight(r1) = empty 
. . .

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .
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● Support [t′s,t′1] freight(r′) = empty from [0] freight(r1)=empty by 
constraining r′ = r1
▸ Move it to the “supported” list

● Next: refine task [0,t1] move(r1,d2)

Support another assertion
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ϕ4:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[0,t′1] move(r1,d2)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3
[0] loc(r2)=d4
. . .

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
adjacent(d1,w12), . . .
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Method instance
● Instantiate r←r1, d←d2, ts←0, te←t1 to match [0,t1′] move(r1,d3)

▸ Rename timepoint variables 
t1,…, t4 to avoid name conflicts m-move1(r,d,d′,w,w′)

task: move(r,d)
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(r,w′,w)
[t4,te] enter(r,d,w) 

assertions:
[ts,ts+1] loc(r) = d′

constraints:
adjacent(d,w), 
adjacent(d′,w′), d ≠ d′, 
connected(w,w′), 
t1 ≤ t2, t3 ≤ t4

m-move1(r1,d2,d3,w23,w23) 
task:move(r2,d1)

refinement:
[0,t1′′] leave(r1,d3,w23)
[t2′′,t3′′] navigate(r1,w23,w23)
[t4′′,t1′] enter(r1,d2,w23) 

assertions:
[0,1] loc(r1) = d3 

constraints:
adjacent(d2,w23), 
adjacent(d3,w23), d2 ≠ d3, 
connected(w23,w23), 
t1′′ ≤ t2′′, t3′′ ≤ t4′′
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ϕ5:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[0,t1′′] leave(r1,d3,w23)
[t2′′,t3′′] navigate(r1,w23,w23)
[t4′′,t1′] enter(r1,d2,w23) 
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
adjacent(d1,w12), . . .
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Modified chronicle
● Replace [0,t′1] move(r1,d2) with 3 tasks
● Assertion [0,1] loc(r1) = d3 is already supported, add it to the “supported” list
● Add some constraints
● Flaws: 12 tasks
● Next: support [0,t1′′] leave(r1,d3,w23)
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[0,t1′′] leave(r1,d3,w23)
[t2′′,t3′′] navigate(r1,w23,w23)
[t4′′,t1′] enter(r1,d2,w23) 
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
adjacent(d1,w12), . . .
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Primitive task instance
● Instantiate r←r2, d←d3, ts←0, te←t1′′ to match [0,t1′′] leave(r1,d3,w23)

leave(r,d,w)
assertions:

[ts,te] loc(r): (d,w)
[ts,te] occupant(d): (r,empty) 

constraints:
te ≤ ts + δ1
adjacent(d,w)

leave(r1,d3,w23)
assertions:

[0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty) 

constraints:
t1′′ ≤ 0 + δ1
adjacent(d3,w23)
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[t4′′,t1′] enter(r1,d2,w23) 
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1
adjacent(d1,w12), . . .
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Modified chronicle
● Removed [0,t1′′] leave(r1,d2,w23), added 2 assertions, one constraint
● Next: support [0,t1′′] enter(r1,d2,w23)
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[t4′′,t1′] enter(r1,d2,w23) 
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1
adjacent(d1,w12), . . .
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Primitive task instance
● Instantiate r ← r1, 

ts ← t4′′, te ← t1′

enter(r,d,w)
assertions:

[ts,te] loc(r): (w,d)
[ts,te] occupant(d): (empty,r) 

constraints:
te ≤ ts + δ2
adjacent(d,w) 

enter(r1,d2,w23)
assertions:

[t4′′,t1′] loc(r1): (w23,d2)
[t4′′,t1′] occupant(d2): (empty, r1) 

constraints:
t1′ ≤ t4′′ + δ2
adjacent(d2,w23) 
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)
[t4′′,t1′] loc(r1): (w23,d2)
[t4′′,t1′] occupant(d2): (empty,r1) 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1, t1′ ≤ t4′′+δ2
adjacent(d1,w12), . . .
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Modified chronicle
● Remove [t4′′,t1′] enter(r1,d2,w23), add 2 assertions, one constraint
● Next: support [t2′′,t3′′] navigate(r1,w23,w23)
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)
[t4′′,t1′] loc(r1): (w23,d2)
[t4′′,t1′] occupant(d2): (empty,r1) 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1, t1′ ≤ t4′′+δ2
adjacent(d1,w12), . . .
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Problems with navigation
● Book’s description of navigate(r,w,w′):

▸ r navigates from waypoint w to connected waypoint w′
● When are two waypoints connected?

(1) If there’s a road network between them? 
(2) If they’re on the same road and adjacent?
(3) If they’re on the same road (but not necessarily adjacent)?

● Is a waypoint connected to itself?
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)
[t4′′,t1′] loc(r1): (w23,d2)
[t4′′,t1′] occupant(d2): (empty,r1) 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1, t1′ ≤ t4′′+δ2
adjacent(d1,w12), . . .
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Possibility (1)
● Suppose w is connected to w′ if a network of roads connects them

▸ Can write navigate as a task, but not a primitive 
▸ Assertions and constraints depend on the route from w to w′

● Write a method whose body is a path-planning algorithm
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)
[t4′′,t1′] loc(r1): (w23,d2)
[t4′′,t1′] occupant(d2): (empty,r1) 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1, t1′ ≤ t4′′+δ2
adjacent(d1,w12), . . .
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Possibility (2)
● Suppose w is connected to w′ if they’re adjacent and on the same road

▸ Can write navigate as a task, but not a primitive 
▸ Assertions and constraints depend on how many waypoints from w to w′

● Write a method that goes to an adjacent waypoint then calls navigate again
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ϕ6:   tasks: [0,t1] move(r2,d1)
[0,t2] uncover(c1,p′1)
[t3,t4] load(k1,r2,c1,p′1)
[t5,t6] move(r2,d3)
[t7,te] unload(k3,r2,c1,p3)
[t2′′,t3′′] navigate(r1,w23,w23)
[0,t′2] uncover(c2,p′2)
[t′3,t′4] load(k4,r1,c2,p′2)
[t′5,t′6] move(r1,d4)
[t′7,t′e] unload(k2,r1,c2,p′2)

supported: [0] loc(r1)=d3, [0,1] loc(r1) = d3
[0] loc(r2)=d4
. . .

assertions: [0,t1′′] loc(r1): (d3,w23)
[0,t1′′] occupant(d3): (r1,empty)
[t4′′,t1′] loc(r1): (w23,d2)
[t4′′,t1′] occupant(d2): (empty,r1) 

constraints: 0<t1≤t3, 0<t2≤t3, t4≤t5, t6≤t7,
0<t′1≤t′3, 0<t′2≤t′3, t′4≤t′5, t′6≤t′7
t1′′≤ t2′′, t3′′≤ t4′′
t1′′ ≤ δ1, t1′ ≤ t4′′+δ2
adjacent(d1,w12), . . .
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Possibility (3)
● Suppose w is connected to w′ if they’re on the same road, but not 

necessarily adjacent
▸ Then navigate is easy:   loc(r) : (w,w′)

● Works well if we redraw the figure to have two waypoints on each road
● With only one waypoint, a degenerate case:  [t2′′,t3′′] loc(r1) : (w23,w23)
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Heuristics for Guiding TemPlan

● Flaw selection, resolver selection 
heuristics similar to those in PSP
▸ Select the flaw with the smallest 

number of resolvers
▸ Choose the resolver that rules out 

the fewest resolvers for the other 
flaws 

● There is also a problem with 
constraint management
▸ We ignored it when discussing PSP
▸ Discuss it next
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Summary of Sections 4.1, 4.2, 4.3
● Timelines

▸ Temporal assertions (change, persistence), constraints
▸ Conflicts, consistency, security, causal support

● Chronicle: union of several timelines
▸ Consistency, security, causal support

= Actions represented by chronicles; preconditions ó causal support
● Planning problems

▸ three kinds of flaws and their resolvers:
• tasks, causal support, security

▸ partial plans, solution plans
● Planning: TemPlan

▸ Like PSP but with tasks, temporal assertions, temporal constraints
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Outline

✓ Introduction

✓ Representation

✓ Temporal planning

● 4.4 Constraint Management

▸ Consistency of object constraints and time constraints

▸ Controlling the actions when we don’t know how long they’ll take

● 4.5 Acting with temporal models
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Constraint Management
● Each time TemPlan applies a resolver, it modifies (T,C)

▸ Some resolvers will make (T,C) inconsistent
▸ No solution in this part of the search space

▸ Would like to detect inconsistency, prune the search space
• Otherwise we’ll waste time looking for a solution

● Analogy: PSP checks simple cases of inconsistency
▸ E.g., can’t create a constraint a≺b

if there’s already a constraint b≺a
● But PSP ignores more complicated cases

▸ E.g., suppose there are three threats
• To resolve them, suppose PSP chooses 

d′′ ≠ d1 , d′′ ≠ d2 , d′′ ≠ d3
• No solutions in this part of the search

space, but PSP searches it anyway
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Constraint Management in TemPlan

T = {…}
C = (t1 < t2 < t3 < t1)

● At various points, check consistency of C
▸ If C is inconsistent, then (T,C) is inconsistent
▸ Can prune this part of the search space

● If C is consistent, (T,C) may or may not be consistent
▸ Example:

• T = {[t1,t2] loc(r1)=loc1, 
[t3,t4] loc(r1)=loc2}

• C = (t1 < t3 < t4 < t2)
▸ Gives loc(r1) two values during [t3,t4]
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Consistency of C

● C contains two kinds of constraints
▸ Object constraints 

• loc(r) ≠ l2 ,    l ∈ {loc3, loc4},    r = r1,  o ≠ o′
▸ Temporal constraints

• t1 < t3 ,    a < t,    t < t′,    a ≤ t′ − t ≤ b

● Assume object constraints are independent of temporal constraints and vice versa
▸ exclude things like t < distance (r,r′)

● Then two separate subproblems
▸ (1) check consistency of object constraints
▸ (2) check consistency of temporal constraints
▸ C is consistent iff both are consistent
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Object Constraints

● Constraint-satisfaction problem (CSP)  – NP-hard
● Can write an algorithm that’s complete but runs in exponential time

• If there’s an inconsistency, always finds it
• Might do a lot of pruning, but spend lots of time at each node

● Instead, use a technique that’s
incomplete but takes polynomial time

• arc consistency, path consistency*

● Detects some inconsistencies but not others
▸ Runs much faster, but prunes fewer nodes

__________
*See Russell & Norvig, Artificial Intelligence: A Modern Approach
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Time Constraints
To represent time constraints:
● Simple Temporal Networks (STNs)

▸ Networks of constraints on time points

● Synthesize incrementally them starting from ϕ0
▸ Templan can check time constraints in time O(n3)

● Incrementally instantiated at acting time
● Kept consistent throughout planning and acting

t2

[1, 2]

[1, 2]

t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

[1, 7]
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t1

t2

t3

[1,2] [3,4]

[3,7]

Time Constraints
● Simple Temporal Network (STN): 
● a pair (V,E), where

• V = {a set of temporal variables {t1, …, tn}
• E ⊆V 2 is a set of arcs

● Each arc (ti,tj) is labeled with an interval [a,b]
• Represents constraint tj − ti ∈ [a, b]
• Or equivalently, ti − tj ∈ [–b, –a]

● Notation: instead of tj − ti ∈ [a, b], write rij = [a,b]

● To represent unary constraints: 
▸ Dummy variable t0 ≡ 0
▸ Arc r0i = [a,b] represents ti – 0 ∈ [a,b]

t1

t2

t3

[1,2] [3,4]

[–7,–3]

t0

t2

t3

[1,2] [3,4]

[3,7]
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Time Constraints

● Solution to an STN: 
▸ any assignment of integer values to the time points 

such that all the constraints are satisfied
● Consistent STN: has a solution

● Minimal STN: 
for every arc (ti,tj) with label [a,b], 

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

● Solutions:
▸ (t2–t1, t3–t2, t3–t1) ∈

{(1,1,2), (1,2,3), (2,1,3), (2,2,4)}

t1

t2

t3

[1,2] [1,2]

[0,100]

t1

t2

t3

[1,2] [1,2]

[2,4]
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Time Constraints
● Solution to an STN: 

▸ any assignment of integer values to the time points 
such that all the constraints are satisfied

● Consistent STN: has a solution

● Minimal STN: 
for every arc (ti,tj) with label [a,b], 

for every t ∈ [a,b],
there’s at least one solution such that tj − ti = t

▸ If we make any of the time intervals shorter,
we’ll exclude some solutions

t1

t2

t3

[1,2] [3,4]

[1,7]

Poll: Is this network minimal?

Poll: Is this network consistent?

t1

t2

t3

[1,2] [3,4]

[2,3]
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Operations on STNs
● Intersection,   ∩

tj – ti ∈ rij = [aij , bij]
tj – ti ∈ r′ij = [a′ij , b′ij]

Infer tj – ti ∈ rij ∩ r′ij = [max(aij,a′ij), min(bij,b′ij)]

● Composition,   •
tk – ti∈ rik = [aik,bik]
tj – tk∈ rkj = [akj,bkj]

Infer  tj – ti ∈ rik • rkj = [aik +akj, bik +bkj]
Reason: shortest and longest times for the two intervals 

● Consistency checking
▸ rik , rkj , rij are consistent only if  rij ∩ (rik • rkj) ≠ ∅

● Special case for networks with just three nodes
▸ Consistent iff if  rij ∩ (rik • rkj) ≠ ∅

ti
tj

rij

rij ∩ r′ij

r′ij

ti

tk

tj

rik rkj

rik • rkj

ti

tk

tj

rik rkj

rij

rij ∩ (rik • rkj)

rik • rkj



62Nau – Lecture slides for Automated Planning and Acting

Two Examples

● STN (V,E), where
▸ V = {t1, t2, t3}
▸ E = {r12=[1,2],  r23=[3,4],  r13=[2,3]}

● Composition:
▸ r′13 = r12 •  r23 = [4,6]

● Can’t satisfy both r13 and r′13

▸ r13 ∩ r′13 = [2,3] ∩ [4,6] = ∅
● (V,E) is inconsistent

● STN (V,E), where
▸ V = {t1, t2, t3}
▸ E = {r12=[1,2], r23=[3,4], r13=[2,5]}

● As before, r′13 = [4,6]
▸ r13 ∩ r′13 = [4,5]

● (V,E) is consistent
▸ r13 ← [4,5] will make it minimal
▸ Same solutions as above

t1

t2

t3

[1,2] [3,4]

[2,3]
t1

t2

t3

[1,2] [3,4]

[2,5]

t1

t2

t3

[1,2] [3,4]

[4,5]

d12 d23 d13 solution?
1 3 4 yes
1 4 5 yes
2 3 5 yes
2 4 6 no

● d12 = 1, 2
▸ Can’t shrink r12

● d23 = 3, 4
▸ Can’t shrink r23

● d13 = 4, 5
▸ Shrink r13 to [4,5], get 

the same solutions

● Let d12 = t2–t1 ∈ r12 = [1,2]
▸ d23 = t3–t2 ∈ r23 = [3,4]
▸ d13 = d12+d23

● Solution iff d13 ∈ r13 = [2,5] 
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Operations on STNs

● For n = 3, PC tries these triples:
▸ k=1, i=2, j=3
▸ k=2, i=1, j=3
▸ k=3, i=1, j=2

● k=1, i=2, j=3
▸ rik = r21 = [–2,–1]
▸ rkj = r13 = [2,5]
▸ rij = r23 = [3,4]
▸ rik • rkj = [–2+2, –1+5] = [0,4]
▸ r23 = rij ← [max(3,0), min(4,4)]

= [3,4]
▸ No change

● k=2, i=1, j=3 (see previous slide)
▸ PC reduces rij = r13 to [4,5]

● k=3, i=1, j=2
▸ rik = r13 = [4,5]
▸ rkj = r32 = [–4,–3]
▸ rij = r12 = [1,2]
▸ rik • rkj = [4–4, 5–3] = [0,2]
▸ r13 = rij ← [max(1,–2), min(2,2)]

= [1,2]
▸ No change

● Minimal network:

t1

t2

t3

[1,2] [3,4]

[2,5]

t1

t2

t3

[1,2] [3,4]

[4,5]

● If an arc has no constraint, use 
[−∞, +∞]

● PC (Path Consistency) algorithm: 
▸ For every i < j, iterates over rij

once for each k
▸ Each time, tries to reduce 

interval, checks consistency
▸ i, j, k each go from 1 to n

=> time O(n3)

PC(V,E):
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n,  i ≠ k,  j ≠ k do
rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent
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Operations on STNs

● i, j, k each go from 1 to n
▸ O(n3) triples; I think exact value is n(n–1)(n–2)/2

=> time O(n3)
● For n = 4, 12 triples:

▸ k=1, i=2, j=3
▸ k=1, i=2, j=4
▸ k=1, i=3, j=4
▸ k=2, i=1, j=3
▸ k=2, i=1, j=4
▸ k=2, i=3, j=4

= Example: k = 2, i = 1, j = 4
rik = r12 = [1,2]
rkj = r24 = [3,4]
rij = r14 = [–∞, ∞]
rik • rkj = [1+3, 2+4] = [4,6]

r14 = rij ← [max(–∞,4), min(∞,6)] = [4,6]

1

t2

[1, 2]

[1, 2]
t1 t4

t3

t5

[3, 4]

[6, 7] [4, 5]

tk

ti tj
rij

PC(V,E):
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n,  i ≠ k,  j ≠ k do
rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent

▸ k=3, i=1, j=2
▸ k=3, i=1, j=4
▸ k=3, i=2, j=4
▸ k=4, i=1, j=2
▸ k=4, i=1, j=3
▸ k=4, i=2, j=3



65Nau – Lecture slides for Automated Planning and Acting

= Dashed lines: constraints shrunk from [–∞, ∞]

= Can modify PC to make it incremental
Ø Input: 
• a consistent, minimal STN
• a new constraint r′ij

Ø Incorporate r′ij in time O(n2)

Operations on STNs

● PC makes network minimal
▸ Reduces each rij to exclude 

values that aren’t in any solution

● Also detects inconsistent networks
▸ rij = [aij,bij] empty => inconsistent

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

PC(V,E):
for 1 ≤ k ≤ n do

for 1 ≤ i < j ≤ n,  i ≠ k,  j ≠ k do
rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]
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Pruning TemPlan’s search space

● Take the time constraints in C
▸ Write them as an STN
▸ Use Path Consistency to check whether STN is consistent
▸ If it’s inconsistent, TemPlan can backtrack
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Controllability

● Section 4.4.3 of the book
● Suppose TemPlan gives you a chronicle and you want to execute it

▸ Constraints on time points
▸ Need to reason about these in order to decide when to start each action

● Solid lines: duration constraints
▸ Robot will do bring&move, will take 30 to 50 time units
▸ Crane will do uncover, will take 5 to 10 time units

● Dashed line: synchronization constraint
▸ At most 5 seconds between the two ending times

= Objective
▸ Choose time points that will satisfy all the constraints

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover



68Nau – Lecture slides for Automated Planning and Acting

2

t1

t3

t2

t4

[30, 50]

[5, 10]
[-5, 5]

bring&move

uncover

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Controllability

● Suppose we run PC
▸ Returns a minimal and consistent network

● There exist time points that satisfy all the constraints
● Would work if we could choose all four time points

▸ But we can’t choose t2 and t4

● Actor can control when each action starts
▸ t1 and t3 are controllable

● Can’t control how long the actions take
▸ t2 and t4 are contingent
▸ random variables that are known 

to satisfy the duration constraints
• t2 ∈ [t1+30, t1+50]
• t4 ∈ [t3+5, t3+10]
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Controllability
Suppose we start bring&move at time t1 = 0

There’s no t3 that works in both cases

● Suppose the durations are 
bring&move 50,  uncover 5
Then

t2 = t1 + 50 = 50
t4 = t3 + 5

so  t4 – t2 = t3 – 45

● Constraint  r24:  –5 ≤ t4 – t2 ≤ 5
–5 ≤ t3 – 45 ≤ 5
40 ≤     t3 ≤ 50

● Must start uncover at t3 ≥ 40

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

● Suppose the durations are 
bring&move 30,  uncover 10
Then

t2 = t1 + 30 = 30
t4 = t3 + 10

so  t4 – t2 = t3 – 20

● Constraint  r24:  –5 ≤ t4 – t2 ≤ 5
–5 ≤ t3 – 20 ≤ 5
15 ≤    t3 ≤ 25

● Must start uncover at t3 ≤ 25
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STNUs
● STNU (Simple Temporal Network with Uncertainty):

▸ A 4-tuple (V,Ṽ,E,Ẽ )
• V ={controllable time points}, e.g., starting times of actions
• Ṽ ={contingent time points}, e.g., ending times of actions
• E ={controllable constraints}, Ẽ ={contingent constraints}

● Controllable and contingent constraints: 
▸ Synchronization between two starting times: controllable
▸ Duration of an action: contingent
▸ Synchronization between ending points of two actions: contingent
▸ Synchronization between end of one action, start of another:

• Controllable if the new action starts after the old one ends
• Contingent if the new action starts before the old one ends

● Want a way for the actor to choose time points in V (starting times) 
that guarantee that the constraints are satisfied

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Poll. is r32 controllable? 
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3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Three kinds of controllability
● (V,Ṽ,E,Ẽ ) is strongly controllable if the actor can choose values for V

such that success will occur for all values of Ṽ that satisfy Ẽ
▸ Actor can choose the values for V offline
▸ The right choice will work regardless of Ṽ

● (V,Ṽ,E,Ẽ ) is weakly controllable if the actor can choose values for V such 
that success will occur for at least one combination of values for Ṽ
▸ Actor can choose the values for V only if the actor knows in advance 

what the values of Ṽ will be

● Dynamic controllability: 
▸ Game-theoretic model: actor vs. environment
▸ A player’s strategy: a function σ telling what to do in every situation

• Choices may depend on what has happened so far
▸ (V,Ṽ,E,Ẽ ) is dynamically controllable if ∃ strategy for actor that will 

guarantee success regardless of the environment’s strategy

Two player, zero sum, extensive form, 
imperfect information game

Poll. Is the above STNU 
strongly controllable? 
Poll. Is it weakly 
controllable?
Poll. Is it dynamically 
controllable?
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Dynamic Execution
For t = 0, 1, 2, …
1. Actor chooses an unassigned set of variables Vt ⊆ V that all can be assigned the 

value t without violating any constraints in E
▸ ≈ actions the actor chooses to start at time t

2. Simultaneously, environment chooses an unassigned set of variables Ṽt ⊆ Ṽ that 
all can be assigned the value t without violating any constraints in Ẽ
▸ ≈ actions that finish at time t

3. Each chosen time point v is assigned v ← t
4. Failure if any of the constraints in E ∪ Ẽ are violated

• There might be violations that neither Vt nor Ṽt caused individually
5. Success if all variables in V ∪ Ṽ have values and no constraints are violated

● Dynamic execution strategy σA for actor, σE for environment
▸ σA(ht–1) = {what events in V to trigger at time t, given ht–1}
▸ σE(ht–1) = {what events in Ṽ to trigger at time t, given ht–1}

• ht = ht–1 . (σA(ht–1) ∪ σE(ht–1))
▸ (V,Ṽ,E,Ẽ ) is dynamically controllable if ∃ σA that will guarantee success ∀ σE

rij = [l,u] is violated
if ti and tj have values 
and tj – ti ∉ [l,u]
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Example

● Instead of a single bring&move task, two separate bring and move tasks
▸ Then it’s dynamically controllable

● Actor’s dynamic execution strategy
▸ trigger t1 at whatever time you want
▸ wait and observe t
▸ trigger t′ at any time from t to t + 5
▸ trigger t3 = t′ + 10
▸ for every t2 ∈ [t′ + 15, t′ + 20] and every t4 ∈ [t3 + 5, t3 + 10]

▸ t4 ∈ [t′ + 15, t′ + 20]
▸ so t4 – t3 ∈ [–5, 5]

▸ So all the constraints are satisfied

t′

t3

t2

t4

[15, 20]

[5, 10]

[-5, 5]

t1 t[15, 25] [0, 5]
move

uncover

bring

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

bring&move

uncover

Poll. Is the above STNU 
strongly controllable? 
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Dynamic Controllability Checking
● For a chronicle ϕ = (A,ST,T,C) 

▸ Temporal constraints in C correspond to an STNU
▸ Put code into TemPlan to keep the STNU dynamically controllable

● If we detect cases where it isn’t dynamically controllable, then backtrack 
● If PC(V∪Ṽ,E∪Ẽ ) reduces a contingent constraint 

then (V,Ṽ,E,Ẽ ) isn’t dynamically controllable
⇒ can prune this branch

● If it doesn’t reduce any contingent contraints, 
we don’t know whether (V,Ṽ,E,Ẽ ) is dynamically controllable

● Two options
▸ Either continue down this branch and backtrack later if necessary, or
▸ Extend PC to detect more cases where (V,Ṽ,E,Ẽ ) isn’t dynamically controllable

• additional constraint propagation rules

PC(V,E):
for 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n,

i ≠ j, i ≠ k,  j ≠ k do
rij ← rij ∩ [rik • rkj]
if rij = ∅ then

return inconsistent
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Additional Constraint Propagation Rules
● Case 1: u ≥ 0 

▸ t must come before te

● Add a composition constraint [a′,b′] 
● Find [a′,b′] such that [a′,b′] • [u,v] = [a,b] 

▸ [a′+u, b′+v] = [a,b]
▸ a′ = a – u, b′ = b – v

t

[a, b]

[u, v]

ts te

⇒ contingent
→  controllable 

● I think this 
should be [a′, b′]
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Additional Constraint Propagation Rules
● Case 2: u < 0 and v ≥ 0 

▸ t may be either before or after te

● Add a wait constraint
▸ Wait until either te occurs 

or current time is ts + b – v, 
whichever comes first

● As before, let b′ = b – v

t

[a, b]

[u, v]

ts te

⇒ contingent
→  controllable 
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Extended Version of PC
● We want a fast algorithm that TemPlan can run at each node, to 

decide whether to backtrack
● There’s an extended version of PC that runs in polynomial time, but 

it has high overhead
● Possible compromise: use ordinary PC most of the time

▸ Run extended version occasionally, or at end of search before 
returning plan
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Outline

✓ Introduction

✓ Representation

✓ Temporal planning

✓ Consistency and controllability

● 4.5 Acting with temporal models

▸ Acting with atemporal refinement

▸ Dispatching

▸ Observation actions
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Atemporal Refinement of Primitive Actions

● Templan’s primitive actions may correspond to compound tasks
▸ In RAE, use refinement methods to refine them into commands

▸ Templan’s
primitive action template 
(descriptive model)

▸ RAE’s 
refinement method
(operational model)
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Atemporal Refinement of Primitive Actions

● Templan’s primitive actions may correspond to compound tasks
▸ In RAE, use refinement methods to refine them into commands

▸ Templan’s
primitive action template 
(descriptive model)

▸ RAE’s 
refinement method
(operational model)

unstack(k,c,p)
assertions: … 
constraints: …
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Discussion

● Pros
▸ Simple online refinement with RAE
▸ Avoids breaking down uncertainty of contingent duration
▸ Can be augmented with temporal monitoring functions in RAE

• E.g., watchdogs, methods with duration preferences
● Cons

▸ Does not handle temporal requirements at the command level, 
• e.g., synchronize two robots that must act concurrently

● Can augment RAE to include temporal reasoning
▸ Call it eRae
▸ One essential component: a dispatching function
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Acting With Temporal Models
● Dispatching procedure: a dynamic execution strategy

▸ Controls when to start each action
▸ Given a dynamically controllable plan with executable primitives, triggers 

corresponding commands from online observations
● Example

▸ robot r2 needs to leave dock d2 
before robot r1 can enter d2

▸ crane k needs to uncover c 
then put c onto r1

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9

d1

d2
r2

w1

k

p
c

r1

cʹw2

q
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Dispatching

● Let (V,Ṽ,E,Ẽ ) be a controllable STNU that’s grounded
● Different from a grounded expression in logic

▸ At least one time point in (V,Ṽ,E,Ẽ ) is instantiated
● Bounds every time point ti within an interval [li,ui]

Controllable time point t in the future:
● ti is alive if current time now∈ [li , ui]
● ti is enabled if
▸it’s alive
▸for every precedence constraint t′ < ti,  t′ has occurred
▸for every wait constraint ⟨te, α⟩,  te has occurred or α

has expired

● Let t1 = 0. Then:
▸ t2 ∈ [15,25]
▸ t3 ∈ [t, t+5]
▸ t4 ∈ [t3+15, t3+20]
▸ t5 ∈ [t4+10, t4+10]
▸ t6 ∈ [t5+5, t5+10]

● Suppose bring finishes at t=20, and now
= 25. Then
▸ t3 

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]
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Dispatching

● Let (V,Ṽ,E,Ẽ ) be a controllable STNU that’s grounded
● Different from a grounded expression in logic

▸ At least one time point in (V,Ṽ,E,Ẽ ) is instantiated
● Bounds every time point ti within an interval [li,ui]

Controllable time point t in the future:
● ti is alive if current time now∈ [li , ui]
● ti is enabled if
▸it’s alive
▸for every precedence constraint t′ < ti,  t′ has occurred
▸for every wait constraint ⟨te, α⟩,  te has occurred or α

has expired

Dispatch(V,Ṽ,E,Ẽ )
● initialize the network
● while there are time points in V that 

haven’t been triggered, do
▸update now
▸update the time points in Ṽ that were 

triggered since the last iteration
▸update enabled
▸ trigger every ti ∈ enabled such that now = ui

▸ arbitrarily choose other time points in 
enabled, and trigger them

▸propagate values of triggered timepoints
(change [lj,uj] for each future timepoint tj)

ti is bounded 
by [li , ui]
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Abstract Example
● trigger t1, propagate [lj,uj] values
● observe leave finish, this enables t2

● Trigger t2, propagate [lj,uj] values
● This enables t3, t4

● trigger t3 soon enough to allow enter(r1,d2) at time t5

▸ propagate [lj,uj] values
● trigger t4 soon enough to allow stack(k,cʹ) at time t6

▸ propagate [lj,uj] values
● rest of plan is linear: trigger each ti after previous action 

ends

navigate(r1)leave(r1,d1)

stack(k,cʹ,q)unstack(k,cʹ,p)
putdown(k,c,r1)unstack(k,c)

leave(r2,d2)

enter(r1,d2)

leave(r1,d2)

t1 t2

t3

t4

t5

t6

t7 t8 t9

before u3

before u4

Dispatch(V,Ṽ,E,Ẽ )
● initialize the network
● while there are time points in V that 

haven’t been triggered, do
▸update now
▸update the time points in Ṽ that were 

triggered since the last iteration
▸update enabled
▸ trigger every ti ∈ enabled such that now = ui

▸ arbitrarily choose other time points in 
enabled, and trigger them

▸propagate values of triggered timepoints
(change [lj,uj] for each future timepoint tj)

ti is bounded 
by [li , ui]
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t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]

Detailed Example

● Initial constraints:
▸ t1 ∈ [–∞, ∞]
▸ t2 ∈ [t1+15, t1+25]
▸ t3 ∈ [t2, t2+5]
▸ t4 ∈ [t3+15, t3+20]
▸ t5 ∈ [t3+10, t3+10]
▸ t6 ∈ [t5+5, t5+10] 

∩ [t4–5, t4+5]
● Start at time now=0

▸ enabled = {t1}
● Trigger t1 (bring) 

when now=0
● Propagate t1=0:

▸ t2 ∈ [15,25]

● Suppose bring ends at now=20
▸ enabled = {t3}

● Propagate t2 = 20
▸ t3 ∈ [20, 25]

● Trigger t3 (move) when now=25
● Propagate t3=25:

▸ t4 ∈ [40, 45]
▸ t5 ∈ [35, 35]

● At time now=35,
▸ enabled = {t5}
▸ now = u5 , must trigger t5

Dispatch(V,Ṽ,E,Ẽ )
● initialize the network
● while there are time points in V that 

haven’t been triggered, do
▸update now
▸update the time points in Ṽ that were 

triggered since the last iteration
▸update enabled
▸ trigger every ti ∈ enabled such that now = ui

▸ arbitrarily choose other time points in 
enabled, and trigger them

▸propagate values of triggered timepoints
(change [lj,uj] for each future timepoint tj)

ti is bounded 
by [li , ui]

● Trigger t5 (uncover) when now = 35
● Propagate t5=35:

▸ t6 ∈ [40, 45] ∩ [t4–5, t4+5]
● Suppose move takes 15 time units, ends at now=40

▸ enabled = ∅
● Propagate t4=40

▸ t6 ∈ [40, 45] ∩ [35, 45] = [40, 45]



87Nau – Lecture slides for Automated Planning and Acting

Deadline Failures
● Suppose something makes it impossible to start an action on time
● Do one of the following:

▸ stop the delayed action, and look for new plan
▸ let the delayed action finish; try to repair the plan by resolving violated 

constraints at the STNU propagation level
• e.g., accommodate a delay in navigate by delaying the whole plan

▸ let the delayed action finish; try to repair the plan some other way

t3

t5

t4

t6

[15, 20]

[5, 10]

[-5, 5]

t1 t2[15, 25] [0, 5]
move

uncover

bring

[10,10]
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Partial Observability

● Tacit assumption: all occurrences of contingent events are observable
▸ Observation needed for dynamic controllability

● In general, not all events are observable 
● POSTNU (Partially Observable STNU)

● Dynamically controllable?

Controllable
Timepoints Invisible

Contingent
Observable



tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]

Observation Actions

Controllable

Contingent
Invisible

observable
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Dynamic Controllability

● A POSTNU is dynamically controllable if 
▸ there exists an execution strategy that chooses future controllable points to meet all the constraints, 

given the observation of past visible points
● Observable ≠ visible
● Observable means it will be known when observed
● It can be temporarily hidden

Controllable
Timepoints Invisible

Contingent Visible
Observable

Hidden

tʹ

t3

t2

t4

[20, 25]

[25, 30]

[-5, 10]

t1 t [1, 2]
driving

cooking

working

t0
[19:00, 19:30]
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Outline

✓ Introduction

✓ Representation

✓ Temporal planning

✓ Consistency and controllability

✓ Acting with executable primitives

● Summary
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Summary of Sections 4.4, 4.5
● Managing constraints in TemPlan: like CSPs

▸ Temporal constraints: STNs, PC algorithm (path consistency)
● Acting

▸ Dynamic controllability
▸ STNUs
▸ RAE and eRAE
▸ Dispatching


