
On the Feasibility of Planning Graph Style Heuristics for HTN Planning

Ron Alford
University of Maryland
College Park, MD, USA

ronwalf@volus.net

Vikas Shivashankar
University of Maryland
College Park, MD, USA

svikas@cs.umd.edu

Ugur Kuter
SIFT, LLC

Minneapolis, MN, USA
ukuter@sift.net

Dana Nau
University of Maryland
College Park, MD, USA

nau@cs.umd.edu

Abstract
In classical planning, the polynomial-time computability of
propositional delete-free planning (planning with only pos-
itive effects and preconditions) led to the highly success-
ful Relaxed Graphplan heuristic. We present a hierarchy of
new computational complexity results for different classes of
propositional delete-free HTN planning, with two main re-
sults:
We prove that finding a plan for the delete-relaxation of a
propositional HTN problem is NP-complete: hence unless
P=NP, there is no directly analogous GraphPlan heuristic
for HTN planning. However, a further relaxation of HTN
planning (delete-free HTN planning with task insertion) is
polynomial-time computable. Thus, there may be a possibil-
ity of using this or other relaxations to develop search heuris-
tics for HTN planning.

1 Introduction
Planning has been shown to be theoretically intractable in
general. Bylander (1994) showed that even the simplest in-
teresting variant of classical planning is PSPACE-complete.
Hierarchical Task Network (HTN) planning is even harder:
depending on the particular variant, the complexity can be
anywhere from EXPTIME to undecidable (Erol, Hendler,
and Nau 1996).

To combat the complexity of classical planning, mod-
ern classical planners use efficiently computable state-based
heuristics that often work very well in practice (Helmert
2006; Hoffmann and Nebel 2001; Bonet and Geffner 2001;
Nguyen and Kambhampati 2001). The most influential
among these is arguably the Relaxed Planning Graph heuris-
tic used in the FF planner (Hoffmann and Nebel 2001),
which solves the propositional delete-free version of the
given problem in polynomial time, and computes a heuris-
tic value based on that solution. Relaxed planning-graph
heuristics have since been developed for a variety of pur-
poses, e.g., probabilistic planning (Yoon, Fern, and Gi-
van 2007; Teichteil-Königsbuch, Kuter, and Infantes 2010),
propositional landmark generation (Richter and Westphal
2010), metric planning (Hoffmann 2003).

In this paper, for propositional delete-free HTN plan-
ning, we prove results about the complexity of two well-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

NP-complete

Polynomial
STRIPS+pre

+eff

TIHTN+pre
+eff

STRIPS+eff

TIHTN+eff

HTN1+pre
1+eff

HTN+pre
+eff

HTN+eff

Figure 1: Complexity of plan-existence for propositional
delete-free STRIPS and HTN planning with various restric-
tions (k-length-plan-existence is NP-complete in all cases).
Arrows represent subclass relationships. The STRIPS re-
sults are from (Bylander 1994); the other results are new.

known decision problems, plan-existence and k-length-
plan-existence, under various conditions.

Fig. 1 summarizes the results, using the following nota-
tion. TIHTN is propositional HTN planning with task inser-
tion (see Section 3 and (Geier and Bercher 2011)); “+pre”
(resp. “+eff”) means all preconditions (resp. effects) are pos-
itive; “1+pre” (resp. “1+eff”) means at most one positive
and no negative preconditions (resp. effects). Here is how
the results bear on the feasibility of relaxation-based search
heuristics for HTN planning:

• Even for very restricted cases, delete-free propositional
HTN planning is NP-complete. Thus unless P=NP, there
is no direct analogy of Relaxed GraphPlan for HTN prob-
lems.

• If the HTN planning semantics is modified to allow task
insertion and all of the preconditions and effects are pos-
itive, then plan-existence is polynomial-time computable.
Thus, it may be possible to use this or other relaxations to
develop search heuristics for HTN planning.

2

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



2 Basics
In this section, we present a propositional HTN planning for-
malism, using the notation presented in (Geier and Bercher
2011).

It will be important for us to have a notation for the re-
striction of a function or relation to some subset of its do-
main. For this, we will use a bar notation that is defined as
follows. For a binary relation R ⊆ A×A, the restriction of
R to any X ⊆ A is

R|X = {(p1, p2) ∈ R | p1, p2 ∈ X}.

Similarly, for a function f : P → Q, the restriction of f to
any X ⊆ P is

f |X = {f(p) = q | p ∈ X}.

Given a set of task names X , a task network is a tuple
tn = (T,≺, α) such that:

• T is a finite nonempty set of task symbols.

• ≺ is a partial order over T .

• α : T → X is a mapping from the task symbols to a finite
set of task names.

The task symbols function as place holders for task names,
allowing multiple instances of a task name to exist in a task
network (Erol, Hendler, and Nau 1994). We refer to the set
of all task networks over a set of task names X as TNX .
An HTN domain is a tuple (L,C,O,M), where L is a finite
set of proposition symbols, C is a finite set of compound
task names, O is a finite set of primitive task names, with
O ∩C = ∅, and M ⊆ C × TNC∪O is a set of methods over
C and O.

Each primitive task name o ∈ O denotes a planning oper-
ator: (prec(o), add(o), del(o)). prec(o) is a propositional
formula over L, and add(o) and del(o) are disjoint subsets
of L. Note that the semantic models for the operators in O
forms an implicit state transition function for the planning
domain:

γ : 2L ×O → 2L,

where:

• A state is any subset of L. The finite set of states in a
planning domain is denoted as 2L in the above definition
of γ;

• γ(s, o) is defined iff s |= prec(o); and

• γ(s, o) = (s \ del(o)) ∪ add(o).
We call a task network primitive if α(t) ∈ O for every

t ∈ T . Otherwise, the task network is non-primitive.
We can decompose a non-primitive task network tn1 =

(T1,≺1, α1) if there is a non-primitive task t ∈ T1 such
that α(t) ∈ C and has a corresponding method m =
(α(t), (Tm,≺m, αm)) ∈ M . More formally, we define the
notion of task decomposition as follows. Assume without
loss of generality that T1∩Tm = ∅. Then the decomposition
of tn1 bym into a task network tn2 (written tn1

t,m−−→D tn2)

is given by:

T ′1 := T1 \ {t} ;
T2 := T ′1 ∪ Tm;

≺2 :=≺1 |T ′
1

∪ ≺m

∪ {(t1, t2) ∈ T ′1 × Tm | (t1, t) ∈≺1}
∪ {(t2, t1) ∈ Tm × T ′1 | (t, t1) ∈≺1} ;

α2 := α1|T ′
1
∪ αm;

tn2 := (T2,≺2, α2) .

If there is a finite sequence of task decompositions from
tn1 −→D tn2 −→D . . . −→D tnn, then we write tn1 −→∗D tnn.

An HTN planning problem is a tuple (D, s0, tn0), where
D = (L,C,O,M) is an HTN domain, s0 ∈ 2L is a state in
D, and tn0 = ({t0}, ∅, {(t0, x0)}) is the initial task network
containing a single task x0.

A task network tn is executable in a state s0 for domainD
if tn is primitive and there exists some total ordering (consis-
tent with ≺ in tn) over the tasks t1, . . . , tn and the sequence
of states s1, . . . , sn that arise from applying the primitive
tasks (i.e., actions) t1, . . . , tn in that order in the initial state
s0: i.e.,

∀i=0...n−1γ(si, α(ti+1)) = si+1

We say that tn∗ is an HTN solution to a planning problem
P = (D, s0, tn0) if tn∗ is executable in s0 and tn0 −→∗D tn∗.
In this paper, we are concerned with two HTN decision prob-
lems: plan-existence, for whether a problem has any solu-
tion, and k-length-plan-existence, for whether a problem has
a solution of k or fewer operators.

For the purposes of this paper, we consider only delete-
free planning problems, where operators contain only pos-
itive effects (i.e., ∀o∈Odel(o) = ∅). Deferring to Bylan-
der, we refer to this restricted class of problems as members
of HTN+eff. When problems are further restricted to con-
tain only operators with positive preconditions, we say these
problems belong to HTN+pre

+eff . In the highly restricted case
where both the preconditions and effects of operators con-
tain at most a single positive literal, we say these problems
belong to HTN1+pre

1+eff .

3 Delete-Free Task Insertion HTN Problems
Before we get to delete-free HTN problems, we shall first
consider delete-free versions of a variant of HTN planning:
HTN Planning with Task Insertion (TIHTN) (Geier and
Bercher 2011). In TIHTNs, a problem is still modeled in
terms of an initial state and a task network that needs to be
decomposed, but insertion of primitive tasks is now allowed
without requiring them to be inserted by the decomposition
of a compound task that is present in the task network.

Formally, given a primitive task o and a task network
tn = (T,≺, α), we can insert o into tn to obtain a new
task network tn′ by generating a new symbol t and letting
tn′ = (T ∪ {t} ,≺, α ∪ (t, o)). We write tn −→∗I tn′ if tn′
can be obtained from tn by any sequence of task insertions.

3



A TIHTN planning problem is syntactically identical to
an HTN planning problem. A TIHTN planning problem
(D, s0, tn0) has a solution if:

• tn0 is primitive and executable in s0.

• tn0 −→I tn
′ and (D, s0, tn

′) has a solution

• tn0 −→D tn′ and (D, s0, tn
′) has a solution

Note that task insertion and decomposition commute, and so
we can always reorder task insertions to come before decom-
positions. For instance, if the TIHTN problem (D, s0, tn0)
is solvable, there are task networks tn1, tn′1, and tn2 such
that tn0 −→∗I tn1 −→∗D tn2, tn0 −→∗D tn′1 −→∗I tn2, and tn2 is
executable in s0.

As Geier and Bercher show, TIHTN planning relaxes
HTN planning enough to regain decidability of plan exis-
tence even in cases when the original HTN problem remains
undecidable.

We show in the following theorem that plan-existence
for TIHTN problems with positive preconditions and effects
(TIHTN+pre

+eff ) is polynomial-time computable.

Theorem 3.1 If P = (D, s0, tn0) (where D =
(L,C,O,M)) is a Task Insertion HTN planning problem
with positive preconditions and effects (TIHTN+pre

+eff ), then

plan-existence for P is decidable in time O
(
|O|2 + |M |2

)
.

Proof.
Iteratively insert and apply operators from O to s0 until

we reach the fixed point state s where no new operators are
applicable, much like Relaxed GraphPlan (taking O

(
|O|2

)
time).

Given positive preconditions and effects, no operator ap-
plication can make another operator inapplicable (or inap-
plicable) from the fixed point state, and for every state s′ ob-
tainable from s0, if s′ |= prec(o) then s |= prec(o). Thus,
we can perform a bottom-up parse of the methods to show
which non-primitive tasks are executable in s:

The following algorithm iterates through the list of meth-
ods at most |M | times finding a solution for at least one
non-primitive task in all but its last iteration, starting from
the non-primitive tasks.

1. For every primitive task o ∈ O where s |= prec(o), mark
o as solvable.

2. Iterate through the methods in M . If m = (c, tn) is a
method such that all the tasks names in tn are marked as
solvable, mark c as solvable.

3. Repeat line 2 if it marked any new task names as solvable.

4. Return TRUE if all task names in tn0 are solvable, return
FALSE otherwise.

Since at least one method is marked in every pass, this takes
O
(
|O|+ |M |2

)
time, resulting in an overall time complex-

ity of O
(
|O|2 + |M |2

)
.

�

Table 1: Summary of results from Section 3.
Problem plan-existence k-length-plan-existence

TIHTN+pre
+eff P NP-hard

TIHTN+eff NP-hard NP-hard

HTN+pre
+eff - NP-hard

HTN+eff NP-hard NP-hard

We shall now establish lower bounds on complexities of
both plan-existence and k-length-plan-existence for the re-
maining delete-free TIHTN planning classes.

Firstly, we note that (delete-free) TIHTN problems can be
encoded as (delete-free) HTN problems as follows: given a
TIHTN domain D = (L,C,O,M), we add for every t ∈ C
and o ∈ O a method to M that decomposes t into a pair of
subtasks 〈o, t〉. Similarly, we can also show that (delete-free)
STRIPS problems can be encoded as (delete-free) TIHTN
problems by simply adding a dummy operator o with the
goal as its precondition and no effects and letting the initial
task network consist of o.

Since we know that plan-existence for STRIPS+eff and k-
length-plan-existence for both STRIPS+pre

+eff and STRIPS+eff
is NP-hard (Bylander 1994), it follows immediately from
the encoding from STRIPS to TIHTN problems that plan-
existence for TIHTN+eff and k-length-plan-existence for
both TIHTN+pre

+eff and TIHTN+eff are also NP-hard.
Now using the encoding from TIHTN to HTN prob-

lems, we can similarly lower bound the complexities for
some HTN planning problem classes. In particular, we can
show that plan-existence for HTN+eff is NP-hard and that
k-length-plan-existence for both HTN+eff and HTN+pre

+eff are
NP-hard.

Table 1 summarizes the complexity results from this sec-
tion. One thing yet to be done is to estimate the com-
plexity of solving HTN+pre

+eff problems. As we shall see in
the following section, while the task insertion variant of
this problem (TIHTN+pre

+eff ) is solvable in polynomial time,
HTN+pre

+eff problems are much harder to solve.

4 Solving HTN1+pre
1+eff Problems is NP-hard

We begin our analysis on delete-free HTN planning prob-
lems by focusing on a restricted case where operators have
only one positive effect and one positive precondition, which
we refer to as HTN1+pre

1+eff . In the following theorem, we estab-
lish that plan-existence is NP-hard for HTN1+pre

1+eff problems
(and thus NP-hard for HTN+pre

+eff ) even when:

• Every method is totally ordered

• Every method is regular, such that non-primitive tasks
only occur as the last task in the method.

• The methods are acyclic, meaning there are only a finite
number of solutions to the initial problem.

4



Theorem 4.1 Plan existence for HTN1+pre
1+eff planning is NP-

hard.

Proof. Let E = e1 ∧ e2 ∧ . . . ∧ en be a CNF-SAT formula,
where each conjunct is a disjunction over a set of variables
v1, . . . , vm and their negations.

To give an encoding, we need to construct a delete-free
HTN planning problem where any solution implies a satis-
fying assignment for E, and no solution implies E is un-
satisfiable. The encoding of E is the HTN domain D =
(L,C,O,M) and problem (D, ∅, tn0), all given below.

Let the set of propositions L consist of two propositions
for each variable, vi-true and vi-false representing a true
and false assignment to vi, respectively.

Let the set of operators O consist of four operators for
each variable vi, two for setting the value of the variable and
two for checking its truth or negation:
• An operator set-vi-true, with

prec(set-vi-true) = true,

add(set-vi-true) = {vi-true} ,
del(set-vi-true) = ∅.

• An operator set-vi-false, with

prec(set-vi-false) = true,

add(set-vi-false) = {vi-false} ,
del(set-vi-false) = ∅.

• An operator check-vi-true, with

prec(check-vi-true) = vi-true,
add(check-vi-true) = del(check-vi-true) = ∅.

• An operator check-vi-false, with

prec(check-vi-false) = vi-false,
add(check-vi-false) = del(check-vi-false) = ∅.

The set of non-primitive tasks C consist of the tasks (1)
set-vi for each i ≤ m, which chooses an assignment for the
variable vi, and (2) check-ej for each j ≤ n, which checks
whether the conjunct ej in the given CNF-SAT formula E
is satisfied with the current variable assignments. We shall
now describe the methods M that decompose tasks in C.

For the task set-vi, we introduce two methods: one which
calls set-vi-true and then set-vi+1, and another which calls
set-vi-false and then set-vi+1. For set-vm, the task corre-
sponding to the last variable vm, we introduce two methods
as above, one each for setting vm as true and false re-
spectively; instead of calling set-vi+1 however (as in the
earlier cases), both these methods will now initiate checking
satisfiability of the conjuncts in E by calling check-e1.

Let us now construct methods for check-ei. Since ei is
a disjunction of literals, let l1, . . . , lk be the disjuncts of ei.
We shall now write a method for each literal in ei; since ei
is a disjunction, it suffices if one of these methods succeeds
in decomposing check-ei. In particular, for each literal lj ,
we encode a method for check-ei: if lj is of the form ¬vl
for some variable vl, then the method calls check-vl-false

followed by check-ei+1. Otherwise, lj is of the form vl, and
the method calls check-vl-true followed by check-ei+1.
The methods for check-em omit the call to check the next
expression.

The initial task network tn0 contains a single task,
set-v1. Any primitive decomposition of tn0 must first call
set-vi-true or set-vi-false (but not both) for each variable,
and then check that one literal is true for each conjunct in E.
Thus there exists a solution to the HTN problem iff there is
a satisfying assignment for the variables in E.

Since the encoding is linear with respect to the length of
E and CNF-SAT is NP-hard, delete-free HTN planning is
NP-hard. �

Any of the three restrictions on method structure men-
tioned at the start of this section is enough to place a HTN
planning problem in a decidable fragment of the language
(Erol, Hendler, and Nau 1996). This leaves only two obvi-
ous syntactic restrictions that would make a delete-free HTN
problem solvable in polynomial time without relaxing the
semantics: either restrict the initial task network to be prim-
itive, or restrict all operators to have zero effects. Thus, we
can safely say that delete-free HTN planning, except in the
most trivial cases, is NP-hard.

5 Showing HTN+eff Problems are in NP
Here we show that if there is a solution of length k to a
delete-free HTN planning problem, then there exists a poly-
nomial size witness, verifiable in polynomial time, proving
that there exists a solution of size k or smaller. This places
both plan-existence and k-length-plan-existence in NP for
delete-free HTN planning.

The outline of the proof is as follows: We present decom-
position trees (Geier and Bercher 2011), which can be used
as a witness that a task network is derivable from the initial
network, and these trees can be verified in time polynomial
in the size of the tree. We then digress to show that deciding
whether a problem has a solution when the primitive tasks
that change the state are fixed in advance is in NP. Since
solutions in delete-free domains can only change the state a
polynomial number of times, this lets us use a decomposi-
tion tree of polynomial width as part of the witness to the
solvability of HTN+eff problems. Finally, we also provide
a polynomial bound on the height of a decomposition tree
necessary to show that problem is solvable.

Decomposition Trees
Geier et al (Geier and Bercher 2011) introduced the idea of
decomposition trees, which is a representation of how the
initial compound task cI can be transformed to a task net-
work tn via a sequence of decompositions.1 We present their
definitions below, modified slightly to suit our purposes.

1Note that the restriction for having a single task for the initial
task network of an HTN planning problem is only for the sake of
simplifying the exposure of our theoretical results; our definitions
and theorems can be adapted to work without this restriction by
generalizing the notion of decomposition trees, described below, to
decomposition forests.

5



Given a planning problem P , a decomposition tree g =
(T,E,≺, α, β) is a five-tuple satisfying the following prop-
erties:

• (T,E) is a tree with nodes T and directed edges E point-
ing towards the leaves;

• ≺ is a partial order defined over T ;

• α : T → C∪O is a labeling function that labels the nodes
in T with task names;

• β is a labeling function that labels each inner node with a
method m = (c, tnm) and an isomorphism from tnm to
the children of that node.

Moreover, we define T (g) to refer to the tasks of g and
ch(g, t) to refer to the direct children of t ∈ T (g) in g.

The following definition states the conditions under which
a decomposition tree encodes a decomposition of the initial
task network. A decomposition tree g = (T,E,≺, α, β) is
valid with respect to a planning problem P = (D, s0, cI)
if and only if the root node of g is labeled with the ini-
tial task name cI and for any inner node t, where β(t) =
((c, tnm), f), the following conditions hold:

1. α(t) = c,

2. f is a valid isomorphism of the task network induced in g
by ch(g, t) and tnm; i.e.

(ch(g, t),≺ |ch(g,t), α|ch(g,t)) ∼=
f
tnm,

3. ∀t′ ∈ T, c′ ∈ ch(g, t), it holds that

(a) if t ≺ t′ then c′ ≺ t′;
(b) if t′ ≺ t then t′ ≺ c′.

4. there are no other ordering constraints in ≺ other than
those demanded by conditions 2 and 3.

Informally, the above conditions capture the following
checks for each inner node t: condition 1 verifies the ap-
plicability of the method m = β(t) that t is labeled with;
condition 2 verifies that m’s task network is correctly rep-
resented in the tree; condition 3 ensures that the ordering
constraints are inherited correctly after the application ofm;
and condition 4 ensures the minimality of ≺.

The definition of a decomposition tree and its validity to
an HTN planning problem is identical to Geier and Bercher’s
definition, save for the addition of the explicit isomorphism
at each inner node t, mapping ch(g, t) to the subtask network
of the method applied at t. This modification is made so that
the validity of a decomposition tree can be checked in time
polynomial in the size of the tree2. We would also like to
point out that the theoretical results in (Geier and Bercher
2011) still hold unchanged even with these modifications.
This is an important point as we shall be using their theorems
(which they proved under their definition) in our proofs.

Note that the leaves of a decomposition tree g form a task
network, which is called the yield of g. Formally, the yield of
a decomposition tree g = (T,E,≺, α, β) is a task network

2Since graph isomorphism is not known to be in P, this would
not be possible without our modification.

defined as follows. Let T ′ ⊆ T be the set of all leaf nodes
in g. Then, yield(g) = (T ′,≺ |T ′ , α|T ′).

Geier and Bercher (2011) use the above definitions to
prove the following useful property of valid decomposition
trees:
Theorem 5.1 Given a planning problem P = (D, s0, cI),
the following holds for any task network tn ∈ TNC∪O.
There exists a valid decomposition tree g with yield(g) = tn
if and only if cI −→∗D tn.

In other words, the reachability of tn from cI via a se-
quence of method decompositions can be proved by pro-
viding a valid decomposition tree for the problem P whose
yield is tn. This property, as we shall see later, will be in-
strumental in proving that delete-free HTN planning is in
NP.

Given a decomposition tree g = (T,E,≺, α, β) and a
node t ∈ T , the subtree of g induced by t, written as g[t], is

g[t] = (T ′, E′,≺ |T ′ , α|T ′ , β|T ′),

where (T ′, E′) is the subtree of (T,E) rooted at t.
Definition 5.2 Let g = (T,E,≺, α, β) be a decomposition
tree and ti, tj ∈ T be two nodes of g. The result of the
subtree substitution of ti with tj on g, written as g[ti ← tj ],
is given as follows:
• If ti is the root node of g, then g[ti ← tj ] = g[tj ].
• Otherwise, g[ti ← tj ] = (T ′, E′,≺ |T ′ , α|T ′ , β|T ′), with

– T ′ = (T \ T (g[ti])) ∪ T (g[tj ]),
– E′ = E|T ′ ∪ {(p, tj)}, where p is the parent node of ti

in g.
Note that this operation in general will not lead to valid

decomposition trees. However, if applied under the right
conditions, the result of the subtree substitution can still de-
scribe valid decompositions as described by the following
result (Geier and Bercher 2011):
Theorem 5.3 Let g = (T,E,≺, α, β) be a valid decompo-
sition tree for an HTN planning problem P . If we are given
two nodes ti ∈ T, tj ∈ T (g[ti]) such that α(ti) = α(tj),
then g[ti ← tj ] is also a valid decomposition tree for P .

In other words, if ti and tj map to the same task names
and tj is a descendant of ti in g, then replacing ti (and its
subtree) with tj (and its subtree) still results in a valid de-
composition tree. This technique can therefore be used to
eliminate cyclic decompositions from a tree while still re-
taining validity.

Forming a witness to the solvability of an HTN
problem
We are going to use decomposition trees to show that delete-
free HTN planning is in NP. Note that if a valid decompo-
sition tree’s yield is primitive and executable, then we can
use the tree as a checkable proof that its problem is solvable.
However, even in the restricted case where none of the oper-
ators have an effect, the minimal solution size (measured in
the number of tasks) may still be exponential. So we need to
be able to present a witness that includes both a tree with a
non-primitive yield, and a polynomial size proof that some
expansion of that yield is executable.

6



Definition 5.4 Let P = (D, s0, tn0) be an HTN planning
problem, whereD = (L,C,O,M) and tn0 = (T0,≺0, α0).
A state-transition preserving solution for P is one in which
the only state-changing actions are the ones that were al-
ready in tn0, i.e., it is a primitive task network tn such that:

• tn0 −→∗D tn, where tn = (T,≺, α)
• tn has an executable ordering over its tasks (t1, . . . , tn,

executing over the states s0 to sn)
• If ti /∈ T0 then si−1 = γ (si−1, α(ti)) = si

Given a sequence of states, a solution table for finding
a state-transition preserving solution consists of a row for
each combination of start state, end state, and task name.
Each row in a solution table has a value, defined as follows:

• For each row with a primitive task name, the value of that
row is 1 if the ground instance of the operator for that
primitive task name is both applicable in any state be-
tween the start state and end state, inclusively, and the
operator does not change said state. Otherwise, the value
of the row is∞.

• For each row with a non-primitive task name, we asso-
ciate a method used to decompose the task, and a set of
pointers back into the table supporting that the method is
executable (without changing the state) between the start
and end state for the row. The value for the row is then
the sum of the values of its supporting rows.

We can check the table by first checking the primitive entries
of the table, and then repeatedly scanning the table to find
rows whose supports have already been checked. This leads
into the following lemma:

Lemma 5.5 Both the plan-existence and the k-length-plan-
existence problems for finding a state-transition preserving
solution are in NP.

Proof. Let P = (D, s0, tn0) be an HTN planning problem
where D = (L,C,O,M), tn0 = (T0,≺0, α0) such that P
has a state-transition preserving solution.

By definition, in any state-transition preserving solution,
only the primitive tasks already in tn0 may change the state.
So given a fixed, executable ordering over the primitive
tasks of tn0 and the states associated with that ordering
(s0, . . . , sn), the decompositions of non-primitive tasks in
tn0 interact with each other only in what states they start and
end on (constraining the end and start states, respectively, of
tasks required to come before or after). Start and end states
for a task determine what decompositions (if any) are exe-
cutable over that sequence of states. This lets us construct a
solution table as described above.

Once the solution table is constructed, a witness to the
solvability of P (i.e., a witness that there exists a state-
preserving solution for P ) consists of a total order over the
primitive tasks of tn0, a solution table described above for
the sequence of states traversed by those primitive tasks, and
a set of pointers into the table for each non-primitive task in
tn0. The value of the solution is the sum of the primitive
tasks in the row of the solution table that holds tn0, plus the
sum of the values sizes of the supporting table entries. Since

the validity of the ordering and table are verifiable in polyno-
mial time, both plan-existence and k-length-plan-existence
for finding a state-transition preserving solution are both in
NP. �

We can now use a decomposition tree as a proof that an
HTN problem is solvable, even if the yield of that tree is
non-primitive:

Definition 5.6 Let tn be a task network, g be valid decom-
position tree of tn, and stp be a witness that the yield of g
has a state-transition preserving solution. Then, a witness
to the solvability of an HTN problem P = (D, s, tn) is the
pair (g, stp) of a valid decomposition tree g of tn with stp.

Since checking the validity of a tree is polynomial in the
size of the tree, and checking the witness that the yield of
the tree has a state-transition preserving solution is polyno-
mial in the size of the yield and the number of task names,
it follows that the combined witness is also in P. Further-
more, note that every solvable HTN planning problem has a
witness, even non-delete-free problems. However, the exis-
tence of a polynomial-sized witness is only likely in delete-
free planning, where a fix-point state is reachable in a poly-
nomial number of actions. In the remaining sections, we
show that delete-free HTN planning problems always have
a witness of polynomial size.

Bounding the breadth of the witness tree
Given a delete-free HTN problem and its witness, (g, stp),
we know there are at most |O| primitive tasks which change
the state in any execution of the yield of g, where O is the
set of operators. We now show how to restrict a decompo-
sition tree to its minimal valid subtree that contains those
operators.

Definition 5.7 (Saplings) Given a tree g = (T,E,≺, α, β)
and a set of tree nodes S ⊂ T , let T ′ be the set of nodes
along any path from a node in S to the root of g (inclu-
sively) and the siblings of each and every node along the
path. Formally, T ′ is the smallest subset of T such that:

• S ⊆ T ′

• ∀t,t′∈T t′ ∈ T ′ ∧ (t, t′) ∈ E =⇒ t ∈ T ′

• ∀t,t1,t2∈T ′(t1 ∈ T ′)∧{(t, t1), (t, t2)} ⊆ E =⇒ t2 ∈ T ′

Then the sibling-augmented path tree or S-sapling of T
is
(
T ′, E|T ′ ,≺|T ′ , α|T ′ , β|T ′′

)
, where T ′′ contains the inner

nodes of T ′.

Proposition 5.8 Given a tree g = (T,≺, α, β) and a set
S ⊆ T , then the S-sapling of g is a valid decomposition
tree.

Proof. Any subtree of g containing the root satisfies all but
condition 3 of definition a valid decomposition tree. Since
the construction of a sapling either preserves all children of
node or none of them, condition 3 also holds. �

Given a witness (g, stp) for a delete-free problem, we can
create a sapling using just the primitive tasks that change the
state.

7



Lemma 5.9 Let (g, stp) be a witness that a delete-free HTN
problem P = (D, s0, tn0) with domain D = (L,C,O,M)
is solvable. Let (T,≺, α) = yield(g), and let S ⊆ T be
the set of tasks that change the state in the order specified by
stp. Then if g′ is the S-sapling of g, there exists a witness
stp′ such that the yield of g′ has state-transition preserving
solution of the same size or smaller than the yield of g.

Proof. Given that stp is the witness that g has a state-
transition preserving solution, let (<,B,R) = stp, where:
• < is 〈t1, . . . , tn〉which is the total ordering over the prim-

itive tasks in the yield of g. Let s1, . . . , sm be the distinct
states that sequence produces (omitting repeated states).

• B is the solution table for the sequence s1, . . . , sm. As-
sume WLOG that B is optimal, giving the smallest possi-
ble solution size for each entry in B.

• R is the set of pointers into B for non-primitive tasks in
the yield of g.
Let S be the set of primitive tasks that change the state

({ti ∈ yield(g) | si−1 6= si}), and let g′ be the S-sapling of
g.

Now we provide a witness that g′ has a state-transition
preserving solution. Let <′ be the same ordering as < re-
stricted to tasks in S. Since tasks in < but not in <′ did
not change the state, an execution of <′ produces the same
sequence s1, . . . , sm of distinct states that < did, and so we
can reuse the same solution table B.

For the set of supports, any task t in the yield of g′ which
was not in the yield of g must have children in the yield of g
which, under the given ordering <, were all either primitive
tasks which did not change the state or were non-primitive
with state-transition preserving expansions with entries in
R. So B, the solution table, must have an entry for si, sj , t
with finite value, where si and sj are the first state and last in
the sequence s0, . . . , sm where either primitive descendant
was executed or the first state used in R for a non-primitive
descendant. So we can construct a new set of supports R′
using the above method for any task in the yield of g′ but
not in R, and directly using the entry from R otherwise.

So stp′ = (<′, B,R′) is a witness that g′ has a state-
transition preserving solution. Moreover, since B remains
the same and R′ was calculated from B and R, stp′ must
indicate that g′ has a solution in B with the same or lower
value as g. �

Bounding the height of the witness tree
The above lemma lets us take any witness (g, stp) to a prob-
lem’s solvability and construct a new witness which is com-
posed of a polynomial number of paths to the root g (plus
siblings). This is not quite enough to show that delete-free
planning is in NP, since those paths may not be polynomial
in length. However, in those cases, we can use a variant of
the pumping lemma (Comon et al. 2007) to produce a new
witness with polynomially-bounded length paths:

Theorem 5.10 Let P = (D, s0, tn0) (where D =
(L,C,O,M)) be a solvable delete-free HTN planning prob-
lem, with P having a minimal solution size of k . Then there
exists a witness (g, stp) that P has a solution size of ≤ k,

Table 2: Summary of results after Section 5.
Problem plan-existence k-length-plan-existence

TIHTN+pre
+eff P NP-complete

TIHTN+eff NP-complete NP-complete

HTN+pre
+eff NP-complete NP-complete

HTN+eff NP-complete NP-complete

with |T (g)| ≤ m·|C|·|O|2, wherem is the size of the largest
task network in M .

Proof. If P is solvable, there exists a tree gp with an exe-
cutable, primitive yield of optimal size k. Let (g, stp) be the
S-sapling witness as constructed above in lemma 5.9, where
S is the set of tasks in the witness that change the state. Then
(g, stp) is a witness that P has a solution of size ≤ k.

Suppose g has a height that is greater than |C| · |O|. Since
g is constructed from a series of paths from nodes to the root,
this means that there is some path from a node in S to the
root of that length.

Let t1, . . . , tn be the tasks along that path. Since that path
is joined at most |S| − 1 times by other paths from S to the
root (|S| ≤ |O|) and since there are only |C| task names to
assign, there must be some segment ti, . . . , tj between joins
such that α(ti) = α(tj), and no descendants of ti not on the
path to tj has a descendants that is in S.

Since no descendants of ti that are not also a descen-
dants of tj are in S, then all of those descendants must
have a state-transition preserving solution under stp′. Let
g′ = g [ti ← tj ] be the tree obtained by substituting tj for ti.
Since we only removed tasks which did not change the state,
the yield of g′ is a strict subset of the yield of g. So we can
create a witness stp′ that g′ has a state-transition preserving
solution by restricting the set of supports in stp to the tasks
remaining in the yield of g′. That solution must have a size
strictly less than k. This would violate our assumption k was
the minimal solution size.

So g must have a height that is less than or equal to |C| ·
|O|. �

Since we can always find a polynomial sized witness to
the minimal-sized solution, this means that finding k-size
solution (or any solution) to a delete-free HTN problem
(HTN+eff) is in NP. Given that both plan-existence and k-
length-plan-existence are NP-hard for HTN+eff, the last of
our results is trivial:

Theorem 5.11 For HTN+eff , both plan-existence and k-
length-plan-existence are NP-complete.

From this theorem and the subclass relationships shown
in Figure 1, the other classes considered in this paper fall in
NP as well and are thus NP-complete (with the exception of
plan-existence for TIHTN+pre

+eff , of course). Table 2 summa-
rizes our final set of results.

8



6 Related Work
Erol, Hendler, and Nau’s 1996 paper is the seminal work on
HTN planning complexities, proving that while HTN plan-
ning is undecidable in general, many syntactic restrictions
are decidable, with complexities ranging from polynomial
time for problems with only totally ordered, primitive task
networks to PSPACE-complete for so-called regular task
networks, to in EXPTIME and 2-EXPTIME for problems
with totally-ordered networks. (Alford et al. 2012) extends
this work by showing larger subsets of HTN planning are
decidable with search-based algorithms. Both these papers
identify decidable subsets with restrictions on the structure
of task networks in the domain, where as delete-free HTN
planning allows arbitrary method structures, but restricts the
form that operators can take.

In addition to the still-quite-high decision complexities,
these task-network-identifiable subsets of HTN planning are
unsuitable for use as heuristics, since in general, imposing
a strict structure on the task networks of a problem removes
solutions. Removing delete effects and negative precondi-
tions increases the number of solutions to a problem, mak-
ing a solution to this relaxed problem an underestimation of
how hard it is to solve the original problem.

Geier and Bercher (2011) provides both the formalization
of Task-Insertion HTN planning used in our paper and the
decomposition trees and related lemmas about them used
in our proofs. In their paper, they show that if any solu-
tion to a task-insertion problem exists, then there exists an
acyclic decomposition tree which can be made executable
through task insertion. Despite providing shorter decompo-
sition trees than we used in our proofs (by a factor of |O|),
there is no clear way to compress a decomposition tree when
delete effects are allowed. This forces Geier and Bercher’s
witnesses to be full expanded, making them exponential in
size. Although this provides an EXPSPACE upper bound
on the complexity of task-insertion HTN planning, they do
not provide a lower bound. Though it’s obviously PSPACE-
hard, a tighter bound on task-insertion HTN planning would
be, if nothing else, intellectually satisfying.

Elkawkagy et al. (2012) provides a method for construct-
ing task landmark tables which identify both the tasks that
must occur in any primitive decomposition of a given task
name, and the tasks that may occur. The landmark tables
are insensitive to the state, making them similar to our state-
transition preservability property that we introduced in the
proof of Theorem 3.1 in the steps shown in the enumerated
list there. Elkawkagy et al. use the landmark tables to pro-
vide upper and lower bounds on the computational cost of
searching for a primitive executable decomposition. In prin-
ciple, we could use state-transition preservability in a similar
fashion by taking an HTN problem, removing all precondi-
tions and effects from its operators, and running the state-
transition preservability test. This would provide a lower
bound on the size of any solution (making it an admissi-
ble heuristic) but would not bound the computational cost
of finding such a solution. In practice, since state-transition
preservability is decidable in NP, we would need to develop
search control and heuristics techniques to be able to use it.
However, our preliminary theoretical investigations suggest

that under certain circumstances, this property can still be
computed in polynomial time. For example, when there is
only one state to be explored yet, such as the state generated
by Relaxed Graphplan when it reaches to a fixpoint, we can
generate the table in polynomial time via the second half of
the procedure in the proof of Theorem 3.1. We will investi-
gate this topic more in future work.

Finally, Alford, Kuter, and Nau (2009) described a tech-
nique for translating totally-ordered HTN problems into
classical planning problems, but this technique requires giv-
ing an appropriate user-supplied bound during translation.
Then, given a correct bound, the resulting classical prob-
lem is solvable iff the original HTN planning problem was
solvable. In turn, still given the correct bound, any admis-
sible classical heuristic can then be a ω-admissible HTN
heuristic. One classical heuristic in specific, Relaxed Graph-
plan, may obviate the need for providing a correct translation
bound, but it produces only polynomial sized plans. This
may greatly underestimate the minimal size of a solution.
One fix might be to run Relaxed Graphplan on the translated
problem, and then run the state-transition preservability test
on the fixpoint state that Relaxed Graphplan generates.

7 Conclusions
In classical planning, relaxing the planning problem by re-
moving negative preconditions and effects has been quite
useful in the development of efficiently computable search
heuristics. Our results show that this relaxation will not—
by itself—produce efficiently computable HTN planning
heuristics, because the relaxed problems are NP-hard. Thus
the development of search heuristics for HTN planning will
require a new kind of problem relaxation.

The solution tables that we used in the proof of
Lemma 5.5 are a data structure similar to planning graphs,
and it might be possible to use them as a foundation to de-
velop new heuristics and search techniques for generating
compact witnesses. Such witnesses could be used to pro-
vide heuristic estimates of relaxed plan length. Furthermore,
a solution table also exhibit similarities to that of a chart in
chart parsing (Kay 1986; Earley 1986; Charniak, Goldwa-
ter, and Johnson 1998; Ji 1993), in both the way the solution
table is generated and structured. This suggests that it might
be possible to use the techniques to generate efficient parse-
trees in chart parsing for witness inference.

Another approach may be to combine relaxed planning
graphs with a relaxation of the constraints that HTN plan-
ning formalisms impose on the search process. For exam-
ple, our results show that efficiently computable HTN plan-
ning problems can be produced by removing negative pre-
conditions and effects, and also allowing task insertion (i.e.,
allowing the application of any executable operator, regard-
less of whether or not it is reachable by some decomposi-
tion). We suspect that this might relax the problem too much
for the heuristic values to be useful. But we think it may be
possible to develop more accurate yet efficiently computable
heuristics by developing a principled compromise, e.g., by
restricting the inserted tasks to those available in some de-
composition of the current task. This would be an interesting
topic for future research.

9



Acknowledgments. This work has been supported
in part by ARO grant W911NF1210471, ONR grant
N000141210430, ONR contract N00014-12-C-0239, and
DARPA/AFRL contract FA8650-11-C- 7191. The informa-
tion in this paper does not necessarily reflect the position or
policy of the funders, and no official endorsement should be
inferred.

References
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. 2012.
HTN problem spaces: Structure, algorithms, termination. In
Symposium on Combinatorial Search.
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A small amount of domain knowledge can go a
long way. In International Joint Conference on Artificial
Intelligence, 1629–1634.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 69:165–
204.
Charniak, E.; Goldwater, S.; and Johnson, M. 1998. Edge-
Based Best-First Chart Parsing. Association for Computa-
tional Linguistics. 127–133.
Comon, H.; Dauchet, M.; Gilleron, R.; Löding, C.; Jacque-
mard, F.; Lugiez, D.; Tison, S.; and Tommasi, M. 2007. Tree
automata techniques and applications. Available on: http:
//www.grappa.univ-lille3.fr/tata. Released October, 12th
2007.
Earley, J. 1986. An efficient context-free parsing algorithm.
Readings in natural language processing 25 – 33.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In AAAI Conference on Artificial In-
telligence, 1763–1769.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI Conference on Artifi-
cial Intelligence, volume 94, 1123–1128.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for hierarchical task-network planning. Annals of Mathe-
matics and Artificial Intelligence 18:69–93.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In International Joint Confer-
ence on Artificial Intelligence, 1955–1961.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system.
Journal of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291–341.
Ji, P. 1993. A tree approach for tolerance charting. Interna-
tional Journal of Production Research 31:1023–1033.

Kay, M. 1986. Algorithm schemata and data structures in
syntactic processing. Readings in natural language process-
ing 35–70.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In International Joint Conference on Artifi-
cial Intelligence, 459–466.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in
MDPs. In International Conference on Autonomous Agents
and Multiagent Systems, 1231–1238.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-replan: A
baseline for probabilistic planning. In International Confer-
ence on Automated Planning and Scheduling, 352–359.

10




