
Accident or Intention: That Is the Question
(in the Noisy Iterated Prisoner’s Dilemma)

Tsz-Chiu Au
Department of Computer Science

University of Maryland
College Park, MD 20742

chiu@cs.umd.edu

Dana Nau
Department of Computer Science

University of Maryland
College Park, MD 20742

nau@cs.umd.edu

ABSTRACT
This paper focuses on the Noisy Iterated Prisoner’s
Dilemma, a version of the Iterated Prisoner’s Dilemma
(IPD) in which there is a nonzero probability that a “co-
operate” action will accidentally be changed into a “defect”
action and vice versa. Tit-For-Tat and other strategies that
do quite well in the ordinary (non-noisy) IPD can do quite
badly in the Noisy IPD.

This paper presents a technique called symbolic noise de-
tection, for detecting whether anomalies in player’s behavior
are deliberate or accidental. The key idea is to construct a
model of the other agent’s behavior, and watch for any de-
viation from this model. If the other agent’s next action is
inconsistent with this model, the inconsistency can be due
either to noise or to a genuine change in their behavior; and
we can often distinguish between two cases by waiting to see
whether this inconsistency persists in next few moves.

We entered several different versions of our strategy in
the 2005 Iterated Prisoner’s Dilemma competition, in Cat-
egory 2 (noisy environments). Out of the 165 contestants
in this category, our programs consistently ranked among
top ten. The best of our programs ranked third, and it was
beaten only by two “master-slave strategy” programs that
each had a large number of “slave” programs feeding points
to them.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; I.6.8 [Simulation and
Modeling]: Types of Simulation—Gaming

General Terms
Design, Experimentation, Measurement, Theory

Keywords
Adaptation; Cooperation; Coordination; Game theory;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Learning; Multi-agent systems; Noise; Opponent modeling;
Prisoner’s Dilemma; Repeated game; Tit-for-tat

1. INTRODUCTION
The Iterated Prisoner’s Dilemma (IPD) has become well

known as an abstract model of a class of multi-agent envi-
ronments in which agents accumulate payoffs that depend
on how successful they are in their repeated interactions
with other agents. An important variant of the IPD is the
Noisy IPD, in which there is a small probability, called the
noise level, that accidents will occur. In other words, the
noise level is the probability of executing “cooperate” when
“defect” was the intended move, or vice versa.

Accidents can cause difficulty in cooperations with others
in real-life situations, and the same is true in the Noisy IPD.
Strategies that do quite well in the ordinary (non-noisy) IPD
may do quite badly in the Noisy IPD [4, 6, 7, 18, 19, 20].
For example, if two players both use the well-known Tit-
For-Tat (TFT) strategy, then an accidental defection may
cause a long series of defections by both players as each of
them punishes the other for defecting.

In this paper, we describe a technique called symbolic
noise detection for dealing with noise. The key idea is to
build a symbolic model of how the other agent behaves, and
watch for any deviation from this model. If the other agent’s
next move is inconsistent with their past behavior, this in-
consistency can be due either to noise or to a genuine change
in their behavior; and we can often distinguish between these
two cases by waiting to see if this inconsistency persists or
not in the next few iterations of the game.

To test our technique, we wrote several programs that
used it, and entered them as contestants in Category 2 (the
Noisy IPD) of the 2005 Iterated Prisoner’s Dilemma com-
petition [14]. In the competition, the noise level was 10%.
The result of the competition showed an impressive perfor-
mance for symbolic noise detection (Table 1). Seven of our
nine symbolic noise detection programs placed among top
ten according to their overall average score. Our best pro-
gram, DBSz, placed third, and it was the best-performing
non-master-slave program in Category 2.1

1Each participant in the competition was allowed to sub-
mit up to 20 programs as contestants. Some participants
took advantage of this to submit collections of programs
that worked together in a conspiracy in which 19 of their 20
programs (the “slaves”) worked to give as many points as
possible to the 20th program (the “master”). In contrast,
DBS is not a master-slave program. Instead, DBS builds
behavioral models of the other contestants in order to coop-

This paper describes the design of DBS, particularly the
implementation of the symbolic noise detection in DBS. Sec-
tion 2 presents the motivation for the approach, Section 3
gives the basic definitions, and Section 4 gives an overview
of how DBS works. Section 5 how the opponent modeling is
done and in particular the symbolic noise detection works.
Section 6 discusses DBS’s performance in the 2005 Iterated
Prisoner’s Dilemma competition, and contrasts DBS to the
notorious master-and-slaves strategy. Section 7 discusses re-
lated work, and Section 8 is the conclusion.

2. MOTIVATION AND APPROACH
The techniques used in DBS are motivated by a British

army officer’s story that was quoted in [3, page 40]:

I was having tea with A Company when we heard
a lot of shouting and went out to investigate.
We found our men and the Germans standing on
their respective parapets. Suddenly a salvo ar-
rived but did no damage. Naturally both sides
got down and our men started swearing at the
Germans, when all at once a brave German got
onto his parapet and shouted out: “We are very
sorry about that; we hope no one was hurt. It
is not our fault. It is that damned Prussian ar-
tillery.” (Rutter 1934, 29)

Such an apology was an effective way of resolving the con-
flict and preventing a retaliation because it told the British
that the salvo was not the intention of the German infantry,
but instead was an unfortunate accident that the German
infantry did not expect nor desire. The reason why the apol-
ogy was convincing was because it was consistent with the
German infantry’s past behavior. The British had was am-
ple evidence to believe that the German infantry wanted to
keep the peace just as much as the British infantry did.

More generally, an important question for conflict pre-
vention in noisy environments is whether a misconduct is
intentional or accidental. A deviation from the usual course
of action in a noisy environment can be explained in either
way. If we form the wrong belief about which explanation is
correct, our response may potentially destroy our long-term
relationship with the other player. If we ground our belief
on evidence accumulated before and after the incident, we
should be in a better position to identify the true cause and
prescribe an appropriate solution. To accomplish this, DBS
uses the following key techniques:

1. Learning about the other player’s strategy. DBS
uses an induction technique to identify a set of rules
that model the other player’s recent behavior. The
rules give the probability that the player will cooper-
ate under different situations. As DBS learns these
probabilities during the game, it identifies a set of de-
terministic rules that have either 0 or 1 as the proba-
bility of cooperation.

2. Detecting noise. DBS uses the above rules to detect
anomalies that may be due either to noise or a gen-
uine change in the other player’s behavior. If a move
is different from what the deterministic rules predict,
this inconsistency triggers an evidence collection pro-
cess that will monitor the persistence of the incon-
sistency in the next few iterations of the game. The

erate with them as effectively as possible.

purpose of the evidence-collection process is to deter-
mine whether the violation is likely to be due to noise
or to a change in the other player’s policy.

3. Temporarily tolerating possible misbehaviors
by the other player. Until the evidence-collection
process finishes, DBS assumes that the other player’s
behavior is still as described by the deterministic rules.
Once the evidence collection process has finished, DBS
decides whether to believe the other player’s behavior
has changed, and updates the deterministic rules ac-
cordingly.

Since DBS emphasizes the use of deterministic behaviors
to distinguish noise from the change of the other player’s
behavior, it works well when the other player uses a pure
(i.e., deterministic) strategy or a strategy that makes deci-
sions deterministically most of the time. Fortunately, deter-
ministic behaviors are abundant in the Iterated Prisoner’s
Dilemma. Many well-known strategies, such as TFT and
GRIM, are pure strategies. Some strategies such as Pavlov
or Win-Stay, Lose-Shift strategy (WSLS) [15, 16, 17, 21] are
not pure strategies, but a large part of their behavior is still
deterministic. The reason for the prevalence of determin-
ism is discussed by Axelrod in [2]: clarity of behavior is an
important ingredient of long-term cooperation. A strategy
such as TFT benefits from its clarity of behavior, because it
allows other players to make credible predictions of TFT’s
responses to their actions. We believe the success of our
strategy in the competition is because this clarity of behav-
ior also helps us to fend off noise.

The results of the competition show that the techniques
used in DBS are indeed an effective way to fend off noise and
maintain cooperation in noisy environments. When DBS de-
fers judgment about whether the other player’s behavior has
changed, the potential cost is that DBS may not be able to
respond to a genuine change of the other player’s behavior as
quickly as possible, thus losing a few points by not retaliat-
ing immediately. But this delay is only temporary, and after
it DBS will adapt to the new behavior. What is more im-
portant is that the techniques used in DBS greatly reduce
the probability that noise will cause it to end a coopera-
tion and fall into a mutual-defect situation. Our experience
has been that it is hard to re-establish cooperation from a
mutual-defection situation, so it is better avoid getting into
mutual defection situations in the first place. When com-
pared with the potential cost of ending an cooperation, the
cost of temporarily tolerating some defections is worthwhile.

Temporary tolerance also benefits us in another way. In
the noisy Iterated Prisoner’s Dilemma, there are two types
of noise: one that affects the other player’s move, and the
other affects our move. While our method effectively han-
dles the first type of noise, it is the other player’s job to deal
with the second type of noise. Some players such as TFT
are easily provoked by the second type of noise and retaliate
immediately. Fortunately, if the retaliation is not a perma-
nent one, our method will treat the retaliation in the same
way as the first type of noise, thus minimizing its effect.

3. DEFINITIONS

3.1 Iterated Prisoner’s Dilemma with Noise
In the Iterated Prisoner’s Dilemma, two players play a

finite sequence of classical prisoner’s dilemma games, whose

payoff matrix is:

Player 2
Cooperate Defect

Cooperate (uCC , uCC) (uCD, uDC)
Player 1

Defect (uDC , uCD) (uDD, uDD)

where uDC > uCC > uDD > uCD and 2uCC > uDC + uCD.
In the competition, uDC , uCC , uDD and uCD are 5, 3, 1 and
0, respectively.

At the beginning of the game, each player knows noth-
ing about the other player and does not know how many
iterations it will play. In each iteration, each player chooses
either to cooperate (C) or defect (D), and their payoffs in
that iteration are as shown in the payoff matrix. We call this
decision a move, hence {C,D} is the set of possible moves.
After both players choose a move, they will each be informed
of the other player’s move before the next iteration begins.

If ak, bk ∈ {C,D} are the moves of Player 1 and Player 2
in iteration k, then we say that (ak, bk) the outcome of it-
eration k. If there are N iterations in a game, then the
total scores for Player 1 and Player 2 are

P
1≤k≤N uakbk

and
P

1≤k≤N ubkak , respectively.
The Noisy Iterated Prisoner’s Dilemma is a variant of the

Iterated Prisoner’s Dilemma in which there is a small prob-
ability called the noise level2 that a player’s moves will be
mis-implemented. The noise level is the probability of exe-
cuting C when D was the intended move, or vice versa. The
incorrect move is recorded as the player’s move, and deter-
mines the outcome of the iteration.3 Furthermore, neither
player has any way of knowing whether the other player’s
move was executed correctly or incorrectly.4

3.2 Strategies and Policies
A history H of length k is the sequence of outcomes

of all iterations up to and including iteration k. We
write H = 〈(a1, b1), (a2, b2), . . . , (ak, bk)〉. We let H =
{(C,C), (C,D), (D,C), (D,D)}∗ be the set of all possible
histories. A strategy M : H → [0, 1] associates with each
history H a number M(H) ∈ [0, 1] called the degree of co-
operation. M(H) is the probability that M chooses to co-
operate at iteration k + 1, where k is H’s length.

As an example, suppose the Player 2 is TFT. We can
model this as a function MTFT such that MTFT (H) = 1 if
H’s length is zero or ak = C, and MTFT (H) = 0 otherwise.

A condition Cond : H → {True,False} is a mapping from
histories to boolean values. A history H satisfies a condi-
tion Cond if Cond(H) = True. A policy schema is a set of
conditions such that each history in H satisfies exactly one
of the conditions. A rule is a pair (Cond, p) which we will
write as Cond → p, where Cond is a condition and p is a
degree of cooperation. A policy is a set of rules whose con-
ditions constitute a policy schema. We will use a policy to
approximate the behavior exhibited by a strategy.

2The noise level in the competition was 0.1.
3Hence, a mis-implementation is different from a mispercep-
tion, which would not change the outcome of the iteration.
The competition included mis-implementations but no mis-
perceptions.
4As far as we know, the definitions of “mis-implementation”
used in the existing literature are ambiguous about whether
either of the players should know that an action has been
mis-executed.

Procedure DerivedBeliefStrategy()
1. Rd ← RTFT // the default rule set
2. Rc ← ∅ // the current rule set
3. a0 ← C ; b0 ← C ; H ← 〈(a0, b0)〉; π = Rd

4. a1 ← MoveGen(π,H) ; k ← 1 ; v ← 0

5. Loop until the end of the game
6. Output ak and obtain the other player’s move bk
7. r+ ← ((ak−1, bk−1)→ bk)
8. r− ← ((ak−1, bk−1)→ ({C,D} \ {bk}))
9. If r+, r− 6∈ Rc

10. If ShouldPromote(r+) = true, insert r+ into Rc.
11. If r+ ∈ Rc, set the violation count of r+ to zero
12. If r− ∈ Rc and ShouldDemote(r−) = true
13. Rd ← Rc ∪Rd; Rc ← ∅; v ← 0
14. If r− ∈ Rd, then v ← v + 1
15. If v > RejectThreshold, or (r+ ∈ Rc and r− ∈ Rd)
16. Rd ← ∅; v ← 0
17. Rp ← {(C → p′) ∈ ψk+1 : C not appear in Rc or Rd}
18. π ← Rc ∪Rd ∪Rp // Rp is the probabilistic rule set
19. H ← 〈H, (ak, bk)〉; ak+1 ← MoveGen(π,H) ; k ← k + 1

Figure 1: An outline of the DBS strategy.
ShouldPromote first increases r+’s promotion count,
and then if r+’s promotion count exceeds the pro-
motion threshold, ShouldPromote returns true and re-
sets r+’s promotion count. Likewise, ShouldDemote
first increases r−’s violation count, and then if
r−’s violation count exceeds the violation threshold,
ShouldPromote returns true and resets r−’s violation
count. ψk+1 in Line 17 is calculated from Equation 1.

We can model MTFT as a policy as follows: we write
Cond = (a, b) as a condition about the outcomes of the last
iteration of a history, such that Cond(H) = True if and only
if ak = a and bk = b. For simplicity, if the length of H is
zero, then Cond(H) = True if and only if a = C and b = C.
The policy for MTFT is RTFT = {(C,C) → 1.0, (C,D) →
1.0, (D,C) → 0.0, (D,D) → 0.0}.

4. DERIVED BELIEF STRATEGY
Figure 1 outlines the DBS strategy. DBS maintains a hy-

pothesized policy to model the other player’s strategy. DBS
initially assumes that the other player’s policy is TFT, but
at each iteration of the game, DBS updates the hypothesized
policy according to how the player has actually played. Sec-
tion 5 describes how the updating works.

DBS uses the current hypothesized policy to decide what
move to make. For this, it uses the MoveGen procedure on
line 4 of the figure. MoveGen is bascially a game-tree search
procedure for maximizing DBS’s utility, assuming that the
hypothesized policy π does not change. We omit the details
due to lack of space; for details see [1].

An important question is how large a policy schema to
use for the hypothesized policy. If the other player’s strat-
egy is complicated and the policy schema is too small, the
policy schema won’t provide enough detail to give useful
predictions of the other player’s behavior. But if the policy
schema is too large, DBS will be unable to compute an ac-
curate approximation of each rule’s degree of cooperation,
because the number of iterations in the game will be too
small. In the competition, we used a policy schema of size
4: {(C,C), (C,D), (D,C), (D,D)}. We have found this to
be good enough for modeling a large number of strategies.

5. LEARNING HYPOTHESIZED POLI-
CIES IN NOISY ENVIRONMENTS

We now describe how DBS learns another player’s strat-
egy. Section 5.1 describes how DBS maintains a discounted
frequency for each behavior: instead of keeping an ordinary
frequency count, DBS applies discount factors based on how
recent each occurrence of the behavior was. Sections 5.2–5.5
describe why discounted frequencies alone are not sufficient
to deal with noise, and how DBS uses symbolic noise detec-
tion and temporary tolerance to help overcome the difficulty.

5.1 Learning by Discounted Frequencies
Given a history H = {(a1, b1), (a2, b2), . . . , (ak, bk)}, a

real number α between 0 and 1 (called the discount fac-
tor), and an initial hypothesized policy π0 = {Cond1 →
p0
1, Cond2 → p0

2, . . . , Condn → p0
n} whose policy schema

is C = {Cond1, Cond2, . . . , Condn}, the probabilistic policy
at iteration k + 1 is ψk+1 = {Cond1 → pk+1

1 , Cond2 →
pk+1
2 , Condn → pk+1

n }, where pk+1
i is computed by the fol-

lowing equation:

pk+1
i =

P
0≤j≤k

`
αk−jgj

´P
0≤j≤k (αk−jfj)

(1)

and where

gj =

8<: p0
i if j = 0,

1 if 1 ≤ j ≤ k, Condi(Hj−1) = True and bj = C,
0 otherwise;

fj =

8<: p0
i if j = 0,

1 if 1 ≤ j ≤ k, Condi(Hj−1) = True,
0 otherwise;

Hj−1 =

∅ if j = 1,
{(a1, b1), (a2, b2), . . . , (aj−1, bj−1)} otherwise.

In short, the current history H has k + 1 possible prefixes,
and fj is bascially a boolean function indicating whether the
prefix of H up to the j − 1’th iteration satisfies Condi. gj

is a restricted version of fj .
When α = 1, pi is approximately equal to the frequency

of the occurrence of Condi → pi. When α is less than 1, pi

becomes a weighted sum of the frequencies that gives more
weight to recent events than earlier ones. For our purposes,
it is important to use α < 1, because it may happen that the
other player changes its behavior suddenly, and therefore we
should forget about its past behavior and adapt to its new
behavior (for instance, when GRIM is triggered). In the
competition, we used α = 0.75.

It is important to have a good initial hypothesized strat-
egy because at the beginning of the game the history is not
long enough for us to derive any meaningful information
about the other player’s strategy. In the competition, the
initial hypothesized policy is TFT: {(C,C) → 1.0, (C,D) →
1.0, (D,C) → 0.0, (D,D) → 0.0}.

5.2 The Deficiency of using Discounted Fre-
quency to Deal with Noise

It may appear that the probabilistic policy learnt by the
discounted-frequency learning technique should be inher-
ently capable of tolerating noise, because it takes many, if
not all, moves in the history into account: if the number of
terms in the calculation of the average or weighted average
is large enough, the effect of noise should be small. However,

there is a problem with this reasoning: it neglects the effect
of multiple occurences of noise within a small time interval.

A mis-implementation that alters the move of one player
would distort an established pattern of behavior observed
by the other player. The general effect of such distortion
to the Equation 1 is hard to tell—it varies with the value
of the paramters and the history. But if several distortions
occur within a small time interval, the distortion may be big
enough to alter the probabilistic policy and hence change our
decision about what move to make. This change of decision
may potentially destroy an established pattern of mutual
cooperation between the players.

At first glance, it might seem rare for several noise events
to occur at nearly the same time. But if the game is long
enough, the probability of it happening can be quite high.
The probability of getting two noise events in two consecu-
tive iterations out of a sequence of i iterations can be com-
puted recursively as Xi = p(p+ qXi−2) + qXi−1, providing
that X0 = X1 = 0, where p is the probability of a noise
event and q = 1− p. In the competition, the noise level was
p = 0.1 and i = 200, which gives X200 = 0.84. Similarly, the
probabilities of getting three and four noises in consecutive
iterations are 0.16 and 0.018, respectively.

In the 2005 competition, there were 165 players, and each
player played each of the other players five times. This
means every player played 825 games. On average, there
were 693 games having two noises in two consecutive iter-
ations, 132 games having three noises in three consecutive
iterations, and 15 games having four noises in four consecu-
tive iterations. Clearly, we did not want to ignore situations
in which several noises occur nearly at the same time.

The symbolic noise detection and temporary tolerance
outlined in Section 2 provide a way to reduce the amount
of susceptibility to multiple occurrences of noise in a small
time interval. The basic idea is to partition the set of rules
in the current hypothesized policy into two sets: the set of
deterministic rules (whose degrees of cooperation are either
zero or one) and the set of probabilistic rules (whose degrees
of cooperation are between zero and one). The determinis-
tic rules are then used to detect noise in the way that we
mentioned in Section 2.

In the following subsections, we first present the induc-
tion technique we used to identify the deterministic rules in
the other player’s behavior. Then we describe the evidence-
collection process in the symbolic noise detection. After
that, we discuss how to cope with the ignorance of the other
player’s new behavior when the evidence-collection process
decides that there is a change in the other player’s behavior.

5.3 Identifying Deterministic Rules Using In-
duction

As we discussed in Section 2, deterministic behaviors are
abundant in the Iterated Prisoner’s Dilemma. Deterministic
behaviors can be modeled by deterministic rules, whereas
random behavior would require probabilistic rules.

Deterministic rules have only two possible degrees of co-
operation: zero or one. Therefore, there should be ways to
learn deterministic rules that are much faster than the dis-
counted frequency method described earlier. For example,
if we knew at the outset which rules were deterministic, it
would take only one occurrence to learn each of them: each
time the condition of a deterministic rule was satisfied, we
could assign a degree of cooperation of 1 or 0 depending on

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Iteration

D
eg

re
e

of
 C

oo
pe

ra
tio

n

Induction
Discount Frequency

Figure 2: Learning speeds of the induction method
and the discounted frequency method when the
other player always cooperates. The initial degree
of cooperation is zero, the discounted rate is 0.75,
and the promotion threshold is 3.

whether the player’s move was C or D.
The trick, of course, is to determine which rules are deter-

ministic. We have developed an inductive-reasoning method
to distinguish deterministic rules from probabilistic rules
during learning and to learn the correct degree of coopera-
tion for the deterministic rules.

In general, induction is the process of deriving general
principles from particular facts or instances. To learn deter-
ministic rules, the idea of induction can be used as follows.
If a certain kind of behavior occurs repeatedly several times,
and during this period of time there is no other behavior that
contradicts to this kind of behavior, then we will hypothe-
size that the chance of the same kind of behavior occurring
in the next few iterations is pretty high, regardless of how
the other player behaved in the remote past.

More precisely, let K ≥ 1 be a number which
we will call the promotion threshold. Let H =
〈(a1, b1), (a2, b2), . . . , (ak, bk)〉 be the current history. For
each condition Condj ∈ C, let Ij be the set of
indexes such that for all i ∈ Ij , i < k and

Condj(〈(a1, b1), (a2, b2), . . . , (ai, bi)〉) = True. Let Îj be the
set of the largest K indexes in Ij . If |Ij | ≥ K and for all

i ∈ Îj , bi+1 = C (i.e., the other player chose C when the
previous history up to the i’th iteration satisties Condj),
then we will hypothesize that the other player will choose C
whenever Condj is satisfied; hence we will use Condj → 1
as a deterministic rule. Likewise, if |Ij | ≥ K and for all

i ∈ Îj , bi+1 = D, we will use Condj → 0 as a deterministic
rule. See Line 7 to Line 10 in Figure 1 for an outline of the
induction method we use in DBS.

The induction method can be faster at learning deter-
ministic rules than the discounted frequency technique (see
Figure 2). A faster learning speed allows us to infer the
deterministic rules with a shorter history. The promotion
threshold K controls the speed of the identification of de-
terministic rules. The larger the value of K, the slower the
speed of identification, but the less likely we will mistakenly
hypothesize that the other player’s behavior is deterministic.

5.4 Symbolic Noise Detection and Temporary
Tolerance in DBS

Once DBS has identified the set of deterministic rules, it
can readily use them to detect noise. As we said earlier, if
the other player’s move violate a deterministic rule, it can be

caused either by noise or by a change in the other player’s
behavior, and DBS uses an evidence collection process to
figure out which is the case. More precisely, once a deter-
ministic rule Condi → oi is violated (i.e., the history up to
the previous iteration satisfies Condi but the other player’s
move in the current iteration is different from oi), DBS keeps
the violated rule but marks it as violated. Then DBS starts
an evidence collection process that in the implementation of
our competition entries is a violation counting: for each vi-
olated probabilistic rule DBS maintains a counter called the
violation count to record how many violations of the rule
have occurred (Line 12). In the subsequent iterations, DBS
increases the violation count by one every time a violation of
the rule occurs. However, if DBS encounters a positive ex-
ample of the rule, DBS resets the violation count to zero and
unmark the rule (Line 11). If any violation count excesses a
threshold called the violation threshold, DBS concludes that
the violation is not due to noise; it is due to a change of the
other player’s behavior. In this case, DBS invokes a special
procedure (described in Section 5.5) to handle this situation
(Line 13).

The drawback of the discount frequency method is that it
fails to deal with several misinterpretations caused by noise
within a small time interval. The way to avoid this drawback
is to set a larger violation threshold. But if the threshold
is too large, it will slow down the speed of adaptation to
changes in the other player’s behavior. In the competition,
we entered DBS several times with several different viola-
tion thresholds; and in the one that performed the best, the
violation threshold was 4.

5.5 Coping with Ignorance of the Other
Player’s New Behavior

When the evidence collection process detects a change
in the other player’s behavior, DBS knows little about the
other player’s new behavior. How DBS copes with this ig-
norance is critical to its success.

DBS maintains two sets of deterministic rules: the current
rule set Rc and the default rule set Rd. Symbolic noise
detection and temporary tolerance makes use of the rules
in Rc but not the rules in Rd. However, DBS makes use
of the rules in both Rc and Rd when DBS decides the next
move (Line 18). More precisely, when DBS constructs a
hypothesized policy π for move generation, it uses every rule
in Rc and Rd. In addition, for any missing rule (i.e., the rule
those condition are different from any rule’s condition in Rc

or Rd), we regard it as a probabilistic rule and approximate
its degree of cooperation by Equation 1 (Line 17). These
probabilistic rules form the probabilistic rule set Rp ⊆ ψk+1.

The default rule set is designed to be rejected : we main-
tain a violation count to record the number of violations to
any rule in Rd. Every time any rule in Rd is violated, the
violation count increased by 1 (Line 14). Once the violation
count exceeds a rejection threshold, we drop the default rule
set entirely (set it to an empty set) and reset the violation
count (Line 15 and Line 16). We also reject Rd whenever
any rule in Rc contradicts any rule in Rd (Line 15).

At the beginning of a game, Rd is RTFT and Rc is empty
(Line 1 and Line 2). While DBS can insert any newly found
deterministic rule in Rc, it insert rules into Rd only when
the evidence collection process detects a change of the other
player’s behavior. When it happens, DBS copies all the rules
in Rc to Rd, and then set Rc to an empty set (Line 13).

Table 1: Scores of the top 20 programs, averaged
over the five runs in Competition 2.

Rank Program Avg. score
1 BWIN 433.8
2 IMM01 414.1
3 DBSz 408.0
4 DBSy 408.0
5 DBSpl 407.5
6 DBSx 406.6
7 DBSf 402.0
8 DBStft 401.8
9 DBSd 400.9
10 lowESTFT classic 397.2
11 TFTIm 397.0
12 Mod 396.9
13 TFTIz 395.5
14 TFTIc 393.7
15 DBSe 393.7
16 TTFT 393.4
17 TFTIa 393.3
18 TFTIb 393.1
19 TFTIx 393.0
20 mediumESTFT classic 392.9

We preserve the rules in Rc mainly for sake of providing a
smooth transition: we don’t want to convert all determinis-
tic rules to probabilistic rules at once, as it might suddenly
alter the course of our moves and lead to uncertain out-
comes. Furthermore, some of these rules may still hold, and
we don’t want to learn them from scratch.

6. COMPETITION RESULTS
The 2005 IPD Competition was actually a set of four com-

petitions, each for a different version of the IPD. The one
for the Noisy IPD was Competition 2, which used a noise
level of 0.1.

Within Competition 2 there were five runs of 200 iter-
ations each. Table 1 shows the average scores of the top
twenty programs, averaged over the five runs. The compe-
tition website at http://www.prisoners-dilemma.com gives a
more extensive set of tables showing each program’s ranking
for each of the five runs.

We entered nine different versions of DBS into the com-
petition, each with a different set of parameters or different
implementation. The one that performed best was DBSz,
which makes use of the set of features we mentioned in this
paper. Versions of DBS that had fewer features or addi-
tional features than DBSz did not do as well, but all nine
of versions of DBS were in the top 25, and they dominated
the top ten places. This implies that DBS’s performance is
insensitive to the parameters in the programs and the im-
plementation details of an individual program.

DBSz is ranked third in the table; it lost only to BWIN
and IMM01. BWIN and IMM01 both used the master-and-
slaves strategy, in which a collection of slave programs sac-
rifice their own performance in order to give as many points
as possible to another program called the master program.

Each participant was allowed to submit 20 programs.
Each of the three master-and-slaves strategies (the third one,
CNGF, was not good enough to make it into our table) has
one master and 19 slaves. At the start of a run, the master
and slaves would each make a series of moves using a prede-
fined protocol, in order to identify themselves to each other.

From then on, the master program would always play “de-
fect” when playing with the slaves and the slave programs
would always play “cooperate” when playing with the mas-
ter, so that the master would gain the highest possible payoff
at each iteration. Furthermore, a slave would alway plays
“defect” when playing with a program other than the mas-
ter, in order to try to minimize that player’s score.

DBS does not use a master-slave strategy, nor does it
conspire with other programs in any other way. Nonetheless,
DBS remained competitive with the master-slave strategies
in the competition, and performed much better than the
master-slave strategies if the score of each master is averaged
with the scores of its slaves. In particular, the average score
for BWIN and its slaves was 379.9, and the average score
for IMM01 and its slaves was 351.7. Furthermore, a more
extensive analysis [1] shows that if the size of each master-
and-slaves team had been limited to less than 10, DBSz
would have outperformed the best master-slave strategy in
the competition, even without averaging the score of each
master with its slaves.

To show the destructive effect of the master-and-slaves
strategies, Table 2 gives the percentages of each of the four
possible outcomes when any program from one group plays
with any program from another group. Note that:

• When BWIN and IMM01 play with their slaves, about
64% and 47% of the outcomes are (D,C), but when non-
master-and-slave strategies play with each other, only
19% of the outcomes are (D,C).

• When the slave programs play with non-master-and-
slaves programs, over 60% of outcomes are (D,D), but
when non-master-and-slaves programs play with other
non-master-and-slaves programs, only 31% of the out-
comes are (D,D).

• The master-and-slaves strategies decrease the overall per-
centage of (C,C) from 31% to 13%, and increase the over-
all percentage of (D,D) from 31% to 55%.

Next, we consider how DBSz performs against TFT and
TFTT, (the latter, Tit-For-Two-Tats, is like TFT except
that it retaliates only when the other player defected in both
of the last two iterations).

• Table 2 shows that when playing with another cooperative

Table 2: Percentages of different outcomes. “All
but M&S” means all 105 programs that did not use
master-and-slaves strategies, and “all” means all 165
programs in the competition.

Player 1 Player 2 (C,C) (C,D) (D,C) (D,D)
BWIN BLOS’s slaves 12% 5% 64% 20%

IMM01 IMS’slaves 10% 6% 47% 38%
CNGF CNHM’s slaves 2% 10% 10% 77%

BLOS’s slaves all but M&S 5% 9% 24% 62%
IMS’s slaves all but M&S 7% 9% 23% 61%

CNHM’s slaves all but M&S 4% 8% 24% 64%
TFT all but M&S 33% 20% 20% 27%

DBSz all but M&S 54% 15% 13% 19%
TFTT all but M&S 55% 20% 11% 14%

TFT all 23% 19% 16% 42%
DBSz all 36% 14% 11% 39%

TFTT all 38% 21% 10% 31%
all but M&S all but M&S 31% 19% 19% 31%

all all 13% 16% 16% 55%

player, TFT cooperates ((C,C) in the table) 33% of the
time, DBSz does so 54% of the time, and TFTT does so
55% of the time. Furthermore, when playing with a player
who defects, TFT defects ((D,D) in the table) 27% of the
time, DBSz does so 19% of the time, and TFTT does so
14% of the time. From this, one might think that DBSz’s
behavior is somewhere between TFT’s and TFTT’s.

• But on the other hand, when playing with a player who
defects, DBSz cooperates ((C,D) in the table) only 15%
of the time, which is a lower percentage than for TFT
and TFTT (both 20%). Since cooperating with a defector
generates no payoff, this makes TFT and TFTT perform
worse than DBSz overall. DBSz’s average score was 408
and it ranked 3rd, but TFTT’s and TFT’s average scores
were 388.4 and 388.2 and they ranked 30th and 33rd.

7. RELATED WORK
Early studies of the effect of noise in the Iterated Pris-

oner’s Dilemma focused on how TFT, a highly successful
strategy in noise-free environments, would do in the pres-
ence of noise. TFT is known to be vulnerable to noise; for
instance, if two players use TFT at the same time, noise
would trigger long sequences of mutual defections [18]. A
number of people confirmed the negative effects of noise to
TFT [4, 6, 7, 18, 19, 20]. Axelrod found that TFT was still
the best decision rule in the rerun of his first tournament
with a one percent chance of misperception [2, page 183],
but TFT finished sixth out of 21 in the rerun of Axelrod’s
second tournament with a 10 percent chance of mispercep-
tion [10]. In Competition 2 of the 2005 IPD competition, the
noise level was 0.1, and TFT’s overall average score placed
it 33rd out of 165.

The oldest approach to remedy TFT’s deficiency in deal-
ing with noise is to be more forgiving in the face of de-
fections. A number of studies found that more forgiveness
promotes cooperation in noisy environments [7, 19]. For
instance, Tit-For-Two-Tats (TFTT) retaliates only when it
receives two defections in two previous iterations. TFTT can
tolerate isolated instances of defections caused by noise and
is more readily to avoid long sequences of mutual defections.
However, TFTT is susceptible to exploitation of its gen-
erosity and was beaten in Axelrod’s second tournament by
TESTER, a strategy that may defect every other move. In
Competition 2 of the 2005 IPD Competition, TFTT ranked
30—a slightly better ranking than TFT’s. In contrast to
TFTT, DBS can tolerate not only an isolated defection but
also a sequence of defections caused by noise, and at the
same time DBS monitors the other player’s behavior and
retaliates when exploitation behavior is detected (i.e., when
the exploitation causes a change of the hypothesized policy,
which initially is TFT).

[18] proposed to mix TFT with ALLC to form a new strat-
egy which is now called Generous Tit-For-Tat (GTFT) [22].
Like TFTT, GTFT avoids an infinite echo of defections by
cooperating when it receives a defection in certain itera-
tions. The difference is that GTFT forgives randomly: for
each defection GTFT receives it randomly choose to cooper-
ate with a small probability (say 10%) and defect otherwise.
DBS, however, does not make use of forgiveness explicitly
as in GTFT; its decisions are based entirely on the hypoth-
esized policy that it learned. But temporary tolerance can
be deemed as a form of forgiveness, since DBS does not

retaliate immediately when a defection occurs in a mutual
cooperation situation. This form of forgiveness is carefully
planned and there is no randomness in it.

Another way to improve TFT in noisy environments is to
use contrition: unilaterally cooperate after making mistakes.
However, this is less useful in the Noisy IPD since a program
does not know whether its action is affected by noise or not.

A family of strategies called “Pavlovian” strategies, or
simply called Pavlov, was found to be more successful than
TFT in noisy environments [15, 16, 17, 21]. When an acci-
dental defection occurs, Pavlov can resume mutual cooper-
ation in a smaller number of iterations than TFT [15, 16].
Pavlov learns by conditioned response through rewards and
punishments; it adjusts its probability of cooperation ac-
cording to the previous outcome. Like Pavlov, DBS learns
from its past experience. DBS, however, has an intermediate
step between learning from experience and decision making:
it maintains a model of the other player’s behavior, and uses
this model to reason about nosie.

The use of opponent modeling is common in games
of imperfect information such as Poker [5, 8, 9] and
RoShamBo [12]. There have been many works on learn-
ing the opponent’s strategy in the non-noisy IPD [11, 13,
23]. By assuming the opponent’s next move depends only
on the outcomes of the last few iterations, these works model
the opponent’s strategy as probabilistic finite automata, and
then use various learning methods to learn the probabilities
in the automata. In contrast, DBS does not aim at learning
the other player’s strategy completely; instead, it learns the
other player’s recent behavior, which is subject to change.
We believe that the other player may alter its strategy at
the middle of a game, and therefore it is difficult for any
learning method to converge. It is essentially true in noisy
IPD, since noise can provoke the other player. Moreover,
the length of a game is usually too short for us to learn any
non-trivial strategy completely.

To the best of our knowledge, ours is the first work on
using opponent models in the IPD to detect errors in the
execution of another agent’s actions.

8. SUMMARY AND FUTURE WORK
For conflict prevention in noisy environments, a critical

problem is to distinguish between situations where another
player has misbehaved intentionally and situations where
the misbehavior was accidental. That is the problem that
DBS was formulated to deal with.

DBS’s impressive performance in the 2005 Iterated Pris-
oner’s Dilemma competition occurred because DBS was bet-
ter able to maintain cooperation in spite of noise than any
other program in the competition.

To distinguish between intentional and unintentional mis-
behaviors, DBS uses a combination of symbolic noise de-
tection plus temporary tolerance: if an action of the other
player is inconsistent with the player’s past behavior, we
continue as if the player’s behavior has not changed, until
we gather sufficient evidence to see whether the inconsis-
tency was caused by noise or by a genuine change in the
other player’s behavior.

Since clarity of behavior is an important ingredient of
long-term cooperation in the IPD, most IPD programs have
behavior that follows clear deterministic patterns. The clar-
ity of these patterns made it possible for DBS to construct
policies that were good approximations of the other players’

strategies, and to use these policies to fend off noise.
We believe that clarity of behavior is also likely to be im-

portant in other multi-agent environments in which agents
have to cooperate with each other. Thus it seems plausible
that techniques similar to those used in DBS may be useful
in those domains.

In the future, we are interested in studying the following
issues:

• The evidence collection process takes time, and the de-
lay may invite exploitation. For example, the policy
of temporary tolerance in DBS may be exploited by
a “hypocrite” strategy that behaves like TFT most of
the time but occasionally defects even though DBS did
not defect in the previous iteration. DBS cannot dis-
tinguish this kind of intentional defection from noise,
even though DBS has built-in mechanism to monitor
exploitation. We are interested to seeing how to avoid
this kind of exploitation.

• In multi-agent environments where agents can commu-
nicate with each other, there is a probability for the
agents to detect noise by a predefined communication
protocol. However, we believe there is no protocol that
can guarantee to tell which action has been affected by
noise, as long as the agents cannot completely trust
each other. It would be interested to compare these
alternative approaches with symbolic noise detection
and see how symbolic noise detection could enhance
these methods or vice versa.

• The type of noise in the competition assumes that no
agent know whether an execution of an action has been
affected by noise or not. Perhaps there are situations
in which some agents may be able to obtain partial in-
formation about the occurrence of noise. For example,
some agents may obtain a plan of the malicious third
party by counter-espionage. We are interested to see
how to utilitize these information into symbolic noise
detection.

9. ACKNOWLEDGMENTS
This work was supported in part by ISLE contract

0508268818 (subcontract to DARPA’s Transfer Learning
program), UC Berkeley contract SA451832441 (subcontract
to DARPA’s REAL program), and NSF grant IIS0412812.
The opinions in this paper are those of the authors and do
not necessarily reflect the opinions of the funders.

10. REFERENCES
[1] T.-C. Au and D. Nau. An Analysis of Derived Belief

Strategy’s Performance in the 2005 Iterated Prisoner’s
Dilemma Competition. Technical Report
CSTR-4756/UMIACS-TR-2005-59, University of
Maryland, College Park, 2005.

[2] R. Axelrod. The Evolution of Cooperation. Basic
Books, 1984.

[3] R. Axelrod. The Complexity of Cooperation:
Agent-Based Models of Competition and Collaboration.
Princeton University Press, 1997.

[4] R. Axelrod and D. Dion. The further evolution of
cooperation. Science, 242(4884):1385–1390, 1988.

[5] L. Barone and L. While. Adaptive learning for poker.
In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 566–573, 2000.

[6] J. Bendor. In good times and bad: Reciprocity in an
uncertain world. American Journal of Politicial
Science, 31(3):531–558, 1987.

[7] J. Bendor, R. M. Kramer, and S. Stout. When in
doubt... cooperation in a noisy prisoner’s dilemma.
The Journal of Conflict Resolution, 35(4):691–719,
1991.

[8] D. Billings, N. Burch, A. Davidson, R. Holte, and
J. Schaeffer. Approximating game-theoretic optimal
strategies for full-scale poker. In IJCAI, pages
661–668, 2003.

[9] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron.
Improved opponent modeling in poker. In Proceedings
of the 2000 International Conference on Artificial
Intelligence (ICAI’2000), pages 1467–1473, 2000.

[10] C. Donninger. Paradoxical Effects of Social Behavior,
chapter Is it always efficient to be nice?, pages
123–134. Heidelberg: Physica Verlag, 1986.

[11] D. W. Dyer. Opponent modelling and strategy
evolution in the iterated prisoner’s dilemma. Master’s
thesis, School of Computer Science and Software
Engineering, The Univ. of Western Australia, 2004.

[12] D. Egnor. Iocaine powder explained. ICGA Journal,
23(1):33–35, 2000.

[13] P. Hingston and G. Kendall. Learning versus evolution
in iterated prisoner’s dilemma. In Proceedings of the
Congress on Evolutionary Computation, 2004.

[14] G. Kendall, P. Darwen, and X. Yao. The iterated
prisoner’s dilemma competition.
http://www.prisoners-dilemma.com, 2005.

[15] D. Kraines and V. Kraines. Pavlov and the prisoner’s
dilemma. Theory and Decision, 26:47–79, 1989.

[16] D. Kraines and V. Kraines. Learning to cooperate
with pavlov an adaptive strategy for the iterated
prisoner’s dilemma with noise. Theory and Decision,
35:107–150, 1993.

[17] D. Kraines and V. Kraines. Evolution of learning
among pavlov strategies in a competitive environment
with noise. The Journal of Conflict Resolution,
39(3):439–466, 1995.

[18] P. Molander. The optimal level of generosity in a
selfish, uncertain environment. The Journal of
Conflict Resolution, 29(4):611–618, 1985.

[19] U. Mueller. Optimal retaliation for optimal
cooperation. The Journal of Conflict Resolution,
31(4):692–724, 1987.

[20] M. Nowak and K. Sigmund. The evolution of
stochastic strategies in the prisoner’s dilemma. Acta
Applicandae Mathematicae, 20:247–265, 1990.

[21] M. Nowak and K. Sigmund. A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the prisoner’s
dilemma game. Nature, 364:56–58, 1993.

[22] M. A. Nowak and K. Sigmund. Tit for tat in
heterogeneous populations. Nature, 355:250–253, 1992.

[23] R. Powers and Y. Shoham. Learning against
opponents with bounded memory. In IJCAI, 2005.

