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Motivation 
●  We may already have an idea how to go about solving 

problems in a planning domain 
●  Example: travel to a destination that’s far away: 

◆  Domain-independent planner: 
»  many combinations of vehicles and routes 

◆  Experienced human: small number of “recipes” 
 e.g., flying: 

1.   buy ticket from local airport to remote airport 
2.   travel to local airport 
3.   fly to remote airport 
4.   travel to final destination 

●  How to enable planning systems to make use of such recipes? 
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Two Approaches 

●  Control rules (previous chapter): 
◆  Write rules to prune every 

action that doesn’t fit the 
recipe 

●  Hierarchical Task Network 
(HTN) planning: 
◆  Describe the actions and 

subtasks that do fit the recipe 
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HTN Planning 
travel(UMD, LAAS)"

get-ticket(IAD, TLS) 
 
 
 
travel(UMD, IAD) 

 
 
 

fly(BWI, Toulouse) 
travel(TLS, LAAS) 

get-taxi 
ride(TLS,Toulouse) 
pay-driver 

go-to-travel-web-site 
find-flights(IAD,TLS) 
buy-ticket(IAD,TLS) 

get-taxi 
ride(UMD, IAD) 
pay-driver 

Task: 

●  Problem reduction 
◆  Tasks (activities) rather than goals 
◆  Methods to decompose tasks into subtasks 
◆  Enforce constraints 

» E.g., taxi not good for long distances 
◆  Backtrack if necessary 

Method: taxi-travel(x,y) 

get-taxi ride(x,y) pay-driver 

get-ticket(BWI, TLS) 
 
 

go-to-travel-web-site 
find-flights(BWI,TLS) 
  

 BACKTRACK 

travel(x,y) 

Method: air-travel(x,y) 

travel(a(y),y) 
get-ticket(a(x),a(y)) 

travel(x,a(x)) 
fly(a(x),a(y)) 
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HTN Planning 
●  HTN planners may be domain-specific 

◆  e.g., see Chapters 20 (robotics) and 23 (bridge) 
●  Or they may be domain-configurable 

◆  Domain-independent planning engine 
◆  Domain description that defines not only the operators, but 

also the methods 
◆  Problem description 

» domain description, initial state, initial task network 
Task: 

Method: taxi-travel(x,y) 

get-taxi ride(x,y) pay-driver 

travel(x,y) 

Method: air-travel(x,y) 

travel(a(y),y) 
get-ticket(a(x),a(y)) 

travel(x,a(x)) 
fly(a(x),a(y)) 
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Simple Task Network (STN) Planning 
●  A special case of HTN planning 
●  States and operators 

◆  The same as in classical planning 
●  Task: an expression of the form  t(u1,…,un) 

◆  t is a task symbol, and each ui is a term 
◆  Two kinds of task symbols (and tasks): 

» primitive: tasks that we know how to execute directly 
•  task symbol is an operator name 

» nonprimitive: tasks that must be decomposed into subtasks 
•  use methods (next slide) 
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Methods 
●  Totally ordered method: a 4-tuple 

 m = (name(m), task(m), precond(m), subtasks(m)) 
◆  name(m): an expression of the form n(x1,…,xn) 

»  x1,…,xn are parameters - variable symbols 
◆  task(m): a nonprimitive task 
◆  precond(m): preconditions (literals) 
◆  subtasks(m): a sequence 

of tasks 〈t1, …, tk〉  
 
 

air-travel(x,y) 
task:  travel(x,y) 
precond:  long-distance(x,y) 
subtasks:  〈buy-ticket(a(x), a(y)),  travel(x,a(x)),  fly(a(x), a(y)), 

    travel(a(y),y)〉 

travel(x,y) 

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y) 

long-distance(x,y) 

air-travel(x,y) 
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●  Partially ordered method: a 4-tuple 
 m = (name(m), task(m), precond(m), subtasks(m)) 

◆  name(m): an expression of the form n(x1,…,xn) 
»  x1,…,xn are parameters - variable symbols 

◆  task(m): a nonprimitive task 
◆  precond(m): preconditions (literals) 
◆  subtasks(m): a partially ordered 

set of tasks {t1, …, tk}  
 
 

air-travel(x,y) 
task:  travel(x,y) 
precond:  long-distance(x,y) 
network:  u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x), a(y)) 

  u4= travel(a(y),y),  {(u1,u3), (u2,u3), (u3 ,u4)} 

travel(x,y) 

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y) 

long-distance(x,y) 

air-travel(x,y) 

Methods (Continued) 
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Domains, Problems, Solutions 
●  STN planning domain: methods, operators 
●  STN planning problem: methods, operators, initial state, task list 
●  Total-order STN planning domain and planning problem: 

◆  Same as above except that 
all methods are totally ordered 

●  Solution: any executable plan 
that can be generated by 
recursively applying  
◆  methods to 

nonprimitive tasks 
◆  operators to 

primitive tasks 

nonprimitive task 

precond 

method instance 

s0 precond effects precond effects s1 s2 

primitive task primitive task 

operator instance operator instance 
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Example 
●  Suppose we want to move three stacks of containers in a way that 

preserves the order of the containers 
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Example (continued) 
●  A way to move each stack: 

◆  first move the 
containers 
from p to an 
intermediate  
pile r 

◆  then move 
them from  
r to q 
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Total-Order 
Formulation 
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Partial-Order 
Formulation 
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Solving Total-Order STN Planning Problems 

state s; task list T=( t1 ,t2,…) 
 

                      action a 

state γ(s,a) ; task list T=(t2, …) 

task list T=( u1,…,uk ,t2,…) 

        task list T=( t1 ,t2,…) 
 

 method instance m 
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Comparison to 
Forward and Backward Search 

●  In state-space planning, must choose whether to search 
forward or backward 

●  In HTN planning, there are two choices to make about direction: 
◆  forward or backward 
◆  up or down 

●  TFD goes 
down and 
forward 

s0 s1 s2 … … op1 op2 opi Si–1 

s0 s1 s2 … 

task tm … 

… 

task tn 

op1 op2 opi Si–1 

task t0 
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Comparison to 
Forward and Backward Search 

●  Like a backward search, 
TFD is goal-directed 
◆  Goals 

correspond 
to tasks 

●  Like a forward search, it generates actions 
in the same order in which they’ll be executed 

●  Whenever we want to plan the next task 
◆  we’ve already planned everything that comes before it 
◆  Thus, we know the current state of the world 

s0 s1 s2 … 

task tm … 

… 

task tn 

op1 op2 opi Si–1 

task t0 
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●  TFD requires totally ordered 
methods 

●  Can’t interleave subtasks of different tasks 
●  Sometimes this makes things awkward 

◆  Need to write methods that reason 
globally instead of locally 

get(p) get(q) 

get-both(p,q) 

goto(b) 

pickup(p) pickup(q) 

get-both(p,q) 

Limitation of Ordered-Task Planning 

pickup-both(p,q) 

walk(a,b) 

goto(a) 

walk(b,a) 

pickup(p) walk(a,b) walk(b,a) pickup(p) walk(a,b) walk(b,a) 
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Partially Ordered Methods 

●  With partially ordered methods, the subtasks can be interleaved 

●  Fits many planning domains better 
●  Requires a more complicated planning algorithm 

walk(a,b) pickup(p) 

get(p) 

stay-at(b) pickup(q) 

get(q) 

get-both(p,q) 

walk(b,a) stay-at(a) 
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π={a1 …, ak,  a };  w' ={t2, t3, …} 

                     w={ t1 ,t2,…}	

	


 method instance m	


     w' ={ t11,…,t1k ,t2,…} 

π={a1,…, ak};  w={ t1 ,t2, t3…}	

	


    operator instance  a	


Algorithm for Partial-Order STNs 
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π={a1 …, ak,  a };  w' ={t2, t3, …} 

π={a1,…, ak};  w={ t1 ,t2, t3…}	

	


    operator instance  a	


Algorithm for Partial-Order STNs 

  

●  Intuitively, w is a partially ordered set of tasks {t1, t2, …} 
◆  But w may contain a task more than once 

»  e.g., travel from UMD to LAAS twice 
◆  The mathematical definition of a set doesn’t allow this 

●  Define w as a partially ordered set of task nodes {u1, u2, …} 
◆  Each task node u corresponds to a task tu 

●  In my explanations, I’ll talk about t and ignore u 

  

  

  

                     w={ t1 ,t2,…}	

	


 method instance m	


     w' ={ t11,…,t1k ,t2,…} 
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π={a1 …, ak,  a };  w' ={t2, t3, …} 

                     w={ t1 ,t2,…}	

	


 method instance m	


     w' ={ t11,…,t1k ,t2,…} 

π={a1,…, ak};  w={ t1 ,t2, t3…}	

	


    operator instance  a	


Algorithm for Partial-Order STNs 
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π={a1 …, ak,  a };  w’={t2,t3 …}	


π={a1,…, ak};  w={ t1 ,t2, t3…}	

	


    operator instance  a	


Algorithm for Partial-Order STNs 

 δ(w, u, m, σ) has a complicated definition in the book.  Here’s what 
it means: 

●  We nondeterministically selected t1 as the task to begin first 
•  i.e., do t1’s first subtask before the first subtask of every ti ≠ t1 

●  Insert ordering constraints to ensure that this happens 

  

                     w={ t1 ,t2,…}	

	


 method instance m	


     w' ={ t11,…,t1k ,t2,…} 
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Comparison to Classical Planning 
STN planning is strictly more expressive than classical planning 

●  Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time 

●  Several ways to do this.  One is roughly as follows: 
◆  For each goal or precondition e, create a task te 
◆  For each operator o and effect e, create a method mo,e 

» Task: te 
»  Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the 

preconditions of o 
»  Partial-ordering constraints: each tci precedes o 

●  (I left out some details, such as how to handle deleted-condition 
interactions) 
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●  Some STN planning problems aren’t expressible in classical planning 
●  Example: 

◆  Two STN methods: 
» No arguments 
» No preconditions 

◆  Two operators, a and b 
» Again, no arguments and no preconditions 

◆  Initial state is empty, initial task is t 
◆  Set of solutions is {anbn | n > 0} 
◆  No classical planning problem has this set of solutions 

» The state-transition system is a finite-state automaton 
» No finite-state automaton can recognize {anbn | n > 0} 

●  Can even express undecidable problems using STNs 

method1 

b t a 

t 

method2 

b a 

t 

Comparison to Classical Planning (cont.) 
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Us:  East declarer, West dummy 
Opponents: defenders, South & North 
Contract:  East – 3NT 
On lead:  West at trick 3 East: 	
♠KJ74	


West:	
♠A2	

Out: 	
♠QT98653	


Increasing Expressivity Further 
●  If we always know the current state, we can make several enhancements: 

◆  States can be arbitrary data structures 

◆  Preconditions and effects can include 
»  logical inferences (e.g., Horn clauses) 
»  complex numeric computations 
»  interactions with other software packages 

●  e.g., SHOP and SHOP2 
◆  http://www.cs.umd.edu/projects/shop!
◆  algorithms similar to PFD and PFD, with the above enhancements 
◆  SHOP2 won an award at the 2002 Planning Competition 
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Us:  East declarer, West dummy 
Opponents: defenders, South & North 
Contract:  East – 3NT 
On lead:  West at trick 3 East: 	
♠KJ74	


West:	
♠A2	

Out: 	
♠QT98653	


Increasing Expressivity Further 
●  If we always know the current state, we can make several enhancements: 

◆  States can be arbitrary data structures 

◆  Preconditions and effects can include 
»  logical inferences (e.g., Horn clauses) 
»  complex numeric computations 
»  interactions with other software packages 

●  TLPlan and TALplanner also have some (but not all) of these enhancements 

●  What about adding them to a planner like FastForward? 
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– 

(a, x)          

Example 
●  Simple travel-planning domain 

◆  State-variable formulation 
●  Planning problem: 

◆  I’m at home, I have $20 
◆  Want to go to a park 8 miles 

away 

◆  s0 = {location(me) = home, 
 cash(me) = 20, 
 distance(home,park) = 8} 

 
◆  t0 = travel(me,home,park) 
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Precond:  distance(home,park) ≤ 2 Precond:  cash(me) ≥ 1.50 + 0.50*distance(home,park) 

Initial task: travel(me,home,park) 

Precondition succeeds 

travel-by-foot travel-by-taxi 

Precondition fails 
Decomposition into subtasks 

home" park"

Example, Continued 

location(me)=home, 
location(taxi)=home, 

cash(me)=20, 
distance(home,park)=8 

Initial 
 state 

location(me)=home, 
cash(me)=20, 

distance(home,park)=8 

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park) 

Precond: … 
Effects: … 

Precond: … 
Effects: … 

Precond: … 
Effects: … 

location(me)=park, 
location(taxi)=park, 

cash(me)=20, 
distance(home,park)=8 location(me)=park, 

location(taxi)=park, 
cash(me)=14.50, 

distance(home,park)=8 

Final  
state 

 s1   s2   s3   s0  
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HTN Planning 
●  HTN planning can be even more general 

◆  Can have constraints associated with tasks and methods 
» Things that must be true before, during, or afterwards 

◆  Some algorithms use causal links and threats like those in PSP 
●  There’s a little about this in the book 

◆  I won’t discuss it 
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SHOP & SHOP2 vs. TLPlan & TALplanner 
●  These planners have equivalent expressive power 

◆  Turing-complete, because both allow function symbols 
●  They know the current state at each point during the planning 

process, and use this to prune actions 
◆  Makes it easy to call external subroutines, do numeric 

computations, etc. 
●  Main difference: how the pruning is done 

◆  SHOP and SHOP2: the methods say what can be done 
» Don’t do anything unless a method says to do it 

◆  TLPlan and TALplanner: the say what cannot be done 
» Try everything that the control rules don’t prohibit 

●  Which approach is more convenient depends on the problem 
domain 
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Domain-Configurable Planners 
Compared to Classical Planners 

●  Disadvantage: writing a knowledge base can be more 
complicated than just writing classical operators 

●  Advantage: can encode “recipes” as collections of methods 
and operators 
◆  Express things that can’t be expressed in classical planning 
◆  Specify standard ways of solving problems 

» Otherwise, the planning system would have to derive 
these again and again from “first principles,” every time 
it solves a problem 

» Can speed up planning by many orders of magnitude 
(e.g., polynomial time versus exponential time) 
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Example from the AIPS-2002 Competition 
●  The satellite domain 

◆  Planning and scheduling observation tasks among multiple satellites 
◆  Each satellite equipped in slightly different ways 

●  Several different versions.  I’ll show results for the following: 
◆  Simple-time: 

»  concurrent use of different satellites 
»  data can be acquired more quickly if they are used efficiently 

◆  Numeric:  
»  fuel costs for satellites to slew between targets; finite amount of fuel 

available. 
»  data takes up space in a finite capacity data store 
»  Plans are expected to acquire all the necessary data at minimum fuel cost. 

◆  Hard Numeric:  
»  no logical goals at all – thus even the null plan is a solution 
»  Plans that acquire more data are better – thus the null plan has no value 
»  None of the classical planners could handle this 
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