
1Nau – Lecture slides for Automated Planning and Acting

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

Last update: May 3, 2022

http://www.laas.fr/planning

Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Chapter 5

Deliberation with Nondeterministic Domain
Models

Dana S. Nau
University of Maryland

http://www.laas.fr/planning
http://creativecommons.org/licenses/by-nc-sa/4.0/

2Nau – Lecture slides for Automated Planning and Acting

Motivation
● We’ve assumed action a in state s

has just one possible outcome
▸ γ(s,a)

● Often more than one possible outcome
▸ Unintended outcomes
▸ Exogenous events
▸ Inherent uncertainty

a
c
b

grasp(c)
a

c

b

a b c

3Nau – Lecture slides for Automated Planning and Acting

Example

● Very simple harbor management domain
▸ Unload a single item from a ship
▸ Move it around a harbor

● One state variable: pos(item)
▸ Simplified names for states
▸ For {pos(item)=on_ship}, just write on_ship

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

4Nau – Lecture slides for Automated Planning and Acting

Nondeterministic Planning Domains

● 3-tuple (S, A, γ)
▸ S and A – finite sets of states and actions
▸ γ: S × A → 2S

● γ(s,a) = {all possible “next states” after
applying action a in state s}

▸ a is applicable in state s iff γ(s,a) ≠ ∅
● Applicable(s) = {all actions applicable in s}

= {a ∈ A | γ(s,a) ≠ ∅}
● Example:

▸ Applicable(at_harbor) = {park}
▸ park has three possible outcomes

• put item in parking1 or parking2 if one of them has space
• or in transit1 if there’s no parking space

▸ γ(at_harbor, park) = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

5Nau – Lecture slides for Automated Planning and Acting

Nondeterministic Planning Domains
● One possible action representation:

▸ like classical, but with n mutually exclusive “effects” lists
● e.g., park:

pre: pos(item) = at_harbor
eff1: pos(item) ← parking1
eff2: pos(item) ← parking2
eff3: pos(item) ← transit1

● Problem:
▸ number of effects lists may be combinatorially large
▸ Suppose a can cause any possible

combination of effects e1, e2, …, ek

▸ Need eff1 , eff2 , …, eff2k

• One for for each combination
▸ Section 5.4: a way to alleviate this

● For now, ignore most of that, just look at the underlying semantics
▸ states, actions ⇔ nodes, edges in a graph

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

6Nau – Lecture slides for Automated Planning and Acting

Nondeterministic Planning Domains

● For deterministic planning problems, search
space was a graph

● Now it’s an AND/OR graph
▸ OR branch:

• several applicable actions,
which one to choose?

▸ AND branch:
• multiple possible outcomes,

must handle all of them
● Analogy to PSP in Chapter 2

▸ OR branch ⇔ action selection
▸ AND branch ⇔ flaw selection

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

7Nau – Lecture slides for Automated Planning and Acting

Plans Policies
● Need something more general than a sequence

of actions ⟨unload, park, deliver⟩
▸ After park, what do we do next?

• multiple possible outcomes, must handle
all of them

● Policy: a partial function π : S ⇸ A
▸ i.e., Dom(π) ⊆ S

▸ For every s ∈ Dom(π),
require π(s)∈Applicable(s)

● Meaning: perform π(s)
whenever we’re in state s

● Two equivalent notations:

● That’s just the notation
▸ implementation could be quite different

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

π1(on_ship) = unload,
π1 (at_harbor) = park,
π1 (parking1) = deliver

8Nau – Lecture slides for Automated Planning and Acting

Definitions Over Policies
● Transitive closure:

▸ (γ(s,π) = {all states reachable from s using π}
▸ (γ(s,π) = S0 ∪ S1 ∪ S2 ∪ …

S0 = {s}
S1 = S0 ∪{γ(s0,π(s0)) | s0 ∈ S0}
S2 = S1 ∪{γ(s1,π(s1)) | s1 ∈ S1}
…

● Reachability graph: Graph(s,π) = (V,E)
▸ V = (γ(s,π)
▸ E = {(s1,s2) | s1∈V, s2∈ γ(s1,π(s1))}

● leaves(s,π) = γ̂(s, π) ∖ Dom(π)
▸ may be empty

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

9Nau – Lecture slides for Automated Planning and Acting

Performing a Policy

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

π1 = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

10Nau – Lecture slides for Automated Planning and Acting

s0

π1 = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

Planning Problems and Solutions

● Planning problem P = (Σ,s0,Sg)
▸ planning domain Σ = (S,A,γ), initial state s0∈ S,

set of goal states Sg ⊆ S (shown in green)
● π is a solution if at least one execution ends at a

goal
▸ leaves(s,π) ∩ Sg ≠ ∅

● A solution π is safe if
∀s∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠∅
▸ at every state in γ̂(s0,π),

at least one of the execution paths
from s using π stops at a goal state.

● Otherwise, unsafe solution
▸ Is π1 safe or unsafe?

Sg

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

11Nau – Lecture slides for Automated Planning and Acting

Safe Solutions
● Acyclic safe solution

▸ Graph(s0,π) is acyclic, and leaves(s,π) ⊆ Sg

● If we run PerformPolicy(π) starting at s0,
we’re guaranteed to stop at a goal

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

π2 = {(on_ship, unload), (at_harbor, park),
(parking1, deliver), (parking2, deliver),
(transit1, move), (transit2, move),
(transit3, move)}

12Nau – Lecture slides for Automated Planning and Acting

Safe Solutions
● Cyclic safe solution

▸ Graph(s0, π) is cyclic, and leaves(s,π) ⊆ Sg ,
and ∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
• At every state s in γ̂(s0,π),

at least one of the execution
paths from s using π
ends at a goal state

▸ Will never get caught in
a dead end

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

back Poll: Let π be a cyclic
safe solution. Suppose
we run PerformPolicy(π)
starting at s0.
1. Are there situations

where we can be sure
π will reach a goal?

2. Are there situations
where we can’t be
sure π will reach a
goal?

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

move
move

π3 = {(on_ship, unload), (at_harbor, park),
(parking1, deliver), (parking2, back),
(transit1, move), (transit2, move),
(gate1, back)}

13Nau – Lecture slides for Automated Planning and Acting

Safe Solutions
● Cyclic safe solution

▸ Graph(s0, π) is cyclic, and leaves(s,π) ⊆ Sg,
and ∀s ∈ γ̂(s0,π), leaves(s,π) ∩ Sg ≠ ∅
• At every state s in γ̂(s0,π),

at least one of the execution
paths from s using π
ends at a goal state

▸ Will never get caught in
a dead end

▸ Every “fair”
execution will
reach a goal

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

back Poll:
1. Can you think of a

real-world situation
in which all
executions are “fair”?

2. Can you think of a
real-world situation
in which there are
“unfair” executions?

● PerformPolicy(π)
s ← observe current state
while s ∈ Dom(π) do

perform action π(s)
s ← observe current state

move
move

π3 = {(on_ship, unload), (at_harbor, park),
(parking1, deliver), (parking2, back),
(transit1, move), (transit2, move),
(gate1, back)}

14Nau – Lecture slides for Automated Planning and Acting

Kinds of Solutions

14

Goal

a
acyclic
solutions

bunsafe
solutions

ccyclic
solutions

safe
solutions

solutions

15Nau – Lecture slides for Automated Planning and Acting

Cycle-checking

Decide which state to plan for

Finding (Unsafe) Solutions
For comparison:

Poll: which should (*) be?
A. nondeterministically choose
B. arbitrarily choose

(*)

Forward-search (Σ, s0, g)
s ← s0; π ← ⟨⟩
loop

if s satisfies g then return π
A′ ←{a ∈ A | a is applicable in s}
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′
s ← γ(s,a); π ← π.a

16Nau – Lecture slides for Automated Planning and Acting

s = on_ship

Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s

Visited = {on_ship}

Sg

17Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload)}

s = on_ship
a = unload

γ(s,a) = {at_harbor}
s ← s′ = at_harbor unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s′s

a

Visited = {on_ship, at_harbor}

Sg

18Nau – Lecture slides for Automated Planning and Acting

s = at_harbor
a = park

γ(s,a) = {parking1,
parking2,
transit1}

s ← s′ = parking1

Example

π = {(on_ship, unload),
(at_harbor, park)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

s′

Visited = {on_ship, at_harbor, parking1}

s

a

Sg

19Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

s = parking1
a = deliver

γ(s,a) = {gate1,
gate2,
transit2}

s ← s′ = gate1

Visited = {on_ship, at_harbor, parking1, gate1}

s

aunload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

s′

20Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

gate1 is a goal,
so return π

s = gate1

Visited = {on_ship, at_harbor, parking1, gate1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

s

21Nau – Lecture slides for Automated Planning and Acting

Find-Acyclic-Solution

Keep track of unexpanded states, as in A*

Add all states s such that
π(s) isn’t already defined

Check for cycles:
● Does γ(s,a) include a state s′ that is a π-ancestor of s?

▸ for each s′∈ γ(s,a) ∩ Dom(π), is s ∈ "γ(s′,π)?

22Nau – Lecture slides for Automated Planning and Acting

Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Frontier = {on_ship}

Sg

23Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload)}

Frontier = {at_harbor}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

24Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload),
(at_harbor, park)}

Frontier = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

25Nau – Lecture slides for Automated Planning and Acting

Frontier = {parking2, transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

26Nau – Lecture slides for Automated Planning and Acting

Frontier = {transit1, transit2, transit3 ,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

nondeterministically choose back or deliver
• back ⇒ cycle, so return failure
• deliver ⇒ no cycle, so continue

Sg

27Nau – Lecture slides for Automated Planning and Acting

Frontier = {transit2, transit3,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit1, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

28Nau – Lecture slides for Automated Planning and Acting

Frontier = {transit3,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit1, move),
(transit2, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

29Nau – Lecture slides for Automated Planning and Acting

Frontier = {gate1, gate2} ⊆ Sg

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit1, move),
(transit2, move),
(transit3, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Found a
solution

Sg

30Nau – Lecture slides for Automated Planning and Acting

Find-Safe-Solution

Like
Find-Acyclic-Solution
except here:

Check for unsafe cycles:
● Does γ(s,a) include a state s′ from which π can’t take us to the frontier?

• For each s′∈ γ(s,a) ∩ Dom(π), is (γ(s′,π) ∩ Frontier = ∅?
● If so, then π contains a cycle that can’t be escaped

31Nau – Lecture slides for Automated Planning and Acting

Example

π = {}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Frontier = {on_ship}

Sg

32Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload)}

Frontier = {at_harbor}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

33Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload),
(at_harbor, park)}

Frontier = {parking1, parking2, transit1}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

34Nau – Lecture slides for Automated Planning and Acting

Frontier = {parking2, transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

35Nau – Lecture slides for Automated Planning and Acting

Frontier = {parking2, transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Nondeterministically choose either back or deliver
• back is OK because cycle is escapable

Sg

36Nau – Lecture slides for Automated Planning and Acting

Frontier = {transit1, transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, back)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

37Nau – Lecture slides for Automated Planning and Acting

Frontier = {transit2,
gate1, gate2}

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, back),
(transit1, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

38Nau – Lecture slides for Automated Planning and Acting

Frontier = {gate1, gate2} ⊆ Sg

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, back),
(transit1, move),
(transit2, move)}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

39Nau – Lecture slides for Automated Planning and Acting

Guided-Find-Safe-Solution

● Motivation: much easier to find solutions if they don’t have to be safe
▸ Find-Safe-Solution needs plans for all possible outcomes of actions
▸ Find-Solution only needs a plan for one of them

● Idea:
▸ loop

• Find a (possibly unsafe) solution π
• For each each leaf node of π

▸ If the leaf node isn’t a goal,
• find a (possibly unsafe) solution

and incorporate it into π

40Nau – Lecture slides for Automated Planning and Acting

Guided-Find-Safe-Solution

π is a solution. Return the part
that’s reachable from s0.

For each (s,a) in π′, add to π
unless π already has an action at s

s is unsolvable. For each
(s′,a) that can produce s,
modify π and Σ so we’ll
never use a at s′

Choose any leaf s that isn’t a goal.
Find a (possibly unsafe) solution π′ for s.

41Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

42Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver)}

Q = {parking2, transit1,
transit2}

tr4

tr5

Sg

43Nau – Lecture slides for Automated Planning and Acting

Example

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver)}

Q = {transit1, transit2,
transit3}

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

44Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit3, move),
(tr4, move)}

Q = {transit1, transit2, tr5}

tr4

tr5

Sg

45Nau – Lecture slides for Automated Planning and Acting

Example

fail

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(transit3, move),
(tr4, move)}

Q = {transit1, transit2, tr5}

tr4

tr5

Sg

46Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(tr4, move)}

Q = {transit1, transit2,
transit3}

tr4

tr5

Modify Σd to make
move inapplicable at
transit3

Sg

47Nau – Lecture slides for Automated Planning and Acting

Example

fail

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	
move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(parking2, deliver),
(tr4, move)}

Q = {transit1, transit2,
transit3}

tr4

tr5

Sg

48Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move)}

Q = {transit1, transit2,
parking2}

tr4

tr5

Modify Σd to make
deliver inapplicable
at parking2

Sg

49Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back)}

Q = {transit1, transit2}

tr4

tr5

Sg

50Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back),
(transit1, move)}

Q = {transit2}

tr4

tr5

Sg

51Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back),
(transit1, move),
(transit2, move)}

tr4

tr5

Sg

Q = ∅

52Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

π = {(on_ship, unload),
(at_harbor, park),
(parking1, deliver),
(tr4, move),
(parking2, back),
(transit1, move),
(transit2, move)}

tr4

tr5

Remove (tr4,move)
from π because π
can’t ever reach tr4

Sg

Q = ∅

53Nau – Lecture slides for Automated Planning and Acting

Discussion

● How to implement it?
▸ Need implementation of Find-Solution
▸ Need it to be very efficient

• We’ll call it many times

● Idea: instead of Find-Solution,
use a classical planner
▸ Any of the algorithms from Chapter 2
▸ Efficient algorithms, search heuristics

● Need to convert the actions into something
the classical planner can use …

54Nau – Lecture slides for Automated Planning and Acting

at_harbor

parking1
parking2

transit1

park

Determinization

at_harbor

parking1
parking2

transit1

park3park1
park2

● Let ai be a nondeterministic action with n possible outcomes
● Determinization of ai =

{n deterministic actions, one for each outcome of ai }

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

55Nau – Lecture slides for Automated Planning and Acting

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Determinization

● Suppose a classical planner returns an acyclic plan p = ⟨a1, a2, …, an⟩
● Actions and states: ⟨s0, a1, s1, a2, s2, a3, …, an, sn⟩
● Convert p to a policy ⟨(s0,a1), (s1,a2), …, (sn–1,an)⟩

▸ a1 = the nondeterministic action whose determinization includes ai

56Nau – Lecture slides for Automated Planning and Acting

Find-Safe-Solution-by-Determinization

Any classical
planner that doesn’t
return cyclic plans

57Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

58Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

59Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

60Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

61Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

62Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

tr4

tr5

Sg

63Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

fail

tr4

tr5

Sg

64Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Modify Σd to make
move inapplicable at
transit3

tr4

tr5

Sg

65Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

fail

tr4

tr5

Sg

66Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Modify Σd to make
deliver inapplicable
at parking2

tr4

tr5

Sg

67Nau – Lecture slides for Automated Planning and Acting

Example

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Sg

68Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

tr4

tr5

Sg

69Nau – Lecture slides for Automated Planning and Acting

Example

tr5

tr4

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Sg

70Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

tr4

tr5

Sg

71Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

tr4

tr5

Sg

72Nau – Lecture slides for Automated Planning and Acting

Example

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

move

Remove (tr4,move)
from π because π
can’t ever reach tr4

tr4

tr5

Sg

73Nau – Lecture slides for Automated Planning and Acting

Making Actions Inapplicable

● Modify Σd to make a inapplicable at s
▸ worst-case exponential time

● Better: hash table of bad state-action pairs
▸ For every (s′,a) such that s ∈ γ(s′,a),

Bad[s′] ← Bad[s′]∪ determinization(a)
▸ Modify classical planner to take the table

as an argument
• if s is current state, only choose

actions in Applicable(s) \ Bad[s]

74Nau – Lecture slides for Automated Planning and Acting

Skip Ahead

● Several topics I’ll skip for now
• will come back later if there’s time

▸ Other kinds of search algorithms
• min-max search

▸ Symbolic model checking techniques
• Backward search
• BDD representation

▸ Reduce search-space size by planning over sets of states

75Nau – Lecture slides for Automated Planning and Acting

5.6 Online Approaches

● Motivation
▸ Planning models are approximate –

execution seldom works out as planned
▸ Large problems may require too much

planning time
● 2nd motivation even more stronger in

nondeterministic domains
▸ Nondeterminism makes planning

exponentially harder
• Exponentially more time,

exponentially larger policies

196 Chapter 5

Figure 5.20: O↵-line vs. Run Time Search Spaces: Intuitions

acting and planning then we reduce significantly the search space. We need
indeed to find a partial policy, e.g., the next few ”good” actions, apply all
or some of them, and repeat these two interleaved planning and acting steps
from the state that has been actually reached. This is the great advantage
of interleaving acting and planning, we know exactly which of the many
possible states has been actually reached, and the uncertainty as well as the
search space gets reduced significantly.

Intuitively, the di↵erence in search space between planning o↵-line and
interleaving planing and acting is shown in Figure 5.20. In the case of
purely o↵-line planning, uncertainty in the actual next state (and therefore
the number of states to search for) increases exponentially from the initial
state (the left vertex of the triangle) to the set of possible final states (the
right part of the triangle) : the search space is depicted as the large triangle.
In planning and acting, we plan just for a few next steps, then we act and
we know exactly in which state the application of actions results. We repeat
the interleaving of planning and acting until we reach a goal state. The
search space is reduced to the small sequence of triangles depicted in Figure
5.20. Notice that there is a dii↵erence between the search space depicted in
Figure 5.20 and the ones depicted in Figures 1.3 and 1.5, since here we have
uncertainty in the outcome of each action, and the basis of each red triangle
represents all the possioble outcomes of an action rather than the di↵erent
outcome of the search for each di↵erent action in a deterministic domain.

A critical side of acting and planning algorithms is how to select “good”
actions (i.e. actions that tend to lead to the goal) without exploring the
entire search space. This is can be donewith estimations of distances from
and reachability conditions to the goal like in heuristic search and by learning

Draft, not for distribution. March 24, 2015.

Offline vs Runtime
Search Spaces

76Nau – Lecture slides for Automated Planning and Acting

Online Approaches

● Need to identify good actions without exploring entire search space
▸ Can be done using heuristic estimates

● Some domains are safely explorable
▸ Safe to create partial plans, because goal states are always reachable

● In domains with dead-ends, partial planning won’t guarantee success
▸ Can get trapped in dead ends that we would have detected if we had planned fully

• No applicable actions
▸ robot’s battery goes dead

• Applicable actions, but caught in a loop
▸ robot goes into a collection of rooms from which there’s no exit

▸ But partial planning can still make success more likely

77Nau – Lecture slides for Automated Planning and Acting

Lookahead-Partial-Plan

● Adaptation of Run-Lazy-Lookahead (Chapter 2)
● Lookahead is any planning

algorithm that returns a policy π
▸ π may be partial or unsafe solution

● Execute π as far as it will go, then call Lookahead again

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Sg

78Nau – Lecture slides for Automated Planning and Acting

FS-Replan

● Adaptation of Lookahead-Partial-Plan
▸ Calls classical planner on determinized domain
▸ Gets plan, converts converts to policy

• Unsafe solution
▸ Executes policy as far as it will go, then calls

classical planner again

tr4

tr5

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

	

	
move

Sg

79Nau – Lecture slides for Automated Planning and Acting

More Possibilities for Lookahead

● What if Lookahead doesn’t
have time to run to completion?
▸ Can use the same techniques

we discussed in Chapter 3
• Receding horizon
• Sampling
• Subgoaling
• Iterative deepening

▸ A few others …

Planning
Acting

80Nau – Lecture slides for Automated Planning and Acting

More Possibilities for Lookahead
● Full horizon, limited breadth:

▸ look for solution that works for some of the outcomes
▸ E.g., modify Find-Acyclic-Solution to examine i outcomes of each action

● Iterative broadening:
for i = 1 by 1 until time runs out

look for a solution that handles i outcomes per action

T ← i elements of γ(s,a) \ Dom(π)
Frontier ← Frontier ∪ T

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

81Nau – Lecture slides for Automated Planning and Acting

Safely Explorable Domains

● Safely explorable domain
▸ for every state s, at least one goal state is reachable from s

● For Lookahead, suppose we use Lookahead-Partial-Plan or FS-Replan
▸ Then Lookahead never returns failure

● Every “fair” execution will eventually reach a goal

Poll: Suppose we just
choose a random action
each time. Is every “fair”
execution guaranteed to
reach a goal?

82Nau – Lecture slides for Automated Planning and Acting

Min-Max LRTA*

● loop
▸ choose an action a that (according to h) has optimal worst-case cost

• Update h(s) to use a’s worst-case cost
• Perform a

● In safely explorable domains with no “unfair” executions, guaranteed to
reach a goal

If some actions have cost ≠ 1,
then use cost(s,a) here

83Nau – Lecture slides for Automated Planning and Acting

Example

● Suppose that
initially,
h(s) = 0 for
every state s

h = 0
unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

84Nau – Lecture slides for Automated Planning and Acting

Example

● Suppose that
initially,
h(s) = 0 for
every state s

a = unload
h = 1

h = 0

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

85Nau – Lecture slides for Automated Planning and Acting

Example

a = park
h = 1+max(0,0,0)

= 1

a = unload
h = 1

h = 0

h = 0

h = 0

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

86Nau – Lecture slides for Automated Planning and Acting

Example

a = deliver
h = 1

1+ 1 = 2
1+ max(0,0) = 1

a = unload
h = 1

h = 0

h = 0

a = park
h = 1+max(0,0,0)

= 1

unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Sg

87Nau – Lecture slides for Automated Planning and Acting

5.7 Refinement Methods

● Differences to refinement methods in Chapter 3:
▸ Tasks refine into automata
▸ Need to combine the automata

● Important work, but the concepts are complicated
▸ We won’t have time to cover them

88Nau – Lecture slides for Automated Planning and Acting

Summary

● Actions, plans, policies, planning problems
● types of solutions: unsafe, safe (acyclic, cyclic)

▸ Find-solution, Find-acyclic-solution, Find-
safe-solution

● Guided-find-safe-solution
▸ call find-solution to get an unsafe solution
▸ call find-solution again on the leaves
▸ if dead-ends are encountered, modify actions

that lead to them
● Find-safe-solution-by-determinization

▸ Like Guided-find-safe-solution, but
call classical planner on determinized
domain, convert plan into policy

● Online approaches
▸ Lookahead-partial-plan

• adaptation of Run-Lazy-Lookahead
▸ FS-replan

• adaptation of Run-Lookahead
● Ways to do the lookahead

▸ full breadth with limited depth,
• iterative deepening

▸ full depth with limited breadth
• iterative broadening

▸ convergence in safely explorable domains

