
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 11
Hierarchical Task Network Planning

Lecture slides for
Automated Planning: Theory and Practice

Dana S. Nau

University of Maryland

2:26 PM April 18, 2012

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
●  We may already have an idea how to go about solving

problems in a planning domain
●  Example: travel to a destination that’s far away:

◆  Domain-independent planner:
»  many combinations of vehicles and routes

◆  Experienced human: small number of “recipes”
 e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

●  How to enable planning systems to make use of such recipes?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Two Approaches

●  Control rules (previous chapter):
◆  Write rules to prune every

action that doesn’t fit the
recipe

●  Hierarchical Task Network
(HTN) planning:
◆  Describe the actions and

subtasks that do fit the recipe

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

HTN Planning
travel(UMD, LAAS)"

get-ticket(IAD, TLS)

travel(UMD, IAD)

fly(BWI, Toulouse)
travel(TLS, LAAS)

get-taxi
ride(TLS,Toulouse)
pay-driver

go-to-travel-web-site
find-flights(IAD,TLS)
buy-ticket(IAD,TLS)

get-taxi
ride(UMD, IAD)
pay-driver

Task:

●  Problem reduction
◆  Tasks (activities) rather than goals
◆  Methods to decompose tasks into subtasks
◆  Enforce constraints

» E.g., taxi not good for long distances
◆  Backtrack if necessary

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

get-ticket(BWI, TLS)

go-to-travel-web-site
find-flights(BWI,TLS)

 BACKTRACK

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))
fly(a(x),a(y))

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

HTN Planning
●  HTN planners may be domain-specific

◆  e.g., see Chapters 20 (robotics) and 23 (bridge)
●  Or they may be domain-configurable

◆  Domain-independent planning engine
◆  Domain description that defines not only the operators, but

also the methods
◆  Problem description

» domain description, initial state, initial task network
Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))
fly(a(x),a(y))

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Simple Task Network (STN) Planning
●  A special case of HTN planning
●  States and operators

◆  The same as in classical planning
●  Task: an expression of the form t(u1,…,un)

◆  t is a task symbol, and each ui is a term
◆  Two kinds of task symbols (and tasks):

» primitive: tasks that we know how to execute directly
•  task symbol is an operator name

» nonprimitive: tasks that must be decomposed into subtasks
•  use methods (next slide)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Methods
●  Totally ordered method: a 4-tuple

 m = (name(m), task(m), precond(m), subtasks(m))
◆  name(m): an expression of the form n(x1,…,xn)

»  x1,…,xn are parameters - variable symbols
◆  task(m): a nonprimitive task
◆  precond(m): preconditions (literals)
◆  subtasks(m): a sequence

of tasks 〈t1, …, tk〉

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)
subtasks: 〈buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

 travel(a(y),y)〉

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

●  Partially ordered method: a 4-tuple
 m = (name(m), task(m), precond(m), subtasks(m))

◆  name(m): an expression of the form n(x1,…,xn)
»  x1,…,xn are parameters - variable symbols

◆  task(m): a nonprimitive task
◆  precond(m): preconditions (literals)
◆  subtasks(m): a partially ordered

set of tasks {t1, …, tk}

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)
network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x), a(y))

 u4= travel(a(y),y), {(u1,u3), (u2,u3), (u3 ,u4)}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Methods (Continued)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Domains, Problems, Solutions
●  STN planning domain: methods, operators
●  STN planning problem: methods, operators, initial state, task list
●  Total-order STN planning domain and planning problem:

◆  Same as above except that
all methods are totally ordered

●  Solution: any executable plan
that can be generated by
recursively applying
◆  methods to

nonprimitive tasks
◆  operators to

primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effects s1 s2

primitive task primitive task

operator instance operator instance

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Example
●  Suppose we want to move three stacks of containers in a way that

preserves the order of the containers

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Example (continued)
●  A way to move each stack:

◆  first move the
containers
from p to an
intermediate
pile r

◆  then move
them from
r to q

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Total-Order
Formulation

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Partial-Order
Formulation

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

Solving Total-Order STN Planning Problems

state s; task list T=(t1 ,t2,…)

 action a

state γ(s,a) ; task list T=(t2, …)

task list T=(u1,…,uk ,t2,…)

 task list T=(t1 ,t2,…)

 method instance m

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Comparison to
Forward and Backward Search

●  In state-space planning, must choose whether to search
forward or backward

●  In HTN planning, there are two choices to make about direction:
◆  forward or backward
◆  up or down

●  TFD goes
down and
forward

s0 s1 s2 … … op1 op2 opi Si–1

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opi Si–1

task t0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Comparison to
Forward and Backward Search

●  Like a backward search,
TFD is goal-directed
◆  Goals

correspond
to tasks

●  Like a forward search, it generates actions
in the same order in which they’ll be executed

●  Whenever we want to plan the next task
◆  we’ve already planned everything that comes before it
◆  Thus, we know the current state of the world

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opi Si–1

task t0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

●  TFD requires totally ordered
methods

●  Can’t interleave subtasks of different tasks
●  Sometimes this makes things awkward

◆  Need to write methods that reason
globally instead of locally

get(p) get(q)

get-both(p,q)

goto(b)

pickup(p) pickup(q)

get-both(p,q)

Limitation of Ordered-Task Planning

pickup-both(p,q)

walk(a,b)

goto(a)

walk(b,a)

pickup(p) walk(a,b) walk(b,a) pickup(p) walk(a,b) walk(b,a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

Partially Ordered Methods

●  With partially ordered methods, the subtasks can be interleaved

●  Fits many planning domains better
●  Requires a more complicated planning algorithm

walk(a,b) pickup(p)

get(p)

stay-at(b) pickup(q)

get(q)

get-both(p,q)

walk(b,a) stay-at(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

π={a1 …, ak, a }; w' ={t2, t3, …}

 w={ t1 ,t2,…}	

	

 method instance m	

 w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}	

	

 operator instance a	

Algorithm for Partial-Order STNs

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

π={a1 …, ak, a }; w' ={t2, t3, …}

π={a1,…, ak}; w={ t1 ,t2, t3…}	

	

 operator instance a	

Algorithm for Partial-Order STNs

●  Intuitively, w is a partially ordered set of tasks {t1, t2, …}
◆  But w may contain a task more than once

»  e.g., travel from UMD to LAAS twice
◆  The mathematical definition of a set doesn’t allow this

●  Define w as a partially ordered set of task nodes {u1, u2, …}
◆  Each task node u corresponds to a task tu

●  In my explanations, I’ll talk about t and ignore u

 w={ t1 ,t2,…}	

	

 method instance m	

 w' ={ t11,…,t1k ,t2,…}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

π={a1 …, ak, a }; w' ={t2, t3, …}

 w={ t1 ,t2,…}	

	

 method instance m	

 w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}	

	

 operator instance a	

Algorithm for Partial-Order STNs

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

π={a1 …, ak, a }; w’={t2,t3 …}	

π={a1,…, ak}; w={ t1 ,t2, t3…}	

	

 operator instance a	

Algorithm for Partial-Order STNs

 δ(w, u, m, σ) has a complicated definition in the book. Here’s what
it means:

●  We nondeterministically selected t1 as the task to begin first
• i.e., do t1’s first subtask before the first subtask of every ti ≠ t1

●  Insert ordering constraints to ensure that this happens

 w={ t1 ,t2,…}	

	

 method instance m	

 w' ={ t11,…,t1k ,t2,…}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Comparison to Classical Planning
STN planning is strictly more expressive than classical planning

●  Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

●  Several ways to do this. One is roughly as follows:
◆  For each goal or precondition e, create a task te
◆  For each operator o and effect e, create a method mo,e

» Task: te
»  Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the

preconditions of o
»  Partial-ordering constraints: each tci precedes o

●  (I left out some details, such as how to handle deleted-condition
interactions)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

●  Some STN planning problems aren’t expressible in classical planning
●  Example:

◆  Two STN methods:
» No arguments
» No preconditions

◆  Two operators, a and b
» Again, no arguments and no preconditions

◆  Initial state is empty, initial task is t
◆  Set of solutions is {anbn | n > 0}
◆  No classical planning problem has this set of solutions

» The state-transition system is a finite-state automaton
» No finite-state automaton can recognize {anbn | n > 0}

●  Can even express undecidable problems using STNs

method1

b t a

t

method2

b a

t

Comparison to Classical Planning (cont.)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3 East: 	
♠KJ74	

West:	
♠A2	

Out: 	
♠QT98653	

Increasing Expressivity Further
●  If we always know the current state, we can make several enhancements:

◆  States can be arbitrary data structures

◆  Preconditions and effects can include
»  logical inferences (e.g., Horn clauses)
»  complex numeric computations
»  interactions with other software packages

●  e.g., SHOP and SHOP2
◆  http://www.cs.umd.edu/projects/shop!
◆  algorithms similar to PFD and PFD, with the above enhancements
◆  SHOP2 won an award at the 2002 Planning Competition

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3 East: 	
♠KJ74	

West:	
♠A2	

Out: 	
♠QT98653	

Increasing Expressivity Further
●  If we always know the current state, we can make several enhancements:

◆  States can be arbitrary data structures

◆  Preconditions and effects can include
»  logical inferences (e.g., Horn clauses)
»  complex numeric computations
»  interactions with other software packages

●  TLPlan and TALplanner also have some (but not all) of these enhancements

●  What about adding them to a planner like FastForward?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

–

(a, x)

Example
●  Simple travel-planning domain

◆  State-variable formulation
●  Planning problem:

◆  I’m at home, I have $20
◆  Want to go to a park 8 miles

away

◆  s0 = {location(me) = home,
 cash(me) = 20,
 distance(home,park) = 8}

◆  t0 = travel(me,home,park)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails
Decomposition into subtasks

home" park"

Example, Continued

location(me)=home,
location(taxi)=home,

cash(me)=20,
distance(home,park)=8

Initial
 state

location(me)=home,
cash(me)=20,

distance(home,park)=8

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

location(me)=park,
location(taxi)=park,

cash(me)=20,
distance(home,park)=8 location(me)=park,

location(taxi)=park,
cash(me)=14.50,

distance(home,park)=8

Final
state

 s1 s2 s3 s0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

HTN Planning
●  HTN planning can be even more general

◆  Can have constraints associated with tasks and methods
» Things that must be true before, during, or afterwards

◆  Some algorithms use causal links and threats like those in PSP
●  There’s a little about this in the book

◆  I won’t discuss it

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

SHOP & SHOP2 vs. TLPlan & TALplanner
●  These planners have equivalent expressive power

◆  Turing-complete, because both allow function symbols
●  They know the current state at each point during the planning

process, and use this to prune actions
◆  Makes it easy to call external subroutines, do numeric

computations, etc.
●  Main difference: how the pruning is done

◆  SHOP and SHOP2: the methods say what can be done
» Don’t do anything unless a method says to do it

◆  TLPlan and TALplanner: the say what cannot be done
» Try everything that the control rules don’t prohibit

●  Which approach is more convenient depends on the problem
domain

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 31

Domain-Configurable Planners
Compared to Classical Planners

●  Disadvantage: writing a knowledge base can be more
complicated than just writing classical operators

●  Advantage: can encode “recipes” as collections of methods
and operators
◆  Express things that can’t be expressed in classical planning
◆  Specify standard ways of solving problems

» Otherwise, the planning system would have to derive
these again and again from “first principles,” every time
it solves a problem

» Can speed up planning by many orders of magnitude
(e.g., polynomial time versus exponential time)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 32

Example from the AIPS-2002 Competition
●  The satellite domain

◆  Planning and scheduling observation tasks among multiple satellites
◆  Each satellite equipped in slightly different ways

●  Several different versions. I’ll show results for the following:
◆  Simple-time:

»  concurrent use of different satellites
»  data can be acquired more quickly if they are used efficiently

◆  Numeric:
»  fuel costs for satellites to slew between targets; finite amount of fuel

available.
»  data takes up space in a finite capacity data store
»  Plans are expected to acquire all the necessary data at minimum fuel cost.

◆  Hard Numeric:
»  no logical goals at all – thus even the null plan is a solution
»  Plans that acquire more data are better – thus the null plan has no value
»  None of the classical planners could handle this

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 33

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 34

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 35

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 36

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 37

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 38

