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Game Theory 
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Introduction 
  In Chapter 6 we looked at 2-player perfect-information zero-sum games 
  We’ll now look at games that might have one or more of the following: 

  > 2 players 
  imperfect information  
  nonzero-sum outcomes 
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The Prisoner’s Dilemma 
  Scenario: the police have arrested two suspects for a crime. 

  They tell each prisoner they’ll reduce his/her prison sentence if he/she 
betrays the other prisoner. 

  Each prisoner must choose between two actions: 
   cooperate with the other prisoner, i.e., don’t betray him/her 
  defect (betray the other prisoner). 

  Payoff = – (years in prison): 

  Each player has only two strategies, 
each of which is a single action 

  Non-zero-sum 
  Imperfect information: neither player knows the other’s move until after 

both players have moved 

Agent 2 
Agent 1 

 C D 

C –2, –2 –5, 0 

D 0, –5 –4, –4 

Prisoner’s Dilemma 
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The Prisoner’s Dilemma 
  Add 5 to each payoff, so that the numbers are all ≥ 0 

  These payoffs encode the same preferences 

  Note: the book represents payoff matrices in a non-standard way 
  It puts Agent 1 where I have Agent 2, and vice versa 

Prisoner’s Dilemma: 

Agent 2 
Agent 1 

C D 

C 3, 3 0, 5 

D 5, 0 1, 1 

Prisoner’s Dilemma: 

Agent 2 
Agent 1 

C D 

C –2, –2 –5, 0 

D 0, –5 –4, –4 
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How to reason about games? 
  In single-agent decision theory, look at an optimal strategy 

  Maximize the agent’s expected payoff in its environment  

  With multiple agents, the best strategy depends on others’ choices  
  Deal with this by identifying certain subsets of outcomes called solution 

concepts 

  Some solution concepts: 
  Dominant strategy equilibrium 
  Pareto optimality  
  Nash equilibrium 
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Strategies 
  Suppose the agents agent 1, agent 2, …, agent n 
  For each i, let Si = {all possible strategies for agent i} 

  si will always refer to a strategy in Si 
  A strategy profile is an n-tuple S = (s1, …, sn), one strategy for each agent 
  Utility Ui(S) = payoff for agent i if the strategy profile is S 
  si strongly dominates si' if agent i always does better with si than si' 

  si weakly dominates si' if agent i never does worse with si than si', and 
there is at least one case where agent i does better with si than si',   
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Dominant Strategy Equilibrium 
  si is a (strongly, weakly) dominant strategy if it (strongly, weakly) 

dominates every si' ∈ Si 
  Dominant strategy equilibrium: 

  A set of strategies (s1, …, sn) such that each si is dominant for agent i 
  Thus agent i will do best by using si rather than a different strategy, 

regardless of what strategies the other players use 

  In the prisoner’s dilemma, there is one dominant strategy equilibrium: 
both players defect 

Prisoner’s Dilemma: 

Agent 2 
Agent 1 

C D 

C 3, 3 0, 5 

D 5, 0 1, 1 
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Pareto Optimality 
  Strategy profile S Pareto dominates a strategy profile Sʹ′ if  

  no agent gets a worse payoff with S than with Sʹ′, 
i.e., Ui(S) ≥ Ui(Sʹ′) for all i , 

  at least one agent gets a better payoff with S than with Sʹ′, 
i.e., Ui(S) > Ui(Sʹ′) for at least one i 

  Strategy profile s is Pareto optimal, or strictly Pareto efficient, if there’s 
no strategy s' that Pareto dominates s 
  Every game has at least one Pareto optimal profile 
  Always at least one Pareto optimal profile in which the strategies are 

pure 
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Example 
The Prisoner’s Dilemma 
  (C,C) is Pareto optimal 

  No profile gives both players 
a higher payoff 

  (D,C) is Pareto optimal  
  No profile gives player 1 a higher payoff 

  (D,C) is Pareto optimal - same argument 
  (D,D) is Pareto dominated by (C,C) 

  But ironically, (D,D) is the dominant strategy equilibrium  

Agent 2 
Agent 1 

 C D 

C 3, 3 0, 5 

D 5, 0 1, 1 

Prisoner’s Dilemma 
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Pure and Mixed Strategies 
  Pure strategy: select a single action and play it  

  Each row or column of a payoff matrix represents both an action and a 
pure strategy 

  Mixed strategy: randomize over the set of available actions according to 
some probability distribution 
  Let Ai = {all possible actions for agent i}, and ai be any action in Ai 
  si (aj ) = probability that action aj will be played under mixed strategy si   

  The support of si is 
  support(si) = {actions in Ai that have probability > 0 under si} 

  A pure strategy is a special case of a mixed strategy  
  support consists of a single action 

  Fully mixed strategy: every action has probability > 0 
  i.e., support(si) = Ai 
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Expected Utility 
  A payoff matrix only gives payoffs for pure-strategy profiles 
  Generalization to mixed strategies uses expected utility  
  Let S = (s1, …, sn) be a profile of mixed strategies 

  For every action profile (a1, a2, …, an), multiply its probability and its 
utility 
•  Ui (a1, …, an) s1(a1) s2(a2) … sn(an) 

  The expected utility for agent i is 

€ 

U
i
s1,…, sn( ) = Ui a1,…,an( )

(a1,…,an )∈A
∑ s1 a1( ) s2 a2( ) … sn an( )
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Best Response 
  Some notation: 

  If S = (s1, …, sn) is a strategy profile, then S−i = (s1, …, si−1,  si+1, …, sn),  
•  i.e., S–i is strategy profile S without agent i’s strategy 

  If si' is any strategy for agent i, then  
•  (si' , S−i ) = (s1, …, si−1, si', si+1, …, sn) 

  Hence (si , S−i ) = S 

  si is a best response to S−i if  
 Ui (si , S−i ) ≥ Ui (si', S−i ) for every strategy si' available to agent i 

  si is a unique best response to S−i if  
Ui (si , S−i ) > Ui (si', S−i ) for every si' ≠ si 
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  A strategy profile s = (s1, …, sn) is a Nash equilibrium if for every i, 
  si is a best response to S−i , i.e., no agent can do 

better by unilaterally changing his/her strategy 

  Theorem (Nash, 1951): Every game with a finite number of agents and 
action profiles has at least one Nash equilibrium 

  In the Prisoner’s Dilemma, (D,D) 
is a Nash equilibrium 
  If either agent unilaterally switches 

to a different strategy, his/her 
expected utility goes below 1 

  A dominant strategy equilibrium is 
always a Nash equilibrium 

Nash Equilibrium 

Prisoner’s Dilemma 

Agent 2 
Agent 1 

C D 

C 3, 3 0, 5 

D 5, 0 1, 1 
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  Battle of the Sexes 
  Two agents need to 

coordinate their actions, but 
they have different preferences 

  Original scenario: 
•  husband prefers football 
•  wife prefers opera 

  Another scenario: 
•  Two nations must act together to deal with an international crisis 
•  They prefer different solutions 

  This game has two pure-strategy Nash equilibria (circled above) 
and one mixed-strategy Nash equilibrium 
  How to find the mixed-strategy Nash equilibrium? 

Example 

Husband 
Wife 

Opera Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 

Nash equilibria 
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Finding Mixed-Strategy Equilibria 
  Generally it’s tricky to compute mixed-strategy equilibria 

  But easy if we can identify the support of the equilibrium strategies 

  Suppose a best response to S–i is a mixed strategy s whose support 
includes ≥ 2 actions 
  Then every action a in support(s) must have the same expected utility 

Ui(a,S–i) 
•  If some action a* in support(s) had a higher expected utility than 

the others, then it would be a better response than s 
  Thus any mixture of the actions in support(s) is a best response  
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  Suppose both agents randomize, and the husband’s mixed strategy sh is 
sh(Opera) = p;      sh(Football) = 1 – p 

  Expected utilities of the wife’s actions: 
              Uw(Football, sh) = 0p + 1(1 − p) 
   Uw(Opera, sh) = 2p 

  If the wife mixes between her two actions, they must have the same 
expected utility 
  If one of the actions had a better expected utility, she’d do better with a 

pure strategy that always used that action 
  Thus   0p + 1(1 – p) = 2p,    so    p = 1/3 

  So the husband’s mixed strategy is      sh(Opera) = 1/3;     sh(Football) = 2/3 

Husband 
Wife 

Opera Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 

Battle of the Sexes 
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Battle of the Sexes 

  A similar calculation shows that the wife’s mixed strategy sw is 
sw(Opera) = 2/3,  sw(Football) = 1/3 

  In this equilibrium, 
  P(wife gets 2, husband gets 1) 

= (2/3) (1/3) = 2/9 
  P(wife gets 1, husband gets 2) 

= (1/3) (2/3) = 2/9 
  P(both get 0) = (1/3)(1/3) + (2/3)(2/3) = 5/9 

  Thus the expected utility for each agent is 2/3 
  Pareto-dominated by both of the pure-strategy equilibria 

  In each of them, one agent gets 1 and the other gets 2 

Husband 
Wife 

Opera Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 
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Finding Nash Equilibria 
Matching Pennies  
  Each agent has a penny 
  Each agent independently chooses to display 

his/her penny heads up or tails up 
  Easy to see that in this game, no pure strategy 

could be part of a Nash equilibrium 
  For each combination of pure strategies, one of the agents can do better 

by changing his/her strategy 
•  for (Heads,Heads), agent 2 can do better by switching to Tails 
•  for (Heads,Tails), agent 1 can do better by switching to Tails 
•  for (Tails,Tails), agent 2 can do better by switching to Heads 
•  for (Tails,Heads), agent 1 can do better by switching to Heads 

  But there’s a mixed-strategy equilibrium: 
  (s,s), where s(Heads) = s(Tails) = ½ 

Agent 2 
Agent 1 

Heads Tails 

Heads 1, –1 –1, 1 

Tails –1, 1 1, –1 
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A Real-World Example 
  Penalty kicks in soccer 

  A kicker and a goalie in a penalty kick 
  Kicker can kick left or right 
  Goalie can jump to left or right 
  Kicker scores iff he/she kicks to one 

side and goalie jumps to the other 
  Analogy to Matching Pennies 

•  If you use a pure strategy and the other agent uses his/her best 
response, the other agent will win 

•  If you kick or jump in either direction with equal probability, 
the opponent can’t exploit your strategy 
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Another Interpretation of Mixed Strategies 
  Another interpretation of mixed strategies is that 

  Each agent’s strategy is deterministic 
  But each agent has uncertainty regarding the other’s strategy 

  Agent i’s mixed strategy is everyone else’s assessment of how likely i is to 
play each pure strategy 

  Example: 
  In a series of soccer penalty kicks, the kicker could kick left or right in 

a deterministic pattern that the goalie thinks is random 
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Two-Finger Morra 
  There are several versions of this game 

  Here’s the one the book uses: 

  Each agent holds up 1 or 2 fingers 
  If the total number of fingers is odd 

•  Agent 1 gets that many points 
  If the total number of fingers is even 

•  Agent 2 gets that many points 

  Agent 1 has no dominant strategy 
  Agent 2 plays 1 => agent 1’s best response is 2 
  Agent 2 plays 2 => agent 1’s best response is 1 

  Similarly, agent 2 has no dominant strategy 
  Thus there’s no pure-strategy Nash equilibrium 

  Look for a mixed-strategy equilibrium 

Agent 2 
Agent 1 

1 finger 2 fingers 

1 finger –2, 2 3, –3 

2 fingers 3, –3 –4, 4 
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  Let p1 = P(agent 1 plays 1 finger) 
and p2 = P(agent 2 plays 1 finger) 

  Suppose 0 < p1 < 1 and 0 < p2 < 1 
  If this is a mixed-strategy equilibrium, then 

  1 finger and 2 fingers must have the same expected utility for agent 1 
•  Agent 1 plays 1 finger  =>  expected utility is –2p2 + 3(1−p2) = 3 – 5p2 
•  Agent 1 plays 2 fingers  =>  expected utility is 3p2 – 4(1−p2) = 7p2 – 4 
•  Thus  3 – 5p2  =  7p2 – 4,  so  p2 = 7/12 
•  Agent 1’s expected utility is 3–5(7/12) = 1/12 

  1 finger and 2 fingers must also have the same expected utility for agent 2 
•  Agent 2 plays 1 finger  =>  expected utility is 2p1 – 3(1−p1) = 5p1 – 3 
•  Agent 2 plays 2 fingers  =>  expected utility is –3p1 + 4(1−p1) = 4 – 7p1 
•  Thus  5p1 – 3  =  4 – 7p1 , so  p1 = 7/12 
•  Agent 2’s expected utility is 5(7/12) – 3 = –1/12 

Agent 2 
Agent 1 

1 finger 2 fingers 

1 finger –2, 2 3, –3 

2 fingers 3, –3 –4, 4 

Two-Finger Morra 
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Another Real-World Example 
  Road Networks 
  Suppose that 1,000 drivers wish to 

travel from S (start) to D (destination) 
  Two possible paths: 

•  S→A→D  and  S→B→D 
  The roads S→A and B→D are very long and very wide 

•  t = 50 minutes for each, no matter how many drivers 
  The roads S→B and A→D are very short and very narrow 

•  Time for each = (number of cars)/25 
  Nash equilibrium: 

•  500 cars go through A, 500 cars through B 
•  Everyone’s time is 50 + 500/25 = 70 minutes 
•  If a single driver changes to the other route 

›  There now are 501 cars on that route, so his/her time goes up 

S 
D 

t = cars/25 

t = cars/25 

t = 50 

t = 50 

B 

A 
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Braess’s Paradox 
  Suppose we add a new road from B to A 
  It’s so wide and so short that it takes 0 minutes 
  New Nash equilibrium: 

  All 1000 cars go S→B→A→D  
  Time is 1000/25 + 1000/25 = 80 minutes 

  To see that this is an equilibrium: 
  If driver goes S→A→D, his/her cost is 50 + 40 = 90 minutes 
  If driver goes S→B→D, his/her cost is 40 + 50 = 90 minutes 
  Both are dominated by S→B→A→D 

  To see that it’s the only Nash equilibrium: 
  For every traffic pattern, compute the times a driver would get on all 

three routes 
  In every case, S→B→A→D dominates S→A→D and S→B→D 

  Carelessly adding capacity can actually be hurtful! 

S 
D 

t = cars/25 

t = cars/25 

t = 50 

t = 50 

B 

A 

t = 0 
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Braess’s Paradox in practice 
  From an article about Seoul, South Korea: 

  “The idea was sown in 1999,” Hwang says. “We had experienced a 
strange thing. We had three tunnels in the city and one needed to be 
shut down. Bizarrely, we found that that car volumes dropped. I 
thought this was odd. We discovered it was a case of ‘Braess paradox’, 
which says that by taking away space in an urban area you can actually 
increase the flow of traffic, and, by implication, by adding extra 
capacity to a road network you can reduce overall performance.” 

  John Vidal, “Heart and soul of the city”, The Guardian, Nov. 1, 2006
http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact  
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The p-Beauty Contest 
  Consider the following game: 

  Each player chooses a number in the range from 0 to 100 
  The winner(s) are whoever chose a number that’s closest to 2/3 of the 

average 

  This game is famous among economists and game theorists 
  It’s called the p-beauty contest 
  I used p = 2/3 
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Elimination of Dominated Strategies 
 A strategy si is (strongly, weakly) dominated for an agent i if some other 

strategy sʹ′i strictly dominates si  

  A strictly dominated strategy can’t be a best response to any move  

  So we can eliminate it (remove it from the payoff matrix) 

  Once a pure strategy is eliminated, another strategy may become dominated 

  This elimination can be repeated  
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Iterated Elimination of Dominated Strategies 
  Iteratively eliminate strategies that can never be a best response if the other agents 

play rationally 
  All numbers ≤ 100  =>   2/3(average) < 67 

=> Any rational agent will choose a number < 67 
  All rational choices ≤ 67 => 2/3(average) < 45 

=> Any rational agent will choose a number < 45 

  All rational choices ≤ 45 => 2/3(average) < 30 
=> Any rational agent will choose a number < 30 

  . . . 
  Nash equilibrium: everyone chooses 0 
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p-Beauty Contest Results 
  (2/3)(average) = 21 
  winner = Giovanni 
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Another Example of 
p-Beauty Contest Results 

  Average = 32.93 
  2/3 of the average = 21.95 
  Winner: anonymous xx 
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We aren’t rational 
  We aren’t game-theoretically rational agents 
  Huge literature on behavioral economics going back to about 1979 

  Many cases where humans (or aggregations of humans) tend to make 
different decisions than the game-theoretically optimal ones 

  Daniel Kahneman received the 2002 Nobel Prize in Economics for his 
work on that topic 
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Choosing “Irrational” Strategies 

  Why choose a non-equilibrium strategy? 

  Limitations in reasoning ability 
•  Didn’t calculate the Nash equilibrium correctly 
•  Don’t know how to calculate it 
•  Don’t even know the concept 

  Hidden payoffs 
•  Other things may be more important than winning 

›  Want to be helpful 
›  Want to see what happens 
›  Want to create mischief  

  Agent modeling (next slide) 
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Agent Modeling 

  A Nash equilibrium strategy is best for you 
if the other agents also use their Nash equilibrium strategies 

  In many cases, the other agents won’t use Nash equilibrium 
strategies 
  If you can forecast their actions accurately, you may be 

able to do much better than the Nash equilibrium strategy 

  Example: repeated games 
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Repeated Games 
  Used by game theorists, economists, social and behavioral scientists 

as highly simplified models of various real-world situations 

Roshambo 

Iterated Chicken Game 
Repeated 

Matching Pennies 

Iterated Prisoner’s Dilemma Repeated  
Ultimatum Game 

Iterated Battle 
of the Sexes 



Nau: Game Theory   35 

Repeated Games 
  In repeated games, some game G is played 

multiple times by the same set of agents 
  G is called the stage game 

  Each occurrence of G is called 
an iteration or a round 

  Usually each agent knows what all 
the agents did in the previous iterations, 
but not what they’re doing in the 
current iteration 

  Usually each agent’s 
payoff function is additive Agent 1: Agent 2: 

C 

C D 

C Round 1: 

Round 2: 

3+0 = 3 3+5 = 8 Total payoff: 

Iterated Prisoner’s Dilemma, 
with 2 iterations: 

Prisoner’s Dilemma: 

Agent 2 
Agent 1 

C D 

C 3, 3 0, 5 

D 5, 0 1, 1 
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  Nash equilibrium for the stage game:  
  choose randomly, P=1/3 for each move 

  Nash equilibrium for the repeated game:  
  always choose randomly, P=1/3 for each move 

  Expected payoff = 0 

  Let’s see how that works out in practice … 

         A1 
A2       

Rock Paper Scissors 

Rock  0,  0 –1,  1  1, –1 
Paper  1, –1  0,  0 –1,  1 

Scissors –1,  1  1, –1  0,  0 

Roshambo (Rock, Paper, Scissors) 
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  1999 international roshambo programming competition 

www.cs.ualberta.ca/~darse/rsbpc1.html 
  Round-robin tournament: 

•  55 programs, 1000 iterations 
for each pair of programs 

•  Lowest possible score = –55000, 
highest possible score = 55000 

  Average over 25 tournaments: 

•  Highest score (Iocaine Powder): 13038 
•  Lowest score (Cheesebot): –36006 

  Very different from the game-theoretic prediction 

         A1 
A2       

Rock Paper Scissors 

Rock  0,  0 –1,  1  1, –1 
Paper  1, –1  0,  0 –1,  1 

Scissors –1,  1  1, –1  0,  0 

Roshambo (Rock, Paper, Scissors) 
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Opponent Modeling 
  A Nash equilibrium strategy is best for you 

if the other agents also use their Nash equilibrium strategies 

  In many cases, the other agents won’t use Nash equilibrium strategies 
  If you can forecast their actions accurately, you may be able to do 

much better than the Nash equilibrium strategy 

  One reason why the other agents might not use their Nash equilibrium 
strategies: 
  Because they may be trying to forecast your actions too 
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Prisoner’s Dilemma: 

Agent 2 
Agent 1 

C D 

C 3, 3 0, 5 

D 5, 0 1, 1 

  Multiple iterations of the Prisoner’s Dilemma 

  Widely used to study the emergence of 
cooperative behavior among agents 
  e.g., Axelrod (1984), The Evolution of Cooperation 

  Axelrod ran a famous set of tournaments 
  People contributed strategies 

encoded as computer programs 
  Axelrod played them against each other 

Iterated Prisoner’s Dilemma 

If I defect now, he might punish 
me by defecting next time 

Nash equilibrium 
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C C 

TFT TFT 
C 

C 
C 

C 
C 

C 

…
 

…
 

C 

C 

C 

C 
C 

C 

C C 

TFT Grim 
C 

C 
C 

C 
C 

C 

…
 

…
 

C 

C 

C 

C 
C 

C 

C C 

TFT  Tester 
C 

C 
C 

C 
C 

C 

…
 

…
 

D 

C 

D 

C 
C 

C 

D D 

TFT AllD 
C 

D 
D 

D 
D 

D 

…
 

…
 

D 

D 

D 

D 
D 

D 

TFT with Other Agents 
  In Axelrod’s tournaments, TFT usually did best 

»  It could establish and maintain cooperations with many other agents 
»  It could prevent malicious agents from taking advantage of it 

C C 

TFT AllC 
C 

C 
C 

C 
C 

C 

... 

... 

C 

C 

C 

C 
C 

C 
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Example: 
  A real-world example of the IPD, described in Axelrod’s book: 

  World War I trench warfare 

  Incentive to cooperate: 

  If I attack the other side, then they’ll retaliate and I’ll get hurt 
  If I don’t attack, maybe they won’t either 

  Result: evolution of cooperation 
  Although the two infantries were supposed to be enemies, they 

avoided attacking each other 
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IPD with Noise 

  In noisy environments, 
  There’s a nonzero probability (e.g., 10%) 

that a “noise gremlin” will change some 
of the actions 
•  Cooperate (C) becomes Defect (D), 

and vice versa 
  Can use this to model accidents 

  Compute the score using the changed 
action 

  Can also model misinterpretations 
  Compute the score using the original 

action 

C C 
C C 
C D …

 

…
 

C 

Noise 

Did he really 
intend to do that? 
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Example of Noise 

  Story from a British army officer in World War I: 
  I was having tea with A Company when we heard a lot of shouting and went 

out to investigate. We found our men and the Germans standing on their 
respective parapets.  Suddenly a salvo arrived but did no damage.  
Naturally both sides got down and our men started swearing at the Germans, 
when all at once a brave German got onto his parapet and shouted out: 
“We are very sorry about that; we hope no one was hurt. It is not our 
fault. It is that damned Prussian artillery.” 

  The salvo wasn’t the German infantry’s intention 
  They didn’t expect it nor desire it 
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  Consider two agents 
who both use TFT 

  One accident or 
misinterpretation 
can cause a long 
string of retaliations 

C D 

C C 
C 

C 
C 

C 
C 

C 

. . . 

. . . 

C 

D 

C 

D 
D 

D C 

Noise"

Retaliation 

Retaliation 

Retaliation 

Retaliation 

Noise Makes it Difficult 
to Maintain Cooperation 
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Some Strategies for the Noisy IPD 
  Principle: be more forgiving in the face of defections 

  Tit-For-Two-Tats (TFTT) 
»  Retaliate only if the other agent defects twice in a row 

•  Can tolerate isolated instances of defections, but susceptible to exploitation 
of its generosity 

•  Beaten by the TESTER strategy I described earlier 
  Generous Tit-For-Tat (GTFT) 

»  Forgive randomly: small probability of cooperation if the other agent defects 
»  Better than TFTT at avoiding exploitation, but worse at maintaining cooperation 

  Pavlov 
»  Win-Stay, Lose-Shift 

•  Repeat previous move if I earn 3 or 5 points in the previous iteration 
•  Reverse previous move if I earn 0 or 1 points in the previous iteration 

»  Thus if the other agent defects continuously, Pavlov will alternatively cooperate 
and defect 
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Discussion 
  The British army officer’s story: 

  a German shouted, ``We are very sorry about that; we hope no one was 
hurt. It is not our fault. It is that damned Prussian artillery.” 

  The apology avoided a conflict  
  It was convincing because it was consistent with the German infantry’s 

past behavior 
  The British had ample evidence that the German infantry wanted to 

keep the peace 

  If you can tell which actions are affected by noise, you can avoid reacting 
to the noise 

  IPD agents often behave deterministically 
  For others to cooperate with you it helps if you’re predictable 

  This makes it feasible to build a model from observed behavior 
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The DBS Agent 
  Work by my recent PhD graduate, Tsz-Chiu Au 

  Now a postdoc at University of Texas 

  From the other agent’s recent behavior, 
build a model π of the other agent’s strategy 
  A set of rules giving the probability 

of each action in various situations 
  Use the model to filter noise 

  Observed move contradicts the model => assume the observed move 
is noise 

  Detect changes in the other agent’s strategy 
  Observed move contradicts the model too many times => assume 

they’ve changed their strategy; recompute the model 
  Use the model to help plan our next move 

  Game-tree search, using π to predict the other agent’s moves 

Au & Nau. Accident or intention: 
That is the question (in the iterated 
prisoner’s dilemma). AAMAS, 2006. 

Au & Nau. Is it accidental or 
intentional? A symbolic approach to the 
noisy iterated prisoner’s dilemma. In G. 
Kendall (ed.), The Iterated Prisoners 
Dilemma: 20 Years On. World 
Scientific, 2007. 
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http://www.prisoners-dilemma.com 

  Category 2: IPD with noise 
 165 programs participated 

  DBS dominated the 
top 10 places 

  Two agents scored 
higher than DBS 
 They both used 

master-and-slaves strategies 

20th Anniversary IPD Competition 
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Master & Slaves Strategy 
  Each participant could submit up to 20 programs 
  Some submitted programs that could recognize each other 

  (by communicating pre-arranged sequences of Cs and Ds) 
  The 20 programs worked as a team 

•  1 master, 19 slaves 
  When a slave plays with its master 

•  Slave cooperates, master defects 
=>  maximizes the master’s payoff 

  When a slave plays with 
an agent not in its team 
•  It defects 
 => minimizes the other 

   agent’s payoff 

… and they 
beat up  
everyone else 

My goons give 
me 
all their 
money … 
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Comparison 
  Analysis 

  Each master-slaves team’s average score was much lower than DBS’s 
  If BWIN and IMM01 had each been restricted to ≤ 10 slaves, 

DBS would have placed 1st 
  Without any slaves, BWIN and IMM01 would have done badly 

  In contrast, DBS had no slaves 
  DBS established cooperation 

with many other agents 
  DBS did this despite the noise, 

because it filtered out the noise 
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Summary 
  Dominant strategies and dominant strategy equilibria 

  Prisoner’s dilemma 
  Pareto optimality 
  Best responses and Nash equilibria  

  Battle of the Sexes, Matching Pennies, Two-Finger Morra 
  Real-world examples 

  Soccer penalty kicks, road networks (Braess’s Paradox) 
  Repeated games and opponent modeling 

  roshambo (rock-paper-scissors 
  iterated prisoner’s dilemma with noise 

•  opponent models based on observed behavior 
•  detection and removal of noise, game-tree search 

  20th anniversary IPD competition 


