
On the Complexity of Plan Adaptation by

Derivational Analogy in a Universal Classical

Planning Framework

Tsz-Chiu Au1, Héctor Muñoz-Avila2, Dana S. Nau1

1 Department of Computer Science and Institute for System Research
University of Maryland, College Park, MD 20742, USA

{chiu, nau}@cs.umd.edu
2 Department of Computer Science and Engineering

Lehigh University, Bethlehem, PA 18015, USA
munoz@cse.lehigh.edu

Abstract. In this paper we present an algorithm called DerUCP, which
can be regarded as a general model for plan adaptation using Deriva-
tional Analogy. Using DerUCP, we show that previous results on the
complexity of plan adaptation do not apply to Derivational Analogy. We
also show that Derivational Analogy can potentially produce exponen-
tial reductions in the size of the search space generated by a planning
system.

1 Introduction

As reported in several independent experiments, case-based planners using Deri-
vational Analogy have consistently outperformed the base-level, first-principles
planner on which these case-based planners were constructed [1–3]. On the other
hand, formal studies on the complexity of adaptation versus the complexity of
first-principles planning seem to suggest that in the worst case, adaptation can
be harder than planning from scratch if certain conditions on the adaptation
strategy are satisfied [4]. These complexity results raise questions about the ef-
fectiveness of adaptation and case-based planning in general and Derivational
Analogy in particular. In this paper we intend to clarify this apparent contra-
diction.

We take advantage of an algorithm called Universal Classical Planning (UCP)
[5] that can be regarded as a general model of STRIPS-Style planners [6]. In this
paper we formulate a general algorithm for Derivational Analogy called DerUCP
that can be regarded as a general model of Derivational Analogy built on top of
STRIPS-Style planners.

We analyze the results of [4] and examine the assumption that led to that
paper’s main result about plan modification being harder than planning from
scratch. We show that adaptation by Derivational Analogy does not fall un-
der the assumption, and thus the worst case analysis in [4] does not apply to
adaptation with Derivational Analogy.

Dana Nau
Tsz-Chiu Au, Héctor Muñoz-Avila and Dana Nau. "On the Complexity of Plan Adaptation by Derivational Analogy in a Universal Classical Planning Framework." 6th European Conference, ECCBR-2002. Aberdeen, Scotland, UK, September 4-7, 2002, pages 13-27. Received the award for the best research paper.



Furthermore, we show that Derivational Analogy can never make planning
harder, and can potentially make planning much easier. More specifically, we
show that if s1 is the search space that can potentially be explored by an instance
of DerUCP and s2 is the search space that can potentially be explored by the
corresponding instance of UCP, then s1 is never any larger than s2, and s1 can
be exponentially smaller than s2.

This paper is organised as follows. Section 2 reviews the definition of UCP.
Section 3 describes the DerUCP algorithm. Section 4 presents the complexity
results. Finally, Section 5 analyzes the efficiency of DerUCP.

2 Universal Classical Planning

UCP is a generalized algorithm for classical planning that encompasses tradi-
tional planning approaches into a single framework [5]. UCP can be instantiated
into a variety of planners, such as STRIPS-Style planners, SNLP and PRODIGY
[5].

UCP operates on a partial plan P that represents some set of candidate so-
lution plans P . Formally, P is a 5-tuple 〈T ,O,B,ST ,L〉, where T is the set of
steps in the plan, ST is the symbol table which maps step names to actions, O is
the partial ordering relation over T (the corresponding relational operator is ≺),
B is a set of codesignation and non-codesignation constraints on the variables in
the preconditions and post-conditions of the operators, and L is a set of auxil-
iary constraints. There are three kinds of auxiliary constraints. (1) An interval

preservation constraint (IPC) is denoted as (t
p

− t′), which means the condition
p must be preserved between the operators corresponding to steps t and t′. (2)
A point truth constraint (PTC) is a 2-tuple 〈p@t〉, which ensures condition p

must be true before step t. (3) A contiguity constraint ti ∗ tj does not allow any
step between ti and tj . These constraints restrict the ground linearization of the
steps in the set P of candidate solution plans represented by P .

UCP begins with a null plan t0 ≺ t∞, where t0 is the initial step which
has the initial state as its postcondition, and t∞ is the final step which has the
goal state as its precondition. UCP’s objective is to find a solution, i.e, a partial
plan that contains a ground linearization of steps which achieves the goal state
from the initial state. UCP tries to find a solution by performing refinements,
i.e., by adding new steps and constraints to the partial plan. A refinement may
eliminate some of the candidate solution plans, in which case the refinement is
progressive, or it may not eliminate any candidate solution plans, in which case
the refinement is nonprogressive.

The header of P consists of the step t0 plus all steps ti such that i > 0
and ti−1 ∗ ti. The head fringe is the set of all steps that can come immediately
after the header. The trailer and the tail fringe are defined analogously, but with
respect to the final step of the plan rather than the initial step.

In UCP, the progressive refinements are classified into three types: forward
state-space (FSS) refinements add constraints or new steps at the head fringe of
the plan, backward state-space (BSS) refinements add constraints or new steps

2



at the tail fringe of the plan, and plan-space (PS) refinements add constraints
or new steps somewhere between the head fringe and the tail fringe. The non-
progressive refinements are also classified into three types: refine-plan-pre-order
adds ordering constraints between steps, refine-plan-pre-position adds contiguous
constraints between steps, and refine-plan-pre-satisfy resolves conflicts in the
partial plan.

The following example, which is taken from page 19 of [5], shows how various
refinements work in UCP. UCP begins with a null plan t0 ≺ t∞, where t0 is
the initial step which has the initial state {i′} as its postcondition, and t∞ is
the final step which has the goal state {G′} as its precondition. In the figure,
each node represents a partial plan, the label below the node represents the
particular refinement strategy that UCP is using at this node, and the set of
branches emanating from the node represents the set of alternative refinements
produced by the refinement strategy. UCP chooses among these refinements
nondeterministically. In this particular example, the algorithm introduces an
FSS refinement, a BSS refinement, and two PS refinements, and finally produces
a partial plan which contains a ground linearization of steps achieving the goal.
We will generate a derivational trace for this example in Section 3.1.

 

PSfrag replacements

[P0]t0 ≺ t∞

[P1]t0 ∗ t1 : oi ≺ t∞ [P2]t0 ∗ t1 : oq ≺ t∞

[P3]t0 ∗ t1 : oi ≺ t2 : o′ ∗ t∞

[P4]t0 ∗ t1 : oi ≺ t3 : op1 ≺ t2 : o′ ∗ t∞ [P5]t0 ∗ t1 : oi ≺ t3 : op2 ≺ t2 : o′ ∗ t∞

[P6]t0 ∗ t1 : oi ≺ (
t3:op1

t4:oq
) ≺ t2 : o′ ∗ t∞

FSS

BSS

PS 〈p@t2〉

PS 〈q@t2〉 Precondition Add list Delete List

o′ p, q G′ −
oi i′ i1 −
op1 i1 p −
op2 i2 p −
oq − q p

Fig. 1. An example of plan generation with UCP in [5]

3



3 DerUCP: Derivational Analogy in UCP

Derivational Analogy is a widely used adaptation method that has been the
subject of frequent studies [1, 2, 7–12]. In Derivational Analogy cases contain the
derivational trace, the sequence of decisions made to obtain a plan, rather than
the plan itself. Typically in a problem-solving session, part of a solution plan is
obtained through case replay of the derivational traces stored in retrieved cases,
and part through first-principles planning.

We will now formulate an algorithm that we will call DerUCP, for perform-
ing Derivational Analogy on top of UCP. DerUCP serves as a general model
for Derivational Analogy in STRIPS style planning since its instantiations in-
clude derivational analogy case-based planners such as Prodigy/Analogy [1],
CAPlan/CbC [13] and DerSNLP [11].

3.1 Derivational Trace

Suppose we run an instantiation of UCP on a planning problem, and we keep a
record of the sequence of choices it made at each of the nondeterministic choice
points. This record, which called a derivational trace, consists of a sequence of
decision records, each of which tells the particular choice that was made at one of
UCP’s nondeterministic choice points. The decision record gives the refinement
strategy (such as FSS or PS), the refinement goal i.e., what portion of the par-
tial plan is relevant for applying the refinement strategy, and the decision i.e.,
which particular refinement was chosen from among the alternative refinements
produced by the refinement strategy.

More specifically, here is the information that needs to go into the decision
records for the different kinds of refinements that UCP can make:

1. Decision record for a forward state-space refinement:
– Refinement goal: the head-state s at the time the refinement was applied.
– Decision: what step t was chosen (out of the set of all steps whose precon-

ditions are satisfied by s), and whether t was a new step or a previously
existing step.

If the decision record says that t was a new step, then this means that UCP
added t to the partial plan, and added a contiguity constraint between the
head step and t. If the decision record says that t was an existing step, then
this means that UCP simply added a contiguity constraint between the head
step and t.

2. Decision record for a backward state-space refinement:
– Refinement goal: the tail-state s at the time the refinement was applied.
– Decision: what step t was chosen (out of the set of all steps that do not

delete any condition in s and achieve at least one condition in s), and
whether it was a new step or a previously existing step.

If the decision record says that t was a new step, then this means that UCP
added t to the partial plan, and added a contiguity constraint between t and
the tail step. If the decision record says that t was an existing step, then

4



this means that UCP simply added a contiguity constraint between t and
the tail step.

3. Decision record for a plan-space refinements
– Refinement goal: a point truth constraint 〈p@t′〉.
– Decision: what step t was chosen (out of the set of all steps that can

establish the point truth constraint 〈p@t′〉), whether it was a new or
existing step, and whether an IPC was added to the plan.

If the decision record says t was a new step, it means that UCP added it to
the plan, and in any case it means that UCP added constraints to require
that t ≺ t′ and to prevent any step from coming between t and t′ and deleting
p.

4. Decision record for a refine-plan-pre-order refinement:
– Refinement goal: a pair of unordered steps t1 and t2.
– Decision: Whichever of the following two plans was chosen: P +(t1 ≺ t2)

or P + (t1 6≺ t2).

5. Decision record for a refine-plan-pre-position refinement:
– Refinement goal: a pair of non-contiguous steps t1 and t2.
– Decision: Whichever of the following two plans was chosen: P + (t1 ∗ t2)

or P + (t1 6 ∗ t2).

6. Decision record for a refine-plan-pre-satisfy refinement:
– Refinement goal: an auxiliary constraint C and a step t3 in conflict with

C.
– Decision: the way in which P was refined in order to make C hold in

every possible ground linearization of P . For example, if C is an IPC

(t1
p

− t2), then the possible refinements of P may be any plans of the
form P + (t3 ≺ t1) ∨ (t2 ≺ t3) or P + π

p
t3

@t3, where t3 is a step having
an effect that unifies with ¬p, and π

p
t3

is as described in [5].

These decision records take all search choice points in the UCP algorithm into
account. As an example of these decision records, Table 1 shows a derivational
trace for the example in Section 2.

Note that the set of choice points and decisions confronted by an execution
of DerUCP depends on the particular instance of DerUCP. Therefore, a deriva-
tional trace recorded from an execution of instance of UCP cannot be used for
a different instance of UCP. For example, if we construct a derivational trace
for a partial-order planner, some of the decision records in the derivational trace
would not make sense for a total-order planner; a total-order planner can only
add new steps at the head fringe or at the tail fringe of the partial plan whereas
a partial-order planner can add steps anywhere in the partial plan.

3.2 DerUCP Algorithm

The DerUCP algorithm extends the UCP planning algorithm by adding the
derivational replay before the refinement steps. This section describes only the
derivational replay mechanism, which relies on the replay step and the procedure

5



Table 1. A derivational trace for the example in Section 2.

Step: 1
Type: forward state-space refinement
Refinement goal: the head-state {i′}
Decision: a new step with operator oi.

Step: 2
Type: backward state-space refinement
Refinement goal: the tail-state. {G′}
Decision: a new step with operator o′.

Step: 3
Type: plan-space refinement
Refinement goal: the point truth constraint 〈p@t2〉.
Decision: a new step with operator op1

Step: 4
Type: plan-space refinement
Refinement goal: the point truth constraint 〈q@t2〉.
Decision: a new step with operator oq

Step: 5
Type: refine-plan-pre-satisfy

Refinement goal: IPC (t3
p

− t2) and t4
Decision: the plan P + t4 ≺ t3.

Replay. For a precise description of other parts of the UCP algorithm, please
refer to [5].

Figure 2 shows the pseudocode of the DerUCP algorithm. The DerUCP al-
gorithm is a recursive search procedure in which partial plans are refined by
additions of new steps and constraints in the refinement steps in each iteration
until a solution is found. Instead of allowing nondeterministic choice in the al-
gorithm description of UCP, DerUCP explicitly maintains a priority list which
stores the pending partial plans. The priority list plays a role similar to the open
list in the A∗ search algorithm. At the beginning, the priority list containing an
empty partial plan is provided, together with a case library. The DerUCP algo-
rithm first picks up one of the partial plans from the priority list according to a
choice function (Step 0), which depends on the particular UCP instance. If the
partial plan contains a solution, the algorithm returns it and terminates (Step
1). Otherwise, the algorithm proceeds to the replay step, which selects a case
achieving any refinement goal and replays it (Step 2). The details of Replay pro-
cedure are discussed below. After the replay step, the partial plan, P , is refined.
This refined plan is used in the remaining steps. Note that the steps after the
replay step, i.e., the progressive refinement, the non-progressive refinement, and
consistency check, are optional, and therefore they can be skipped (Steps 3-5).
Finally, all the partial plans generated by the refinement steps are inserted into
the priority list and DerUCP is invoked recursively (Step 6).

In the replay step, the set of refinement goals of the current partial plan is
computed (Figure 3). The possible refinement goals are the refinement goals of

6



procedure DerUCP(PL, CL)
Inputs: PL - a priority list

CL - a case library
begin

0. Plan Selection
Select one partial plan P from PL (by a choice function).
Remove P from PL.

1. Termination Check
If P contains a ground operator sequence that solves

the problem, returns it and terminates.
2. Replay

Construct a list of refinement goals G for P .
Let S ⊆ CL be the set of cases which achieve

some refinement goals in G

if S is not empty then
Select one case C from S according to a metric
P := Replay(P, G, C, PL)
PL := PL ∪ {P}

3. (optional) Progressive Refinement
Using pick-refinement strategy, select any one of

1. Refine-plan-forward-state-space(P)

2. Refine-plan-backward-state-space(P)

3. Refine-plan-plan-space(P)

Let L′ be all of the returned plans. PL := PL ∪ L′

4. (optional) Non-progressive Refinement
For each P ′ in L′, select zero or more of:

1. Refine-plan-conflict-resolve(P ′)

2. Refine-plan-pre-ordering(P ′)

3. Refine-plan-pre-positioning(P ′)

Let L′′ be all of the returned plans. PL := PL ∪ L′′

5. (optional) Consistency Check
For each P ′′ in L′′, select zero or more of:

If the partial plan P ′′ is inconsistent or
non-minimal, remove P ′′ from L′′.

6. Recursive Invocation:
Call DerUCP(PL, CL)

end

Fig. 2. The DerUCP algorithm

7



procedure Replay(P, G, C, PL)
begin
1. if C is null then return P

2. Let gc be the refinement goal of first(C)
3. if ∃g ∈ G that match gc then
4. Let dc be the decision for gc in C

5. Let cs be the set of applicable refinements for g

6. if ∃r ∈ cs that matches(decision(r), dc) then
7. Apply the refinement r to P to obtain P ′

8. Apply the refinements in cs− {r} to P to obtain
a set of partial plans PS

9. Append PS to PL with a lower priority
10. Construct a list of refinement goals G′ for P ′

(G′ can be obtained by modifying G)
11. Select one of the following:

return Replay(P ′, G′, next(C), PL), or
return P ′

else
12. Select one of the following:

return Replay(P, G, next(C), PL), or
return P ′

end

Fig. 3. The Replay Procedure

all six decision records described in Section 3.1. The replay of the current case
continues only if the next goal in the case gc matches the refinement goal g

(Steps 2-3). Each decision record in the derivational trace guides the selection
of appropriate refinements. The Replay procedure recursively iterates over the
decision records of the case, and in each iteration it checks if the refinement
suggested by the decision of the current decision record is a valid refinement
in the current partial plan (Steps 4-6). If so, the refinement is selected and
the alternative refinements are put on the priority list for possible backtracking
(Steps 7-10). After each iteration DerUCP makes a nondeterministic choice to
continue with the next decision record or stop the replay process (Step 11).

Eager and Interleaved Replay. DerUCP supports the two variants of Deriva-
tional Replay: eager and interleaved replay. In eager replay, case replay is done
first and then the partial plan obtained is completed by a first principles plan-
ner. It is called “eager” since each of the selected cases is replayed as long as
possible. That is, in steps 11 and 12 of the Replay procedure, the recursive call
is always made. An example of a system performing eager replay is DerSNLP
[11]. In Interleaved Replay, case replay may be interleaved with first-principles
planning and it is not eager. An example of a system implementing the inter-
leaved approach is Prodigy/Analogy. Interleaving is covered in DerUCP in two
places: first, in the recursive call of Step 6 of the DerUCP algorithm, interleaving

8



between first-principles planning and case replay is secured. Second, the nonde-
terministic choices of steps 11 and 12 in the Replay procedure ensure that the
cases need not be eagerly replayed. In Prodigy/Analogy heuristics are used to
decide whether to continue replay of the current case or not.

4 Complexity Analysis of Plan Adaptation

We now analyze the main result in [4] that sometimes has been quoted as proof
that plan adaptation is harder than planning from scratch. First the standard
definitions of a planning problem, i.e., “planning from scratch”, is given. [14]

Definition 1. An instance of propositional STRIPS planning is denoted by a
tuple 〈P, O, I, G〉, where:

– P is a finite set of ground atoms. Let L be the corresponding set of literals:
L = P ∪ {¬p : p ∈ P}.

– O is a finite set of operators of the form Pre ⇒ Post, where Pre ⊆ L is
the preconditions and Post ⊆ L is the postconditions or effects. The positive
postcondition is the add list, while the negative postcondition is the delete
list.

– I ⊆ P is the initial state.
– G ⊆ L is the goal.

A state S is a subset of P , indicating that p ∈ P is true in that state if p ∈ S,
and false otherwise. A state S is a goal state if S satisfies G, i.e., if all positive
literals in G are in S and none of the negative literals in G is in S.

Definition 2. PLAN-EXISTENCE (Π) Given an instance of the planning
problem Π = 〈P, O, I, G〉, does there exist a plan ∆ that solves Π?

The following is the definition of plan adaptation used in [4]:

Definition 3. MODSAT (Π1, ∆, Π, k)
Given the instance of the planning problem Π1 = 〈P, O, I1, G1〉, and a plan ∆

that solves the instance Π = 〈P, O, I, G〉, does there exist a plan ∆1 that solves
Π1 and contains a subplan of ∆ of at least length k ?

This definition states what the authors of [4] call a conservative plan mod-
ification strategy in the sense that it is trying to reuse as much of the starting
plan ∆ to solve the new plan. The main conclusion from [4] is that in the worst
case MODSAT is harder than PLAN-EXISTENCE. That is, plan adaptation is
harder than planning from scratch with a conservative strategy plan modification
strategy .

In [4], Priar [15] and SPA [16] are cited as examples of systems performing this
conservative adaptation strategy. Interestingly, neither of these systems performs
plan adaptation by Derivational Analogy; cases in these systems contains plans
and provably correct plan transformation rules are used to perform adaptation.

9



So the question remains: does adaptation by derivational analogy perform a
conservative plan modification strategy in the sense of the MODSAT definition or
not? If it does, then the worst case analysis applies and thus the empirical results
reported about case-based planners such as Prodigy/Analogy, DerSNLP and
CAPlan/CbC outperforming their respective underlying first-principles plan-
ners would have been mere accidents. As it turns out, adaptation by deriva-
tional analogy does not perform a conservative adaptation strategy in the sense
of MODSAT.

The key to our analysis lies in Step 11 of the Replay procedure. Clearly,
if the algorithm stops replaying the derivational trace rather than executing
the recursive call, the adaptation is not conservative as the remaining parts
of the derivational trace are not taken into account. This typically happens in
Interleaved Replay. But what would happen if the recursive call always occurs,
as happens in Eager Replay? The answer to this question can be seen from step
6 of the Replay procedure. Step 6 stops the replay process of a derivational trace
if the current decision record is not applicable. At this point all of the remaining
decision records are ignored. This is not a conservative strategy; in this situation,
a conservative strategy would try to fix the impasse, for example by adding a
few plan steps or revising the previous decision record, and then continuing with
the remaining decision records.

This can be easily illustrated with an example from the logistics domain [1], in
which packages must be relocated using some transportation methods. There are
some restrictions imposed on the transportation methods. For example, trucks
can only deliver packages within a city. Figure 4 shows a possible configuration.
There are four locations A, B, C and D. A truck T1 and a package P1 are in
location A and another truck T2 and another package P2 are in location D.
Suppose that our goal is to relocate both packages in location C. The arrows
in Figure 4 show the paths followed by the trucks to achieve this problem. The
first truck, T1, loads P1 and drives to B. Meanwhile, the second truck, T2, loads
P2 and also drives to B. Once in B, P2 is unloaded from T2 and loaded into
T1. T1 continues to C where both packages are dropped. Now, suppose that the
derivational trace of this plan is stored in a case and that our particular instance
of UCP performs only forward state-space refinement (i.e., steps can only be
added to the head fringe of partial plan).

Let us suppose that a new problem is given which is almost identical to our
previous example. The only difference is that T2 is not available. The corre-
sponding instance of DerUCP will start replaying the first part of the plan in
which P1 is loaded into T1 and T1 drives from A to B. At this point the replay
fails since P2 is not in B (to be precise, the condition at Step 6 of the Replay

procedure fails). DerUCP either continues by planning from scratch or by using
a case that can continue solving this problem. This is not a conservative strategy
in the sense of the MODSAT definition; a conservative strategy will drive T1
to D pick the second package, drive back to B and continue reusing the rest
of the case. DerUCP never “continues” replay from a point at which a failure
occurs because the replay step is always done from the beginning of the deriva-

10



P2

T2

D

P1

T1

A B C

Fig. 4. A simple planning problem from the Logistics domain

tional trace. Thus, DerUCP would ignore the rest of the derivational trace even
though most of it could have been used. One could constructs a similar example
for partial order planning.

5 Efficiency of DerUCP

The analysis of the efficiency of DerUCP is divided into two parts. We first
analyze the efficiency of the replay of one case, and then extend the analysis to
the replay of multiple cases.

5.1 Replay of a Single Case

We consider the efficiency of DerUCP with exactly one case being replayed
during the whole planning process. In other words, the Replay procedure is
invoked once only. This analysis is an extension of a similar analysis for eager
replay in Section 5 of [2].

Theorem 1. Suppose exactly one case is replayed in DerUCP. Furthermore:

– Let the branching factor b be the average number of partial plans that can be
generated from a given plan by the application of a single refinement.

– Let the depth of the solution d be the average length of the solution path from
the initial (null) plan to a solution.

– Let ls be the number of nodes before the replay begins.
– Let lc be the number of nodes visited during the replay.
– Let lb be the number of nodes on the replay path that are backtracked.

Then the search space size is O(bd−l1), where l1 = lc − lb

Proof. When only one case is replayed in the whole planning process, we can
divide the execution of DerUCP into four phases: planning from scratch before
the call to Replay procedure, the replay of the case, backtracking over various
decisions suggested by the case, and finally using first-principles planning to
extend the resulting partial plan to produce the final solution.

11



Figure 5 shows a possible exploration of the search space by DerUCP. The
solid arrows represent the paths traversed by means of first-principles planning.
The dashed arrow refers to the path due to derivational replay. The major dif-
ference between the solid arrows and the dashed arrow is that the searching on
the solid arrows is possibly over the whole search tree which has size exponential
to the length of the path. The searching on the dashed arrows is a traversal of
a single branch of the search tree, which is guided by the decisions encoded in
the derivational trace of the retrieved case. Therefore, the dashed arrow can be
seen as a shortcut that enables the searching process to jump from one point in
the search space to the other. Only the regions of the search space bounded by
the two bold triangles are explored by first principles. Thus, a total of lc − lb
node expansions of the search tree are skipped, and the total search space size
is O(bd−(lc−lb)). 2

If the planning is done by merely planning from scratch without derivational
replay, then the search space size is O(bd) (see [17]). In the worst case, this is
exponentially larger than the O(bd−(lc−lb)) search space size of DerUCP as stated
in Theorem 1, since lc − lb ≥ 0.

5.2 Replay of Multiple Cases

We now consider the situation in which more than one case is replayed. When
multiple cases are replayed, the search process contains more than one path that
is guided by the derivational trace of the cases. Since the paths may interleave
with each other in a complicated way, it is hard to identify which part of the
search space is skipped. To simplify the analysis, consider only replays in which
some refinements are retained in the final plan, as these guided refinements
replace the node expansion of the search tree—the effect is similar to pruning
the search space. Figure 6 shows a typical search space for DerUCP. The bold
triangles are the regions of the search spaces explored by first principles. Other
regions are essentially skipped by replay. Therefore, the search space size is
O(bd−

∑
li), where each li is the number of refinements that occur between the

(i− 1)’th and i’th bold triangles. By generalizing this argument, we get:

Theorem 2. If two or more cases are replayed in DerUCP, then the search
space size is O(bd−

∑
li), where each li is the number of refinements during the

i’th replay that are retained for use in the final plan.

Theorem 2 states that whenever some refinements suggested by any case are
retained in the final plan, the search space size can be reduced.

These results show that Derivational Analogy can potentially make an ex-
ponential reduction in the size of the search space visited during adaptation.
The reduction in the size of the exponent is proportional to the number of steps
obtained during replay that remain when the solution plan is completed, i.e., it
is proportional to the number of steps taken during replay that were not revised
to obtain the solution plan. The worst-case scenario occurs when all decisions
taken during replay need to be revised. In such a situation the size of the search

12



l b

l c

l s

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

d

Extension

Backtrack

Replay

Planning from scratch

Fig. 5. The search-space size for DerUCP with one call to Replay is O(bd−l1 ), where b

is the branching factor, d is the depth of the solution, ls is the number of nodes before
the replay begins, lc is the number of nodes visited during the replay, lb is the number
of nodes on the replay path that are backtracked, and l1 = lc − lb.

l 2

l 3

l 1

d

Fig. 6. The search-space size for DerUCP with multiple calls to Replay is O(bd−
∑

li ),
where each li is the number of refinements during the i’th replay that are retained for
use in the final plan.

space is O(bd) since lb = ld in Theorem 1. This worst-case search-space size is the
same as the search-space size generated by the underlying planner. This proves
the following theorem:

Theorem 3. In the worst case, the size of the search space potentially generated
by DerUCP is O(bd), i.e., the same as the size of the search space potentially
generated by UCP.

6 Conclusion

This paper describes the DerUCP algorithm, which is a general model of plan
adaptation using Derivational Analogy. DerUCP is an extension of the well
known UCP algorithm [5], which is a general model for classical AI planning.
DerUCP covers all existing forms of Derivational Analogy that we are aware of,
including Interleaved and Eager Replay.

13



Our analysis of DerUCP resolves the difference between theoretical results
[4] suggesting that plan adaptation is worse than planning from scratch and
empirical results [1–3] suggesting that Derivational Analogy does better than
planning from scratch. In particular, we have shown the following:

– The conservative plan adaptation strategy as defined in [4] does not hold for
Derivational Analogy. Thus, the worst-case complexity result in [4] about
plan adaptation being harder than planning from scratch does not apply to
Derivational Analogy.

– If we compare the size of the search space for any instance of DerUCP
with the size of the search space for the corresponding instance of UCP,
the DerUCP search space is no larger—and can potentially be exponentially
smaller—than the UCP search space.

The amount of reduction is directly proportional to the number of steps obtained
through case replay that remain after the solution plan is completed. Thus, per-
formance improvements depend on the retrieval method being able to select cases
that require fewer revisions. This is precisely what instances of DerUCP such
as Prodigy/Analogy, DerSNLP and CAPlan/CbC do; these systems implement
sophisticated retrieval and indexing techniques to improve the accuracy of the
retrieval and reduce backtracking on the replayed steps.

Acknowledgments

This work was supported in part by the following grants, contracts, and awards:
Air Force Research Laboratory F306029910013 and F30602-00-2-0505, Army
Research Laboratory DAAL0197K0135, and the Office of Research at Lehigh
University. The opinions expressed in this paper are those of authors and do not
necessarily reflect the opinions of the funders.

References

1. Veloso, M., Carbonell, J.: Derivational analogy in PRODIGY: Automating case
acquisition, Storage and Utilization. Machine Learning (1993) 249–278

2. Ihrig, L., Kambhampati, S.: Plan-space vs. State-space planning in reuse and
replay. Technical report, Arizona State University (1996)

3. Muñoz-Avila, H.: Case-Base Maintenance by Integrating Case Index Revision
and Case Retention Policies in a Derivational Replay Framework. Computational
Intelligence 17 (2001)

4. Nebel, B., Koehler, J.: Plan reuse versus plan generation: a theoretical and empir-
ical analysis. Artificial Intelligence 76 (1995) 427–454

5. Kambhampati, S., Srivastava, B.: Unifying Classical Planning Approaches. Tech-
nical report, Arizona State University (1996)

6. Fikes, R., Hart, P., Nilsson, N.: Learning and executing generalized robot plans.
Artificial Intelligence 3 (1972) 251–288

7. Carbonell, J.G.: Derivational analogy: A theory of reconstructive problem solving
and expertise acquisition. Machine Learning (1986)

14



8. Bhansali, S., IIarandi, M.T.: When (not) to Use Derivational Analogy: Lessons
Learned Using APU. In Aha, D., ed.: Proceeding of AAAI-94 Workshop: Case-
based Reasoning. (1994)

9. Blumenthal, B., Porter, B.: Analysis and Empirical Studies of Derivational Anal-
ogy. Artificial Intelligence 67 (1994) 287–328

10. Finn, D., Slattery, S., Cunningham, P.: Modelling of Engineering Thermal Prob-
lems - An implementation using CBR with Derivational Analogy. In: Proceedings
of EWCBR’93, Springer-Verlag (1993)

11. Ihrig, L., Kambhampati, S.: Derivation Replay for Partial-Order Planning. AAAI-
1994 (1994)

12. Muñoz-Avila, H., Weberskirch, F.: Planning for Manufacturing Workpieces by
Storing, Indexing and Replaying Planning Decisions. Proc. 3rd Int. Conference on
AI Planning Systems (AIPS-96) (1996)

13. Muñoz-Avila, H., Paulokat, J., Wess, S.: Controlling Nonlinear Hierarchical Plan-
ning by Case Replay. In: Proceedings the 2nd European Workshop on Case-Based
Reasoning (EWCBR-94). (1994) 195–203

14. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning.
Artificial Intelligence 69 (1994) 165–204

15. Kambhampati, S.: Exploiting causal structure to control retrieval and refitting
during plan reuse. Computational Intelligence 10 (1994) 213–244

16. Hanks, S., Weld, D.S.: A Domain-Independent Algorithm for Plan Adaptation.
Journal of Artificial Intelligence Research 2 (1995) 319–360

17. Korf, R.: Planning as Search: A Quantitative Approach. Artificial Intelligence 33
(1987) 65–88

15




