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IXTeT

e LAAS/CNRS, Toulouse, France
e mid-1990s
e Video:

https://www.cs.umd.edu/~nau/apa/ixtet.mov
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RAX/PS

e Planning/control
of DS1 spacecraft

e NASA Ames and
JPL, 1999
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Casper (NASA JPL)

e Planning/control of AUVs e Planning/control of spacecraft

e Monterey Bay Aquarium Research e NASA JPL, ongoing
Institute, = 2005-2010
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Temporal Models

e (onstraints on state variables and events
» Reflect predicted actions and events
e Actions have duration

» preconditions and effects may occur at times
other than start and end

e Time constraints on goals

» relative or absolute
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e Exogenous events expected to occur in the future
e Maintenance actions: maintain a property

> e.g., track a moving target, keep a door closed
e Concurrent actions

> interacting effects, joint effects
e Delayed commitment

> Instantiation at acting time
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Outline

v
e 4.2 Representation
> Timelines
> Actions and tasks
> Chronicles
e 4.3 Temporal planning
e 4.4 Constraint management

e 4.5 Acting with temporal models
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Timelines

e Up to now, we’ve used a “state-oriented view”
e Time is a sequence of states s, 51, 5,
e Instantaneous actions transform each state into the next one

e No overlapping actions

t+1

~

e Switch to a “time-oriented view”

» Discrete: time points are integers
e t=1,2,3,...
» For each state variable x, a timeline
e values of x during different time intervals |*
> State at time ¢ = {state-variable values at time ¢}

time

state variables
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Timeline
e A pair (T,C)

» partially predicted evolution of one state variable

e T :temporal assertions 4
persistence \ [£,, £,] loc(r1) : (loc, ] :
requires ¢ <t [1,, ;] loc(rl) =1 Change
(s, 2,] loc(r1) : (1, loc2) e—
/OC:;onstraints

Persistence

loc(rl)

loCLgee™
- Wloc2

change »
requires t; < 1, H<t<ty3<ly I b 13 U time
and /#loc2 [+ locl

[ #loc2

e If T contains [£,t]x:(v,v") or [t,t]x=v then C always contains ¢ < ¢'

» To keep the examples from getting cluttered, we’ll often be sloppy and not
write ¢ < t' explicitly
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Consistency

o Lot (T: C) be a timeline e A consistent timeline:
» T, = {[t.t,] loc(r)=locl, [t;,t4] loc(r):(locl,loc2)}
e Let(T',C) be a ground instance of (T, C) » C = {1<t,<ty}
» (T',C) is consistent if
I aats ' loc2 — loc2
o T'satisfies C = l0CL _ loc], e < locl  10CL s
O e ; (@) e '
and O ] 5 e :
e no state variable in (T, C) has more ' - - time 1 5 . > time
than one value at a time i Loh L
(T.,C) a ground instance of (T;,C))
e (T,C) is consistent if it has at least one
consistent ground instance
C e : : 4 locl loc2
e Poll: 1s this timeline consistent? . ; _Q.C
> T, = {[t;,t,] loc(r)=loci, %"
[£5,¢4] loc(7):([loc2)} ] P .
» C, = {1<t:<t,) i — time
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o (T,C)is secure if

> 1t’s consistent (has at least one
consistent ground instance)

> every ground instance that satisfies
the constraints 1s consistent

e In PSP (Chapter 2), analogous to a
partial plan that has no threats

e (Can make a consistent timeline secure
by adding separation constraints:

> r#£rl
> L <l
> < 4
> L=t,r=rl1,/=locl
> t,=t,r=rl,[/=locl
e Analogous to resolvers in PSP
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Security

loc(7)

e Not secure:

» T, = {[t,,t,] loc(r) = locl, [ts,t4] loc(r) : (/,loc2)}

> C = {< b, <14}

> fime

loc2 = IQFZ
locl W = locl
g E Q : ]
= z © loc3 ¥
' — > time : s
51 b 13 2 0 45

(‘Tlacl)

e Separation constraints:
> 1, < I

> 12 — t3, l: |OC1

a ground instance

10



Union of Multiple Timelines

e Timelines for & different state variables, all of which are fully ground: «—

book omits
this part

> (Tlacl)a RS (T;cack)

e Union is (T,C):
» T=T,U...UT,
> C:CIUUCk

e Ifevery (T,C) is secure, then (T,,C,) U ...U (T,,C)) is also secure
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Causal support

e Consider the assertion [#,%,] loc(rl)=locl %
: : locl
» How did r1 get to locl in the first place? = — 5
e Letabeetther [f,6]x=v, or [t,6]x: (v, V) 5 .
I b time

e Causal support for a
» Information saying o is supported a priori
» Or another assertion that produces x = v, at time ¢,
> [l x=v

> [to.t1] x (v, V1)

e A timeline T is causally supported if every assertion a.in T has a
causal support

e Three ways to modify a timeline to add causal support ...
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Establishing causal support

(1) Add a persistence assertion

T = {[t,,,] loc(r1):(loc1,loc2),
[£5,2,] loc(rl):(loc2,loc3)}

C={<6,<5<1,}

® Add [tz,t:;,] IOC(rl) — IOCZ

» Supported by the first
temporal assertion

» Supports the second one
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= ocl loc2 loc2
[ ocC 7 |
g M 4. Persistence
N : M0C3  Change
t1 to I3 t4 time
:“ 0ct loc2
[ oC 4 /
g M | Persistence
| : Moc2 Change
t1 to t3 t4 time
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Establishing causal support

(2) Add constraints

T= {[#,,t,] loc(r1):(loc1,loc2),
[£5,t4] loc(r) = [}

C={t<ty, <14}

e Add =1L, 1r= rl, [ =loc2
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Establishing causal support

(3) Add a change assertion

locd
(by adding an action) '

locl

loc(rl)

loc3
T = {[t,,t,] loc(r1) = locl, '
[£3,24] loc(rl):(loc3,locd)}

t1 t2 {3 t4 time :

C={6<t, <<ty

locl I.OC4

loc(rl)

e Add an action that includes
[£,,1;] loc(rl):(locl,loc3)

t1 t2 {3 t4 time:
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Primitive Tasks (Actions) /

® Action or primitive task (or just primitive): w o/r S —— /
» a triple (head,T.C) d

e head 1s the name and parameters

_ . o leave(r,d,w
e (T,C) is the union of a set of timelines ( )

// robot r goes from loading dock d to waypoint w

e Always two additional parameters assertions:
> starting time ¢, , ending time ¢, [£..t,] loc(r): (d,w)
[£..t,] occupant(d): (r,empty)
e In each temporal assertion in T, constraints:
e left endpoint is like a precondition <t +9,
e — 7S
< need for causal support adjacent(d,w)

e right endpoint is like an effect
> Action duration ¢, — £, < 9,
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Primitive Tasks (Actions)

4

w r ¢
o0 /0O (@) — L
O (@) [@0)

d
enter(r,d,w) take(k,c,r,d)
// robot r goes from waypoint w to loading dock d // crane k takes container ¢ from robot 7
assertions: assertions:
[£,:te] loc(r): (w,d) [£,,t,] pos(c): (, k) // where ¢ is
Lot t(d): t : .
L2 61 occupant(d): (empty,r) [t..t.] grip(k): (empty, ¢) // what’s in k’s gripper
traints: : .
constrain 88 [¢..t,] freight(r): (c,empty) // what r 1s carrying
te = ts + 2 — .
adjacent(d. ) [¢,,2.] loc(r) =d // where r 1s
constraints:
> Action duration ¢, — ¢, < §, attached(k,d)

> Dock d becomes occupied by r
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Primitive Tasks (Actions)

e |eave(r,d,w) robot r leaves dock d to an adjacent waypoint w
e enter(r,d,w) r enters d from an adjacent waypoint w

e take(k,c,r) crane k takes container ¢ from robot r

e put(k,cr) crane k puts container ¢ onto robot »

® navigate(r,w,w") rnavigates from waypoint w to connected waypoint w'

e stack(kc,p) crane k stacks container ¢ on top of pile p

e unstack(k,c,p)  crane k takes a container ¢ from top of pile p

¢, ¢' - containers
d, d' -loading docks

k, k' - cranes

p,p' -piles

v - robot

w, w' - waypoints

Nau — Lecture slides for Automated Planning and Acting
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Tasks and Methods

e Task: move robot » to dock d

> [ts 9te] move(l",d) [ts,te]move(l’;d) ______________________
navigate
® Method: I
m-movel(r,d,d’ w,w") leave enter
task: move(r,d) _ _
refinement: ; | | P
[t,1,] leave(r,d' W) 2 L b ly Iy L

[2,,t;] navigate(r,w',w)
[2,,2,] enter(r,d,w)

book omits r

assertions:

[t,t,+1] loc(r)=d' °w / d /
constraints: /
adjacent(d,w), , r )
adjacent(d’.w'), d # d', *W / 60 4

d
connected(w,w),

h=h, 3y
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Tasks and Methods

e Task: move container ¢ from pile p to robot r

" Lot loadibrcp) lailioadleren)
e Method: unstack put
m-load1(k r.c,p) _ _
task: load(k,r,c,p) L L
refinement: ls hob le

[£.t;] unstack(k,c,p)
[t29te] pUt(k,C,l")
assertions:

constraints:
t, <t
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Tasks and Methods

-------------------------------------------------------------------------------

e Task: remove everything

above container ¢ in pile p stack
I
> [ ,t.] uncover(c,p) unstack | § uncover
e Method: Lo L c=c3 - container
i 5 — - — =pl -pileit’sin
m-uncover(c,p,k,d,p’) ‘ t 1, t 1 L p ) P p
task: uncover(c,p) k=kl -crane
refinement: [¢,¢,] unstack(k,c’,p) // action d=dl -loading dock
[£,,1;] stack(k,c',p’) // action p' =p2 - offload pile
[¢4,1,] uncover(c,p) // recursive uncover
assertions: [z,t,+1] pile(c)=p
£, 7, +1] top(p) = ¢’

[t, t,+1] grip(k) = empty ~ [> - [>

constraints: attached(k,d), attached(p,d),

attached(p'.d), ¢ L d // ¢ 7d = 7/

pEpL,c' e, 1<t <1 ; ,
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Tasks and Methods

e Task: robot r brings
container c to pile p

_ pile(c)=p’
>[4, ] bring(r,c,p) ~ cargo(r) = nil
MOVE 7, move
m-bring(r,c,p,p'.d,d") % load . unload

task: bring(7,c,p)

refinement: [¢,¢,] move(r,d')
[¢,,t,] uncover(c,p’)
[£5,1,] load(k',r,c,p")
[£5,1s] move(r,d)

2

[¢5,2,] unload(k,r,c,p)

assertions: [f,%;] pile(c) =p'
[¢,,t;] freight(r) = empty

constraints: attached(p'd’), attached(p,d), d # d’
attached(k'd"), attached(k,d), k # k'
hSh, LS, ST, S
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Chronicles

e Chronicle ¢ = (A,S,7,0) do:
> A: temporally qualified tasks tasks: [t0,41] bring(r;,c1,d4)
> S:a priori supported assertions supported:  [#,] loc(rl)=d1
T : : [£,] loc(r2)=d2
» ‘I: temporally qualified assertions [£.+10,£,+5] docked(ship1)=d3
> (: constraints [,] top(pile-ship1)=c1
[£,] pos(cl)=pallet
® ¢ can include assertions: [z,] loc(r1)=d1
> Current state, future predicted events (2] loc(r2)=d2

» Tasks to perform constraints: #,=0<#,<# <,,20<0<30

» Assertions and constraints to satisfy

e (an represent

» aplanning problem :
loc(r1)=d1

> aplan or partial plan top(pile-shipl)=cl docked(ship1)=d3 Ioé(r1)=d1
— Y g ?
t 1 t4+10 t+6 4t

Nau — Lecture slides for Automated Planning and Acting
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v
v

e 4.3 Temporal planning
> Resolvers and flaws
» Search space
e 4.4 Constraint management

e 4.5 Acting with temporal models
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Planning

e Planning problem:
> a chronicle ¢, that has some flaws

e analogous to flaws in PSP

e To resolve the flaws, add
> assertions
> constraints

> actions
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@o: tasks: (none)
supported: (none)

assertions:

constraints:

[£1,5,] loc(rl) =1 4
[£3,24] loc(rl) : (loc3,loc4d)
adjacent(loc3,w1)
adjacent(w1,loc3)

loc(rl)
\<

adjacent(loc4,w2) t 2B l4
adjacent(w2,loc4)

connected(w1,w?2)

@1: tasks: [£,,63] move(rl,loc3)
supported: (none)

assertions:

constraints:

[£1,62] loc(rl) = / =1
[£3,24] loc(rl) : (loc3,locd) ‘§
adjacent(loc3,w1) -
adjacent(w1,loc3) t:z

adjacent(loc4,w2)
adjacent(w2,loc4)

connected(w1,w?2)
25



Flaws (1)

Like an open goal in PSP

1. Temporal assertion a that isn’t causally supported

» What causes rl to be at loc3 at time #;?
® Resolvers:

» Add constraints™ to support o from an assertion in ¢

L Z: IOC3, t2:t3

> Add a new persistence assertion” to support o
e [=loc3, [t,,1] loc(rl) =loc3

» Add an action or task to support o
e [1,,t;] move(rl,loc3)

> refining it will produce an action that supports o
(see next slide)

*where the book uses equality constraints, I’1l use substitutions
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E / IO.C4

o Io%;/g

Ol :
11 2 13 14

:—T‘ l |OC4

rel

o

loc(rl)

loc(rl) )
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Like a task in HTN planning Flaws (2)

2. Non-refined task e Method:

m-movel(r,d.d’ w,w
» Resolver: refinement method ( )

o . . k: )
e Applicable if it matches the task task: move(r,d)

and its constraints are consistent with ¢’s refinement:
[¢,t,] leave(r,d' W)

> Applying the resolver: [£,,t;] navigate(r,w',w)

e Modify ¢ by replacing the task with m [£,,2.] enter(r,d,w)
e Example: [£,,1;] move(rl,loc3) assertions:
» Refinement will replace ’:T“ ! [t,t,+1] loc(r) =d'
it with something like g constraints:
[£,,t5] leave(rl, [ w) B ; adjacent(d,w),
[25,¢5] navigate(r,w,w’) Z adjacent(d',w"), d # d,
connected(w,w"),

[2:,1;] enter(rl,loc3,w’)

hSh,3s1y
plus constraints
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Like a threat in PSP

Flaws (3)

3. A pair of possibly-conflicting temporal assertions
» temporal assertions o and f possibly conflict if they can
have inconsistent instances
c.g., [tl,tz] IOC(rl) = |OC1, [t3,t4] IOC(”') . (l, l,)

1 R
instance: [1,5] loc(rl) =locl, [3,8] loc(rl): (loc2,loc3)

® Resolvers: separation constraints
> r#£rl
> <t
> 1, <t
> t,=1;, v =rl,[/=locl
e Also provides causal support for [#;,%4] loc(r) : ([, [
> t,=t,,r=rl,[/=locl

e Also provides causal support for [7,f,] loc(rl) = locl

Nau — Lecture slides for Automated Planning and Acting
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Planning Algorithm

Like PSP in Chapter 2

» Repeatedly selects flaws and chooses resolvers

In the book, TemPlan uses recursion
» Can be rewritten to use a loop

» Just programming style, equivalent either way

Selecting a resolver p is an OR-branch
» backtracking point
Selecting a flaw f1s an AND-branch

» not a backtracking point, must eventually
select all of them

If it’s possible to resolve all flaws, at least one of
the nondeterministic execution traces will do so

Nau — Lecture slides for Automated Planning and Acting

TemPlan(¢, X)
Flaws < set of flaws of ¢
if Flaws=< then return ¢
arbitrarily select f € Flaws
Resolvers < set of resolvers of f
if Resolvers=@ then return failure
nondeterministically choose p € Resolvers
¢ < Transform(¢, p)
Templan(¢, X)

TemPlan(g, X)
loop:
Flaws < set of flaws of ¢
if Flaws=92 then return ¢
arbitrarily select f € Flaws
Resolvers < set of resolvers of f
if Resolvers=@ then return failure

nondeterministically choose p € Resolvers
¢ < Transform(¢, p)

29



® ¢0 = (A,S,T;C)

» Establishes state-variable values at time r =0

» Flaws: two unrefined tasks

Example

e Select bring(r,c1,p3) to resolve first

=~ /|
: ‘ \
' || '
1 k2
) wi2
c'l 2
Cl b C2
p'l i 2 /p2 d2
di
wi3 K| ] w23 q
k3 k4
>p3 /p4 S
ri w34 r2
) J
d3 O O O O
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@o: tasks: bring(r,cl,p3)
bring(r',c2,p4)
supported: [0] loc(rl)=d3
[0] loc(r2)=d4
[0] freight(rl)=empty
[0] freight(r2)=empty
[0] pile(cl)=p'1
[0] pile(c2)=p’2
assertions: (none)
constraints: adjacent(d1,w12), ...

e Note:

» [0]x =v means [0,0]x =V



Method instance

® One relevant method

» Instantiate ¢ «— c1 and p < p3 to match bring(r,c1,p3)

1 |
k1l
wl2
c'l
cl —
Lt
d1 B
wi3 P |
k3/
/p3
ri —
d3 O O
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m-bring(r,c,p,p'.d,d" k,k')

task:
refinement:

assertions:

constraints:

m-bring(r,c1,p3,p'1,d3,d1,k3,k1)

bring(r,c1,p3)
[Z,t;] move(7,dl)
[¢,1,] uncover(cl,pl)
[5,14] load(k1,%cl,p'1)
[25,15] move(7, d3)

[#7,1,] unload(k3,7%c1,p3)
[2,,13] pile(cl) = p'l

[¢,t;] freight(r) = empty
attached(p'l,dl),
attached(p3.d3), d3 #d1
attached(k1,d1),
attached(k3,d3), k3 # k1
HS1, LS, =I151l1;

w34

p4

r2
——
O 00 d4

@o: tasks: bring(r,cl,p3)
bring(r',c2,p4)
supported: [0] loc(rl)=d3
[0] loc(r2)=d4
[0] freight(rl)=empty
[0] freight(r2)=empty
[0] pile(cl)=p'1
[0] pile(c2)=p’2

assertions: (none)

constraints: adjacent(d1,w12), ...

Poll: did I instantiate p',d,d’, k k' prematurely?
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» Remove bring(r,c1,p3)

Apply the method instance

e Changes to ¢

» Add new tasks, assertions, constraints

e Flaws: 6 unrefined tasks, 2 unsupported assertions

e Select bring(7’,c2,p4) to resolve next

=~ /|
‘ ‘ [
! | '
1 k2
wl2
c'l 2
Pl p1 p'2 /p2 | d2
dl
wi3 K| ] w23 q
k3 k4
/p3__ \Z@
ri — w34 r2 —
d3 O O O O d4
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@;: tasks:

supported:

assertions:

It
5
[5,14] load(k1,7cl,p'1)
[£5,15] move(r, d3)

[£7,2,] unload(k3,7c1,p3)

[Z,t;] move(7,dl)
£, 15]

uncover(cl,p'l)

5
7
loc(rl)=d3
loc(r2)=d4

|
]

]

] freight(rl)=empty
] freight(r2)=empty
]
]

[#:.13] pile(cl) = p'l
[¢,t;] freight(r) = empty

constraints: ¢,<t;<tz, 0<t,<t3, 14<ts, 1,17

adjacent(d1,w12), ...

32



¢1: tasks: [£,1] move(r,dl)
[¢, 1] uncover(cl,p’l)
[f3,f4] |Oad(k1,l’;C1,p’1)

. . . . . [£5,26] move(r; d3)
e Rename timepoint variables ¢, ¢, #, ..., t; to avoid name conflicts [£,,2,] unload(k3,7c1,p3)

Method instance

e Instantiate < r', c «— c2, p < p4 to match bring(r’,c2,p4)

m-bring(r,c,p,p’.d,d' kk") bring(r',c2,p4)

m-bring(r’,c2,p4,p'2,d4,d2,k4,k2) Supported {8} :gEg;;:ji
task: bring(7',c2,p4) [0] freight(r1)=empty
refinement: [¢',¢';] move(r',d2) ‘i [0] freight(r2)=empty
[¢',t",] uncover(c2,p'2) K2 [0] pile(c1)=p'1
[¢5,t'4] load(k2,7",c2,p'2) [0] pile(c2)=p’2
[¢'s,t's] move(r' d4) -
" E 7’t % u?lcza;j)(kél,r ”,2c2,p4) c'2 assertions: [tS,t3] pile(cl) =p'1
SISO [0 | |PANSGA) = 2 €2 ~ [t,t;] freight(r) = empty
- z[att ;,atclf]lefcri?;o%gt((j}; 9) = empty P2 Zp2 ] d2 constraints: £,<t;<ts, 0<t(2;t3, 14<ts, 1<t
constraints: ,d2), .
attached(p4,d4), d4 # d2 i - < s
attached(k2,d2), 3 J‘M
attached(k4,d4), k4 # k2
1S5 15 =15 1 Sf.’S’ o< 17 4 Poll: to get the method instance, I
— S substituted 7«—7'in m-bring. Should I
i3 Or1 S— w34 Or2 — also substitute r«<—7'in ¢,?
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@,: tasks: [£,1;] move(r,dl)
t,t] uncover(cl,p'l)
t3,14] load(k1,7,c1,p'1)
ts,ts] move(r, d3)
t7,t.] unload(k3,7cl,p3)
t',t'1] move(r',d2)

5] uncover(c2 p'2)
t,t'4] load(k4,7",c2,p'2)
t t’6] move(r’,d4)
t',,t',] unload(k2,7',c2,p'2)

Apply the method instance

e Changes:
» Remove bring(r’,c2,p4)
» Add tasks, assertions, constraints
e Flaws: 10 unrefined tasks, 4 unsupported assertions

=~ /|
\

‘ ‘ '
‘ le k2 supported:

loc(r2)=d4

ay
]
]
wi2 ] freight(rl)=empty
]
]
]

c'l 2
AL cl 7 c2
T pT P v | d2

freight(r2)=empty
pile(cl)=p'1

|
|
|
|
|
|
[
e Select [, 73] pile(cl) = p'l to resolve next %
|
|
|
|
|
|
|

dl

t,13] pile(cl) = p'l

t,1z] freight(r) = empty

t',t's] pile(c2) =p'2

e oh t',t'1] freight(r') = empty

- constraints: ¢,<t|<t3, {,<tr<t3, 14=ts, tct7,

1 w34 2 t<t"\<t's, t'<t',<t'3, t'4;<t's, t's<t"
d3 O @) O O adjacent(d1,w12), ...
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w13 1 ] w23 1 J‘ assertions:
k4

I_|I_|I_|I_|'
.




Resolvers for a temporal assertion

e Four ways to support [7,,73] pile(cl)=p'1l

A. Support from [0] pile(c1)=p'1 by constraining ¢, = 0
B. Support from [0] pile(c1)=p'l by adding persistence [0,z,] pile(cl)=p1l
C. Add a task [#g,%,] unload(k,»",c1,p'1)
D. Add a primitive task [#g,7,] unstack(k,c1,p'1)

\
‘ ‘ (]
Vool 2
wl2
c'l c'2
y c2
Pl pt p% /p2 /| d2
al Poll: Suppose » = rl here. _
wi3 i il w23 | As aside effect, which
k3 resolvers will also support
[£,13] freight(rl) = empty?
/p3_ Vote for A, B, C, or D,
o or E (none of them),
B — w34 F (more than one),
d3 O CO

@,: tasks:

supported:
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G (unsure)

W

[£,%,] move(r,dl)
[£,1,] uncover(cl,p'l)
[ load(k1,7cl,p'l)
[ move(r, d3)
[£7,2,] unload(k3,7c1,p3)
[t',t'1] move(r',d2)
[¢',t"] uncover(c2,p'2)
[¢5,¢'4] load(k4,r',c2,p'2)
[¢'s,t's] move(r',d4)

[¢'5,¢',] unload(k2,7',c2,p"2)
[0] loc(r1)=d3

[0] loc(r2)=d4

[0] freight(rl)=empty

[0] freight(r2)=empty

[0] pile(cl)=p'1

[0]

t,t:] pile(cl) =p'1

t,tz] freight(r) = empty
t',t5] pile(c2) = p'2
t',t'] freight(r) = empty

e

constraints: ,<t;<t3, t,<t,<t3, 1,<ts, 1,17,
t<t"\<t, V<t’,<t'3, t'4=<t's, t's<t"

adjacent(d1,w12), ...
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. ¢,: tasks: [0,¢;] move(r,dl)
Support the assertion 0,1,] uncover(cL,p'l)
t3,14] load(k1,7cl,p'1)
ts,ts] move(r,d3)
t7,t.] unload(k3,7cl,p3)
t',t'1] move(r',d2)
t',t;] uncover(c2,p’'2)
t5,t'y] load(k4,r',c2,p'2)
t's,t's] move(r',d4)
t',,t',] unload(k2,7',c2,p'2)
0] loc(r1)=d3
] loc(r2)=d4
] freight(rl)=empty
] freight(r2)=empty
]
]

e Support [7,73] pile(cl) = p'l from [0] pile(c1)=p'1l by constraining ¢, = 0
> Move it to the “supported” list
e Next: support [0,%;] freight(r) = empty

1 supported:

wl2
c11 c’2
A S c2 |/
7

Pl p1 p'2 /p2 | d2

pile(cl)=p'1, [0,;] pile(cl)=p’1

dl

[¢',¢7] pile(c2) = p'2
[t',t'1] freight(r") = empty
p3 4 constraints:@<t1§t3 ,@< H=<t3, 1415, 117,
. - t'<t"1<th, ' <th<t's, t',<t's, t's<t';
. ri w34 r2 adjacent(d1,w12), . ..

O OO O OO
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w13 9 ] W23 y J‘ assertions: [0,f;] freight(r) = empty
k4




Support another assertion

e Support [0,15] freight(r) = empty from [0] freight(r2)=empty by
constraining » = r2

> Move it to the “supported” list
e Next: support ¢, 73] pile(c2)=p'2

=~ /|
‘ ‘ |
' || '
1 k2
wl2
c11 c'2
A CL c2
PL - pT 7 o2 b2 | d2
di
wi3 1 | ] w23
k3
/p3 /p4
ri w34 r2
7 J
d3 O O O
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k

d4

¢5: tasks:

supported:

assertions:

[0,7,] move(r2/dl)
[0,7,] uncover(cl,p'l)
[5,14] load(k1)r2jc1,p'l)
[15,16] movedrz d3)
[£,1,] unIoad(k3Jc1,p3)
[t',t'1] move(r',d2)
[¢,t] uncover(c2 p'2)
[¢5,¢'4] load(k4,r',c2,p'2)
[t 5,t6] move(r’,d4)
[
[
[
[
[
[
[
|

t',t'.] unload(k2,7',c2,p'2)
0] loc(r1)=d3

0] loc(r2)=d4

0] freight(rl)=empty

0] freight(r2)=empty

0] pile(cl)= p'1 [0,2;] pile(cl)=p’l
0] pile(c2)=p

0,%] frelghtE) = empty

[ 3] pile(c2) =p'2
[t',t'1] freight(r") = empty

constraints: 0<t;<t3, 0<t,<t3, 14=<ts, 117,

<t"1<t's, t'<t")<t'3, t'4<t's, t's<t;
adjacent(d1,w12), ...
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Support another assertion

e Support [1',15] pile(c2)=p'2 from [0] pile(c2)=p'2 by constraining ¢, =0

> Move it to the “supported” list
e Next: support ¢, 7] freight(r") = empty

=~ /|
‘ ‘ [
! | '
1 k2
wl2
c11 c’2
A G V7 c2
T pT P v | d2
dl
wi3 K| ] w23 q
k3 k4
/p3__ /p4
ri — w34 r2 ——
d3 O O O O d4
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¢5: tasks:

supported:

assertions:

constraints:

,t1] move(r2,dl)
uncover(cl,p'l)
[5,14] load(k1,r2,c1,p'l)
[£5,15] move(r2,d3)

[¢5,1,] unload(k3,r2,c1,p3)
[0,¢'1] move(r',d2)

[0,¢",] uncover(c2,p'2)
t,t"4] load(k4,r',c2,p'2)
t5,t6] move(r',d4)

t'5,t',] unload(k2,7',c2,p'2)
0] loc(r1)=d3

] loc(r2)=d4

] freight(rl)=empty
] freight(r2)=empty
]
]

e L]

pile(cl)=p'l, [0,2;] pile(cl)=p’1
0] pile(c2)=p’2, |0,¢5] pile(c2)=p’2

] freight(r") = empty
b’<f1<f3 2<f3 1415, 617,
0<t'1<t'5, 0<t",=<t's, t',\<t's, t'<t";
adjacent(d1,w12), ...
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Support another assertion

e Support [, ] freight(r’) = empty from [0] freight(rl)=empty by

constraining »' = rl

> Move it to the “supported” list
e Next: refine task [0,7;] move(rl,d2)

=~ /|
: : \
' L] '
1 k2
) wi2
c11 c'2
A CL c2 |/
7
Pl 1 p2 P2
di
wi3 1 | ] w23
k3
/p3 /p4
ri w34 r2
)
d3 O @0) O

d2
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k

d4

@4: tasks:

supported:

[0,¢;] move(r2,d1)

[0,7,] uncover(cl,p'l)
[5,14] load(k1,r2,c1,p'l)
[£5,15] move(r2,d3)

[#5,1,] unload(k3,r2,c1,p3)
[0,¢';] move(rljd2)

[0,¢",] uncover(c2,p'2)
[¢5,¢'4] load(k4)rlc2,p'2)
[t 5,t6] move(irl,d4
[t%7,¢']
|
|
|
|
|
|
[0
0,

t'5,t'.] unload(k2/rl,c2,p'2)
0] loc(r1)=d3

0] loc(r2)=d4

0] freight(rl)=empty

0,13] freight(r2) = empty

0] pile(cl)=p'1, [0,%] pile(cl)=p’l
0] pile(c2)=p’2, [0,¢5] pile(c2)=p'2
] freight(r2)=empty

t'1] freight(rl) = empty

constraints: 0<t1<t3 0<t,<t3, t4=ts, 1s<t7,

0<t'1<t'3, 0<t",<t’s, t's<t's, t's<t";
adjacent(d1,w12), ...
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Method instance

e Instantiate r<—rl, d«—d2, <0, t,«<—t; to match [0,#,"] move(rl,d3)

» Rename timepoint variables
t1,..., t, to avoid name conflicts

1 H
k1
wl2
c'1l
cl
s
dil
wi3 P |
k3
/p3
ri —
d3 O 0
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c’2

c2

p2

m-movel(r,d,d’ w,w’)

m-movel(rl,d2,d3,w23,w23)
task: move(r2,d1)

refinement:
[0,¢,"'] leave(rl,d3,w23)
[£,"",t;""] navigate(rl,w23,w23)
[2,",t;'] enter(rl,d2,w23)

assertions:
[0,1] loc(rl) =d3
constraints:
adjacent(d2,w23),
adjacent(d3,w23), d2 # d3,
connected(w23,w23),
L' <" "<t

/p4 S

W34 r2
O o’ | d4

P4. tasks: [0,¢1] move(r2,d1)

[0,%,] uncover(cl,p'l)

[5,14] load(k1,r2,c1,p'l)

[£5,15] move(r2,d3)

[#5,1,] unload(k3,r2,c1,p3)

[0,¢';] move(rl,d2)

[0,¢,] uncover(c2,p'2)

[¢5,t'4] load(k4,rl,c2,p'2)

[t's,t's] move(rl,d4)

[t'5,¢,] unload(k2,rl,c2,p'2)

supported: [0] loc(rl)=d3

[0] loc(r2)=d4

constraints: 0<t;<t3, 0<t,<t3, 14=<ts, 117,
0<t'1<t’z, 0<t’,<t’5, t',<t's, t'c<t’
adjacent(d1,w12), ...
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Modified chronicle

Assertion [0,1] loc(rl)
Add some constraints
Flaws: 12 tasks

Next: support [0,7,"] leave(rl,d3,w23)

Replace [0,7';] move(rl,d2) with 3 tasks

= d3 1s already supported, add it to the “supported™ list

=~ /|
‘ ‘ |
' || '
1 k2
) wi2
c'l 2
cl 2
) p2  /p2 | d2
di
wi3 K| ] w23 q
k3 k4
/p3 /p4
i/ — w34 r2 —
d3 O O O @) d4
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Ps:

supported:

tasks:

[0,7,] move(r2,dl)

[0,7,] uncover(cl,p'l)
[5,14] load(k1,r2,c1,p'l)
[£5,15] move(r2,d3)

[#5,1,] unload(k3,r2,c1,p3)
[0,2,""] leave(rl,d3,w23)
[2,",85""] navigate(rl,w23,w23)
[2,",t,"] enter(rl,d2,w23)

[0,¢",] uncover(c2,p'2)

[¢5,¢'4] load(k4,rl,c2,p'2)

[t's,t's] move(rl,d4)

[¢'7,¢',] unload(k2,r1,c2,p"2)

[0] loc(r1)=d3, [0,1] loc(rl) =d3
[0] loc(r2)=d4

constraints. O<11§t3, 0<t,<t3, 14<t5, 117,

0<t'1<t’s, 0<t’,<t’s, t',<t's, t's<t";
ZLIHS ZL2VI, t3,’S t4”
adjacent(d1,w12), ...
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Pe: tasks: [0,¢1] move(r2,d1)
Primitive task instance [0,62] uncover(c1,p'1)
e Instantiate r<—r2, d«—d3, t,«0, t,«<—t," to match [0,#,"] leave(rl,d3,w23) [#3,4] load(k1,r2,c1,p")
[£5,15] move(r2,d3)
leave(r,d,w) [#5,1,] unload(k3,r2,c1,p3)
leave(r1,d3,w23) [0,4,"] leave(rl,d3,w23)
ASsertions: [£,",85""] navigate(rl,w23,w23)
[0,1‘1”] |OC(F1)Z (d3,W23) [f4”,f1’] enter(rl,dZ,w23)
[0,4,""] occupant(d3): (rl,empty) [O”t%] uncover(c2,p 2),
y i constraints: [t’3,t’4] load(k4,rl,c2,p'2)
k1 H"<0+8, [t's,t's] move(rl,d4)
adjacent(d3,w23) [¢'7,¢,] unload(k2,rl,c2,p'2)
- wi2 supported: [0] loc(rl)=d3, [0,1] loc(rl) = d3
c’11 > [0] loc(r2)=d4
A C V7 c2
p'l o1 == 52 A d2 BEREE
. it constraints: 0<¢,<f3, 0<t,<t3, 14<ts, tc<t7,
' 0<t'1<t’s, 0<t’,<t’s, t'4<t's, t's<t";
w13 w‘ L W23 .‘ t1HS tz”, t3”§ t4”
k3 J‘k4 adjacent(d1,wi12), ...
3 Spa
T w34 7
d3 o oo o o7 | d4

Nau — Lecture slides for Automated Planning and Acting



Modified chronicle

e Removed [0,7,"] leave(rl,d2,w23), added 2 assertions, one constraint
e Next: support [0,7,"] enter(rl,d2,w23)

=~ /|
‘ \
' || '
1 k2
) wi2
c'l 2
cl 2
N p2  p2 | d2
di
wi3 1 | ] w23
k3
/p3 /p4 S
ri w34 r2
)
d3 O O O
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k

d4

Pe: tasks:

supported:

assertions:

[0,7,] move(r2,dl)

[0,7,] uncover(cl,p'l)
[5,14] load(k1,r2,c1,p'l)
[£5,15] move(r2,d3)

(25, e] unload(k3,r2,c1,p3)
[£,",t;"'] navigate(rl,w23,w23)
[t4”,t1 'l enter(rl,d2,w23)
[0,¢,] uncover(c2,p'2)
[¢5,¢'4] load(k4,rl,c2,p'2)
[t's,t's] move(rl,d4)

[¢'7,¢,] unload(k2,rl,c2,p'2)
[0] loc(rl)=d3, [0,1] loc(rl) =
[0] loc(r2)=d4

[0,¢,"'] loc(rl): (d3,w23)
[0,£,""] occupant(d3): (rl,empty)

constraints: 0<t;<t3, 0<t,<t3, 14=<ts, 117,

0<t'1=t’3, 0<t’,<t’3, t'4<t's, t's<t’;
tlHS tz”, t3,,S t4lf

Z,IH S 81

adjacent(d1,w12), ...

43



. . Pe: tasks: [0,¢,] move(r2,d1)
Primitive task instance [0,2] uncover(c1, p'1)
i [5,14] load(k1,r2,c1,p'l)
e Instantiate 7 < rl enter(r.d.v) [£5,16] move(r2,d3)
et et BB AT [t e] unload(k3,r2,c1,p3)
’ e aSSGI't'I’OH’SZ [, t;''] navigate(rl,w23,w23)
[t4 ,tl ] |OC(I’1) (W23,d2) [Z4N,Z1 ] enter(rl dz W23)
[¢,",t;'] occupant(d2): (empty, rl) [0,£,] uncover(c2,p'2)
constraints: [t5,14] load(k4,r1,c2,p'2)
y i ly §t4 + 0, [t's,t's] move(rl,d4)
b adjacent(d2,w23) [,¢.] unload(k2,r1,c2,p'2)
i supported: [0] loc(rl)=d3, [0,1] loc(rl) =
) w12 [0] loc(r2)=d4
c'l c2 ce
A& 2 | rtions: [0,¢,"] loc(rl): (d3,w23)
% : , I assertions: [0,# . (d3,
- Pz [0,£,"'] occupant(d3): (r1,empty)
. constraints: 0<t;<t3, 0<t,<t3, 14=<ts, 117,
w13 1 ] w23 1 0<t'1=t’3, 0<t’,<t’3, t'4<t's, t's<t’;
k3 k4 tIHS tz”, t3”S t4”
L' <0
3 7 o4 adjacent(d1,w12), ...
T w34 7
d3 o o o o7 | d4
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Modified chronicle

e Remove [#,",t;'] enter(rl,d2,w23), add 2 assertions, one constraint

e Next: support [t,",4;""] navigate(rl,w23,w23)

=~ /|
‘ \
' || '
1 k2
) wi2
c'l 2
cl 2
N p2  p2 | d2
di
wi3 1 | ] w23
k3
/p3 /p4 S
ri w34 r2
)
d3 O O O
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k

d4

Pe: tasks:

,t1] move(r2,dl)

,t,] uncover(cl,p'l)
t3,14] load(k1,r2,c1,p'1)
ts,tg] move(r2,d3)

t7,t.] unload(k3,r2,c1,p3)

0,#] uncover(c2,p'2)

t,t"] load(k4,rl,c2,p'2)

t5,t6] move(rl,d4)
e

t',,t',] unload(k2,rl,c2,p'2)

supported: [0] loc(rl)=d3, [0,1] loc(rl) =

assertions:

[0
[0

|

|
(7,
[£,",t5"'] navigate(rl,w23,w23)
|

|

|

|

|

|

0] loc(r2)=d4

[0 t1"] loc(rl): (d3,w23)

[0,7,"'] occupant(d3): (rl,empty)
[24",t"] loc(rl): (w23,d2)

[¢4",t;'] occupant(d2): (empty,rl)

constraints: 0<t;<t5, 0<t,<t3, 1,<ts, 1,17,

0<t'1<t's, 0<t',<t’s, t's<t's, t's<t";
tlHS tz”, t3,,S t4lf

1" <01, 1 <ty'10,
adjacent(d1,w12), ...
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Problems with navigation

e Book’s description of navigate(r,w,w’):

> rmnavigates from waypoint w to connected waypoint w'’

e When are two waypoints connected?

(1) If there’s a road network between them?

(2) If they’re on the same road and adjacent?
(3) If they’re on the same road (but not necessarily adjacent)?

e [s a waypoint connected to itself?

u u

) wi2
c’1 2
cl 2
N p2  p2 | d2

dl
wi3 K| ] w23 q
k3 k4
/p3 S /p4 S
i/ — w34 2/ ——7
d3 O O O @) d4
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,t1] move(r2,dl)

,t,] uncover(cl,p'l)

t3,14] load(k1,r2,c1,p'1)

ts,tg] move(r2,d3)

t7,t.] unload(k3,r2,c1,p3)

", t;""] navigate(rl,w23,w23)

0,#] uncover(c2,p'2)

t,t"] load(k4,rl,c2,p'2)

t5,t6] move(rl,d4)
e

t',,t',] unload(k2,rl,c2,p'2)

supported: [0] loc(rl)=d3, [0,1] loc(rl) =

assertions:

1 [0
[0
|
|
|
|
|
|
|
|
|
|

0] loc(r2)=d4

[O t1"] loc(rl): (d3,w23)

[0,7,"'] occupant(d3): (rl,empty)
[2,",t,"] loc(rl): (w23,d2)

[¢4",t;'] occupant(d2): (empty,rl)

constraints: 0<t;<t5, 0<t,<t3, 1,<ts, 1,17,

0<t'1<t's, 0<t',<t’s, t's<t's, t's<t";
Z,IIIS tz”, t3,,S t4lf

1" <01, 1 <ty'10,
adjacent(d1,w12), ...
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Possibility (1)

e Suppose w i1s connected to w' if a network of roads connects them

» Can write navigate as a task, but not a primitive

» Assertions and constraints depend on the route from w to w'
e Write a method whose body is a path-planning algorithm

=~ /|
: ‘ \
' || '
1 k2
) wi2
c'l 2
cl 2
N p2  p2 | d2
di
wi3 1 | ] w23
k3
/p3 /p4 S
ri w34 r2
)
d3 O O O
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k

d4

Pe: tasks:

,t1] move(r2,d1)

,t,] uncover(cl,p'l)
t3,14] load(k1,r2,c1,p'1)
ts,tg] move(r2,d3)

t7,t.] unload(k3,r2,c1,p3)

", t;""] navigate(rl,w23,w23)

t,t"] load(k4,rl,c2,p'2)
t's,t 6] move(rl,d4)
el

t',,t',] unload(k2,rl,c2,p'2)

supported: [0] loc(rl)=d3, [0,1] loc(rl) =

assertions:

[0
[0
|
|
|
I
[0,¢",] uncover(c2,p'2)
|
|
|
|
|

0] loc(r2)=d4

[O t1"] loc(rl): (d3,w23)

[0,7,"'] occupant(d3): (rl,empty)
[24",t"] loc(rl): (w23,d2)

[¢4",t;'] occupant(d2): (empty,rl)

constraints: 0<t;<t5, 0<t,<t3, 1,<ts, 1,17,

0<t'1<t's, 0<t',<t’s, t's<t's, t's<t";
Z,IIIS tz”, t3,,S t4lf

1" <01, 1 <ty'10,
adjacent(d1,w12), ...
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Possibility (2)

e Suppose w is connected to w' if they’re adjacent and on the same road

» Can write navigate as a task, but not a primitive

» Assertions and constraints depend on how many waypoints from w to w

!

e Write a method that goes to an adjacent waypoint then calls navigate again

=~ /|
: ‘ \
' || '
1 k2
) wi2
c'l 2
cl 2
N p2  p2 | d2
di
wi3 1 | ] w23
k3
/p3 /p4 S
ri w34 r2
)
d3 O O O
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k

d4

Pe: tasks:

,t1] move(r2,dl)

,t,] uncover(cl,p'l)
t3,14] load(k1,r2,c1,p'1)
ts,tg] move(r2,d3)

t7,t.] unload(k3,r2,c1,p3)

", t;""] navigate(rl,w23,w23)

t,t"] load(k4,rl,c2,p'2)
t's,t 6] move(rl,d4)
el

t',,t',] unload(k2,rl,c2,p'2)

supported: [0] loc(rl)=d3, [0,1] loc(rl) =

assertions:

[0
[0
|
|
|
I
[0,¢",] uncover(c2,p'2)
|
|
|
|
|

0] loc(r2)=d4

[O t1"] loc(rl): (d3,w23)

[0,7,"'] occupant(d3): (rl,empty)
[24",t"] loc(rl): (w23,d2)

[¢4",t;'] occupant(d2): (empty,rl)

constraints: 0<t;<t5, 0<t,<t3, 1,<ts, 1,17,

0<t'1<t's, 0<t',<t’s, t's<t's, t's<t";
Z,IIIS tz”, t3,,S t4lf

1" <01, 1 <ty'10,
adjacent(d1,w12), ...
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Possibility (3)

e Suppose w 1s connected to w' if they’re on the same road, but not

necessarily adjacent

> Then navigate is easy:

loc(7) : (w,w")

e Works well if we redraw the figure to have two waypoints on each road
e With only one waypoint, a degenerate case: [£,",5;"] loc(rl) : (w23,w23)

\
y i [
1 k2
) wi2
c’1 2
cl 2
N p2  p2 | d2
dl
wi3 1 | ] w23
k3
/p3 S /p4 S
rl w34 r2
— 7
d3 O O O
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k

d4

Pe: tasks:

,t1] move(r2,dl)

,t,] uncover(cl,p'l)
t3,14] load(k1,r2,c1,p'1)
ts,tg] move(r2,d3)

t7,t.] unload(k3,r2,c1,p3)

", t;""] navigate(rl,w23,w23)

t,t"] load(k4,rl,c2,p'2)
t's,t 6] move(rl,d4)
el

t',,t',] unload(k2,rl,c2,p'2)

supported: [0] loc(rl)=d3, [0,1] loc(rl) =

assertions:

[0
[0
|
|
|
I
[0,¢",] uncover(c2,p'2)
|
|
|
|
|

0] loc(r2)=d4

[O t1"] loc(rl): (d3,w23)

[0,7,"'] occupant(d3): (rl,empty)
[24",t"] loc(rl): (w23,d2)

[¢4",t;'] occupant(d2): (empty,rl)

constraints: 0<t;<t5, 0<t,<t3, 1,<ts, 1,17,

0<t'1<t's, 0<t',<t’s, t's<t's, t's<t";
Z,IIIS tz”, t3,,S t4lf

1" <01, 1 <ty'10,
adjacent(d1,w12), ...
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Heuristics for Guiding TemPlan

e Flaw selection, resolver selection
heuristics similar to those in PSP

» Select the flaw with the smallest
number of resolvers

» Choose the resolver that rules out
the fewest resolvers for the other
flaws

e There is also a problem with
constraint management

» We ignored it when discussing PSP

» Discuss it next

Nau — Lecture slides for Automated Planning and Acting

TemPlan(¢, %)

Flaws <+ set of flaws of ¢

if Flaws=@ then return ¢

arbitrarily select f € Flaws

Resolvers < set of resolvers of f

if Resolvers=a then return failure
nondeterministically choose p € Resolvers
¢ < Transform(¢, p)

Templan(¢, X))

PSP{3,r)
loop

if Flaws(m) = @ then return
arbitrarily select f € Flaws(r)
R + {all feasible resolvers for f}
if R = @ then return failure
nondeterministically choose p € R
™ < p(m)

return T
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Summary of Sections 4.1, 4.2,4.3

e Timelines
» Temporal assertions (change, persistence), constraints
» Conflicts, consistency, security, causal support
e Chronicle: union of several timelines
» Consistency, security, causal support
e Actions represented by chronicles; preconditions <> causal support
e Planning problems
» three kinds of flaws and their resolvers:
e tasks, causal support, security
» partial plans, solution plans
e Planning: TemPlan

» Like PSP but with tasks, temporal assertions, temporal constraints

Nau — Lecture slides for Automated Planning and Acting
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Outline

v
v

e 4.4 Constraint Management
» Consistency of object constraints and time constraints

> Controlling the actions when we don’t know how long they’ll take

e 4.5 Acting with temporal models

Nau — Lecture slides for Automated Planning and Acting
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Constraint Management

e Fach time TemPlan applies a resolver, it modifies (T,C)
> Some resolvers will make (T,C) inconsistent

» No solution in this part of the search space

> Would like to detect inconsistency, prune the search space

e Otherwise we’ll waste time looking for a solution

e Analogy: PSP checks simple cases of inconsistency

» E.g., can’t create a constraint a<b

if there’s already a constraint h<a

e But PSP ignores more complicated cases at

> E.g., suppose there are three threats

e To resolve them, suppose PSP chooses
d'"#d1,d"#d2,d" #d3

e No solutions in this part of the search _—
space, but PSP searches it anyway

lo(r) = d2
occupied(d") = nil

occupied(d1) = nil X--.
—Toc(r2) = d’ ‘

ay = move(r,d2,d") -

a, = move(r2,d',d1)| /

‘loc(r) =d" \
occupied(d2) = nil”’
occupied(d”) = r

loc(r2) =d1--—~ i
occupied(d) = nil
occupied(d1) =r2

./
oo o"rloé_ ;OFZO_ O
dl d2 %
occupied(d1) = nil ~ N------ »loc(r1) = d2
. \occupied(d2) = r1 _»loc(r2) = d1
AT \ - a,
\ select ) threat™ s,

Nau — Lecture slides for Automated Planning and Acting
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Constraint Management in TemPlan

T=1{.}
C=t<<<t)
e At various points, check consistency of C
» If Cis inconsistent, then (T,C) is inconsistent

» Can prune this part of the search space

e If C is consistent, (T,C) may or may not be consistent

> Example:
o T={[t;,t,]loc(rl)=locl,
[£5,24] loc(rl)=loc2}
e C=(t1<t<<t)

» Gives loc(rl) two values during [#3,44]

Nau — Lecture slides for Automated Planning and Acting
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Consistency of C

e ( contains two kinds of constraints
> Object constraints
e loc(r)#1,, [€ {loc3,locd}, r=rl, o#0'
» Temporal constraints

e (1 <t, a<t t<t, a<t'—t<b

e Assume object constraints are independent of temporal constraints and vice versa

» exclude things like ¢ < distance (7,7")

e Then two separate subproblems
> (1) check consistency of object constraints
> (2) check consistency of temporal constraints

» (Cis consistent iff both are consistent

Nau — Lecture slides for Automated Planning and Acting
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Object Constraints

e Constraint-satisfaction problem (CSP) — NP-hard

e (Can write an algorithm that’s complete but runs in exponential time

e If there’s an inconsistency, always finds it

e Might do a lot of pruning, but spend lots of time at each node

e Instead, use a technique that’s
incomplete but takes polynomial time

e arc consistency, path consistency”
e Detects some inconsistencies but not others

» Runs much faster, but prunes fewer nodes

*See Russell & Norvig, Artificial Intelligence: A Modern Approach

Nau — Lecture slides for Automated Planning and Acting

N A

56



Time Constraints

To represent time constraints:
e Simple Temporal Networks (STNs)

» Networks of constraints on time points

e Synthesize incrementally them starting from ¢,

» Templan can check time constraints in time O(n?)

e Incrementally instantiated at acting time

e Kept consistent throughout planning and acting

Nau — Lecture slides for Automated Planning and Acting
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Time Constraints

e Simple Temporal Network (STN):

e apair (V,E), where
e V= {aset of temporal variables {7, ..., t,}
e TS V?2isasetofarcs

e Each arc (¢,¢) 1s labeled with an interval [a, D]
e Represents constraint ¢,—¢; € [a, b]

* Or equivalently, #,— ¢ € [-b,—a]
e Notation: instead of ¢, — ¢, € [a, b], write r; = [a,b]
e To represent unary constraints:

> Dummy variable £, =0

» Arc ry, = [a,b] represents t, — 0 € [a,b]

Nau — Lecture slides for Automated Planning and Acting

[1,2] [3.4]
f 3.7 -
[1.2] & 3,4]
—
11.2] £ 13,4]
» X —> 13
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Time Constraints

[1,2] [1,2]
® Solution to an STN:

> any assignment of integer values to the time points
such that all the constraints are satisfied [0,100]

e (Consistent STN: has a solution ,
e Solutions:

> (tyt), i1, 13-1)) €
{(1,1,2), (1,2,3), (2,1,3), (2,2,4)}
e Minimal STN:

for every arc (,,¢;) with label [a,b],

for every ¢ € [a,b], [1.2] [1,2]
there’s at least one solution such that ¢, — ¢, =1¢
> If we make any of the time intervals shorter, t Y —> I3

we’ll exclude some solutions
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Time Constraints

® Solution to an STN:

> any assignment of integer values to the time points
such that all the constraints are satisfied

e (onsistent STN: has a solution

Poll: Is this network consistent? [1.2] [3.,4]
e Minimal STN: ‘ >t
for every arc (z,,¢;) with label [a, D], [2.3]
for every ¢ € [a,b],
there’s at least one solution such that ¢ — ¢, = ¢
> If we make any of the time intervals shorter,
we’ll exclude some solutions t,
Poll: Is this network minimal?
t —> 13

Nau — Lecture slides for Automated Planning and Acting
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e Intersection, I
L—t€r; = la;, byl
L—tery;=l[a’,b]
Infer ¢, — ¢, € r; N r'; = [max(a;,a’;), min(b;,b';)]
e Composition, *
e — 4 € 1y = [ay, byl
L= 1€ ry = [ay, byl
Infer £, —1; € ry * ry; = [ay Tay;, by +hy] l;

Operations on STNs

Reason: shortest and longest times for the two intervals

e Consistency checking

Fik» Vij» 1y are consistent only if 7, N (ry * 1) # O

e Special case for networks with just three nodes
> Consistent iff if 7, N (ry * 1) # D

Nau — Lecture slides for Automated Planning and Acting

v
j
: >
!
P
!
ry N1’y
I ,
Fik Tk
‘>t]
’"k"”kj
Iy
Fik Yy
t L —>;
i
Vik ® T
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t
[1,2] 2 [3.4]

‘) —> 3
[2,3]

e STN (V,E), where

> V={t, b, t}

> = {r=[1,2], r=[3.4], r5=[2,3]}
e Composition:

> r'iz=ri e ra =[4,60]
e (Can’t satisfy both ;5 and »';3

> rizNr'i3=[23]N1[4,6]=0

e (V,E)is inconsistent

Nau — Lecture slides for Automated Planning and Acting

o Lect d12 =Lt Erp= [1,2]
> dy3 = 31y € 3= [3,4]

Two Examples

2 N\ " =it
’ e Solution 1ffd13 Erpi= [2,5]
tl —> t3 d12 d23 d13 solution?
[2,5]
1 3 4
e STN (V,E), where S
> V: {tla t29 t3} ! ) : S
2 3 5 es
> E= {rp[1.2], rs={3.41, rs=2.5]) 4
e As before, r';3 =[4,6] s 6 1o
> i3 N3 =1[4,5] o dy=1,2
e (V,E)is consistent » Can’t shrink 1
> 713 < [4,5] will make 1t minimal o dy=3,4
» Same solutions as above » Can’t shrink 7y
[1,2] N34 ® diz=45
’ » Shrink 73 to [4,5], get
the same solutions
t —> 13

[4.5]
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PC(V,D).
forl1 <k<ndo
for1<i<j<n, i#k, j#k do
vy < 1y N [ry e ryl
if r; = @ then
return inconsistent

e If an arc has no constraint, use
[—o0, +o0]

® PC (Path Consistency) algorithm:

> For every i <Jj, iterates over r;;
once for each k&

» Each time, tries to reduce
interval, checks consistency

> I, j, keach go from 1 ton

=> time O(n?)
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Operations on STNs

5
[1,2] [3.4]
t —> 13

[2,5]

e Forn =3, PC tries these triples:
> k=1, =2, =3
> k=2, =1, =3
> k=3, i=1, j=2

o i=1,i=2,;=3

> =1 = [-2,-1]

> 1 =ri3=[2,5]

> 7"1']':7"23:[3,4]

> T g = [212, —1+5] = [0,4]

> 13 = r; < [max(3,0), min(4,4)]
=[3,4]

» No change

e k=2, i=1, =3 (see previous slide)

> PCreduces ry; = ry3 to [4,5]

o (=3,i=1,;=2
> ry=ri3=[4,5]
> 1 =13 = [-4,-3]
> ry=rip=[1,2]
> ry o1y = [4-4,5-3]=[0,2]

> 113 = r; < [max(1,-2), min(2,2)]

=[1,2]
» No change

e Minimal network:

5)
[1,2]

[4.5]
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Operations on STNs

PC(V, D).
for 1 <k<mndo
for1<i<j<n, i#k j#k do

Vi< Ty N [y e rk]-]
ﬁ@=®mm
return inconsistent

® |, j, keach go from 1 to n

» O(n?) triples; I think exact value is n(n—1)(n-2)/2

=> time O(n?)

e Forn=4, 12 triples:

>

>

>

>

>

>

=1,i=2,j=3 > k=3,i=1, =2
=1,i=2,j=4 > k=3,i=1, =4
k=1,i=3,j=4 > k=3,i=2, /=4
=2,i=1,j=3  » k=4,i=1, =2
k=2, i=1,j=4  » k=4, i=1,;=3
=2,i=3,j=4  » k=4, i=2, ;=3

Nau — Lecture slides for Automated Planning and Acting

e Example:k=2,i=1,j=4
e =12 = [1,2]
== [3.4]

g

”'l-j:”'14:[—00700]

Vi ® Ty = [113, 2+4] = [4,6]

ri4 = 1y < [max(-o0,4), min(,6)] = [4,6]
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Operations on STNs

PC(V, D).
for1 <k<ndo
for1<i<j<n, i#k j#k do
vy < 1y N [ry e ryl
if r;; = @ then
return inconsistent

e PC makes network minimal

> Reduces each r;; to exclude
values that aren’t in any solution

e Also detects inconsistent networks

> r; = [a;,b;] empty => inconsistent
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I1 [30,50] »tz t1 730, 50] 12

e Dashed lines: constraints shrunk from [—oo, o]

e Can modify PC to make it incremental
» Input:
e a consistent, minimal STN
® anew constraint »;

> Incorporate 7; in time O(n?)
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Pruning TemPlan’s search space

e Take the time constraints in C
> Write them as an STN
» Use Path Consistency to check whether STN is consistent

» If 1t’s inconsistent, TemPlan can backtrack

Nau — Lecture slides for Automated Planning and Acting
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Controllability

e Section 4.4.3 of the book
e Suppose TemPlan gives you a chronicle and you want to execute it
> Constraints on time points

» Need to reason about these in order to decide when to start each action

e Solid lines: duration constraints

» Robot will do bring&move, will take 30 to 50 time units

> Crane will do uncover, will take 5 to 10 time units 1 3050 12
e Dashed line: synchronization constraint bring&move) o
> At most 5 seconds between the two ending times ‘ k&
uncover ‘;
e Objective t3  [5.10] 14

> Choose time points that will satisfy all the constraints

Nau — Lecture slides for Automated Planning and Acting
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Controllability

Suppose we run PC t1 130,50 b

» Returns a minimal and consistent network bring&move’  * <
There exist time points that satisfy all the constraints x;
Would work if we could choose all four time points uncover ;

5,10
» But we can’t choose #, and ¢, t3 1 [ 14

Actor can control when each action starts

> t, and t; are controllable

bring&move
Can’t control how long the actions take 1 [30,50] > 12
: w2 A,
> t, and t, are contingent /G\ 555 0N / >
» random variables that are known J%’ \Q ...... -
to satisfy the duration constraints = S Uncoverad
e t, € [t;+30, t,+50] t3 [5.10] " 1y

o 1, € [t;+5, t+10]
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Controllability

Suppose we start bring&move at time ¢, =0

e Suppose the durations are

Then
t,=1t+30=30
th=1t+10

SO ty—t, =t;— 20

e Constraint|r,,: 55 t,— 1
— —5<1t;—-20
15< &

e Must start uncover at t; <25

bring&move 30, uncover 10

<5
<5
<25

e Suppose the durations are
bring&move 50, uncover 5

Then
t,=1t+50=50
th=1,+5

SO ty—t, =t;—45

e Constraint| 7y 5<t,—t, <5
L 5<,-45<5

40< 1 <50
e Must start uncover at ¢; > 40

There’s no ¢; that works in both cases

Nau — Lecture slides for Automated Planning and Acting

1 730,50 I2
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STNUs

e STNU (Simple Temporal Network with Uncertainty).
> A 4-tuple (V,V,EE)
e V={controllable time points}, e.g., starting times of actions
o V={contingent time points}, e.g., ending times of actions
o E={controllable constraints}, E ={contingent constraints}
e Controllable and contingent constraints:
> Synchronization between two starting times: controllable
> Duration of an action: contingent
» Synchronization between ending points of two actions: contingent
» Synchronization between end of one action, start of another:
e Controllable if the new action starts after the old one ends

e Contingent if the new action starts before the old one ends

e Want a way for the actor to choose time points in V (starting times)
that guarantee that the constraints are satisfied
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bring&move
I 730, 50] ¥ 12
wnd2s oo A
(/ ““ '~....../ :.~¢)\ kj\
T, D L
Jk)—\ % o .'\..'. K /
* N Q v, *
O/ ‘e :. \ ...... ’»“
4.7 uncover a4

t3 [510] " t4

Poll. is 73, controllable?

70



Three kinds of controllability

o (V.V.EFE) is strongly controllable if the actor can choose values for V
such that success will occur for all values of V that satisfy E

» Actor can choose the values for V offline

> The right choice will work regardless of V

e (V.V.EF) is weakly controllable if the actor can choose values for V such
that success will occur for at least one combination of values for V

> Actor can choose the values for V only if the actor knows in advance
what the values of V will be

, - Two player, zero sum, extensive form,
® Dynamic controllability: imperfect information game

» (Game-theoretic model: actor vs. environment

> A player’s strategy: a function o telling what to do in every situation
e Choices may depend on what has happened so far

» (V.V,E,E) is dynamically controllable if 3 strategy for actor that will
gy
guarantee success regardless of the environment’s strategy
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bring&move
I1 /30, 50] > 12
:‘:: Yo, ~{.2.‘f)j :'4 "“‘ /
RS ONS
(O AN .'§: O
FON QT 0
O/ :: \ ...... "‘
4 uncover :g

Poll. Is the above STNU
strongly controllable?

Poll. Is it weakly
controllable?

Poll. Is it dynamically
controllable?
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Dynamic Execution
Fort=0,1, 2, ...

1. Actor chooses an unassigned set of variables V, € V that all can be assigned the
value ¢ without violating any constraints in £

» =~ actions the actor chooses to start at time ¢

2. Simultaneously, environment chooses an unassigned set of variables V, € V that
all can be assigned the value ¢ without violating any constraints in £

> = actions that finish at time ¢ ry = [Lu] is violated
3. Each chosen time point v is assigned v «— ¢ if #; and ¢; have values
Failure if any of the constraints in £ U E are violated and 4, —t; & [Lu]

o There might be violations that neither V, nor V, caused individually

5. Success if all variables in YV U V have values and no constraints are violated

e Dynamic execution strategy o, for actor, o for environment
> o4(h.;) = {what events in V to trigger at time ¢, given 4, ;}

> og(h,;) = {what events in V to trigger at time ¢, given A, }
 n=hyy.(04(h) Vop(hy))
» (V.V,E,E) is dynamically controllable if 3 o, that will guarantee success V oz

Nau — Lecture slides for Automated Planning and Acting
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Example bring&move
1 [30,50] I2

>
1 1 H ‘:: ..... / 2 04 ‘\
e Instead of a single bring&move task, two separate bring and move tasks —", 555/ AN “
* * d\ “‘t ....:.:'. ) Jd\
> Then it’s dynamically controllable RN R g
LS uncove?"ﬁ

e Actor’s dynamic execution strategy
> trigger ¢, at whatever time you want

» walit and observe ¢

i t 10,51t 15,201 *
o225 0 10:5] ol 200

> trigger ¢ at any time from ¢ to £+ 5 e move -~ [-5, 5]
> trigger t; =t + 10 uncover s
» forevery t, € [ + 15,1 +20] and every ¢, € [t; + 5, t; + 10] 5[5, 10]

> 1, €[+ 15,17+ 20]
> SOty —1t; €[5, 5]

So all the constraints are satisfied

v
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Poll. Is the above STNU
strongly controllable?
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Dynamic Controllability Checking
e For a chronicle ¢ = (A,S7,T,C)

> Temporal constraints in C correspond to an STNU
> Put code into TemPlan to keep the STNU dynamically controllable

e If we detect cases where it isn’t dynamically controllable, then backtrack

e If PC(WVUV,EUE) reduces a contingent constraint

e PC(V,T):
then (V,V,T,E) isn’t dynamically controllable (V.E)

for1<i<n,1<j<n,1<k<n,

= can prune this branch i£j,i+tk, j#k do
e Ifit doesn’t reduce any contingeflt contraints, vy vy O [y e rygl
we don’t know whether (V,V,E,E) is dynamically controllable if r,; = @ then

return inconsistent

e Two options

> Either continue down this branch and backtrack later if necessary, or

» Extend PC to detect more cases where (V,V,E,E) isn’t dynamically controllable

e additional constraint propagation rules

Nau — Lecture slides for Automated Planning and Acting
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Additional Constraint Propagation Rules

e Case l:u>0

> ¢ must come before 7,

’0
3
.
‘e
*

e Add a composition constraint [a’,b'] T A [u V]
e Find [a'b'] such that [a'b"] * [u,v] = [a,b] 0
t
> [a“u, b'+v] = [a,b]
»a'=a-u, b'=b—v
Conditions Propagated constraint
ts%te,t%te,uzo tsM)t e [ think this -
[ Qa, ] [’LL,’U] (te,bl) ShOUld be [a R b ]
ts te,t—>te,u<0,v20 t3—>t
[a b] (te,u) [min{a,u},00]
ts te ’ t —> t tS > t
ts (tc’ ) t t/ [’uw'v] t ts (te,b ) t’
ts%t,t'%t,te;ﬂ ts e bmu) | 4

= contingent
— controllable
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Additional Constraint Propagation Rules

e Case2:u<0andv=>0

> ¢ may be either before or after ¢,

e Add a wait constraint
_\» (te, b _

» Wait until either ¢, occurs
or current time 1s ¢, +b—v,
whichever comes first

e Asbefore,letb'=b—v

t t
S e
| a, b |
..0
00.". .4
..... 5
0..

Conditions Propagated constraint
) s b’, !
P L NS L I £, 0y
[ a,b] [u,v] (te,b')
ts te ] t —> te ’ U < 0 0 ts _—_> t
[a b] (te,u) [min{a,u},o0]
ls —=te, tg —1 ts > 1
€y H e,b,
gy ey g Ll LN
€ e,b—
tsut,t’%t,te#t p, e

= contingent a =a—u,b=b—w

— controllable
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Extended Version of PC

e We want a fast algorithm that TemPlan can run at each node, to

decide whether to backtrack

e There’s an extended version of PC that runs in polynomial time, but

it has high overhead

e Possible compromise: use ordinary PC most of the time

» Run extended version occasionally, or at end of search before

returning plan

Conditions Propagated constraint
b bl !
P L NS L I t, 0y
[a,b] [w,v] (te,b’)
ts ﬁ te ) t —__> te ’ U < O 3 v Z 0 ts ——__) t
[a,b] (te,u) [min{a,u},o0]
ts :> te ) ts —) t tS ) t
Cab 3 Cab,
tth,t’—[Qﬂw ts(t_l_ng'
e’b ) €>b_
g ety Lty sy t, b
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e 4.5 Acting with temporal models
> Acting with atemporal refinement
> Dispatching

» Observation actions

Nau — Lecture slides for Automated Planning and Acting

Outline
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Atemporal Refinement of Primitive Actions

e Templan’s primitive actions may correspond to compound tasks

» In RAE, use refinement methods to refine them into commands

» Templan’s
primitive action template
(descriptive model)

> RAE’s
refinement method
(operational model)
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leave(r, d, w)
assertions: [ts, te|loc(r):(d, w)
[ts, te]occupant(d):(r, empty)
constraints: t. < tg + 01
adjacent(d, w)

m-leave(r, d,w, e)
task: leave(r, d, w)
pre: loc(r)=d, adjacent(d, w), exit(e, d, w)
body: until empty(e) wait(1)
goto(r, e)




Atemporal Refinement of Primitive Actions

e Templan’s primitive actions may correspond to compound tasks

» In RAE, use refinement methods to refine them into commands

» Templan’s
primitive action template
(descriptive model)

> RAE’s
refinement method
(operational model)
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unstack(k,c,p)
assertions:

constraints: ...

m-unstack(k, ¢, p)
task: unstack(k, ¢, p)
pre: pos(c)=p, top(p)=c, grip(k)=empty
attached(k, d), attached(p, d)
body: locate-grasp-position(k, c, p)
move-to-grasp-position(k, ¢, p)
grasp(k, ¢, p)
until firm-grasp(k, c, p) ensure-grasp(k, ¢, p)
lift-vertically(k, ¢, p)
move-to-neutral-position(k, ¢, p)
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Discussion

® Pros
» Simple online refinement with RAE
» Avoids breaking down uncertainty of contingent duration
» Can be augmented with temporal monitoring functions in RAE
e E.g., watchdogs, methods with duration preferences
e (Cons
» Does not handle temporal requirements at the command level,

e ¢.g., synchronize two robots that must act concurrently
e (Can augment RAE to include temporal reasoning

» Call it eRae

> One essential component: a dispatching function

Nau — Lecture slides for Automated Planning and Acting
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Acting With Temporal Models

e Dispatching procedure: a dynamic execution strategy
» Controls when to start each action

» Given a dynamically controllable plan with executable primitives, triggers
corresponding commands from online observations

e Example

» robot r2 needs to leave dock d2
before robot rl can enter d2

» crane k needs to uncover ¢
then put c onto rl

t3 leave(r2,d2) r1
——0 wl .

A ) L ls
.q"".).‘—o ...... )“.—o‘
leave(rl,d1) inavigate(rl) enter(rl,d2)- , " )
X s 17 9
-‘- t ;.—k(ko)unnp.ﬁ ----- ) .).I—((jo)
K 6 ~" unstack(k,c) putdown(k,c,rl) leave(rl,d2
Z’4- ".ﬁ ..... .). ’ 7= ’

unstack(k,c’,p) stack(k,c’,q)
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Dispatching

e Let (V,V,EE) be a controllable STNU that’s grounded fl.

e Different from a grounded expression in logic
> At least one time point in (V,V,E,E) is instantiated

e Bounds every time point ¢, within an interval [/, u;]

Controllable time point 7 in the future:
® ¢/ 1s alive if current time now € [[;, u;]
® ¢/ 1s enabled if
> it’s alive
> for every precedence constraint # <, ¢ has occurred

> for every wait constraint (¢,, a), t, has occurred or a
has expired
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& 115,201

bring ~. move
K ““‘[_57 5 ]

"'4. uncover
—
ts [5,10] "¢

e Lett, =0. Then:
> 1, € [15,25]
> 1, € [t, t+5]
> 14 € [t;+15, t3120]
> ts € [t,+10, t,+10]
> tc € [t51+5, t5s+10]

e Suppose bring finishes at /=20, and now
=25. Then

> 13
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Dispatching

e Let (V,V,EE) be a controllable STNU that’s grounded
e Different from a grounded expression in logic
> At least one time point in (V,V,E,F) is instantiated

e Bounds every time point ¢, within an interval [/, u;]

Controllable time point ¢ in the future:
® ¢/ 1s alive if current time now € [/, , u;]
® { 1s enabled if
> 1t’s alive
> for every precedence constraint ¢ <¢, ¢ has occurred

» for every wait constraint (¢,, o), ¢, has occurred or a
has expired
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Dispatch(V,V,EE)
e 1nitialize the network

e while there are time points in V that
haven’t been triggered, do

» update now

> update the time points in V that were % s Bonked
triggered since the last iteration l;y [, u;]
1o ™1

> update enabled J
> trigger every t; € enabled such that now = u;

> arbitrarily choose other time points in
enabled, and trigger them

> propagate values of triggered timepoints
(change [/;,u;] for each future timepoint 7))
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Abstract Example

trigger ¢;, propagate [/, u;] values

observe leave finish, this enables ¢,

Trigger t,, propagate [/,u;] values

This enables #, #, before 13

trigger t; soon enoughmnter(rl,dZ) at time 7

> propagate [/,u;] values before uy
® trigger f4 soon enoughmack(k,c’) at time 74

> propagate [/,u;] values

e rest of plan is linear: trigger each ¢; after previous action

ends 3 leave(r2,d2)
?
A 153 { Is
.—o.....). ...... .).ﬁ
leave(rl,d1)

‘o
t4 . ..... .).
unstack(k,c’,p) stack(k,c’,q)
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.
.
.

inavigate(rl) enter(rl,d2)-

Dispatch(V,V,EE)
e 1nitialize the network

e while there are time points in V that
haven’t been triggered, do

> update now

> update the time points in V that were

; _ _ ) t; 1s bounded
triggered since the last iteration

by [/;, u;]
> update enabled J

> trigger every t; € enabled such that now = u;

» arbitrarily choose other time points in
enabled, and trigger them

> propagate values of triggered timepoints
(change [/;,u;] for each future timepoint #)

I3

. 17
:._)o.....).q ..... .).—o

" unstack(k,c)

putdown(k,c,rl) leave(rl,d2)
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Detailed Example

o
bring

e Initial constraints:

>

>

>

t) € [—o0, 0]
€ [t,+15, £,+25]
€ [ty, ,+5]
€ 15415, £:+20]
€ [t5410, £:+10]
€l

(s+5, ts+10]
N [t4=5, t4+5]

e Start at time now=0

>

enabled = {t,}

e Trigger ¢, (bring)
when now=0

e Propagate #,=0:

>

t, € [15,25]
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4 15.2 )
(15, 25]

115,201 1
[0, 5] oml12:201

move
““‘[-59 5]

"‘g. uncover
—
s [5,10] "t

e Suppose bring ends at now=20
> enabled = {t;}
e Propagate 1, = 20
> 13 € [20, 25]
e Trigger 3 (move) when now=25
e Propagate #;=25:
> 1, € [40, 45]
> 15 € [35, 35]
e At time now=35,
> enabled = {ts}

> now = us, must trigger fs

Dispatch(V,V,EE)
e initialize the network
e while there are time points in V that

haven’t been triggered, do

> update now

> update the time points in V that were 5 % Baneed
triggered since the last iteration bly [, u;]
(]

» update enabled J
> trigger every t; € enabled such that now = u;

» arbitrarily choose other time points in
enabled, and trigger them

> propagate values of triggered timepoints
(change [/;u;] for each future timepoint #)

Trigger #5 (uncover) when now = 35

Propagate #5=35:
> 1 € [40,45] N [t4-5, t415]

Suppose move takes 15 time units, ends at now=40
> enabled = @

Propagate #,=40
> t¢ € [40, 45] N [35, 45] = [40, 45]
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Deadline Failures

e Suppose something makes it impossible to start an action on time
e Do one of the following:
> stop the delayed action, and look for new plan

> let the delayed action finish; try to repair the plan by resolving violated
constraints at the STNU propagation level

e ¢.g., accommodate a delay in navigate by delaying the whole plan

> let the delayed action finish; try to repair the plan some other way

h L 10,51 B [15,20] U

bring ~.  move
~[-5, 5]

";. uncover
—
ts [5,10] £
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Partial Observability

e Tacit assumption: all occurrences of contingent events are observable
» Observation needed for dynamic controllability

e In general, not all events are observable
e POSTNU (Partially Observable STNU)

Controllable

Timepoints< Invisible
Contingent<
Observable

e Dynamically controllable?

Nau — Lecture slides for Automated Planning and Acting
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Observation Actions

.
®
.
e

t1 ...'...""-; 't [1’ 2] )i;/' [20’ 25] t2
ﬁ 4

. L 4 L 4 . .
working = " driving

%[5, 10]

[25,30] -

ts cooking 4

® Controllable
¥ Invisible

Contingent {
O observable



Dynamic Controllability

e A POSTNU is dynamically controllable if

> there exists an execution strategy that chooses future controllable points to meet all the constraints,

given the observation of past visible points to
e Observable # visible 0/1900 19
e (Observable means it will be known when observed . 30]) t 1,21 ¥ [20,25 [t2
e It can be temporarily hidden TWorking Jee S driving
[_ 5, 10]
Controllable [25, 30]

Timepoints< Invisible t: cooking 4
Contingent< Visible
Observable < >
Hidden
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e Summary
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Summary of Sections 4.4, 4.5

e Managing constraints in TemPlan: like CSPs
» Temporal constraints: STNs, PC algorithm (path consistency)
e Acting
> Dynamic controllability
> STNUs
RAE and eRAE
Dispatching

v

v
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