
1Nau – Lecture slides for Automated Planning and Acting

Automated Planning 
and Acting

Malik Ghallab, Dana Nau  
and Paolo Traverso

Last update: May 3, 2022

http://www.laas.fr/planning

Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Chapter 5 

Deliberation with Nondeterministic Domain 
Models

Dana S. Nau
University of Maryland

http://www.laas.fr/planning
http://creativecommons.org/licenses/by-nc-sa/4.0/


2Nau – Lecture slides for Automated Planning and Acting

Motivation
● We’ve assumed action a in state s

has just one possible outcome
▸ γ(s,a)

● Often more than one possible outcome
▸ Unintended outcomes
▸ Exogenous events
▸ Inherent uncertainty
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Example

● Very simple harbor management domain
▸ Unload a single item from a ship
▸ Move it around a harbor

● One state variable: pos(item)
▸ Simplified names for states
▸ For  {pos(item)=on_ship}, just write on_ship

unload

on_ship at_harbor

park
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deliver

deliver
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back

back

move

transit3
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Nondeterministic Planning Domains

● 3-tuple (S, A, γ)
▸ S and A – finite sets of states and actions
▸ γ: S × A → 2S

● γ(s,a) = {all possible “next states” after
applying action a in state s}

▸ a is applicable in state s iff γ(s,a) ≠ ∅
● Applicable(s) = {all actions applicable in s}

= {a ∈ A | γ(s,a) ≠ ∅}
● Example:

▸ Applicable(at_harbor) = {park}
▸ park has three possible outcomes

• put item in parking1 or parking2 if one of them has space
• or in transit1 if there’s no parking space

▸ γ(at_harbor, park) = {parking1, parking2, transit1}
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Nondeterministic Planning Domains
● One possible action representation: 

▸ like classical, but with n mutually exclusive “effects” lists
● e.g., park:

pre:    pos(item) = at_harbor
eff1:   pos(item) ← parking1
eff2:   pos(item) ← parking2
eff3:   pos(item) ← transit1

● Problem:
▸ number of effects lists may be combinatorially large
▸ Suppose a can cause any possible 

combination of effects e1, e2, …, ek

▸ Need eff1 , eff2 , …, eff2k

• One for for each combination
▸ Section 5.4: a way to alleviate this

● For now, ignore most of that, just look at the underlying semantics
▸ states, actions ⇔ nodes, edges in a graph
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Nondeterministic Planning Domains

● For deterministic planning problems, search 
space was a graph

● Now it’s an AND/OR graph
▸ OR branch:

• several applicable actions, 
which one to choose?

▸ AND branch:
• multiple possible outcomes, 

must handle all of them
● Analogy to PSP in Chapter 2

▸ OR branch ⇔ action selection
▸ AND branch ⇔ flaw selection
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Plans Policies
● Need something more general than a sequence 

of actions ⟨unload, park, deliver⟩
▸ After park, what do we do next?

• multiple possible outcomes, must handle 
all of them

● Policy: a partial function π : S ⇸ A
▸ i.e., Dom(π) ⊆ S

▸ For every s ∈ Dom(π), 
require π(s)∈Applicable(s)

● Meaning: perform π(s)
whenever we’re in state s

● Two equivalent notations:

● That’s just the notation
▸ implementation could be quite different

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload), 
(at_harbor, park), 
(parking1, deliver)}

π1(on_ship) = unload,
π1 (at_harbor) = park,
π1 (parking1) = deliver
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Definitions Over Policies
● Transitive closure: 

▸ (γ(s,π) = {all states reachable from s using π}
▸ (γ(s,π) = S0 ∪ S1 ∪ S2 ∪ …

S0 = {s}
S1 = S0 ∪{γ(s0,π(s0)) | s0 ∈ S0}
S2 = S1 ∪{γ(s1,π(s1)) | s1 ∈ S1}
…

● Reachability graph: Graph(s,π) = (V,E)
▸ V = (γ(s,π)
▸ E = {(s1,s2) | s1∈V, s2∈ γ(s1,π(s1))}

● leaves(s,π) = γ̂(s, π) ∖ Dom(π)
▸ may be empty

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload), 
(at_harbor, park), 
(parking1, deliver)}
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Performing a Policy

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

unload

on_ship at_harbor
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parking1

transit1

move

transit2
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π1 = {(on_ship, unload), 
(at_harbor, park), 
(parking1, deliver)}
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s0

π1 = {(on_ship, unload), 
(at_harbor, park), 
(parking1, deliver)}

Planning Problems and Solutions

● Planning problem P = (Σ,s0,Sg)
▸ planning domain Σ = (S,A,γ), initial state s0∈ S, 

set of goal states Sg ⊆ S (shown in green)
● π is a solution if at least one execution ends at a 

goal
▸ leaves(s,π) ∩ Sg ≠ ∅

● A solution π is safe if 
∀s∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠∅
▸ at every state in γ̂(s0,π),

at least one of the execution paths
from s using π stops at a goal state. 

● Otherwise, unsafe solution
▸ Is π1 safe or unsafe?

Sg
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Safe Solutions
● Acyclic safe solution

▸ Graph(s0,π) is acyclic, and leaves(s,π) ⊆ Sg

● If we run PerformPolicy(π) starting at s0,
we’re guaranteed to stop at a goal

unload

on_ship at_harbor
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parking2

parking1

transit1

move
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deliver

deliver
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● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

π2 = {(on_ship, unload), (at_harbor, park), 
(parking1, deliver), (parking2, deliver),
(transit1, move), (transit2, move), 
(transit3, move)}
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Safe Solutions
● Cyclic safe solution 

▸ Graph(s0, π) is cyclic, and leaves(s,π) ⊆ Sg ,
and ∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
• At every state s in γ̂(s0,π),

at least one of the execution 
paths from s using π 
ends at a goal state

▸ Will never get caught in
a dead end

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

back Poll: Let π be a cyclic 
safe solution. Suppose 
we run PerformPolicy(π) 
starting at s0.
1. Are there situations 

where we can be sure 
π will reach a goal?

2. Are there situations 
where we can’t be 
sure π will reach a 
goal?

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

move
move

π3 = {(on_ship, unload), (at_harbor, park), 
(parking1, deliver), (parking2, back),
(transit1, move), (transit2, move), 
(gate1, back)}
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Safe Solutions
● Cyclic safe solution 

▸ Graph(s0, π) is cyclic, and leaves(s,π) ⊆ Sg,
and ∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
• At every state s in γ̂(s0,π),

at least one of the execution 
paths from s using π 
ends at a goal state

▸ Will never get caught in
a dead end

▸ Every “fair” 
execution will
reach a goal

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

back Poll: 
1. Can you think of a 

real-world situation 
in which all 
executions are “fair”?

2. Can you think of a 
real-world situation 
in which there are 
“unfair” executions?

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

move
move

π3 = {(on_ship, unload), (at_harbor, park), 
(parking1, deliver), (parking2, back),
(transit1, move), (transit2, move), 
(gate1, back)}
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Kinds of Solutions

14

Goal

a
acyclic 
solutions

bunsafe 
solutions

ccyclic 
solutions

safe 
solutions

solutions
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Cycle-checking

Decide which state to plan for 

Finding (Unsafe) Solutions
For comparison:

Poll: which should (*) be?
A. nondeterministically choose
B. arbitrarily choose

(*)

Forward-search (Σ, s0, g) 
s ← s0;   π ← ⟨⟩
loop

if s satisfies g then return π
A′ ←{a ∈ A | a is applicable in s} 
if A′ = ∅ then return failure 
nondeterministically choose a ∈ A′ 
s ← γ(s,a);   π ← π.a
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s = on_ship        

Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s

Visited = {on_ship}

Sg
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Example

π = {(on_ship, unload)}

s = on_ship
a = unload

γ(s,a) = {at_harbor}
s ← s′ = at_harbor unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s′s

a

Visited = {on_ship, at_harbor}

Sg
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s = at_harbor
a = park

γ(s,a) = {parking1, 
parking2,
transit1}

s ← s′ = parking1

Example

π = {(on_ship, unload),
(at_harbor, park)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s′

Visited = {on_ship, at_harbor, parking1}

s

a

Sg
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Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

s = parking1
a = deliver

γ(s,a) = {gate1, 
gate2,
transit2}

s ← s′ = gate1

Visited = {on_ship, at_harbor, parking1, gate1}

s

aunload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

s′
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Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

gate1 is a goal, 
so return π

s = gate1

Visited = {on_ship, at_harbor, parking1, gate1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

s
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Find-Acyclic-Solution

Keep track of unexpanded states, as in A*

Add all states s such that
π(s) isn’t already defined

Check for cycles: 
● Does γ(s,a) include a state s′ that is a π-ancestor of s?

▸ for each s′∈ γ(s,a) ∩ Dom(π), is s ∈ "γ(s′,π)?
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Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Frontier = {on_ship}

Sg
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Example

π = {(on_ship, unload)}

Frontier = {at_harbor}

unload

on_ship at_harbor
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move
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Example

π = {(on_ship, unload),
(at_harbor, park)}

Frontier = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1
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move
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deliver

deliver
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Frontier = {parking2, transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {transit1, transit2, transit3 ,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

nondeterministically choose back or deliver
• back ⇒ cycle, so return failure
• deliver ⇒ no cycle, so continue

Sg
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Frontier = {transit2, transit3,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit1, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {transit3, 
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit1, move),
(transit2, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {gate1, gate2} ⊆ Sg 

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit1, move),
(transit2, move),
(transit3, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Found a 
solution

Sg
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Find-Safe-Solution

Like 
Find-Acyclic-Solution 
except here: 

Check for unsafe cycles: 
● Does γ(s,a) include a state s′ from which π can’t take us to the frontier?

• For each s′∈ γ(s,a) ∩ Dom(π), is (γ(s′,π) ∩ Frontier = ∅?
● If so, then π contains a cycle that can’t be escaped
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Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Frontier = {on_ship}

Sg
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Example

π = {(on_ship, unload)}

Frontier = {at_harbor}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Example

π = {(on_ship, unload),
(at_harbor, park)}

Frontier = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {parking2, transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {parking2, transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Nondeterministically choose either back or deliver
• back is OK because cycle is escapable

Sg
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Frontier = {transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, back)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, back),
(transit1, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Frontier = {gate1, gate2} ⊆ Sg 

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, back),
(transit1, move),
(transit2, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Guided-Find-Safe-Solution

● Motivation: much easier to find solutions if they don’t have to be safe
▸ Find-Safe-Solution needs plans for all possible outcomes of actions
▸ Find-Solution only needs a plan for one of them

● Idea:
▸ loop

• Find a (possibly unsafe) solution π
• For each each leaf node of π

▸ If the leaf node isn’t a goal, 
• find a (possibly unsafe) solution

and incorporate it into π
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Guided-Find-Safe-Solution

π is a solution. Return the part 
that’s reachable from s0.

For each (s,a) in π′, add to π
unless π already has an action at s

s is unsolvable. For each 
(s′,a) that can produce s, 
modify π and Σ so we’ll 
never use a at s′

Choose any leaf s that isn’t a goal. 
Find a (possibly unsafe) solution π′ for s.
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

Q = {parking2, transit1, 
transit2}

tr4

tr5

Sg
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Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver)}

Q = {transit1, transit2, 
transit3}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit3, move),
(tr4, move)}

Q = {transit1, transit2, tr5}

tr4

tr5

Sg
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Example

fail

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit3, move),
(tr4, move)}

Q = {transit1, transit2, tr5}

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(tr4, move)}

Q = {transit1, transit2, 
transit3}

tr4

tr5

Modify Σd to make 
move inapplicable at 
transit3

Sg
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Example

fail

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(tr4, move)}

Q = {transit1, transit2, 
transit3}

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move)}

Q = {transit1, transit2, 
parking2}

tr4

tr5

Modify Σd to make 
deliver inapplicable 
at parking2

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back)}

Q = {transit1, transit2}

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back),
(transit1, move)}

Q = {transit2}

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back),
(transit1, move),
(transit2, move)}

tr4

tr5

Sg

Q = ∅
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back),
(transit1, move),
(transit2, move)}

tr4

tr5

Remove (tr4,move) 
from π because π 
can’t ever reach tr4

Sg

Q = ∅
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Discussion

● How to implement it?
▸ Need implementation of Find-Solution
▸ Need it to be very efficient

• We’ll call it many times

● Idea: instead of Find-Solution, 
use a classical planner
▸ Any of the algorithms from Chapter 2
▸ Efficient algorithms, search heuristics

● Need to convert the actions into something 
the classical planner can use …
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at_harbor

parking1
parking2

transit1

park

Determinization

at_harbor

parking1
parking2

transit1

park3park1
park2

● Let ai be a nondeterministic action with n possible outcomes
● Determinization of ai =

{n deterministic actions, one for each outcome of ai }

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move



55Nau – Lecture slides for Automated Planning and Acting

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Determinization

● Suppose a classical planner returns an acyclic plan p = ⟨a1, a2, …, an⟩
● Actions and states:  ⟨s0, a1, s1, a2, s2, a3, …, an, sn⟩
● Convert p to a policy ⟨(s0,a1), (s1,a2), …, (sn–1,an)⟩

▸ a1 = the nondeterministic action whose determinization includes ai
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Find-Safe-Solution-by-Determinization

Any classical 
planner that doesn’t 
return cyclic plans
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg



61Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

fail

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

Modify Σd to make 
move inapplicable at 
transit3

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

fail

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

Modify Σd to make 
deliver inapplicable 
at parking2

tr4

tr5

Sg
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Example

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

Sg



68Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

tr4

tr5

Sg
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Example

tr5

tr4

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

tr4

tr5

Sg
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Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

 
move

Remove (tr4,move) 
from π because π 
can’t ever reach tr4

tr4

tr5

Sg
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Making Actions Inapplicable

● Modify Σd to make a inapplicable at s
▸ worst-case exponential time

● Better: hash table of bad state-action pairs
▸ For every (s′,a) such that s ∈ γ(s′,a),

Bad[s′] ← Bad[s′]∪ determinization(a)
▸ Modify classical planner to take the table 

as an argument
• if s is current state, only choose

actions in Applicable(s) \ Bad[s]
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Skip Ahead

● Several topics I’ll skip for now
• will come back later if there’s time

▸ Other kinds of search algorithms
• min-max search

▸ Symbolic model checking techniques
• Backward search
• BDD representation

▸ Reduce search-space size by planning over sets of states
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5.6 Online Approaches

● Motivation
▸ Planning models are approximate –

execution seldom works out as planned
▸ Large problems may require too much 

planning time
● 2nd motivation even more stronger in 

nondeterministic domains
▸ Nondeterminism makes planning 

exponentially harder
• Exponentially more time, 

exponentially larger policies

196 Chapter 5

Figure 5.20: O↵-line vs. Run Time Search Spaces: Intuitions

acting and planning then we reduce significantly the search space. We need
indeed to find a partial policy, e.g., the next few ”good” actions, apply all
or some of them, and repeat these two interleaved planning and acting steps
from the state that has been actually reached. This is the great advantage
of interleaving acting and planning, we know exactly which of the many
possible states has been actually reached, and the uncertainty as well as the
search space gets reduced significantly.

Intuitively, the di↵erence in search space between planning o↵-line and
interleaving planing and acting is shown in Figure 5.20. In the case of
purely o↵-line planning, uncertainty in the actual next state (and therefore
the number of states to search for) increases exponentially from the initial
state (the left vertex of the triangle) to the set of possible final states (the
right part of the triangle) : the search space is depicted as the large triangle.
In planning and acting, we plan just for a few next steps, then we act and
we know exactly in which state the application of actions results. We repeat
the interleaving of planning and acting until we reach a goal state. The
search space is reduced to the small sequence of triangles depicted in Figure
5.20. Notice that there is a dii↵erence between the search space depicted in
Figure 5.20 and the ones depicted in Figures 1.3 and 1.5, since here we have
uncertainty in the outcome of each action, and the basis of each red triangle
represents all the possioble outcomes of an action rather than the di↵erent
outcome of the search for each di↵erent action in a deterministic domain.

A critical side of acting and planning algorithms is how to select “good”
actions (i.e. actions that tend to lead to the goal) without exploring the
entire search space. This is can be donewith estimations of distances from
and reachability conditions to the goal like in heuristic search and by learning

Draft, not for distribution. March 24, 2015.

Offline vs Runtime
Search Spaces
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Online Approaches

● Need to identify good actions without exploring entire search space
▸ Can be done using heuristic estimates

● Some domains are safely explorable
▸ Safe to create partial plans, because goal states are always reachable

● In domains with dead-ends, partial planning won’t guarantee success
▸ Can get trapped in dead ends that we would have detected if we had planned fully

• No applicable actions
▸ robot’s battery goes dead

• Applicable actions, but caught in a loop
▸ robot goes into a collection of rooms from which there’s no exit

▸ But partial planning can still make success more likely
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Lookahead-Partial-Plan

● Adaptation of Run-Lazy-Lookahead (Chapter 2)
● Lookahead is any planning

algorithm that returns a policy π
▸ π may be partial or unsafe solution

● Execute π as far as it will go, then call Lookahead again

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Sg
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FS-Replan

● Adaptation of Lookahead-Partial-Plan
▸ Calls classical planner on determinized domain
▸ Gets plan, converts converts to policy

• Unsafe solution
▸ Executes policy as far as it will go, then calls 

classical planner again 

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Sg
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More Possibilities for Lookahead

● What if Lookahead doesn’t 
have time to run to completion?
▸ Can use the same techniques 

we discussed in Chapter 3
• Receding horizon
• Sampling
• Subgoaling
• Iterative deepening

▸ A few others …

Planning
Acting
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More Possibilities for Lookahead
● Full horizon, limited breadth: 

▸ look for solution that works for some of the outcomes 
▸ E.g., modify Find-Acyclic-Solution to examine i outcomes of each action

● Iterative broadening:
for i = 1 by 1 until time runs out

look for a solution that handles i outcomes per action

T ← i elements of γ(s,a) \ Dom(π)
Frontier ← Frontier ∪ T

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Safely Explorable Domains

● Safely explorable domain
▸ for every state s, at least one goal state is reachable from s

● For Lookahead, suppose we use Lookahead-Partial-Plan or FS-Replan
▸ Then Lookahead never returns failure

● Every “fair” execution will eventually reach a goal

Poll: Suppose we just 
choose a random action 
each time. Is every “fair” 
execution guaranteed to 
reach a goal?
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Min-Max LRTA*

● loop
▸ choose an action a that (according to h) has optimal worst-case cost

• Update h(s) to use a’s worst-case cost
• Perform a

● In safely explorable domains with no “unfair” executions, guaranteed to 
reach a goal

If some actions have cost ≠ 1, 
then use cost(s,a) here
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Example

● Suppose that 
initially,
h(s) = 0 for 
every state s

h = 0
unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Example

● Suppose that 
initially,
h(s) = 0 for 
every state s

a = unload
h = 1

h = 0

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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Example

a = park
h = 1+max(0,0,0) 

= 1

a = unload
h = 1

h = 0

h = 0

h = 0
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parking2
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move

transit2

deliver

deliver
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Example

a = deliver
h = 1

1+ 1 = 2
1+ max(0,0) = 1

a = unload
h = 1

h = 0

h = 0

a = park
h = 1+max(0,0,0) 

= 1

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg
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5.7 Refinement Methods

● Differences to refinement methods in Chapter 3:
▸ Tasks refine into automata
▸ Need to combine the automata

● Important work, but the concepts are complicated
▸ We won’t have time to cover them
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Summary

● Actions, plans, policies, planning problems
● types of solutions: unsafe, safe (acyclic, cyclic)

▸ Find-solution, Find-acyclic-solution, Find-
safe-solution

● Guided-find-safe-solution
▸ call find-solution to get an unsafe solution
▸ call find-solution again on the leaves
▸ if dead-ends are encountered, modify actions 

that lead to them
● Find-safe-solution-by-determinization

▸ Like Guided-find-safe-solution, but
call classical planner on determinized 
domain, convert plan into policy

● Online approaches
▸ Lookahead-partial-plan

• adaptation of Run-Lazy-Lookahead
▸ FS-replan

• adaptation of Run-Lookahead
● Ways to do the lookahead

▸ full breadth with limited depth, 
• iterative deepening

▸ full depth with limited breadth
• iterative broadening

▸ convergence in safely explorable domains


