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Abstract. AI planning research has traditionally focused on offline plan-
ning for static single-agent environments. In environments where an
agent needs to plan its interactions with other autonomous agents, plan-
ning is much more complicated, because the actions of the other agents
can induce a combinatorial explosion in the number of contingencies that
the planner will need to consider. This paper discusses several ways to
alleviate the combinatorial explosion, and illustrates their use in several
different kinds of multi-agent planning domains.

1 Introduction

AI planning research has traditionally focused on offline planning for static
single-agent environments. In environments where an agent needs to plan its
interactions with other autonomous agents, planning is much more complex
computationally: the actions of the other agents can induce a combinatorial
explosion in the number of contingencies that the planner will need to consider,
making both the search space and the solution size exponentially larger.

This paper discusses several techniques for reducing the computational com-
plexity of planning interactions with other agents. These include:

– Partitioning states into equivalence classes, so that planning can be done
over these equivalence classes rather than the individual states. In some
cases this can greatly reduce both the size of the search space and the size
of the solution.

– Pruning unpromising parts of the search space, to avoid searching them. This
can reduce complexity by reducing how much of the search space is actually
searched.

– Online planning, i.e., interleaving planning and execution. This can enable
the planner to avoid planning for contingencies that do not arise during plan
execution.

Each of these techniques has strengths and drawbacks. To illustrate these,
the paper includes case-studies of two different multi-agent planning domains:
the Hunter-and-Prey domain, and a noisy version of the Iterated Prisoner’s
Dilemma.



2 Background

This section very briefly describes some relevant concepts from AI planning. For
a much more detailed description, see [1].

2.1 AI Planning in General

Figure 1 shows a conceptual model of AI planning. The three components include
(1) the planner, (2) the plan-execution agent, and (3) the world Σ in which the
plans are to be executed.
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Fig. 1. Conceptual model of AI planning

The planner’s input includes descriptions of Σ, the initial state(s) that Σ
might be in before the plan-execution agent performs any actions, and the desired
objectives (e.g., to reach a set of states that satisfies a given goal condition, or
to perform a specified task, or a set of states that the world should be kept in
or kept out of, or a partially ordered set of states that we might want the world
to go through). If the planning is being done online (i.e., if planning and plan
execution are going on at the same time), the planner’s input will also include
feedback about the current execution status of the plan or policy.

The planner’s output consists of either a plan (a linear sequence of actions
for the agent to perform) or a policy (a set of state-action pairs with at most
one action for each state).

2.2 Classical Planning

Historically, most AI planning research has focused on classical planning prob-
lems. A classical planning problem is one that satisfies a very restrictive set of
assumptions:



1. State-transition model. The world is a finite state-transition system, i.e.,
a triple Σ = (S,A, γ), where S is a finite set of states, A is a finite set of
actions, γ : S ×A→ 2S is a state-transition function. If γ(s, a) 6= ∅ then we
say that a is applicable to s or executable in s.

2. Full observability. Σ’s current state is always completely knowable.
3. Determinism. For every s and a, |γ(s, a)| ≤ 1. In other words, if a is

applicable to s, then there is exactly one possible outcome, namely the state
in γ(s, a). Furthermore, there is exactly one initial state s0 that will be Σ’s
current state before plan-execution begins.

4. Single agency. The plan-execution agent is the only agent capable of mak-
ing any changes in the world. If it were not for this agent’s actions, the world
would be static.

5. Achievement goals and sequential plans. The planner’s objective is to
produce a plan (i.e., a linearly ordered finite sequence of actions) that puts
Σ into any one of some finite set of states Sg.

6. Implicit time. Actions have no duration; they are instantaneous state tran-
sitions.

7. Offline planning. The planner produces a complete plan for the given initial
and goal states prior to any execution of its plan by the plan-execution agent.

In multi-agent systems, Assumption 4 does not hold, and several of the other
assumptions may not necessarily hold. Sections 3 and 4 describe two gener-
alizations of classical planning that can be used to represent certain kinds of
multi-agent planning problems.

2.3 Classical Representation

A classical planning problem is conventionally represented as a triple P =
(O, s0, g), where:

– s0 and g, the initial state and goal condition, are sets of ground atoms in
some first-order language L.

– O is a set of planning operators, each of which represents a class of actions
that the plan-execution agent may perform. An operator is conventionally
represented as a triple

o = (head(o),precond(o), effects(o)),

where precond(o) is a collection of literals called preconditions, effects(o) is
a collection of literals called effects, and head(o) is a syntactic expression
of the form name(x1, . . . , xn), where name is a symbol called o’s name,
and x1, . . . , xn are all of the variables that appear anywhere in precond(o)
or effects(o). We will let effects+(o) be the set of all non-negated atoms in
effects(o), and effects−(o) be the set of all atoms whose negations are in
effects(o).



A state is any set s of ground atoms of L. An atom l is true in s if l ∈ s; otherwise
l is false in s. The set of goal states is Sg = {s : s is a state and g is true in s}.

An action is any ground instance of a planning operator. An action a is
applicable to a state s if a’s preconditions are true in s, i.e., if l ∈ s for every
positive literal l ∈ precond(a) and l 6∈ s for every negated literal ¬l ∈ precond(a).
If a is applicable to s, then the result of applying it is the state γ(s, a) produced
by removing from s all negated atoms in effects(a), and adding all non-negated
atoms in effects(a). Formally,

γ(s, a) = (s− effects−(a)) ∪ effects+(a).

A plan is a linear sequence of actions π = 〈a1, . . . , an〉. The plan π is executable in
a state s0 if there is a sequence of states 〈s0, s1, . . . , sn〉 such that for i = 1, . . . , n,
si = γ(si−1, a2). In this case we say that 〈s0, s1, . . . , sn〉 is π’s execution trace
from s0, and we define γ(s0, π) = sn. If sn satisfies the goal g, then we say that
π is a solution for the planning problem P = (O, s0, g).

3 Nondeterministic Planning Problems and Multi-Agency

A nondeterministic planning problem is one in which Assumption 3 does not
hold. Each action may have more than one possible state-transition; and instead
of a single initial state s0, there is a set S0 of possible initial states.

The classical representation scheme can be extended to model nondetermin-
istic planning problems, by redefining a nondeterministic operator to be a tuple

o = (head(o),precond(o), effects1(o), effects2(o), . . . , effectsn(o)),

where each effectsi(o) is a set of literals. If a is a ground instance of o and
precond(a) is true in a state s, then the result of executing a in s may be any of
the states in the following set:

γ(s, a) = {(s− effects−1 (a)) ∪ effects+1 (a),

(s− effects−2 (a)) ∪ effects+2 (a),
. . . ,

(s− effects−n (a)) ∪ effects+n (a)}.

A nondeterministic planning problem can be represented as a triple P =
(O,S0, g), where O is a set of nondeterministic planning operators, S0 is the set
of initial states, and g is the goal condition.

3.1 Representing Other Agents’ Actions

Multi-agent planning problems can sometimes be translated into nondetermin-
istic single-agent planning problems by modifying the plan-execution agent’s
actions to incorporate the effects of the other agents’ possible responses to those



actions. For example, suppose an agent α is going down a hallway and runs into
another agent β going in the opposite direction. Suppose that to get past them,
α moves to its right. Then β may either move right (in which case the agents
can pass each other) or left (in which case neither agent can pass). As shown in
Figure 2, β’s two possible actions can be modeled as nondeterministic outcomes
of α’s move-right action.
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Fig. 2. Two possible outcomes of moving to the right in a hallway.

3.2 Policies and Execution Structures

Most nondeterministic planning problems violate not only Assumption 3 but
also Assumption 5, for if an action a can lead to more than one possible state,
then we will need a way to provide conditional execution of subsequent actions
depending on what state a takes us to. Hence for nondeterministic planning
problems, solutions are typically defined to be policies rather than plans. A
policy is a set π of state-action pairs such that for each state there is at most
one action. In other words, π is a partial function from S into A.

Given a policy π, the execution structure Σπ is a graph of all possible execu-
tion traces of π in the system Σ. For example, the policy

π0 = {(s0,move-right), (s1, pass), (s2,wait)}

has the execution structure depicted in Figure 3.

3.3 Solutions

Recall that in a classical planning problem, the execution of a plan π in a state
s always terminates at a single state γ(s, π), and π is a solution to the planning
problem if γ(s, π) is a goal state. In nondeterministic planning problems, the
execution of a policy π in a state s may terminate at any of several different
states or might not terminate at all. Hence we can define several different kinds
of solutions to nondeterministic planning problems, depending on which of the
executions terminate at goal states [2]:
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Fig. 3. Execution structure for the policy π0 = {(s0,move-right), (s1, pass), (s2,wait)}.

– Weak solutions. π is a weak solution for P if for every state s ∈ S0 there
is at least one execution trace of π that takes us to a goal state, i.e., if for
every s ∈ S0, there is at least one path in Σπ from s to a state in Sg. For
example, if the set of possible initial states in Figure 3 is S0 = {s0} and if
α’s goal is to get to the state s3 in the hallway, then the policy π0 given
earlier is a weak solution, because there exists an execution trace of π0 that
produces s3. The same is true for the policy

π1 = {(s0,move-right), (s1, pass)}.

– Strong solutions. π is a strong solution for P if every execution trace of
π produces a goal state, i.e., every leaf node of Σπ is in Sg. For example,
consider a modified version of the hallway problem in which β will always
move to the right in the state s2. In this version of the hallway problem, the
execution structure for π0 is not the one shown in Figure 3, but instead is
the one shown in Figure 4. Hence π0 is a strong solution.

wait

s0

s1

s2

s3

α    β   

α

   β   

α    β   

α

   β   

pass

move-right

Fig. 4. π0’s execution structure if β always moves to the right in s2.



– Strong-cyclic solutions. π is a strong-cyclic solution for P if every fair
execution trace of π takes us to a goal state. A fair execution trace is one
such that for every cycle C in which there is an action having more than
one outcome, the execution trace will traverse C at most finitely many times
before exiting C.
The concept of a fair execution trace can be understood intuitively as follows.
Even though we are not attaching probabilities to the outcomes of an action,
we would not normally say that a state s′ is a possible outcome of executing
a in s unless there is a nonzero probability that a will take us to s′. For
example, in Figure 3, the wait action has two possible outcomes s1 and s2,
so it is fair to assume that both of these outcomes have nonzero probability of
occurring. Consequently, if C is a cycle in Σπ (e.g., the wait action’s outcome
s2) and if one or more of the actions in C has another possible outcome (e.g.,
the wait action’s outcome s1), then the probability of remaining in C forever
is 0, so any execution trace that remains in C forever is unfair.

3.4 Partitioning States into Equivalence Classes

To illustrate how combinatorial explosion can occur in multi-agent planning,
we now consider a multi-agent planning domain called the Robot Navigation
domain [3, 4, 2]. In this problem domain, a robot is supposed to move around a
building such as the one shown in Figure 5, picking up packages and delivering
them to their destinations. There is another agent in the building, a “kid,” who
is running around and opening and closing doors. The kid can move much faster
than the robot, hence the kid may open or close each of the n doors in between
each of the robot’s actions.1

Fig. 5. A state in a Robot Navigation problem.

1 Equivalently, one could assume that there are n kids, each of whom is playing with
a different door.



If the building contains n doors and we model the kid’s actions as nondeter-
ministic outcomes of the robot’s actions, then each of the robot’s actions has 2n

possible outcomes: one for each possible combination of open and closed doors.
If we represent each of an action’s 2n outcomes explicitly, then for every policy
π and every state-action pair (s, a) ∈ π, the execution structure Σπ will have 2n

successor states. In general, a solution policy will have exponential size and will
take doubly exponential time to generate. This is not very good!

In the Robot Navigation domain, the size of the search space can be reduced
by constructing policies over sets of states rather than individual states. For
example, if the robot is in room room1 and wants to go into the hallway, then it
matters whether door door1 is open but it does not matter whether any of the
other n− 1 doors is open or closed. To go through door1, we only need to plan
for two sets of states: the set S of all states in the robot is in room1 and door1
is open, (in which case the robot should move through the door), and the set of
states S′ in which the robot is in room1 and door1 is closed (in which case the
robot should try to open the door).

More generally, we will want to represent π not as a set of pairs

π = {(s1, a1), . . . , (sn, an)},

where s1, . . . , sn are distinct states, but instead as a set of pairs

π = {(S1, a1), . . . , (Sk, ak)},

where {S1, . . . , Sk} is a partition of {s1, . . . , sn}. We’ll call this a partition-based
representation of π.

To represent a set of states, we can use a boolean formula that is satisfied
by every state in the set. For example, suppose open1 is the proposition that
door1 is open, and in1 is the proposition that the robot is in room1. Then we
can use the boolean expression open1 ∧ in1 to represent the set of all states in
which door1 is open and the robot is in room1.

The MBP planner [5, 2] uses a representation of the kind described above.2

In the Robot Navigation Domain, this representation enables MBP to avoid
the exponential explosion described above: MBP can solve Robot Navigation
problems very quickly [5, 2].

3.5 When the States Are Not Equivalent

MBP’s state-representation scheme works well only when the state space can be
divided into a relatively small number of equivalence classes. One illustration
of this limitation occurs in the Hunter-and-Prey domain [7]. In this planning
domain, the world is an n×n grid (where n ≥ 2) in which an agent α called the
hunter that is trying to catch one or more agents β1, . . . , βk called prey.

2 More specifically, the boolean formulas are represented as Binary Decision Diagrams
(BDDs) [6].



The hunter has five possible actions: move-north, move-south, move-east, or
move-west, and catch. Each of the first four actions has the effect of moving
the hunter in the stated direction, and is applicable if the hunter can move
that direction without going outside the grid. The catch action has the effect of
catching a prey, and is applicable only when the hunter and the prey are in the
same location. For example, Figure 6(a) shows a situation in which the hunter
has three applicable actions: move-north, move-west, and move-south.

Each prey has also five actions: a stay-still action which keeps the prey in
the same square it was already in, and move-north, move-south, move-east, and
move-west actions. These actions are similar to the hunter’s actions described
above, but with an additional restriction: at most one prey occupy a square at
any one time, so it is not possible for two or more prey to perform movements
that put them into the same square.
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Fig. 6. A Hunter-and-Prey problem with two prey on a 3 × 3 grid. H represents the
hunter’s location, and P1 and P2 represent the locations of the two prey. In the state
s shown at left, there are three possible moves for P1 and four for P2, hence twelve
possible states that may be produced if the hunter moves west.

We can represent the possible actions of the prey as nondeterministic out-
comes of the hunter’s actions; Figure 6 gives an example. If there are m prey,
any one of the hunter’s actions may have up to 5k outcomes; the exact number
depends on the locations of the prey. A state’s total number of predecessors or
successors can be even larger.

On one hand, MBP can handle increases in grid size quite easily if there is
just one prey (see Figure 7). This is because MBP can classify the locations of
the hunter and prey into a small number of sets (e.g., in the set of all locations
where the prey’s x coordinate is 5 and the hunter’s x coordinate is below 5, MBP
might plan for the hunter to move East).



On the other hand, MBP’s running time increases dramatically if we increase
the number of prey (Figure 8). What causes MBP problems is the restriction
that no two prey can be at the same place at the same time. This restriction
means that unlike the doors’ open/closed status in Robot Navigation problems,
the prey’s locations in Hunter-and-Prey problems are not independent of each
other. When reasoning about the set of states in which prey pi is in square (x, y),
MBP cannot ignore the locations of the other prey because pi’s presence at (x, y)
means that the other m − 1 prey must be in squares other than (x, y). MBP’s
running time grows because there are many different states in which this can
happen and MBP cannot represent them as a small number of sets of states.

Fig. 7. Running time for MBP, ND-SHOP2, and Yoyo in Hunter-and-Prey problems
with one prey and varying grid size.

3.6 Maintaining Focus on the Current Task

Another way of avoiding combinatorial explosion is to focus on one task t at
a time, ignoring all actions except for those relevant for performing t. In the
Hunter-and-Prey problem with a large number of prey, this means focusing on
one prey at a time, and ignoring all of the other prey until this one has been
caught.

In order to maintain focus on a particular task, we need a way to specify
what the tasks are, and what actions are relevant to each task. One way to
accomplish this is to use Hierarchical Task Network (HTN) planning [8–10]. In
HTN planning, the objective of a planning problem is not expressed as a goal
to be achieved, but instead as a task to be performed. Tasks are represented



Fig. 8. Running time for MBP, ND-SHOP2, and Yoyo in Hunter-and-Prey problems
with varying numbers of prey on a 4× 4 grid.

as syntactic entities that look like logical atoms, but their semantics is differ-
ent: they represent activities (e.g., actions or collections of actions) rather than
conditions on states of the world.

In HTN planning, the description of a planning domain includes not only the
planning operators for the domain but also a collection of HTN methods, which
are prescriptions for how to carry out various tasks by performing collections
of subtasks. Planning is done by applying methods to tasks to decompose them
into smaller and smaller subtasks, until primitive tasks are reached that corre-
spond directly to actions. If the actions are executable, the resulting plan is (by
definition) a solution to the planning problem.3

ND-SHOP2 [13] is an HTN planning algorithm for nondeterministic domains.
To solve Hunter-and-Prey problems with k prey, we can run ND-SHOP2 using
methods that say basically the following:

– Method for the task catch-all-uncaught-prey
if there are no uncaught prey, do nothing.
else

do subtask chase(βi) for an arbitrarily selected uncaught prey βi
do subtask catch-all-uncaught-prey

3 The status of HTN planning is somewhat controversial in the AI planning re-
search community [11, 12]. AI planning theorists have a preference for “domain-
independent” planning, in which the planner is given no specific knowledge about
a domain other than the definitions of the planning operators for that domain. In
contrast, HTN planning is quite popular among people who do practical applications
of AI planning, because they want to be able to use the knowledge they have about
the problems they are trying to solve, and HTN methods provide a way to encode
such knowledge.



– Method for the task chase(βi)

if βi is at the hunter’s location, do action catch(βi)
else if βi is to the north

do action move-north, subtask chase(βi)
else if βi is to the south

do action move-south, subtask chase(βi)
else if βi is to the east

do action move-east, subtask chase(βi)
else if βi is to the west

do action move-west, subtask chase(βi)

Note that the method for catch-all-uncaught-prey recursively invokes itself when-
ever any uncaught prey remain. This tells the hunter to keep chasing prey until
all of them have been caught. Similarly, to tell the hunter to keep chasing βi
until βi has been caught, the method for the task chase(βi) recursively invokes
chase(βi) except in the case where the hunter catches βi.

As shown in Figure 8, ND-SHOP2 runs much faster than MBP on problems
where there are multiple prey and a small grid size. On the other hand, since
ND-SHOP2 does not have MBP’s ability to classify states into a small number
of sets, it has difficulty dealing with large grid sizes, as shown in Figure 7.

3.7 Combining Focusing with Reasoning about Equivalent States

To plan for a large number of prey on a large grid, we would like to combine
MBP’s ability to reason about sets of states with ND-SHOP2’s ability to focus
on individual tasks. There is a planner called Yoyo that does this. The details
are complicated and we will not describe them here, but the basic idea is as
follows: Yoyo does ND-SHOP2’s HTN decomposition, but instead of doing it
over individual states, Yoyo does it over sets of states represented as BDDs.
As shown in Figures 7 and 8, Yoyo outperforms both MBP and ND-SHOP2 on
Hunter-and-Prey problems; and it also has been shown to outperform MBP and
ND-SHOP2 in several other problem domains [14, 15].

3.8 Interleaving Planning and Acting

One of the biggest sources of difficulty in solving the Robot Navigation and
Hunter-and-Prey problems is that we were trying to solve them offline, i.e., to
generate the entire policy before executing it. The problems with exponential
blowup in the size of the policy occurred because of the need to deal with all of
the possible contingencies.

One of the reasons why AI planning research has traditionally focused on
offline planning is that many planning problems contain unsolvable states, i.e,
states from which it is impossible to reach any of the goal states. In such planning
problems, it is important for the plan executor to avoid executing actions that



will take it to unsolvable states. One way to avoid such actions is to generate an
entire solution plan before the plan executor starts executing.

Neither the Robot Navigation and Hunter-and-Prey domains contain un-
solvable states, hence they can be solved via online planning, in which the plan
executor executes each action as soon as the planner generates it. In these two
domains, online planning is much easier to do than offline planning, because the
planner only needs to plan for one of the possible outcomes of each action, namely
the outcome that the plan executor encounters when executing the action.

As an example, here is a simple online-planning algorithm for solving Hunter-
and-Prey problems:

while there are no uncaught prey do
if there is a prey βi in the same location as the hunter

then execute catch(βi)
else select a prey βi arbitrarily, and move toward it

It is easy to prove that if the actions of the prey satisfy the fairness assumption
discussed in Section 3.3, then the above algorithm is guaranteed to eventually
catch all of the prey. In the Hunter-Prey domain, the fairness assumption means
that if we keep coming back to the same state sufficiently many times, the prey
will eventually do something different.

One could accomplish much the same thing by using a real-time search algo-
rithm such as RTA* (real-time A*) [16, 7]. Furthermore, one could take almost
any forward-search planner for deterministic planning problems (e.g., FastFor-
ward [17], TLPlan [18], or SHOP2 [19]), and modify it so that action selection
is replaced with action execution: rather than appending an action to its plan
and inferring the next state, the planner would immediately execute the action
and observe the state directly.

The idea of modifying a classical planner to interleave planning and execution
is somewhat similar to A-SHOP [20], but A-SHOP did not interleave planning
and execution in the way that we are discussing here. Its objective was to gener-
ate a plan, not to execute it; and its interactions with other agents were purely
for information-gathering. On the other hand, the idea has more in common
with agent systems based on the BDI model [21], such as PRS [22], AgentSpeak
[23], or RAP [24]. A recent system, CanPlan [25, 26], explicitly combines BDI
reasoning with HTN planning.

4 Using Predictive Agent Models

One of limitation of the translation scheme in Section 3.1 is that the model of
the other agents is trivial: it tells what actions the other agents might perform in
different situations, but provides no way to help us predict how likely the agent
will be to perform these actions. For good decision-making, it can sometimes be
quite important to have such predictions.

As an example, consider the game of roshambo (rock-paper-scissors). The
Nash equilibrium strategy for this game is to choose randomly among rock,



paper, and scissors, with a probability of 1/3 for each choice; and the expected
utility of this strategy is 0 regardless of what strategy the opponent uses. But
in a series of international competitions among computer agents that played
roshambo, some of the programs did much better than the equilibrium strategy
[27–29]. They did so by building predictive models of the opponent’s likely moves,
and using these models to aid in choosing their own moves.

Another example is the game of kriegspiel [30, 31]. This game is an imperfect-
information version of chess, and its strategies are much more complicated than
the strategies for roshambo—in fact, the game was used during the 19th century
by several European countries as a training exercise for their military officers.
It has been shown experimentally [32] that better play can be obtained by an
opponent model that assumes the opponent will make moves at random, in-
stead of using the minimax opponent model that is conventionally used in chess
programs.

If β is an agent, we will define a predictive model of β to be a function β̂ such
that for each state s, β̂(s) is a probability distribution over the set of actions that
β can perform in s. β̂ need not necessarily be an accurate predictor of β’s moves
(although an accurate model is obviously preferable to an inaccurate one).

If we are playing a game G with β and we have a predictive model β̂, then
we can use β̂ to translate the game into a Markov Decision Process (MDP).
Sections 4.1 and 4.2 give quick summaries of what an MDP planning problem
is and how the translation process works, Section 4.3 discusses how to partition
states into equivalence classes, and Section 4.4 gives a case study on a game
called the Noisy Iterated Prisoner’s Dilemma (Noisy IPD).

4.1 MDP Planning Problems

A Markov Decision Process (MDP) planning problem is like a nondeterministic
planning problem, but with the following changes:

– For state s ∈ S0, there is a probability P (s) that the initial state is s.
– If the set of possible outcomes for action a in state s is γ(s, a) = {s1, . . . , sj},

then each of them has a probability P (s, a, si), with
∑j
i=1 P (s, a, si) = 1.

– For each action a there is a numeric cost c(a) ∈ R.
– For each state s there is a a numeric reward r(s) ∈ R.
– There is a numeric discount factor δ, with 0 < δ ≤ 1.4

– In most formulations of MDPs there is no explicit “goal states,” but the
same effect can be accomplished by giving these states a high reward and
making them terminal states (i.e., states with no applicable actions) [33].

Given a policy π and an execution trace T = 〈s0, s1, . . .〉, we can compute T ’s
probability by multiplying the probabilities of the actions’ outcomes:

P (T |π) = P (s0)P (s0, π(s0), s1), P (s1, π(s1), s2), . . . .
4 In the MDP literature, the the discount factor is usually represented as γ, but that

conflicts with our use of γ to represent the state-transition function.



The utility of the execution trace is the cumulative discounted difference between
the rewards and costs:

U(T ) =
∑
i

δir(si)−
∑
i

δic(π(si)).

The objective is to find a policy π having the highest expected utility

E(π) =
∑
T

P (T |π)U(T ).

Section 3.1 discussed how to extend the classical planning representation to
represent nondeterministic planning problems. A similar approach can be used
to represent MDPs, by including in the action representation the action’s cost
and the state-transition probabilities.

4.2 Translating Games into MDPs

Suppose two agents α and β are playing a game G, and let β̂ be a predictive
model for β’s actions. Then we can use this model to translate G into an MDP
planning problem M(G, β̂). The translation is similar to the one described in
Section 3.1, with the following additions:

– Each state in the game is a state in the MDP.
– As before, we represent β’s possible actions as nondeterministic outcomes

of α’s actions—but this time we use β̂ to compute probabilities for each
of the outcomes. For example, suppose that in Figure 2, β̂ says there is
a probability of 3/4 that β will move right and a probability of 1/4 that
β will move left. Then we would assign P (s0,move-right, s1) = 3/4 and
P (s0,move-right, s2) = 1/4.

– We can obtain the actions’ costs and the states’ rewards directly from the
definition of the game. For example, in chess the cost of each action would
be 0, the reward associated with each nonterminal state would be 0, and the
reward associated with each terminal state would be 1, −1, or 0, depending
on whether the state is a win, loss, or draw.

4.3 Partitioning States into Equivalence Classes

Section 3.4 discussed how to decrease the size of the search space in a nondeter-
ministic planning problem, by partitioning the set of states {s1, . . . , sn} into a
set of equivalence classes {S1, . . . , Sk} such that for each equivalence class Si, the
plan-execution agent will do the same action ai at every state in Si. Something
similar can sometimes be done in MDPs, if an additional requirement can be
met: every state in Si must have the same expected utility.

As an example, consider the Iterated Prisoner’s Dilemma (IPD). This is a
well-known non-zero-sum game in which two players play n iterations (for some
n) of the Prisoner’s Dilemma, a non-zero-sum game having the payoff matrix
shown in Table 1.



Table 1. Payoff matrix for the Prisoner’s Dilemma. Each matrix entry (u1, u2) gives
the payoffs for agents α and β, respectively.

β’s move:
Cooperate Defect

Cooperate (3,3) (0,5)
α’s move: Defect (5,0) (1,1)

In the Prisoner’s Dilemma, the dominant strategy for each agent is to defect;
and in the Iterated Prisoner’s Dilemma, the Nash equilibrium is for both agents
to defect in every iteration. But the iterations give each agent the opportunity to
“punish” the other agent for previous defections, thus providing an incentive for
cooperation [34, 35]. Consequently, there are empirical results (e.g., [35]) show-
ing that several non-equilibrium strategies do better in general then the Nash
equilibrium strategy. The best-known of these is Tit For Tat (TFT), a strategy
that works as follows:

– On the first iteration, cooperate.
– On the i’th iteration (for i > 1), make the move that the other agent made

on the i− 1’th iteration.

Suppose our predictive model β̂ is the following approximation of TFT:

– On the first iteration, cooperate with probability 0.9.
– On the i’th iteration (for i > 1), with probability 0.9 make the same move

that α made on the i− 1’th iteration.

In the IPD, each history (i.e., each sequence of interactions among the two
players) is a different state, hence after i iterations we may be within any of 4i

different states. But since β̂(s) depends solely on what happened at the previous
iteration, we can partition the states at iteration i into four equivalence classes
such that β̂ is invariant over each equivalence class:

– Si,C,C = {all states in which the pair of actions at iteration i was (C,C)};
– Si,C,D = {all states in which the pair of actions at iteration i was (C,D)};
– Si,D,C = {all states in which the pair of actions at iteration i was (D,C)};
– Si,D,D = {all states in which the pair of actions at iteration i was (D,D)}.

This gives us the MDP shown in Figure 9, in which each state (i, a1, a2) corre-
sponds to the equivalence class Si,a1,a2 .

The two main problems are (1) how to obtain an appropriate predictive
model, and (2) how to use the MDP to plan our moves. As a case study, we
now discuss these problems in the context of a program called DBS [36, 37] that
plays a game called the Noisy IPD.

4.4 The Noisy Iterated Prisoner’s Dilemma

The Noisy IPD is a variant of the IPD in which there is a small probability,
called the noise level, that accidents will occur. In other words, the noise level is
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Fig. 9. An MDP in which each state is a set of equivalent game states.

the probability of executing “cooperate” when “defect” was the intended move,
or vice versa.

Accidents can cause difficulty in cooperating with others in real life, and the
same is true in the Noisy IPD. Strategies that do quite well in the ordinary
(non-noisy) IPD may do quite badly in the Noisy IPD [38–43]. For example, if
both α and β use TFT, then one accidental defection may cause a long series of
defections by both agents as each of them retaliates for the other’s defections.

One way to deal with noise is to be more forgiving in the face of apparent
misbehavior. For example, a strategy called Tit For Two Tats, which defects
only when the other agent has defected twice in a row, can usually avoid the
mutual-retaliation problem described above. One problem with such a strategy is
that other agents can take advantage of it by occasionally defecting on purpose,
without being punished for doing so.

Another way to deal with noise is to use a predictive model of other agent’s
behavior to filter out the noise, as discussed later in this section.

Modeling the other agent’s behavior. As the game proceeds, DBS uses
its observations of β’s behavior to build a predictive model β̂ that will give
probabilistic predictions of β’s future behavior. DBS’s predictive model is a set
of rules of the form

β̂ = {C1(s)→ P1, C2(s)→ P2, . . . , Cm(s)→ Pm},



where C1(s), . . . , Cm(s) are mutually exclusive conditions (i.e., at most one of
them is true in s), and Pi is the predicted probability that β will cooperate in a
state that satisfies Ci(s).

In principle, {C1(s), . . . , Cn(s)} may be any set of mutually exclusive condi-
tions, but which conditions should we use? If the conditions are too simple, then
they will be incapable of accurately representing β’s behavior, but if a condition
Ci(s) is too complicated, then it may be infeasible to learn an accurate value for
Pi. DBS uses the following set of four very simple conditions:

– C1(s) is true if both agents cooperated on the previous iteration;
– C2(s) is true if α cooperated and β defected on the previous iteration;
– C3(s) is true if α defected and β cooperated on the previous iteration;
– C4(s) is true if both agents defected on the previous iteration.

One way to compute Pi is as follows (this is not exactly how DBS does it, but is
an approximation). Let 0 < t < 1 be a constant called the threshold, and k > 0
be an integer constant called the window size. Let Si be the set of all states in
the last k iterations that satisfy Ci(s), Qi be the set of all states in Si in which
β cooperated, and ri = |Qi|/|Si|. Then we can set

Pi =

0, if 0 ≤ ri ≤ t,
ri, if t < ri < 1− t,
1, if 1− t ≤ ri ≤ 1.

Here are some of the reasons for computing Pi in the manner specified above:

– The conditions C1, C2, C3, C4 are inadequate to represent most IPD strate-
gies over the entire course of a game, but they can often do well at repre-
senting the recent behavior of an IPD strategy. Hence we only compute Pi
over the last k iterations rather than the entire history of the game.

– Clarity of behavior is an important ingredient of long-term cooperation,
hence most successful IPD agents exhibit behavior that is at least partly
deterministic, and we would like to model this. In the ordinary IPD, if β
always cooperates when Ci is satisfied, then the ratio ri = 1 will model this
deterministic behavior. But consider the Noisy IPD with a noise level of, say,
10%. If β always cooperates when Ci is satisfied, then noise will transform
10% of these into defections. Hence ri = 0.9 on average, which fails to model
β’s deterministic behavior. Hence in cases where ri is close to 0 or close to 1,
we’ll want to hypothesize that β is actually behaving deterministically. The
threshold t accomplishes this.

DBS computes its Pi values in a manner that is similar but not identical to the
one described above. The main difference is that instead of using the ratio ri,
DBS uses a weighted ratio in which recent iterations are weighted more heavily
than less recent iterations. For details, see [36].



Filtering noise. In cases where β̂ predicts deterministic behavior (i.e., it pre-
dicts the probability of cooperation to be either 0 or 1), DBS can use this de-
terministic prediction to detect anomalies that may be due either to noise or a
genuine change in the other agent’s behavior. If a move is different from a de-
terministic prediction, this inconsistency triggers an evidence collection process
that will monitor the persistence of the inconsistency in the next few iterations
of the game. The purpose of the evidence-collection process is to try to decide
whether the violation is due to noise or to a change in the other player’s policy.

Until the evidence-collection process finishes, DBS assumes that the other
player’s behavior is the behavior predicted by β̂, rather than the behavior that
was actually observed. Once the evidence collection process has finished, DBS
decides whether to believe that the other player’s behavior has changed, and
updates β̂ accordingly.

Planning DBS’s moves. Since the MDP in Figure 9 is infinite, DBS cannot
generate the entire MDP. Instead, DBS plans its moves by generating and solving
a truncated version of the MDP that ends at an arbitrary cutoff depth d (DBS
uses d = 60). It is easy to compute an optimal policy π for the truncated MDP,
using dynamic programming.

In an ordinary offline-planning problem, once the planner had found π, the
plan executor would simply run π to completion. But this approach would not
work well for DBS, because the predictive model β̂ is only an approximation.
By generating π, DBS may be able to make a good move for DBS in the current
state, but we cannot be sure whether π will specify good moves in all of the
subsequent states. Hence, instead of running π to completion, DBS executes
only the first action of π, and recomputes π at every turn. Since the size of the
MDP is polynomial in d, this does not require very much computation.

Performance. The 20th Anniversary Iterated Prisoner’s Dilemma Competition
[44] was actually a set of four competitions, each for a different version of the
IPD. One of the categories was the Noisy IPD, which consisted of five runs of
200 iterations each, with a noise level of 0.1. 165 agents participated. Nine of
them were different versions of DBS. As shown in Table 2, seven of these were
among the top ten. Only two programs that did better: BWIN and IMM01.

BWIN and IMM01 both used the master-and-slaves strategy, which worked
as follows: Each participant in the competition was allowed to submit up to 20
agents, and some of the participants submitted a group of 20 agents that could
recognize each other by exchanging a pre-arranged sequence of Cooperate and
Defect moves. Once the agents recognized each other, they worked together as a
team in which 19 “slave” agents fed points to a single “master” program: every
time a slave played with its master, the master would defect and the slave would
cooperate, so that the master gained 5 points and the slave got nothing. Every
time a slave played with a program not on its team, the slave would defect, to
minimize the number of points gained by that program. BWIN and IMM01 were
the “master” agents in two different master-and-slave teams.



Table 2. Scores of the top 10 programs, averaged over the five runs.

Rank Program Avg. score

1 BWIN 433.8
2 IMM01 414.1
3 DBSz 408.0
4 DBSy 408.0
5 DBSpl 407.5
6 DBSx 406.6
7 DBSf 402.0
8 DBStft 401.8
9 DBSd 400.9
10 lowESTFT classic 397.2

DBS, in contrast, did not use a master-slave strategy, nor did it conspire with
other agents in any other way. Despite this, DBS remained competitive with the
masters in the master-and-slaves teams, and performed much better than the
average score of a master and all of its slaves. A more extensive analysis [45]
shows that if the size of each master-and-slaves team had been limited to less
than 10, DBSz would have placed first.

5 Discussion and Conclusions

In general, planning gets very complicated when there are other autonomous
agents to deal with. In order to accomplish this, it is essential to have a way to
reduce the size of the search space. A variety of techniques have been developed in
the AI planning literature for reducing search-space size in single-agent planning
problems, and this paper has discussed how to utilize these techniques in multi-
agent planning problems by translating the multi-agent planning problems into
equivalent single-agent planning problems. In particular, we discussed two cases:
one in which we wanted to achieve a given set of goals regardless of what the other
agents might do, and one in which we wanted to maximize a utility function.

When the objective was to achieve a given set of goals regardless of the other
agents’ actions, the only model we needed of the other agents was what actions
they were capable of performing in each state of the world. In this case, the
approach was to model the other agents’ actions as nondeterministic outcomes
of the plan-execution agent’s actions, and solve the problem offline in order to
produce a policy for the plan-execution agent to use.

When the objective was to maximize a utility function, it mattered a great
deal how likely or unlikely the other agent’s actions might be. Hence, the ap-
proach in this case was to translate the multi-agent problem into an MDP in
which the other agents’ actions were represented as probabilistic outcomes of
the plan-execution agent’s actions. The probabilities of the outcomes were taken
from a predictive model that was built by observing the other agent’s behav-
ior. This predictive model required updating as the game progressed; hence it



was necessary to do the planning online: at each move of the game, the planner
constructed a new MDP based on the updated model, and solved this MDP to
decide what move the plan-execution agent should make next.

In both cases, an important technique for making the problem feasible to
solve was to partition states into equivalence classes. In the nondeterministic
planning problems in Section 3.4, the equivalence classes were based on what
action we wanted to do in each state. In the MDP planning problems in Section
4.2, the equivalence classes were based not only on the action to be performed
but also on the state’s expected utility.

In Section 3.6 we used HTN methods to achieve additional reduction in the
size of the search space by pruning unpromising paths. This approach was not
used in Section 4.2, because the simple structure of a repeated game like the
IPD does not lend itself to this approach. However, HTN methods have been
used successfully to prune parts of the search space in more complicated games,
such as bridge [46].

Although the state-aggregation and HTN pruning techniques were quite suc-
cessful in the cases discussed in this paper, they each have limitations that may
cause difficulty in more complex problem domains. Here are two examples:

– Section 3.5 showed that there are relatively simple classes of problems in
which state aggregation does not work well. In Section 3.8 we pointed out
that the problem becomes much easier to solve if the planning is done online
rather than offline—and we believe one promising avenue for further work is
to develop techniques for deciding when to do the planning offline and when
to do it online.

– Our opponent-modeling technique for the Noisy IPD is a relatively simple
one, and more complex games require more sophisticated opponent models.
We believe that the development of techniques for generating good opponent
models will be a very important task.
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