
Last update: February 16, 2010

Introduction to Lisp

Dana Nau

Dana Nau 1

Outline

♦ I assume you know enough about computer languages that you
can learn new ones quickly, so I’ll go pretty fast

♦ If I go too fast, please say so and I’ll slow down

Assignment:

1. Get a TerpConnect account if you don’t already have one

2. Start reading one or more of the following (you’ll need to figure out
which parts correspond to my lecture)
• ANSI Common Lisp - available at the bookstore
• Common Lisp the Language, 2nd edition (URL on the class page)
• Allegro Documentation (URL on the class page)

3. Read Norvig’s tutorial on Lisp programming style (URL on the class page)

Dana Nau 2

What does “LISP” stand for??

Dana Nau 3

What does “LISP” stand for??

A speech defect in which you can’t pronounce the letter ‘s’?

Dana Nau 4

What does “LISP” stand for??

A speech defect in which you can’t pronounce the letter ‘s’?

Looney Idiotic Stupid Professor?

Dana Nau 5

What does “LISP” stand for??

A speech defect in which you can’t pronounce the letter ‘s’?

Looney Idiotic Stupid Professor?

Long Incomprehensible String of Parentheses?

Dana Nau 6

What does “LISP” stand for??

A speech defect in which you can’t pronounce the letter ‘s’?

Looney Idiotic Stupid Professor?

Long Incomprehensible String of Parentheses?

LISt Processing?

Dana Nau 7

What is LISP?

Originated by John McCarthy in 1959 as an implementation of recursive
function theory.

The first language to have:
• Conditionals - if-then-else constructs
• A function type - functions are first-class objects
• Recursion
• Typed values rather than typed variables
• Garbage collection
• Programs made entirely of functional expressions that return values
• A symbol type
• Built-in extensibility
• The whole language always available – programs can construct

and execute other programs on the fly

Most of these features have gradually been added to other languages

Dana Nau 8

LISP’s influence on other languages

It seems to me that there have been two really clean, consistent mod-
els of programming so far: the C model and the Lisp model. These
two seem points of high ground, with swampy lowlands between them.
As computers have grown more powerful, the new languages being de-
veloped have been moving steadily toward the Lisp model. A popular
recipe for new programming languages in the past 20 years has been to
take the C model of computing and add to it, piecemeal, parts taken
from the Lisp model, like runtime typing and garbage collection.

– Paul Graham, The Roots of Lisp, May 2001

We were after the C++ programmers. We managed to drag a lot of
them about halfway to Lisp.

– Guy Steele, co-author of the Java spec

More quotes at http://lispers.org/

Dana Nau 9

LISP applications

AI programs often need to combine symbolic and numeric reasoning.
Lisp is the best language I know for this.

♦ Writing SHOP (my group’s AI planning system) took a few weeks in Lisp
♦ Writing JSHOP (Java version of SHOP) took several months

Lisp is less used outside of AI, but there are several well-known LISP appli-
cations:

♦ AutoCAD - computer-aided design system

♦ Emacs Lisp - Emacs’s extension language

♦ ITA Software’s airline fare shopping engine - used by Orbitz

♦ Parasolid - geometric modeling system

♦ Remote Agent software - deployed on NASA’s Deep Space 1 (1998)

♦ Script-Fu plugins for GIMP (GNU Image Manipulation Program)

♦ Yahoo! Merchant Solutions - e-commerce software

Dana Nau 10

Why learn LISP?

Several universities teach Scheme (a dialect of Lisp) in their introductory
Computer Science classes

LISP is worth learning for a different reason — the profound enlighten-
ment experience you will have when you finally get it. That experience
will make you a better programmer for the rest of your days, even if
you never actually use LISP itself a lot.

– Eric Raymond, How to Become a Hacker, 2001

Dana Nau 11

More about Lisp and Enlightenment . . .

From http://xkcd.com/224

Dana Nau 12

Common Lisp

♦ Lisp’s uniform syntax makes it very easily extensible
Just write new functions and include them when launching Lisp

♦ This led many groups to create their own Lisp dialects:
BBN-Lisp, Franz Lisp, Interlisp-10, Interlisp-D, Le-Lisp, Lisp 1.5,
Lisp/370, Lisp Machine Lisp, Maclisp, NIL, Scheme, T, ZetaLisp, . . .

⇒ problems with incompatibility

♦ Purpose of Common Lisp: to unify the main dialects
Thus it contains multiple constructs to do the same things

You’ll be using Allegro Common Lisp on solaris.grace.umd.edu
Documentation: links on the class page

Dana Nau 13

Launching Allegro Common Lisp

Login to solaris.grace.umd.edu using your TerpConnect account

You’ll be using Allegro Common Lisp. Here is how to launch it:
tap allegro81

alisp

To avoid having to type tap allegro81 every time you login, put it into the
.cshrc.mine file in your home directory

Running Common Lisp elsewhere:

♦ Allegro Common Lisp is installed on some of the CS Dept computers
e.g., the junkfood machines

♦ You can also get a Common Lisp implementation for your own computer
Check “implementations” on the class page

But make sure your program runs correctly using alisp on
solaris.grace.umd.edu, because that’s where we’ll test it.

Dana Nau 14

Starting Out

♦ When you run Lisp, you’ll be in Lisp’s command-line interpreter
♦ You type expressions, it evaluates them and prints the values

sporty:~: alisp

. . . several lines of printout . . .

CL-USER(1): (+ 2 3 5)

10

CL-USER(2): 5

5

CL-USER(3): (print (+ 2 3 5))

10

10

CL-USER(4): (exit)

; Exiting Lisp

sporty:~:

Some Common Lisps also have GUIs; check the documentation

Dana Nau 15

Atoms

♦ Every Lisp object is either an atom or a list

♦ Examples of atoms:

numbers: 235.4 2e10 #x16 2/3

variables: foo 2nd-place *foo*

constants: pi t nil :keyword

strings, chars: "Hello!" #\a

arrays: #(1 "foo" A) #1A(1 "foo" A) #2A((A B C) (1 2 3))

structures: #s(person first-name dana last-name nau)

♦ For Lisp atoms other than characters and strings, case is irrelevant:
foo = FOO = Foo = FoO = . . .
pi = Pi = PI = pI

2e10 = 2E10

Dana Nau 16

Lists

(a1 a2 a3 . . . ak) =⇒ ...

a1 a2 a3 ak

NIL

a1, a2, . . . , ak may be atoms or other lists

A list of one element: (a) =⇒
a

NIL

The empty list is called () or NIL; it’s both a list and an atom

Examples:

(235.4 (2e10 2/3) "Hello, there!" #(1 4.5 -7))

(foo (bar ((baz)) asdf) :keyword)

Dana Nau 17

Dot notation

If the last pointer points to something other than nil, it’s printed with a dot
before it

(a b c d . e) =⇒
a b c d

e

(a b c d . NIL) = (a b c d)

(a . b) =⇒
a

b

Example:

(235.4 (2e10 2/3) "Hello, there!" #(1 4.5 -7) . foobar)

Dana Nau 18

Defining Lisp Functions

(defun fib (n)

(if (< n 3)

1

(+ (fib (- n 1))

(fib (- n 2)))))

This is a very bad code; its running time is exponential in n. My only purpose
is to give an example that you can understand without knowing Lisp.

Suppose the definition is in a file called fibonacci.cl

sporty:~: alisp

... several lines of printout ...

CL-USER(1): (load "fibonacci")

; Loading /homes/research/nau/fibonacci.cl

T

CL-USER(2): (list (fib 1) (fiB 2) (fIb 3) (fIB 4) (Fib 5) (FiB 6))

(1 1 2 3 5 8)

CL-USER(3):

Dana Nau 19

Compiling

♦ The code on the previous slide runs interpretively ∗

Compiling makes your programs run faster, and may detect some errors

♦ To compile fib after it has been loaded, we can use (compile 'fib)

Later I’ll explain what the ' is for

♦ That only compiles the code that’s running in the current Lisp session.
If you start up a new Lisp session and load fibonacci.cl again,
it will run interpretively again.

♦ To compile the entire fibonacci.cl file, use (compile-file "fibonacci")

This creates a binary file called fibonacci.fasl∗∗

————–
∗A few Common Lisps will compile the code every time you load it. Allegro doesn’t.

∗∗Other Common Lisps may use different file-naming conventions.

Dana Nau 20

Loading

♦ (compile-file "fibonacci") doesn’t load the file
You need to do that separately

♦ The next time you do (load "fibonacci"), it will load fibonacci.fasl

instead of fibonacci.cl

♦ In Allegro Common Lisp, (load "fibonacci") does the following:∗

load fibonacci.fasl if it exists
else load fibonacci.cl if it exists
else load fibonacci.lisp if it exists
else error

♦ Use (load "fibonacci.cl") to specify the exact file,
(load "foo/fibonacci") to specify a file in a subdirectory,
etc.

————–
∗Details (e.g., file suffixes) may vary in other Common Lisps.

Dana Nau 21

Style

♦ Read Norvig’s tutorial on Lisp programming style
There’s a link on the class page.

♦ Examples of comments, variables, and indenting:

;;; A comment formatted as a block of text

;;; outside of any function definition

(defun fib (n)

;; A comment on a line by itself

(if (< n 3)

1 ; A comment on the same line as some code

(+ (fib (- n 1))

(fib (- n 2)))))

(setq *global-variable* 10)

(let (local-variable)

(setq local-variable 15))

Dana Nau 22

Editing Lisp files

Use a text editor that does parenthesis matching

Emacs is good if you know how to use it, because it knows Lisp syntax
Parenthesis matching
Automatic indentation
Automatic color coding of different parts of the program

But if you don’t already know emacs,
Don’t bother learning it just for this class
Steep learning curve

Emacs’s built-in Lisp is not Common Lisp. Don’t use it for your projects!

Dana Nau 23

Development Environments

If you use Eclipse, there are two Lisp plugins for it:

♦ Cusp
♦ Dandelion

I don’t use Eclipse, so I don’t know much about them

If you use Emacs, there are two macro packages you can use:

♦ The one that comes with Allegro Common Lisp
♦ SLIME

These can run Common Lisp in an Emacs buffer, and do various other things

The class home page has links to all of these

Dana Nau 24

Lisp functions

Next, I’ll summarize some basic Common Lisp functions

♦ I may leave out some details

♦ There are many more functions than the ones I’ll discuss

♦ For more information, see the list of sources at the start of this lecture

Dana Nau 25

Numeric functions

+, *, / plus, times, divide (/ (* 2 3 4) (+ 3 1)) =⇒ 6

- minus (- (- 3) 2) =⇒ –5

sqrt square root (sqrt 9) ⇒ 3

exp, expt exponentiation (exp 2) =⇒ e2, (expt 3 4) =⇒ 81

log logarithm (log x) =⇒ ln x, (log x b) =⇒ logb x

min, max minimum, maximum (min -1 2 -3 4 -5 6) =⇒ –5

abs, round absolute val, round (abs (round -2.4)) =⇒ 2

truncate integer part (truncate 3.2) =⇒ 3

mod remainder (mod 5.6 5) =⇒ 0.6

sin, cos, tan trig funcs (radians) (sin (/ pi 2) =⇒ 1.0

Dana Nau 26

Special Forms

♦ These are used for side-effects.
♦ Unlike functions, they don’t necessarily evaluate all args

defun define a function (defun name (args) body)

defstruct define a structure (defstruct name fields)

setq assign a value (setq foo #(1 2 3 4)) =⇒ foo = #(1 2 3 4)

to a variable (setq bar foo) =⇒ bar = #(1 2 3 4)

(setq bar 'foo) =⇒ bar = FOO

setf like setq but also (setf foo #(1 2 3 4)) =⇒ foo = #(1 2 3 4)

works on arrays, (setf (elt foo 0) 5) =⇒ foo = #(5 2 3 4)

structures, . . .

' , quote return the (+ 2 3) =⇒ 5

arg without (quote (+ 2 3)) =⇒ (+ 2 3)

evaluating it '(+ 2 3) =⇒ (+ 2 3)

(eval '(+ 2 3)) =⇒ 5

Dana Nau 27

List functions

first, car 1st element (first '(a b c d)) =⇒ a

second, ..., tenth like first (third '(a b c d)) =⇒ c

rest, cdr all but 1st (rest '(a b c d)) =⇒ (b c d)

nth nth element, (nth 2 '(a b c d)) =⇒ c

n starts at 0

length #of elements (length '((a b) c (d e))) =⇒ 3

cons inverse of (cons 'a '(b c d)) =⇒ (a b c d)

car & cdr (cons '(a b) 'c) =⇒ ((a b) . c)

list make a list (list (+ 2 3) '(b c) 'd 'e)

=⇒ (5 (b c) d e)

append append lists (append '(a) '(b c) '(d))=⇒ (a b c d)

(append '(a) '(b c) 'd)=⇒ (a b c . d)

reverse reverse a list (reverse '((a b) c d)) =⇒ (d c (a b))

Dana Nau 28

Predicates

numberp, integerp, test whether arg is (numberp 5.78) =⇒ T

stringp, characterp a number, integer, (integerp 5.78) =⇒ NIL

evenp, oddp string, character, etc. (characterp #\a) =⇒ T

listp, atom, test whether arg is a list, (listp nil) =⇒ T

null, consp atom, empty/nonempty list (consp nil) =⇒ NIL

<, <=, =, >=, > numeric comparisons arg must be a number

string<, string<=, ... string comparisons args must be string or char

eql, equal equality tests; they (setq x '(a))

work differently on (eql x x) =⇒ T

lists and strings (eql x '(a)) =⇒ NIL

(equal x '(a)) =⇒ T

and, or, not logical predicates; not (not (evenp 8)) =⇒ NIL

and null are identical (and 3 'foo T) =⇒ T

Dana Nau 29

More special forms: conditionals

if if-then-else (if test expr1 [expr2])

if test is non-NIL then return expr1

else return expr2 (or NIL)

cond extended (cond (test1 expr11 expr12 . . .)

if-then-else (test2 expr21 expr22 . . .)

. . .)

case like C’s “switch”. The (case x ((v11 v12 . . .) expr11 expr12 . . .)

vij args aren’t evaluated; ((v21 v22 . . .) expr21 expr22 . . .)

otherwise is optional . . .

and is like C’s default (otherwise expr1 expr2 . . .)

ecase like case, but signals (ecase x ((v11 v12 . . .) expr11 expr12 . . .)

a continuable error ((v21 v22 . . .) expr21 expr22 . . .)

if there’s no match . . .)

Dana Nau 30

Special forms for sequential execution

(progn e1 e2 ... en) evaluates e1, e2, . . . , en, and returns the value of en

(prog1 e1 e2 ... en) evaluates e1, e2, . . . , en, and returns the value of e1

let and let* are like progn but let you declare local variables

let assigns initial values
in parallel

(let (a b c)

(setq a 1)

(setq b 2)

(setq b 3)

(let ((a (+ b 5))

(b (+ a 5)))

(list a b c))

=⇒ (7 6 3)

let* assigns initial values
sequentially

(let* ((x1 v1) ((x2 v2) (x3 v3))

e1 e2 ... en)

=

(let ((x1 v1))

(let ((x2 v2))

(let ((x3 v3))

e1 e2 ... en)))

Dana Nau 31

Formatted output

(format destination control-string args) is like printf in C

(setq x "foo")

(format t "~%~s is ~s" 'x x) =⇒ go to new line and print X is "foo"

(format t "~%~a is ~a" 'x x) =⇒ go to new line and print X is foo

destination is where to send the output
name of stream ⇒ send it to the stream, then return NIL

t ⇒ send to standard output, then return NIL

nil ⇒ send output to a string, and return the string

control-string is like a printf control string in C

~ is like % in C

~% is a newline like \n in C, ~2% is 2 newlines, ~3% is 3 newlines, etc.

~& is like ~% but is ignored if you’re already at the start of a line

~s matches any Lisp expression, and prints it with escape characters

~a matches any Lisp expression, and prints it without escape characters

~2s uses field size ≥ 2, ~3a uses field size ≥ 3, etc.
many more options – some useful, some you’ll never use

Dana Nau 32

Basic I/O

(read [stream]) read a single Lisp (read)

expression, and (+ foo 5)

return it unevaluated =⇒ (+ FOO 5)

(terpri [stream]) is like (format stream "~%")

(prin1 expr [stream]) is like (format stream "~s" expr) but returns expr

(princ expr [stream]) is like (format stream "~a" expr) but returns expr

(print expr [stream]) is like (format stream "~%~s" expr) but returns expr

(pprint expr [stream]) “pretty” print – does fancy indenting
to improve readability, and returns no value

The stream argument is optional
for read, it defaults to *standard-input*

for the other functions, it defaults to *standard-output*

Dana Nau 33

Macros

Macros expand inline into other pieces of Lisp code

Example:
push and pop use lists as stacks

(push x foo) = (setq foo (cons x foo))

(pop foo) = (prog1 (first foo)

(setq foo (rest foo)))

Various other built-in macros
e.g., see next page

Lisp also lets you define your own macros
It gets complicated
I won’t discuss it

Dana Nau 34

I/O Macros

(with-open-file (stream filename [options]) e1 e2 . . . en)

(with-input-from-string (stream string [options]) e1 e2 . . . en)

(with-output-to-string (stream string [options]) e1 e2 . . . en)

Like (progn e1 e2 . . . en), but binds stream to the file or string

(with-open-file (*standard-output* "foo.txt" :direction :output)

(format t "2 + 3 = ~s" (+ 2 3))

14)

=⇒ creates file foo.txt, puts 2 + 3 = 5 into it, closes it, and returns 14

(with-input-from-string (*standard-input* "(+ 2 3)")

(eval (read)))

=⇒ 5

♦ stream is dynamically scoped:
its binding is used during execution of everything called by e1, . . . , en

♦ with-open-file closes filename automatically when finished

Dana Nau 35

Operators

Lisp operator: a function, special form, or macro

Some differences among functions, special forms, and macros:

♦ Lisp evaluates all of a function’s args before calling the function
Not so for special forms and macros

♦ You can pass functions as arguments to other functions
You can’t pass special forms and macros (at least, not in the same way)

♦ If your code contains a Lisp macro, and if an error occurs while executing
it, the debugging messages will probably refer to the code that the macro
expanded into, rather than the macro itself

Dana Nau 36

Loops

(dotimes (i num [value]) expressions)

executes expressions with i = 0, . . . , num− 1, then returns value or NIL

(dolist (x list [value]) expressions)

executes expressions with x = each element of list,
then returns value or NIL

(return value) returns value from the middle of a loop

(setq result nil)

(dotimes (foo 5 (reverse result))

(push foo result)) =⇒ (0 1 2 3 4)

(setq result nil)

(dolist (foo '(a 1 b 2 "stop here" 3 z 33))

(if (stringp foo) (return result))

(push foo result)) =⇒ (2 B 1 A)

Dana Nau 37

More loops

(do ((i1 start1 incr1) . . . (in startn incrn))

(termination-test [expressions to evaluate at termination])

expression1

. . .

expressionn)

Somewhat like C’s “for”, but the iteration variables are local, and are set
simultaneously. To set them sequentially, replace do with do*

Unfortunately, the syntax is a bit painful

(setq c 0)

(do ((a 1 (+ a 1)) ; a = 1, 2, 3, ...

(b '(1 10 3 2) (cdr b))) ; take successive cdrs

((null b) c) ; if b is empty, return c

(setq c (+ c (expt (car b) a)))) ; add x^a to c

=⇒ compute 11 + 102 + 33 + 24 = 144

Dana Nau 38

More loops

(loop [loop clauses])

iteration macro with a huge number of options

Graham doesn’t like it, because complex cases can be hard to understand
(see ANSI Common Lisp, pp. 239-244).

But simple cases are easier to understand than do is:

(loop for a from 1 by 1

for b in '(1 10 3 2)

sum (expt b a))

(setq c 0)

(do ((a 1 (+ a 1))

(b '(1 10 3 2) (cdr b)))

((null b) c)

(setq c (+ c (expt (car b) a))))

=⇒ compute 11 + 102 + 33 + 24 = 144

Dana Nau 39

More loops

(loop [loop clauses])

some of the possible loop clauses:

initially expressions ; do these before looping starts

for variable from bottom to top

while condition

do expressions

if expression do expressions else expressions end

sum expression ; add up all the values of expression

count expression ; count how many times expression is non-NIL

collect expression ; collect the values into a list

maximize expression ; keep the highest value

minimize expression ; keep the smallest value

return expressions ; exit the loop and return this value

finally expressions ; execute when the loop ends

For info and examples, see the links for loop on the class page

Dana Nau 40

More loops

(loop for x in '(a b c d)

for y in '(1 2 3 4)

collect (list x y))

(do ((x '(a b c d) (cdr x))

(y '(1 2 3 4) (cdr y))

(z nil (cons

(list (car x) (car y))

z)))

((null x) (reverse z)))

=⇒ ((A 1) (B 2) (C 3) (D 4))

(loop for x in '(a b c d)

for y in '(1 2 3 4)

collect x collect y)

(do ((x '(a b c d) (cdr x))

(y '(1 2 3 4) (cdr y))

(z nil (cons

(car y)

(cons (car x) z))))

((null x) (reverse z)))

=⇒ (A 1 B 2 C 3 D 4)

Dana Nau 41

Write your own Lisp interpreter!

You can use loop or do to write your own simple Lisp interpreter:

(loop

(format t "~%> ")

(format t "~&~s"

(eval (read))))

(do ()

()

(format t "~%> ")

(format t "~&~s"

(eval (read))))

Dana Nau 42

Interacting with Allegro Common Lisp

♦ Allegro Common Lisp has a command-line interface
Maybe also a GUI, depending on what OS you’re using

– check the documentation

♦ When it prompts you for input, you can type
any Common Lisp expression or any Allegro command

♦ Allegro command syntax is :command arg1 arg2 ...

:cd foo changes the current directory to foo
:help cd prints a description of the :cd command
:help prints a list of all available commands

♦ The Allegro commands aren’t part of Common Lisp
They won’t work inside Lisp programs
They’re only available interactively, at Allegro’s input prompt

♦ Which Allegro commands are available depends on whether you’re
at the top level or inside the debugger

Dana Nau 43

Debugging

♦ (trace foo) or :trace foo

Lisp will print a message each time it enters or exits the function foo

Several optional args; see the Allegro documentation

♦ To turn it off: (untrace foo) or :untrace foo or (untrace) or :untrace

♦ (step expression) or :step expression

will single-step through the evaluation of expression
Doesn’t work on compiled code

♦ To get Allegro to print out all of a long list list (rather than just the first
10 elements), type (setf tpl:*print-length* nil)

♦ For more info about debugging, see Appendix A of ANSI Common Lisp
and “debugging” on the class page

♦ Transcribing your Lisp session – links on the class page

Dana Nau 44

The debugger

CL-USER(55): (fib (list 3 5))

Error: ‘(3 5)’ is not of the expected type ‘REAL’

[condition type: TYPE-ERROR]

Restart actions (select using :continue):

0: Return to Top Level (an "abort" restart).

1: Abort entirely from this process.

[1] CL-USER(56): (fib "asdf")

Error: ‘"asdf"’ is not of the expected type ‘REAL’

[condition type: TYPE-ERROR]

Restart actions (select using :continue):

0: Return to Debug Level 1 (an "abort" restart).

1: Return to Top Level (an "abort" restart).

2: Abort entirely from this process.

[2] CL-USER(57):

At this point, you’re two levels deep in the Lisp debugger
You can type Lisp functions or Allegro commands

Dana Nau 45

Allegro debugging commands

Restart actions (select using :continue):

0: Return to Debug Level 1 (an "abort" restart).

1: Return to Top Level (an "abort" restart).

2: Abort entirely from this process.

[2] CL-USER(57):

♦ Type :continue 0 or :continue 1 or :continue 2 to do what’s specified

♦ :pop or control-D goes up one level; :pop 2 goes up two levels

♦ :zoom prints the current runtime stack

♦ :local or :local n prints the value of fib’s parameter n, which is "asdf"

♦ :set-local n sets the local variable n’s value

♦ :current prints (< "asdf" 3), the expression that caused the error

♦ :return returns a value from the expression that caused the error,
and continues execution from there

♦ :reset exits the debugger completely, back to the top level of Lisp

♦ Type :help for a list of other commands

Dana Nau 46

Starting at Lisp’s top level, do (trace fib), then (fib "foo")

0[1]: (FIB "foo")

Error: ‘"foo"’ is not of the expected type ‘REAL’

[condition type: TYPE-ERROR]

Restart actions (select using :continue):

0: Return to Top Level (an "abort" restart).

1: Abort entirely from this (lisp) process.

[1] CL-USER(71): :current

(< "foo" 3)

[1] CL-USER(72): :set-local n 4

[1] CL-USER(73): :return nil

1[1]: (FIB 3)

2[1]: (FIB 2)

2[1]: returned 1

2[1]: (FIB 1)

2[1]: returned 1

1[1]: returned 2

1[1]: (FIB 2)

1[1]: returned 1

0[1]: returned 3

3
Dana Nau 47

Break and continue

♦ break will make a breakpoint in your code; its syntax is like format

♦ :continue will continue from the breakpoint

CL-USER(12): (defun foo (n)

(format t "Hello")

(break "I'm broken with n = ~s" n)

(format t "I'm fixed with n = ~s" n))

FOO

CL-USER(13): (foo 3)

Hello

Break: I'm broken with n = 3

Restart actions (select using :continue):

0: return from break.

1: Return to Top Level (an "abort" restart).

2: Abort entirely from this process.

[1c] CL-USER(14): :continue

I'm fixed with n = 3

NIL

Dana Nau 48

Functions that take functions as arguments

#'func quotes func as a function

(setq y (list #'+ #'cons)) =⇒ (#<Function +> #<Function CONS>)

If the value of expr is func,
then (funcall expr e1 e2 . . . en) = (func e1 e2 . . . en)

(funcall (first y) 1 2) =⇒ 3

(funcall (second y) 1 2) =⇒ (1 . 2)

(funcall #'append '(A B) '(C D) '(E F G)) =⇒ (A B C D E F G)

and (apply expr (list e1 e2 . . . en)) = (func e1 e2 . . . en)

(apply #'+ '(1 2 3)) =⇒ 6

(apply #'append '((A B) (C D) (E F G))) =⇒ (A B C D E F G)

Dana Nau 49

Mapping functions

Like before, suppose expr is an expression whose value is func

♦ (mapcar expr list) calls func on each member of list and
returns a list of the results

(mapcar #'sqrt '(1 4 9 16 25)) ==> (1 2 3 4 5)

(setq y (lambda (x) (+ x 10)))

(mapcar y '(1 2 5 28)) ==> (11 12 15 38))

♦ If func takes n args, you can do (mapcar expr list1 list2 . . . listn)

This takes func’s i ’th arg from the i ’th list

(mapcar #'list '(a b c) '(1 2 3)) =⇒ ((A 1) (B 2) (C 3))

♦ mapcan is like mapcar but concatenates the results (which must be lists)
(mapcan #'list '(a b c) '(1 2 3)) =⇒ (A 1 B 2 C 3)

♦ (maplist expr list) calls func on successive cdrs of list

(maplist #'identity '(a b c)) ==> ((A B C) (B C) (C))

Dana Nau 50

More functions

(coerce #(a b c) 'list) ==> (a b c)

(coerce '(#\a #\b #\c) 'string) ==> "abc"

(coerce 1 'float) ==> 1.0

(member 3 '(1 2 3 4 5)) ==> (3 4 5)

(member 6 '(1 2 3 4 5)) ==> NIL

(member-if #'numberp '(a b 1 c d)) ==> (1 C D)

(member-if-not #'atom '(a b (c d) e)) ==> ((C D) E)

(subsetp '(a b) '(x a y b z)) ==> T

(union '(a b c d) '(d c e f)) ==> '(B A D C E F)

(intersection '(a b) '(b c) ==> (B Y)

(set-difference '(a b c) '(b c)) ==> (A)

(copy-list expr) returns a new list whose elements are the ones in expr

(copy-tree expr) is like copy-list, but recursively copies all the way down

Dana Nau 51

Keyword arguments

(member '(1 2) '((a 1) (b 2) (c 3))) ==> NIL

(member '(1 2) '((a 1) (b 2) (c 3)) :test #'equal) ==> ((B 2) (C 3))

(member b '((a 1) (b 2) (c 3)) :key #'first) ==> ((B 2) (C 3))

(member '(B) '(((A) 1) ((B) 2) ((C) 3)) :key #'first :test #'equal)

==> (((B) 2) ((C) 3))

(subsetp '((a) b) '(x (a) y b z)) ==> NIL

(subsetp '((a) b) '(x (a) y b z) :test #'equal) ==> T

In a list of the form (. . . x . . .),
♦ :key f changes what part of x you apply the test to

instead of (eql z x), use (eql z (f x)

♦ :test p and :test-not p change what the test function is
instead of (eql z x), use (p z x) or (not (p z x))

:test, :test-not, and :key can be used in almost any built-in function in
which they would have a sensible meaning

Dana Nau 52

Defining functions with optional arguments

This function takes two positional arguments and one keyword argument:

(defun my-member (item list &key (test #'eql))

(cond ((null list) nil)

((funcall test item (car list)) list)

(t (my-member item (cdr list) :test test))))

This function requires at least one argument:

(defun tformat (control-string &rest args)

(apply #'format t control-string args))))

This function takes any number of arguments:

(defun count-args (&rest args)

(length args))

Dana Nau 53

Functions of sequences

Some functions work on any sequence (list, character string, or vector)
In these functions, sequences are indexed starting at 0

(elt seq n) returns the n’th element of seq

(elt #(a b c d e) 0) ==> A

(elt "abcde" 0) ==> #\a

(elt '(a b c d e) 0) ==> A

(subseq seq num1 [num2]) returns the subsequence that starts at num1 and
ends just before num2

(subseq '(a b c d e f) 2 4) ==> (C D)

(subseq #(a b c d e f) 2) ==> #(C D E F)

(subseq "abcdef" 2 5) ==> "cde"

(copy-seq seq) returns a copy of seq

(setq a "abc"))

(equal a (copy-seq a)) ==> T

(eq a (copy-seq a)) ==> F

Dana Nau 54

More functions of sequences

(find item seq) find item in seq and return it, else return nil

(position item seq) return item’s position in seq, else return nil

(remove item seq) remove top-level occurrences of item

(substitute new old seq) replace top-level occurrences of old with new

Optional keyword arguments (you can use several of them at once):

:key key use (eql (key item) x)) instead of (eql item x)

:test-if pred use (pred item x) instead of (eql item x)

:test-if-not pred use (not (pred item x)) instead of (eql item x)

:from-end t search leftward rather than rightward

:start num start searching at position num (instead of position 0)

:end num end searching just before position num

:count num in remove and substitute, only change
num occurrences of item, rather than all of them

Dana Nau 55

Examples

(find '(A C) #((w x) (A B) (A C) (y z)) ==> NIL

(find '(A C) #((w x) (A B) (A C) (y z)) :test #'equal) ==> (A C)

(find 'A #((w x) (A B) (A C) (y z)) :key #'first) ==> (A B)

(position #\d "abcde") ==> 3

(position #\d #(#\a #\b #\c #\d #\e) ==> 3

(remove 'a '((a 1) (a 2) (a 3) (a 4)) :key #'car) ==> NIL

(remove 'a '((a 1) (a 2) (a 3) (a 4)) :key #'car :start 1)

==> ((A 1))

(remove 'a '((a 1) (a 2) (a 3) (a 4)) :key #'car :start 1 :end 3)

==> ((A 1) (A 4))

Dana Nau 56

More functions of sequences

With these functions, you can use the same keyword arguments as before
except for :test-if and :test-if-not

(find-if pred seq)

(find-if-not pred seq)

find item that satisfies pred

(position-if pred seq)

(position-if-not pred seq)

find position of item that satisfies pred

(remove-if pred seq)

(remove-if-not pred seq)

remove items that satisfy pred

(substitute-if new pred seq)

(substitute-if new pred seq)

substitute new for items that satisfy pred

Dana Nau 57

Examples

(defun almost-equal (Num1 Num2)

(<= (abs (- Num1 Num2)) 0.1))

(defun almost-pi (Num)

(almost-equal num pi)

(find pi #(2.9 3.0 3.1 3.2 3.3) :test #'Almost-Equal) ==> 3.1

(find-if #'almost-pi #(2.9 3.0 3.1 3.2 3.3)) ==> 3.1

Dana Nau 58

Tree functions

copy-tree

like copy-list but copies an entire tree structure

subst, subst-if, and subst-if-not

like substitute, substitute-if, and substitute-if-not,
but they look through the entire tree structure

(substitute 'tempest 'hurricane

'(shakespeare wrote (the hurricane)))

==> (SHAKESPEARE WROTE (THE HURRICANE))

(subst 'tempest 'hurricane

'(shakespeare wrote (the hurricane)))

==> (SHAKESPEARE WROTE (THE TEMPEST))

subst recognizes the keyword arguments :test, :test-not, and :key

subst-if and subst-if-not recognize :key but not the others

Dana Nau 59

Destructive versus nondestructive functions

♦ The functions on the previous pages are nondestructive
They don’t modify their arguments

♦ There are destructive versions of the same functions
Rather than making copies, these redirect pointers (like you’d do in C)

delete is the destructive version of remove,
nconc is the destructive version of append,
nreverse is the destructive version of reverse, etc.

Also, can use setf to do destructive modifications

♦ Destructive modifications can have unexpected side-effects

(setq x '(a b c)) ==> (A B C)

(setq y '(d e f)) ==> (D E F)

(setq z (nconc x y)) ==> (A B C D E F)

x ==> (A B C D E F)

Don’t do destructive modifications unless (i) there’s a very good reason to
do them and (ii) you’re very sure you know what you’re doing

Dana Nau 60

Defstruct

(defstruct employee name id dept phone)

(setq x (make-employee :name "Dana Nau"))

==> #S(EMPLOYEE :NAME "Dana Nau" :ID NIL :DEPT NIL :PHONE NIL)

(setf (employee-dept x) "Computer Science")

x ==> #S(EMPLOYEE :NAME "Dana Nau"

:ID NIL

:DEPT "Computer Science"

:PHONE NIL)

Many more options (see the book)
default initial values, inheritance, print functions, . . .

For object-oriented programming, use defclass rather than defstruct

Dana Nau 61

Lisp has a huge set of features

Many more features that I didn’t cover. Here are a few of them:

♦ random - return a random number in a given range

♦ make-hash-table - return a hash table

♦ cerror - continuable error: error message with options for fixing the error

♦ values, multiple-value-setq - functions that return multiple values

♦ return-from, catch, throw, unwind-protect - non-local returns

♦ packages - separate namespaces to avoid naming conflicts

♦ object-oriented programming

♦ how to write macros

· · ·

Dana Nau 62

Seven ways to copy a list

(Adapted from the Lisp FAQ; link on the class page)

Let’s define a function cc-list that does the same thing as copy-list

1. (defun cc-list (list)

(let ((result nil))

(dolist (item list result)

(setf result

(append result (list item))))))

1st implementation uses append to put elements onto the end of the list.
It traverses the entire partial list each time ⇒ quadratic running time.

2. (defun cc-list (list)

(let ((result nil))

(dolist (item list

(nreverse result))

(push item result))))

2nd implementation goes through the list twice: first to build up the list in
reverse order, and then to reverse it. It has linear running time.

Dana Nau 63

Seven ways to copy a list (continued)

3. (defun cc-list (list)

(let ((result (make-list (length list))))

(do ((original list (cdr original))

(new result (cdr new)))

((null original) result)

(setf (car new) (car original)))))

4. (defun cc-list (list)

(mapcar #'identity list))

5. (defun cc-list (list)

(loop for x in list

collect x))

3rd, 4th, and 5th implementations: efficiency usually similar to the 2nd one,
depending on the Lisp implementation.

The 4th and 5th implementations are the easiest to understand.

Dana Nau 64

Seven ways to copy a list (continued)

6. (defun cc-list (list)

(when list

(let* ((result (list (car list)))

(tail-ptr result))

(dolist (item (cdr list) result)

(setf (cdr tail-ptr) (list item))

(setf tail-ptr (cdr tail-ptr))))))

6th implementation iterates down the list only once, keeps a pointer to the
tail of the list, destructively modifies the tail to point to the next element.
Same speed as 2nd, 3rd, 4th, 5th implementations, or slightly slower.

7. (defun cc-list (list)

(if (consp list)

(cons (car list) (cc-list (cdr list)))

list))

7th implementation: recursively copies dotted lists, and runs in linear time,
but isn’t tail-recursive ⇒ compiler can’t remove the recursion

Dana Nau 65

Conclusion

From http://xkcd.com/297

If you don’t understand this cartoon, go to the following URL and search for
“a more civilized age”:
http://www.imdb.com/title/tt0076759/quotes

Dana Nau 66

