Last update: February 2, 2010

# Local search algorithms 

CMSC 421: Chapter 4, Sections 3-4

## Iterative improvement algorithms

In many optimization problems, the path to a goal is irrelevant; the goal state itself is the solution

Then state space $=$ a set of goal states
find one that satisfies constraints (e.g., no two classes at same time) or, find optimal one (e.g., highest possible value, least possible cost)

In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it
$\diamond$ Constant space
$\diamond$ Suitable for online as well as offline search

## Example: the $n$-Queens Problem

$\diamond$ Put $n$ queens on an $n \times n$ chessboard
$\diamond$ No two queens on the same row, column, or diagonal
Iterative improvement:
Start with one queen in each column move a queen to reduce number of conflicts

$h=5$

$h=2$

$\mathrm{h}=\mathbf{0}$

Even for very large $n$ (e.g., $n=1$ million), this usually finds a solution almost instantly

## Example: Traveling Salesperson Problem

$\diamond$ Given a complete graph (edges between all pairs of nodes)
$\diamond$ A tour is a cycle that visits every node exactly once
$\diamond$ Find a least-cost tour (simple cycle that visits each city exactly once)
Iterative improvement:
Start with any tour, perform pairwise exchanges


Variants of this approach get within $1 \%$ of optimal very quickly with thousands of cities

## Outline

$\diamond$ Hill-climbing
$\diamond$ Simulated annealing
$\diamond$ Genetic algorithms (briefly)
$\diamond$ Local search in continuous spaces (very briefly)

## Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
            neighbor, a node
    current }\leftarrow\mathrm{ MAKE-NODE(InITIAL-STATE[problem])
    loop do
        neighbor }\leftarrow\mathrm{ a highest-valued successor of current
        if VALUE[neighbor] \leq VALUE[current] then return STATE[current]
        current }\leftarrow\mathrm{ neighbor
    end
```

At each step, move to a neighbor of higher value in hopes of getting to a solution having the highest possible value

Can easily modify this for problems where we want to minimize rather than maximize

## Hill-climbing, continued

Useful to consider state space landscape


Random-restart hill climbing: repeat with randomly chosen starting points Russell \& Norvig say it's trivially complete; they're almost right

If finitely many local maxima, then $\lim _{\text {restarts } \rightarrow \infty} P($ complete $)=1$

## Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SimULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    local variables: current, a node
                            next, a node
                            T, a "temperature" controlling prob. of downward steps
    current }\leftarrow\mathrm{ Make-Node(InITIAL-STATE[problem])
    for}i\leftarrow1\mathrm{ to }\infty\mathrm{ do
        T\leftarrowschedule[i]
        if T=0 then return current
        next }\leftarrowa\mp@code{randomly selected successor of current
        \DeltaE\leftarrowVALUE[next] - VALUE[current]
        if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
        else with probability }\mp@subsup{e}{}{\DeltaE/T}\mathrm{ , set current }\leftarrow\mathrm{ next
```


## A simple example

Each state is a number $x \in[0,1]$, initial state is 0 , all states are neighbors, $\operatorname{VALUE}(x)=x^{2}, 100$ iterations, schedule $[i]=10 \times 0.9^{i}$

```
function Simulated-AnNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
        schedule, a mapping from time to "temperature"
    local variables: current, a node
        next, a node
        T, a "temperature" controlling prob. of downward steps
    current }\leftarrow\mathrm{ Make-Node(Initial-State[problem])
    for }i\leftarrow1\mathrm{ to }\infty\mathrm{ do
        T\leftarrowschedule[i]
        if T=0 then return current
        next }\leftarrowa\mathrm{ a randomly selected successor of current
        \DeltaE\leftarrowVALue[next] - Value[current]
        if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
        else with probability e}\mp@subsup{e}{}{\DeltaE/T}\mathrm{ , set current }\leftarrow\mathrm{ next
```


## Simple example, continued

100 iterations, each state is a number $x \in[0,1]$, initial state is $x=0$, $\operatorname{VALUE}(x)=x^{2}$, all states are neighbors, schedule $[i]=10 \times 0.9^{i}$


## Properties of simulated annealing

At fixed "temperature" $T$, probability of being in any given state $x$ reaches Boltzman distribution

$$
p(x)=\alpha e^{\frac{E(x)}{k T}}
$$

for every state $x$ other than $x^{*}$ and for small $T$,

$$
p\left(x^{*}\right) / p(x)=e^{\frac{E\left(x^{*}\right)}{k T}} / e^{\frac{E(x)}{k T}}=e^{\frac{E\left(x^{*}\right)-E(x)}{k T}} \gg 1
$$

From this it can be shown that
if we decrease $T$ slowly enough, $\operatorname{Pr}\left[\right.$ reach $\left.x^{*}\right]$ approaches 1

Devised by Metropolis et al., 1953, for physical process modelling Widely used in VLSI layout, airline scheduling, etc.

## Local beam search

function Beam- $\operatorname{Search}($ problem, $k$ ) returns a solution state
start with $k$ randomly generated states
loop
generate all successors of all $k$ states
if any of them is a solution then return it
else select the $k$ best successors

Not the same as $k$ parallel searches
Searches that find good states will recruit other searches to join them
Problem: often all $k$ states end up on same local hill
Stochastic beam search:
choose $k$ successors randomly, biased towards good ones
Close analogy to natural selection

## Genetic algorithms

Genetic algorithms
$=$ stochastic local beam search + generate successors from pairs of states
Each state should be a string of characters; Substrings should be meaningful components

Example: $n$-queens problem
$i$ 'th character $=$ row where $i$ 'th queen is located


67247588


75251447


67251447

## Genetic algorithms

Genetic algorithms
$=$ stochastic local beam search + generate successors from pairs of states


Fitness Selection Pairs Cross-Over
Mutation

Genetic algorithms $\neq$ biological evolution for example, real genes encode replication machinery

## Hill-climbing in continuous state spaces

Suppose we want to put three airports in Romania - what locations?
$\diamond 6$-D state space defined by $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$
$\diamond$ Objective function $f\left(x_{1}, y_{2}, x_{2}, y_{2}, x_{3}, y_{3}\right)$ measures desirability, e.g., sum of squared distances from each city to nearest airport


## Hill-climbing in continuous state spaces

A technique from numerical analysis:
Given a surface $z=f(x, y)$, and a point $(x, y)$, a gradient is a vector

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

The vector points in the direction of the steepest slope, and its length is proportional to the slope.

Gradient methods compute $\nabla f$ and use it to increase/reduce $f$,

$$
\text { e.g., by } \mathbf{x} \leftarrow \mathbf{x}-\alpha \nabla f(\mathbf{x})
$$

If $\nabla f=0$ then you've reached a local maximum/minimum


## Hill-climbing in continuous state spaces

Suppose we want to put three airports in Romania - what locations?

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right)
$$

Look for $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}$ such that $\nabla f\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)=0$


## Continuous state spaces, continued

Sometimes can solve for $\nabla f(\mathbf{x})=0$ exactly (e.g., with one city)

Newton-Raphson $(1664,1690)$ iterates $\mathbf{x} \leftarrow \mathbf{x}-\mathbf{H}_{f}^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x})=0$, where $\mathbf{H}_{i j}=\partial^{2} f / \partial x_{i} \partial x_{j}$

Discretization methods turn continuous space into discrete space
e.g., empirical gradient considers $\pm \delta$ change in each coordinate


## Homework

Problems 4.1,
4.2,
4.9 (but you don't need to suggest a way to calculate it)
4.11,
4.12

10 points each, 50 points total
Due in one week

