
HTN Problem Spaces: Structure, Algorithms, Termination

Ron Alford
University of Maryland
College Park, MD, USA

ronwalf@cs.umd.edu

Vikas Shivashankar
University of Maryland
College Park, MD, USA

svikas@cs.umd.edu

Ugur Kuter
SIFT, LLC

Minneapolis, MN, USA
ukuter@sift.net

Dana Nau
University of Maryland
College Park, MD, USA

nau@cs.umd.edu

Abstract

For HTN planning, we formally characterize and classify four
kinds of problem spaces in which each node represents a
planning problem or subproblem. Two of the problem spaces
are searched by current HTN planning algorithms; the other
two problem spaces are new. This enables us to provide:

• Sufficient (and in one case, necessary) conditions for
finiteness of each kind of problem space. The conditions
can be evaluated up-front to see if an HTN planning prob-
lem is finite.

• Loop-detection tests that can be used in HTN planners to
ensure termination when the problem space is finite.

• A way to compute the correct value for an upper-bound
parameter in an HTN-to-PDDL translation algorithm pub-
lished in IJCAI-2009.

• Planning algorithms that utilize the two new problem
spaces to guarantee termination on broader classes of plan-
ning problems than previous HTN planning algorithms.

Introduction
Unlike HTN planning, classical planning is decidable (Erol,
Nau, and Subrahmanian 1991). Thus it is possible to guar-
antee the termination of many classical planners, through the
use of loop-checking tests to prevent the planner from gen-
erating infinite cyclic paths through a finite search space.

In contrast, HTN planning is only semi-decidable (Erol,
Hendler, and Nau 1996), and every sound and complete
HTN planner has a set of problems on which it will never
return. Although some syntactic restrictions of HTN plan-
ning are fully decidable, efficient loop-detection tests have
not yet been developed, and there is a gulf between the
classes of HTN problems that are known to be decidable,
and the classes of problems on which current HTN planners
can guarantee termination.

Part of the reason for this gulf is that much less is un-
derstood about the search spaces of HTN planners than
those of classical planners. Different kinds of HTN plan-
ners have different ways of combining plan generation with
task decomposition—and the structure of the problem space
can vary greatly depending on how those things are done.

Our contributions are as follows:

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. We characterize HTN planning as a search of a problem
space in which each node is an HTN planning problem.
We classify four different kinds of HTN problem spaces:

• Decomposition Space (DS), which UMCP (Erol,
Hendler, and Nau 1994) and the Landmark-Aware
HTN Planner (Elkawkagy et al. 2011) search;
• Progression Space (PS), which SHOP and SHOP2

(Nau et al. 1999; 2003) and HTNPBP (Sohrabi, Baier,
and McIlraith 2009) search;
• Total Order Partition decomposition and progression

spaces (TODS and TOPS), two new kinds of problem
spaces for which there are not yet any existing planners.

2. We provide sufficient (and in one case, necessary) condi-
tions to guarantee that each kind of problem space will be
finite. These conditions can be evaluated up-front to see
if an HTN planning problem has a finite problem space.
For each kind of problem space, we show that there are no
broader conditions for finiteness that look only at possible
decomposition of tasks.

3. We describe simple loop-detection tests that can be added
to HTN planners that will guarantee termination when the
problem space is finite.1 These tests appear to be applica-
ble to a wide variety of HTN planning problems, and their
use will allow HTN planners to terminate in cases where
they would not otherwise do so.

4. The HTN-to-PDDL translation algorithm in (Alford,
Kuter, and Nau 2009) required a user-specified upper
bound on the HTN recursion depth, and the transla-
tion was correct only when this bound was sufficiently
high. By characterizing the translation as a mapping from
HTN progression spaces into classical state spaces, we
can compute a correct bound automatically whenever the
finiteness conditions in Item 3 are satisfied.

5. We show that TODS and TOPS are finite for strictly
broader classes of problems than DS and PS, and we pro-
vide new sound-and-complete HTN planning algorithms
for TODS and TOPS. The algorithms are guaranteed to
terminate whenever the problem space is finite.

1State-space classical planners often use a loop-detection test
of the form “have we seen this state before?” In contrast, our loop-
detection tests are basically “have we seen this problem before?”

HTN Planning
Here we present a set-theoretic HTN formalism, borrowing
heavily from (Geier and Bercher 2011).

A task network is a partially-ordered multiset (POMSET)
of task names. Given a set of task names X , a task network
is a tuple tn = (T,≺, α) such that:

• T is a finite nonempty set of symbols.

• ≺ is a partial order over T .

• α : T → X is a map from symbols to a set of task names.

The symbols function as place holders for task names, al-
lowing multiple instances of a task name to exist in the task
network. We say a task network (T,≺, α) is equivalent
to another task network (T ′,≺′, α′) if there is an isomor-
phism φ : T → T ′ such that ∀t0, t1 ∈ T | (t0 ≺ t1) ⇔
(φ(t0) ≺′ φ(t1)) and ∀t ∈ T | α (t0) = α′ (φ (t0)). We
refer to the set of all task networks over a set of task names
X as TNX .

An HTN domain is a tuple (S,C,O,M, γ), where:

• S is a finite set of states.

• C is a finite set of compound task names.

• O is a finite set of primitive task names, with O ∩C = ∅.
• M ⊂ C × TNC∪O is a set of methods over C and O.

• γ : S × O → S is a partial function for state transitions.
If γ(s, a) is not defined, then a is not applicable in s.

We call a task network primitive if all the tasks map to
a task name in O (∀t ∈ T.α(t) ∈ O). Otherwise, the task
network is non-primitive.

We say a task name a1 is reachable from a task name a2
if there is a method (a2, tn) ∈ M where a1 is a task name
occurring in tn, or if there is a third task name a3 such that
a1 is reachable from a3 and a3 is reachable from a2.

Let tn1 = (T1,≺1, α1) be a task network with a non-
primitive task t ∈ T1. If there is a method m =
(c, (Tm,≺m, αm)) ∈ M such that c = α(t), we can de-
compose t using m. Assume without loss of generality that
T1 ∩ Tm = ∅. Then the decomposition of tn1 by m into a
task network tn2 (written tn1

t,m−−→D tn2) is given by:

T ′1 := T1 \ {t}
T2 := T ′1 ∪ Tm
≺′1 := {(t1, t2) ∈≺1| t1 6= t ∧ t2 6= t}
≺2 := ≺′1 ∪ ≺m

∪{(t1, t2) ∈ T ′1 × T2 | (t1, t) ∈≺1}
∪ {(t2, t1) ∈ T2 × T ′1 | (t, t1) ∈≺1}

α2(t
′) :=

{
α1(t

′) if t′ ∈ T ′1
αm(t′) if t′ ∈ Tm

tn2 := (T2,≺2, α2)

If there is a finite sequence of task decompositions from
tn1 −→D tn2 −→D . . . −→D tnn, then we write tn1 −→∗D tnn.

An HTN problem is a tuple (D, s0, tn), where D =
(S,C,O,M, γ) is an HTN domain, s0 ∈ S is a state in D,
and tn ∈ TNC∪O is a task network over the task names in
D. A task network is executable in a state s0 for domain D

Algorithm 1: DHTN(D, s0, tn0) A simple decomposi-
tion based HTN planner.

Input: D = (S,C,O,M, γ) - an HTN domain
Input: (s0, tn0) - an initial state and task network
V ← Fringe← {tn0};
while Fringe 6= ∅ do

Choose and remove some tn ∈ Fringe;
if tn is primitive and (D, s0, tn) is executable then

return tn;
children← {tn′|tn −→D tn′};
Fringe← Fringe ∪ (children \ V);
V ← V ∪ children;

return fail;

if tn is primitive and there exists some total ordering (con-
sistent with ≺ in tn) over the tasks t1, . . . , tn and a list of
additional states s1, . . . , sn such that

∀i=0...nγ(si, α(ti+1)) = si+1

We refer to sn as an ending state, and since ≺ is a partial
order and γ is not guaranteed to be commutative, there may
be many ending states for the executable task network with
the same initial state.

We say an HTN problem (D, s0, tn) is solvable if there
is a sequence of decompositions tn −→∗D tn′ such that tn′ is
executable in s0.

Decomposition Problem Spaces
The definition of solvability leads to a natural definition of
a problem space as a directed graph, where nodes are task
networks, and edges are decompositions from one task net-
work to another. The initial task network of a problem forms
the root of the graph, and it is solvable if and only if there
is a path in the graph from it to a primitive executable task
network.

Formally, for an HTN domain D = (S,C,O,M, γ), the
directed graph (V,E) is the decomposition problem space
of an HTN problem (D, s0, tn0) if and only if (V,E) is the
minimal graph containing tn0 such that tn ∈ V and tn −→D

tn′ implies that tn′ ∈ V and (tn, tn′) ∈ E.
Algorithm 1 (DHTN) shows a simple decomposition

space HTN planner. DHTN starts off with the initial task
network tn, and maintains a set of known decompositions
V and a fringe of unexpanded decomposition.2 At every it-
eration, it chooses some task network in its fringe. If tn
is primitive and executable, DHTN returns tn. Otherwise,
it removes tn from the fringe and adds tn’s immediate de-
compositions. If at any time the fringe is exhausted, DHTN
returns failure.

The computation Fringe ← Fringe ∪ (children \ V)
guarantees that DHTN will never add a previously visited
task network to the fringe. This is a simple loop-detection
test that can be added to other HTN planning algorithms.

Given an HTN problem P , DHTN is sound, complete,
and terminating for any problem for which the decomposi-
tion problem space is finite. However, if the problem space

2Fringe and V functionally correspond to the open and closed
sets of A*, respectively.

is infinite, DHTN’s completeness depends on how it picks
elements out of the fringe (with some acceptable choices
being first-in-first-out or taking the network with the fewest
tasks). If the problem has no solution and the problem space
is infinite, then DHTN will not terminate no matter how el-
ements are chosen from the fringe.

Relation to other work. The HTN decomposition prob-
lem space formalizes the spaces searched by existing plan-
ners such as UMCP (Erol, Hendler, and Nau 1994) and Elka-
wkagy et al.’s landmark-aware HTN planner. Unlike DHTN,
neither UMCP nor Elkawkagy’s planner check to see if they
have already expanded a problem before, so a finite decom-
position space is not enough to ensure their termination.

Decidability under decomposition
For an HTN domain D = (S,C,O,M, γ), a non-recursive
task name is one which has a finite k-level-mapping. k is a
partial function from C ∪O → Z+ defined via induction:

• For all o ∈ O, k(o) = 0.

• For c ∈ C, if there is a finite number n ∈ Z+ such that
n is the greatest k-level of any subtask of c in M , then
k(c) = n+ 1.

If a task in a task network has a k-level, any decomposi-
tion of that task replaces it with a set of tasks which have a
lower k-level. Since we can only repeat this a finite num-
ber of times, this leads to one of the first results of (Erol,
Hendler, and Nau 1996):

Theorem 1 Let P = (D, s0, tn0) be an HTN planning
problem with every task in tn0 has a finite k-level mapping.
Then the decomposition problem space for P is finite.

So the decomposition problem space is finite for non-
recursive problems, but limited recursion is fine as long as it
does not increase the size of the task network. It turns out we
can syntactically identify every problem for which the prob-
lem space is finite. To this end, we say that a task network
tn is≤1-stratifiable if there exists a total preorder≤1 on the
reachable task names of tn such that if c is a reachable task
name of tn and (c, (T,≺, α)) is a method, then either:

• If the task network contains only one task (T = {t}), then
the task name must not be on a higher stratum (α(t) ≤1 c)

• Otherwise, all task names must be on a lower stratum
(∀t∈Tα(t) <1 c).

Example 1 Let P = (D, s0, tn0) where tn0 contains the
single task r,D = (S,C,O,M, γ),C = {r, s},O = {a, b},
and:

M =

(r, ({x1} , ∅, α(x1) = s))
(r, ({x1} , ∅, α(x1) = a))
(s, ({x1} , ∅, α(x1) = r))
(s, ({x1, x2} , ∅, {α(x1) = b, α(x2) = b}))

Then there is a two level ≤1-stratification, where since r
and s decompose to one another they must be on the same
level, and a and b can be on the lower level together, since
they are primitive.

Theorem 2 Let P (D, s0, tn0) be an HTN planning prob-
lem. Then the decomposition problem space for P is finite if
and only if tn0 is ≤1-stratifiable.

Proof. (⇐) If there exists a ≤1-stratification, then every de-
composition either produces a task network of the same size,
or replaces a task with a set of tasks whose task names are
in a lower level. Since the stratification is finite, the number
of times repeated decomposition can increase the size of the
task network is also finite.

(⇒) If there is no ≤1-stratification, then the transitive ≤1

constraints are inconsistent. This means there exists a task
name c and method m = (c, tnm) with more than one sub-
task such that c ≤1 . . . <1 c, and so c is a reachable subtask
of tnm. Since c is a reachable subtask of tn0, we can de-
compose tn0 into a task network containing c, then repeat-
edly use the decomposition chain going through m to create
a task network of arbitrary size. Since any finite problem
space has a bound on the size of task networks appearing in
it, the problem space for P is infinite. �

Given an HTN domain D, we can find a ≤1-stratification
of a task network tn = (T,≺, α) in time polynomial in D
by performing a topological sort of the task names given the
constraints. If this procedure fails, the decomposition space
is infinite. If it succeeds, it returns a stratification. If the
height of the stratification is h and the maximum number
of tasks in a method is b, then the largest task network in
the decomposition space of an HTN problem (D, s, tn) is
bounded by |T | · bh.

Progression Problem Spaces
Decomposition spaces are not the only way to solve HTN
planning problems. Let P = (D, s, tn) be an HTN planning
problem, where D = (S,C,O,M, γ) and tn = (T,≺, α).
If there exists a task t ∈ T with no predecessors (one such
that ∀t′∈T t′ ⊀ t) and its operator α(t) ∈ O is applicable
in s, then we can progress the problem from (D, s, tn) to
the problem P ′ = (D, γ (s, α (t)) , tn \ {t}) (where the no-
tation tn \ {t} simply means removing any occurrence of
t from T , ≺, and α). If there exists an unconstrained task
t ∈ T which is non-primitive (α(t) ∈ C), then any decom-
position tn

t,m−−→D tn′ is a valid progression of (D, s, tn) to
(D, s, tn′). We write progression as P t−→P P ′.

Intuitively, a progression interleaves a decomposition
with imposing an executable total order over the primitive
tasks. The following theorem establishes an equivalence be-
tween these two paradigms:

Theorem 3 An HTN problem P is solvable if and only if P
is executable or there exists a P ′ such that P −→P P ′ and
P ′ is solvable.

Progression, then, also leads to a natural definition of the
problem space as a directed graph. The progression problem
space of an HTN problem (D, s0, tn0) is the minimal di-
rected graph (V,E) containing (s0, tn0) such that (s, tn) ∈
V and (s, tn) −→P (s′, tn′) implies that (s′, tn′) ∈ V and
((s, tn), (s′, tn′)) ∈ E.

Algorithm 2: PHTN(D, s0, tn0) A simple progression
based HTN planner.

Input: D = (S,C,O,M, γ) - an HTN domain
Input: (s0, tn0) - an initial state and task network
V ← Fringe← {(s0, tn0)}; E ← ∅;
while Fringe 6= ∅ do

Choose some (s, tn) ∈ Fringe;
if tn is primitive and (D, s, tn) is executable then

return path in (V,E) from (s0, tn0) to (s, tn);
children← {(s′, tn′)|(s, tn) −→P (s′, tn′)};
Fringe← (Fringe \ {(s, tn)}) ∪ (children \ V);
V ← V ∪ children;
E ← E ∪ {((s, tn), (s′, tn′)) |(s′, tn′) ∈ children};

return fail;

PHTN (Algorithm 2) is a simple progression-based HTN
planner. PHTN maintains a directed graph of HTN prob-
lems reachable from the initial problem and expands prob-
lems from the leaves of this graph. When it encounters a
primitive executable problem, it returns the entire sequence
of progressions from initial problem to its solution.

PHTN is sound, complete, and terminating for any
HTN problem which has a finite progression problem
space. The computation Fringe← (Fringe \ {(s, tn)})∪
(children \ V) guarantees that PHTN will not add previ-
ously visited task networks to the fringe. This loop-detection
test can be added to other HTN planning algorithms. But as
with DHTN, if the problem space is infinite and there is no
solution, PHTN will never return.

Relation to other work. Progression problem spaces pro-
vide an implicit formalization of the problem space behind
several existing HTN planning works such as SHOP2 (Nau
et al. 2003), HTNPBP (Sohrabi, Baier, and McIlraith 2009)
and the HTN-PDDL translation in (Alford, Kuter, and Nau
2009). As with decomposition-based planners, finiteness
does not guarantee termination; e.g., neither SHOP2 nor HT-
NPBP check if they have already expanded a problem.

Decidability under progression
Given an HTN domain D, suppose that the task network
for every method in a domain consisted of a set of primi-
tive tasks and at most one non-primitive task which is con-
strained to come after them. Erol, Hendler, and Nau call this
a regular domain and prove a decidability result for regu-
lar HTN domains (Erol, Hendler, and Nau 1996). We adapt
their result to our progression problem spaces as follows:

Theorem 4 Given a regular HTN domain D, any HTN
problem P = (D, s0, tn0) has a finite progression problem
space.

The proof follows Erol, Hendler, and Nau’s results. Intu-
itively, given any problem P = (D, s0, tn0) with a regu-
lar domain, no progression can increase the number of non-
primitive tasks in a task network. Furthermore, any primitive
task introduced along with a non-primitive task must be pro-
gressed out of a task network before the non-primitive task

can be decomposed. Thus, this bounds the size of the task
networks in the progression problem space of P .

We can extend this class of decidable problems using the
same stratification technique we used for decomposition. A
task network tn is ≤r-stratifiable if there exists a total pre-
order ≤r on the reachable task names of tn such that for
every method (c, (T,≺, α)) with a reachable task name c:
• If there is a task tr ∈ T such that all other tasks are pre-

decessors (∀t∈T,t 6=tr t ≺ tr), then α(tr) ≤r c. We call tr
the last task of (T,≺, α).

• For all non-last tasks t ∈ T , α(t) <r c.
If an HTN planning problem P ’s task network is ≤r-

stratifiable, then any progression P replaces a task with at
most one task of the same level, with the rest occurring at
a lower level. Since the lower level tasks are constrained to
come before this task, they must be progressed out of the
task network before this task can be decomposed. Since the
stratification is finite, this gives us a bound on the maximum
size of the network, and produces our next finiteness result:
Theorem 5 Given an HTN problem P = (D, s0, tn0), if
tn0 is≤r-stratifiable, then the progression problem space of
P is finite.

What happens to the problem space if there is no stratifi-
cation? Unlike with decomposition, now both the structure
of the transition function and the set of methods can affect
which problems are in the problem space. This limits our
result on when the problem space must be infinite:
Theorem 6 Given an HTN problem P = (D, s0, tn0) such
that every problem in the domain is solvable and there is no
≤r-stratification of the reachable subtasks of tn0, then the
progression problem space of P is infinite.
Proof. Given that there is no ≤r-stratification, the ≤r-
constraints must be inconsistent, meaning there must be
two reachable task names (not necessarily distinct) such that
b <r c and c ≤r b. So there is a method m = (c, (T,≺, α)),
and two tasks t1, t2 ∈ T such that t1 ⊀ t2 and α(t2) = b.
Since c is a reachable task from tn0 and every problem in
P is solvable, there is a series of progressions such that c
progresses to a task network containing itself. Since we did
not need to progress t1 out of tn0 in order to expand t2, we
can use this loop to create a task network of arbitrary size.
Thus the progression problem space of P is infinite. �

Since ≤r-stratifiable is a strict broadening of the ≤1-
stratifiability definition, if a task network is ≤1-stratifiable,
it is also ≤r-stratifiable. Like ≤1-stratifications, we can
find ≤r-stratifications with a topological sort of the reach-
able task names of a task network. For an HTN problem P
with the task network tn = (T,≺, α) and a stratification of
tn of height h and a largest method size of b, a task in a
stratum can contribute at most 1 plus b times the bound of
the strata below it to the maximum size of a task network
reachable under progression. This gives a total bound of
|T | ·

∑h−1
i=0 b

i = |T | · 1−b
h

1−b for the maximum size of a task
network in the progression problem space of P .3

3One can do much better than that by directly inspecting the
stratification, but this is beyond the scope of the paper.

Relation to other work. The HTN to PDDL translation
algorithm in (Alford, Kuter, and Nau 2009) essentially maps
the progression problem space into a classical domain. The
algorithm adds a fixed number of identifiers, specified by the
user, to represent the structure of the task network. In order
for the translation to be correct, there must be more identi-
fiers available than there are tasks in the largest task network
encountered under progression. If the initial task network is
≤r-stratifiable, we can use the bound in the previous para-
graph instead of asking the user.

Identifiability of finite progression spaces
Since we could identify the exact set of problems which
have a finite decomposition space, there is a natural ques-
tion about whether we can identify more problems which
have a finite progression space.

Theorem 6 says that if the initial task network is not ≤r-
stratifiable, and every problem in the domain is be solvable,
then the progression space is infinite. To say that every prob-
lem in the domain is solvable is equivalent to the following
two conditions:
• Every operator is applicable in every state (i.e.,
∀s∈S,o∈Oγ(s, o) is defined).

• Every task has a primitive decomposition (transitively, not
necessarily an immediate decomposition).
We can check the second condition recursively:

• Every primitive task has a primitive decomposition.
• Every task which has a method where all the tasks have a

primitive decomposition also has a primitive decomposi-
tion.
Once all tasks with a primitive decomposition are marked,

the rest have no primitive decomposition, and so are triv-
ially unsolvable. Since any task network with a task that
can’t be decomposed into primitive network is unsolvable,
we can preprocess the domain, removing any trivially un-
solvable tasks and methods that refer to them.

This lets us identify every problem with a finite progres-
sion space that can be identified without looking at the state
transition function:

Theorem 7 Let P be an HTN planning problem and let P ′
be the HTN planning problem where all of the trivially un-
solvable tasks of P are removed. If P ′ is not≤r-stratifiable,
then the following holds:

There does not exist a function Q(P) which, without ex-
amining P ’s transition function, returns true if and only if P
has a finite progression space.

Proof. Let P = (D, s, tn) and P ′ = (D′, s, tn) be HTN
problems, where D′ is D without trivially unsolvable tasks,
such that P has a finite progression space and P ′ has no
≤r-stratification.

Let PU and P ′U be P and P ′ where their domain’s
transition function has been replaced by γU , where
∀s∈S,o∈OγU (s, o) = s. Then by Theorem 6, P ′U has an
infinite progression space. Since adding methods and tasks
cannot make a problem’s infinite progression space finite,
PU also has an infinite progression space.

So if Q(P) returns true and Q(PU) returns false, then Q
must inspect the transition function of P and PU , since that
is their only difference. �

Total Order Partition Problem Spaces
This section describes two new problem spaces, based on
our formulation of DS and PS. The new problem spaces will
allow us to define new HTN planning algorithms which ter-
minate for a broader class of HTN problems, as described in
the subsequent section.

Total Order Partitions
Let P = (D, s0, tn) be an HTN planning problem where
tn = (T,≺, α) is its task network. Then the sequence of
task networks 〈(T0,≺0, α0) , . . . , (Tk,≺k, αk)〉 is a total or-
der partition of tn if:
• Their union equals tn:

– T =
⋃k

i=0 Ti

– ≺=
⋃k

i=0 ≺i

– α =
⋃k

i=0 αi

• They are disjoint and tasks between networks are ordered,
i.e. for any Ti and Tj such that i < j:
– Ti ∩ Tj = ∅
– ∀ti∈Ti,tj∈Tj

ti ≺ tj
A total order partition is a serialization of the task net-

work into smaller problems, which we can attempt to solve
the smaller problems sequentially without interactions from
other tasks:
Theorem 8 Let P = (D, s0, tn) and let 〈tn0, . . . , tnk〉 be a
total order partition of tn. Then P is solvable iff there exists
a sequence of states s1, . . . , sk+1 such that for all i ≤ k
(D, si, tni) has a solution with an ending state of si+1.
Proof Sketch. (⇐) If the sequence of partitions is solvable,
then each tni decompose into some primitive task network
tn′i. Applying these decompositions to the corresponding
tasks in tn gives you a primitive task network tn′ which will
have an ending state of si+1.

(⇒) Suppose P has a primitive executable decomposition
tn′. Since it is executable, there is a total order over the tasks
of tn. Since decomposition preserves ordering, we can split
that sequence into a solution for the partition. �

Given that ≺ is a consistent partial order, there will be a
unique longest total order partition from which none of the
reduced problems can be further reduced. If the longest total
order partition contains only a single task newtork, we call
that a trivial partition.

TOD and TOP problem spaces. Total order partitions
give us two AND/OR problem spaces for HTN planning,
one defined over decomposition and one over progression.

Given an HTN domain D = (S,C,O,M, γ), the total-
order decomposition (TOD) problem space for an HTN
problem P = (D, s0, tn0) is the minimal directed la-
beled graph (V,E) containing (s0, tn0) such that for every
(s, tn) ∈ V :

• If tn has only a trivial total order partition and
tn −→D tn′, then (s, tn′) is also in V with the edge
((s, tn), 0, (s, tn′)) ∈ E.

• Otherwise, let {tn1, . . . , tnk} be the longest total order
partition of tn. Edges will point to reduced problems,
labeled with where in the sequence the reduce problem
lies. Then:
– (s, tn1) ∈ V with the edge ((s, tn), 1, (s, tn1)).
– For i < k, if there exists an edge ((s, tn), i, (s′, tni)) ∈
E and (s′, tni) has a solution with an ending state of
s′′, then there exists (s′′, tni+1) ∈ V with the edge
((s, tn), i+ 1, (s′′, tni+1)).

For each problem P = (s, tn) in the TOD problem
space with a non-trivial total order partition tn1, . . . , tnk,
we label P ’s outgoing edges with the integer correspond-
ing to its reduced task networked (edges corresponding to
decomposition are given an arbitrary label of 0). If there
is an edge ((s, tn), i, (si, tni)) ∈ E for i > 1, then by
the definition there must also be a state si−1 and an edge
((s, tn), i− 1, (si−1, tni−1)) ∈ E such that (si−1, tni−1)
has a solution with an ending state of si. So if there is an
edge ((s, tn), k, (sk), tnk)) ∈ E such that (D, sk, tnk) has
a solution with an ending state of sk+1, then there must be
a chain of states that solves the partition, and so P has a
solution with an ending state of sk+1.

The total-order progression (TOP) problem space is de-
fined similarly to the TOD problem space, replacing decom-
position with progression.

Search in TOD and TOP spaces
We now describe two new HTN-planning algorithms, called
TODHTN and TOPHTN, which perform an AND/OR
search over the TOD and TOP problem spaces, respectively.

Algorithm 3 shows a high-level description of the TOD-
HTN procedure. TODHTN maintains a set of variables as
PHTN - a directed but now edge-labeled graph (V,E) of
HTN problems, a set of HTN problems (Fringe), and a new
map X , which maps HTN problems to a set of known pos-
sible end states. TODHTN then begins a two phase iterative
process of selecting a node from the fringe to expand, then
propagating the consequences through the graph.

Every iteration of TODHTN selects a problem (s, tn)
from the fringe and examines its task network. Nothing
is added to the graph in this phase, but instead TODHTN
marks new edges and ending states to add later during the
propagation phase. If the task network has a non-trivial to-
tal order partition 〈tn1, . . .〉, TODHTN marks the edge from
(s, tn) to its first reduced child (s, tn1). If the network is
non-primitive, it marks the edges to all the immediate de-
compositions of tn. Otherwise the network is primitive,
TODHTN marks all the possible ending states (if any).

The propagation phase itself is split into two parts: adding
edges, and propagating ending states. When TODHTN adds
an edge from one problem to its child, it checks to see if the
child problem is already in the graph. If not, it adds the prob-
lem to the fringe. If the child is already in the current graph,
TODHTN marks all of the child’s known endings states for
propagation to its parent (noting the edge label).

Algorithm 3: TODHTN(D, s, tn) A procedure to ex-
plore the TOD problem space.

Input: D = (S,C,O,M, γ) - an HTN domain
Input: (s, tn) - an initial state and task network
V ← Fringe← {(s, tn)};
X(s, tn)← ∅;
while Fringe 6= ∅ & X(s, tn) = ∅ do

// Pick and expand a fringe node
Choose and remove some (s′, tn′) ∈ Fringe;
if there is a total order tn1 ≺ . . . ≺ tnn over tn′ then

Insert ((s′, tn′) , 1, (s′, tn1)) into NewE;
else if tn′ is nonprimitive then

Insert ((s′, tn′), 0, (s′, tn′′)) into NewE for every
decomposition tn′ −→D tn′′;

else
(s′, tn′) is primitive, so add ((s′, tn′), 0, se) to
NewX for every ending state se of (s′, tn′);

while NewE 6= ∅ & NewX 6= ∅ do
// Add edges, collect end states
foreach (v1, k, v2) ∈ NewE do

if v2 /∈ V then
Insert v2 into Fringe and V ;

else
For each se ∈ X(v2), add (v1, k, se) to
NewX;

Insert (v1, k, v2) into E;
NewE ← ∅;
// Propagate end states
while NewX 6= ∅ do

Choose and remove some ((sp, tnp), k, se) from
NewX;
Let tn1, . . . , tnn be the longest total order
partition over tnp;
if 0 < k < n then

Insert ((sp, tnp), k + 1, (se, tnk+1)) into
NewE;

else if se /∈ X(sp, tnp) then
Insert se into X(sp, tnp);
foreach (v, j, (sp, tnp)) ∈ E do

Insert (v, j, se) into NewX;

if X(s, tn) 6= ∅ then
return the preorder traversal of a subgraph of (V,E)
showing a solution;

else
return FAILURE;

When processing a new ending state se to propagate, if
se is a solution to the interior part of a partition (0 < k <
n), then that state is the start state for a next child in the
partition, (se, tnk+1), and TODHTN marks the edge to that
problem for later addition. Otherwise, sp is an end state for
(sp, tnp), and if it is an ending state that TODHTN didn’t
already know about, it propagates it to the parents problems
of (sp, tnp).

Since TODHTN follows the definitions of the TOD prob-
lem space in expanding nodes from the fringe, it is a sound
HTN planner. If the TOD problem space is finite, then TOD-
HTN is complete and will eventually terminate when it runs

out of nodes from the fringe to expand and ending states to
propagate. If the TOD problem space is infinite, then TOD-
HTN’s completeness depends upon how it chooses nodes out
of the fringe (such as FIFO). If the problem is unsolvable and
the problem space infinite, no matter how TODHTN chooses
it will never return.

TOPHTN is defined nearly identically to TODHTN, sub-
stituting progression for decomposition.

Decidability under problem partition
We note that, since total order partitions split task networks
into smaller task networks without introducing new tasks,
the TOD and TOP problem spaces of a problem are finite if
the decomposition or progression problem spaces are finite,
respectively.

TOD and TOP are also finite for a strictly broader class of
problems. Let tn1, . . . , tnk be the longest total-order par-
tition of a task network tn for some number k. We say
tn is ≤1-ordered, if each tni, for i = 1, . . . , k, in the
longest total-order partition of tn is either a singleton or≤1-
stratifiable. An HTN method (c, tn) is≤1-ordered if the task
network tn is ≤1-ordered. If every method in a domain is
≤1-ordered, we call that domain≤1-ordered, and if an HTN
planning problem’s domain and initial task network is ≤1-
ordered, then so is the problem.

Theorem 9 If P is ≤1-ordered, it has a finite TOD problem
space.

Proof. Let P = (D, s0, tn0) be a≤1-ordered HTN planning
problem. Since the initial task network tn0 is ≤1-ordered
by the condition of the theorem, it is either a singleton, ≤1-
stratifiable, or tn0 has a non-trivial total order partition.

The proof proceeds by showing that every problem in
TOD problem space of P has a task network tn, produced
by decomposition over tn0 in s0, that satisfies at least one of
the following conditions:

• tn is a singleton. Consider a node with a singleton task
network. Its task is either primitive, i.e., the node has no
children, or the node is non-primitive, i.e., by decomposi-
tion, its children each correspond to some method in D.

• tn matches to the initial network (tn0) or some HTN
method’s task network. we have already shown the first
case. For the second case, consider a non-singleton node
(s, tn) with a task network tn that corresponds to some
method in D, which means that tn can be produced by
applying an HTN method to a nonprimitive task in a state.
Then since that method is≤1-ordered, tn either has a non-
trivial total order partition, or tn is ≤1-stratifiable. In the
first case, any children of (s, tn) have singleton task net-
works or are ≤1-stratifiable.

• tn is ≤1-stratifiable: Note that in this case, we already
know there are only a finite number of problems reachable
from (s, tn) in the TOD problem space.

Thus, since the number of states in D is finite, the TOD
problem space of P is finite. �

We define ≤r-ordered problems similarly, replacing ≤1-
stratification with ≤r-stratification. The finiteness of the

TOP problem space of ≤r-ordered problems can be proved
similarly.

We can prove an infiniteness theorem for TOD and TOP
problem spaces which is similar to the progression space
theorem. Here we pick the TOP space, since it provides a
way to show the same for TOD as well:
Theorem 10 Let P = (D, s0, tn0) be an HTN problem
where D has a method (c, tn) where c is a reachable task
name of tn0 and tn is not ≤r-ordered. If every problem in
D is solvable, then the TOP space of P is infinite.
Proof. Since c is a reachable task name from tn0 and every
problem in D is solvable, we can reach some problem p us-
ing the method (c, tn). tn is not ≤r-ordered, so its longest
total order partition 〈tn1, . . . , tnk〉 has some non-singleton
task network tni (possibly equal to tn) which is not ≤r-
stratifiable.

From Theorem 6 we know that there is a chain of pro-
gressions that can produce a task network of arbitrary size
in the progression space of any problem (D, s, tni). Let t1
be the first progressed task in this chain. Since the partition
of tn was maximal, there is some other task t2 that is not
constrained to come before or after t1. Since the chain of
progressions did not need to progress t2 out of the task net-
work, at no point in the sequence of progressions is there a
non-trivial total order partition of a problem.

This means that the chain of progressions behaves identi-
cally in the TOP space as it does in the progression space,
and so the TOP problem space of P is infinite. �

The proof of infiniteness for TOD spaces proceeds simi-
larly, since once a task network has no non-trivial total or-
der partition, no sequence of decompositions can restore it.
As with progression spaces, ≤1-ordered and≤r-ordered are
the broadest class of finite problems identifiable without in-
specting the state transition function.

Relation to other work. The ≤1-ordered and ≤r-ordered
problems both include what (Erol, Hendler, and Nau 1996)
calls totally ordered problems. A problem is totally ordered
if there is a total order over the initial task network and over
every method’s task network. Where Erol, Hendler, and Nau
prove that planning for totally ordered problem is decidable
via a dynamic programming argument, we can repurpose the
proof of Theorem 9 to provide a bound on the size of TOD
and TOP spaces for totally ordered problems:
Theorem 11 If P , where D = (S,C,O,M,α), is totally
ordered, then there are at most 1 + |S| · (|M |+ |C|+ |O|)
vertices in both the TOD and TOP problem spaces of P .

Computational complexity. Given a bound B on the
number of vertices, TOD- and TOPHTN maintain
O (B · (B + |S|)) space for the graph and map of vertices
to ending states. Given that a vertex is only added to the
fringe once and we only propagate end states from a given
vertex |S| times, TOD- and TOPHTN run in O

(
B2 · |S|

)
time.

Practical Considerations
As a result of our theoretical analyses presented in this paper,
a practical question arises from our work:

≤1-strat ≤r-strat≤1-ordered ≤r-ordered

Figure 1: Every ≤1-stratifiable problem is both ≤r-
stratifiable and ≤1-ordered; every ≤r-stratifiable problem is
≤r-ordered; and every ≤1-ordered problem problem is ≤r-
ordered.

Do existing HTN planning domains satisfy the finite-
ness criteria of HTN problem spaces?

To answer this question, we analyzed the properties of five
different HTN domain models, namely Logistics, Blocks-
World, Depots, Towers of Hanoi and Robot-Navigation, pro-
vided along with the SHOP2 distribution.4 We showed that
all of them are both≤r-stratifiable and≤1-ordered, with Lo-
gistics having a k-level mapping of depth 3. This suggests
that typical HTN domains models (even complicated ones
such as Blocks-World and Towers of Hanoi, which encode
optimal problem-solving strategies) will most likely satisfy
our finiteness criteria.

Thus, our theoretical and empirical analyses over HTN
problem spaces suggest our polynomial-time computable
conditions for the finiteness of the HTN problem spaces, and
the loop-detection tests based on those finiteness conditions,
will be practically useful in at least two ways:
• Authors of HTN domain descriptions will be able to use

our theoretical finiteness conditions as guidelines so as to
obtain guarantees on termination.

• HTN planning systems incorporating the search algo-
rithms provided in this paper can determine whether con-
ditions for finiteness are satisfied during planning. If the
conditions are satisfied, the planner can freely choose
any search procedure without worrying about termination,
and therefore, completeness. Otherwise, the planner can
choose to fall back onto a search strategy like breadth-
first search that guarantees completeness. This is useful
for systems such as SHOP2 where depth-first search is
empirically much faster than breadth-first search.

Conclusions and Future Work
In this paper, we have provided a new formalization and
classification of HTN problem spaces, that provides a bet-
ter understanding of the conditions under which HTN plan-
ning algorithms can safely terminate (see Figure 1 for a sum-
mary). Although this work is primarily theoretical, we be-
lieve it may potentially lead to several practical benefits.

First, there is reason to believe that loop-checking tests
based on our finiteness criteria will be widely applicable (see
the previous section), and it should be straightforward to in-
corporate them into several existing HTN planners. We plan
to do this in our future work. This will enable those planners
to backtrack in cases where they otherwise might never re-
turn, thereby enabling the planners to solve a larger class of
problems. It might also make some planners less sensitive to

4http://www.cs.umd.edu/projects/shop/

the order in which the HTN methods appear in the planner’s
input, making it easier to write HTN domain descriptions.

Second, our work provides a useful improvement to the
HTN-to-PDDL translation algorithm in (Alford, Kuter, and
Nau 2009). That algorithm requires a user-specified upper
bound on the HTN recursion depth, and if the user supplies
too low a bound, then the translation algorithm will produce
a classical planning domain that is not a correct translation
of the original HTN planning domain. By computing the
correct bound automatically, we can make it easier to guar-
antee a correct translation.

Third, we have presented a new HTN planning algorithm
that will terminate in cases where previous HTN planning
algorithms would not terminate (not even with the incorpo-
ration of the loop-checking tests described above). In our fu-
ture work, we hope to implement this algorithm and test its
performance against existing HTN planners such as SHOP2
and Elkawkagy et al.’s Landmark-Aware HTN planner.

Acknowledgments. This work was supported in part by
DARPA and U.S. Army Research Laboratory contract
W911NF-11-C-0037, by Office of Naval Research grant
N000141210430, and by a UMIACS New Research Fron-
tiers Award. The views expressed are those of the authors
and do not reflect the official policy or position of the De-
partment of Defense or the U.S. Government. Approved for
Public Release, Distribution Unlimited.

References
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A small amount of domain knowledge can go a
long way. In IJCAI, 1629–1634.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Bi-
undo, S. 2011. Landmark-aware strategies for hierarchical
planning. In HDIP 2011 3rd Workshop on Heuristics for
Domain-independent Planning, 73.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In AIPS, 249–254.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for hierarchical task-network planning. AMAI 18.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1991. Com-
plexity, decidability and undecidability results for domain-
independent planning: A detailed analysis. Artificial Intelli-
gence 76:75–88.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In IJCAI, 1955–1961.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In IJCAI.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
JAIR 20:379–404.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2009. HTN planning
with preferences. In IJCAI.

