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Abstract—We utilize evolutionary game theory to study
the evolution of cooperative societies and the behaviors of
individual agents (i.e., players) in such societies. We present
a novel player model based upon empirical evidence from the
social and behavioral sciences stating that: (1) an individual’s
behavior may often be motivated not only by self-interest but
also by the consequences for others, and (2) individuals vary
in their interpersonal social tendencies, which reflect stable
personal orientations that influence their choices. Alongside
the formal player model we provide an analysis that considers
possible interactions between different types of individuals
and identifies five general steady-state behavioral patterns. We
present evolutionary simulations that ratify previous findings
on evolution of cooperation, and provide new insights on the
evolutionary process of cooperative behavior in a society as
well as on the emergence of cooperative societies. Our main
experimental result demonstrates that in contrast to previous
common knowledge, increasing mutual reward or mutual
punishment in the Prisoner’s dilemma game does not result in
the same type of cooperative society: while increasing reward
does increase the society’s cooperativeness level, increasing
mutual punishment does not.

Keywords-Evolutionary Game Theory; Cooperation; Social
Orientations;

I. INTRODUCTION

Evolution of cooperation has been studied for years, most
notably starting from the seminal work of Smith [19] and
Axelrod [3]. The underlying question can be summarized
briefly as follows: why and how does cooperative behavior
evolve in a Darwinian society where the survival of the
fittest is the prominent behavioral rule? Existing research on
this question typically utilize normal-form games that are
highly simplified models of social dilemmas. For example,
Figure 1 presents the famous Prisoner’s Dilemma (PD)
game, where two players are both faced with a decision
to either cooperate (C) or defect (D). If the game is played
once, then defecting will provide a higher payoff regardless
of whether the other player cooperates or defects. However,
if the game is played repeatedly for an unknown number of
times, cooperative behavior in an individual might emerge
to increase accumulated payoffs (see [9] for an overview).

We consider how cooperative societies emerge, given
varying social tendencies of the individuals. Traditional
studies on the evolution of cooperation typically uses the

Player 2Prisoner’s Dilemma
Cooperate (C) Defect (D)

Cooperate (C) (3, 3) (0, 5)Player 1
Defect (D) (5, 0) (1, 1)

Figure 1. The Prisoner’s Dilemma game.

rationality assumption, i.e., the assumption that human be-
havior is purely rational, self-maximizing behavior [13].
However, this assumption has received wide criticism from
the behavioral science literature (e.g. [11]). For example, the
Social Value Orientation (SVO) theory [5], [4] conjectures
based on many empirical studies, that the social choices
people make depend, among other things, on other people;
in particular on the stable personality differences between
individuals.

In this paper, we describe a new player model and a
formalism based on the SVO Theory. Our formalism cap-
tures the notion of varying and persistent social orientations
exhibited in human behavior and enables a player to reason
about the relationships between the player’s social orienta-
tion and how that player develops strategies in a repeated
game. We present theoretical results showing how players
with different social tendencies interact in a class of 2x2
symmetric games. Our analysis identifies five general steady
state behavioral patterns that can be explained in terms of
the players’ varying social orientation values.

Our experiments based on evolutionary simulations in
the Iterated Prisoner’s Dilemma (IPD) demonstrated the
effects of social orientations on the evolution of cooperative
behavior in individual players and on the emergence of a
cooperative society. One set of experiments showed that
prosocial tendency increases with increasing reward or with
decreasing temptation, thus confirming previous intuitions
from [14].

In our experiments, we also found out that there are
scenarios in which the rationality assumption of previous
studies might lead to erroneous conclusions about the so-
ciety’s cooperativeness. Previous works on the evolution of
cooperation typically used the average payoff of the society
as a measure of of its cooperativeness: i.e., the higher
the average payoff is, the more cooperative the society is



thought to be [15], [16], [7]. However, our results showed
that while increasing the value of rewards or punishments
results in a similar increase in the average payoff, this does
not result in the emergence of the same kind of society.
In particular in our experiments, increasing mutual reward
typically resulted in a cooperative society, but increasing
mutual punishment resulted in a divided society that includes
two distinct clusters: one of highly selfish players and the
other of highly cooperative players.

Our contributions can be summarized as follows:
1) A new player model based upon the well-founded

Social Value Orientation theory. This player model
provides a more accurate description of human de-
cision making in 2x2 games than the self-maximizing
model [4].

2) An analytical work that identifies five general steady
state behavioral patterns.

3) New experiments that, in contrast to old findings,
shows the differences in the emergent societies when
playing the iterated prisoner’s dilemma game with
different values.

II. BACKGROUND

Iterated Prisoner’s Dilemma (IPD), an iterated variant of
the prisoners dilemma that is played repeatedly an unknown
number of iterations, has been the most common model for
social dilemmas between two players and has been often
used in order to study the evolution of cooperation. Since
Axelrod’s IPD tournament [2] that focused on generating
winning strategies, there has been a large body of research
on the various aspects of the basic IPD model: varying
payoffs, number of players, and various population and
structural dynamics (see an excellent overview in [9]).

Traditionally, as research on the evolution of cooperation
has deep roots in game theory, the majority of the works
naturally follow the classical rationality assumption (a.k.a
the economic man assumption in social and behavioral
sciences), either implicitly or explicitly. On the other hand,
experiments in social and behavioral sciences show that
humans rarely follow this assumption. For instance, consider
the Ultimatum Game, in which two players interact to decide
how to divide a sum of money that is given to them. The
first player proposes how to divide the sum between the two
players, and the second player can either accept or reject
this proposal. If the second player rejects, neither player
receives anything. If the second player accepts, the money
is split according to the proposal. Existing experiments in
this game show that the offers that are issued or accepted
are closer to a “fair” division of the money ($50 for each)
than the “rational” choice [11].

Indeed, it is widely accepted in social and behavioral
sciences that players explicitly take into account the out-
come of the other players’ actions when considering their
course of action. Moreover, the choices people make depend,

among other things, on stable personality differences in
the manner in which they approach interdependent others.
This observation can be traced back to the seminal work
by Messick and McClintock [5] in which they presented a
motivational theory of choice behavior that considers both
players’ payoffs in game situations. This theory was later
denoted as the Social Value Orientation theory, that has since
developed into a class of theorems (see [4] for an excellent
review).

Most of the SVO based studies typically recognize two
opposing social value orientations: a proself and prosocial
orientation. A proself orientation is one that gives higher
consideration to its own payoff, while a prosocial orientation
gives higher regards to the payoff of the agents he is
interacting with. The social orientation of a player is not an
absolute value; it describes a spectrum of possible behaviors,
in which one end of the spectrum denotes proself behavior
and the other end denotes prosocial behavior.

Note that in contrast to the diversity of the SVO theory, the
traditional rationality assumption dictates that all individuals
are proself, without any difference between one and another.
As most social or psychological traits, the claim that SVO
is a fundamental personality trait is supported by both
biological and sociological findings [1]. Biological support
also can be found, among others, in Van Lange’s work [20]
showing that the basic form of SVO is visible early in life
as part of a child’s temperament.

Over the years, there has been significant advances on
social dilemmas and various aspects of the social value ori-
entations since the seminal work in [5]. For example, Parks
and Rumble [17] showed that different aspects of the Tit-
for-tat strategy have different effects on the cooperation rates
of individuals with different SVO values. In addition, there
were several other research questions that considered some
relaxation of the rationality assumption in their solution, for
instance in [6] the authors presented a computational model
that allows for achieving fairness in multi-agent systems.
Their computational model uses the Homo Egualis utility
function that has been shown to adequately describe human
behavior in several games.

In the subsequent sections, we describe a new formal-
ism based on the SVO theory, for studying evolution of
cooperation. Previous works on the evolution of cooperation
typically used the average payoff of the population as a
measure of the cooperativeness [15], [16], [7]. In contrast,
our formalism focuses on the social value orientations of the
players and uses the average social values of the society as
a new measure of cooperativeness.

III. OUR MODEL

We consider normal-form games for studying social inter-
actions between individuals. Figure 2 shows a generalized
form of the payoff matrix for such games, where various
constraints on the payoffs can be used to define different



Player 22x2 symmetric game
Cooperate (C) Defect (D)

Cooperate (C) (R,R) (S, T )Player 1
Defect (D) (T, S) (P, P )

Figure 2. Generalized form of 2x2 symmetric games.

Figure 3. An Illustration of the social value orientation space. The x and
y axes show the accumulated total payoff for Players i and j, respectively.

classes of social dilemmas. In this paper, we only focus on
symmetric games where T > S. Note that this assumption
is not restrictive: many well-known games satisfy this condi-
tion, including the well-known Prisoner’s Dilemma, Chicken
Game, and Stag-Hunt [18].

We start by defining the social-orientation space of the
two players in a game, namely Player i and Player j. The
social-orientation space of a game can be viewed as a two-
dimensional Euclidean space, as illustrated in Figure 3 [12].
The x-axis represents the accumulated total payoff of Player
i and the y-axis represents that of Player j.

The social orientation of Player i is a unit vector ŝi such
that ŝi’s initial point is at the origin of the social-orientation
space. We represent ŝi by the angle, θi between ŝi and the
x-axis of the social-orientation space. Intuitively, the social
orientation of a player is a model of its tendency to adopt
a prosocial or proself behavior in a game.

For example, when θi = 0 then Player i acts as a proself
individual. If θi = π/4, then this means that player is fair,
i.e., it acts to balance the accumulated total payoffs of two
players. When θi = π/2, the player is purely prosocial, i.e.,
it never attempts to maximize its own payoff, but rather it
tries to increase the payoff of the other player.

We define a player’s game model at any time point t in
the repeated game as a vector:

~g = 〈pi, pj〉

where pi is the accumulated total payoff that Player i
receives from the start of the game to the point t and pj
is that of Player j. Note that both players hold the same
game model that describes their accumulated total payoff,
and it is the only variable state that players remember.

Suppose one of the players, say Player i, takes an action,
C or D, in the game. Let ~g be the current game model.

The expected amount of change in the game model ~g after
Player i takes the action C or D is as follows:

E[effect of C] = ~pC = 〈R+ S

2
,
R+ T

2
〉

E[effect of D] = ~pD = 〈T + P

2
,
S + P

2
〉

The above definition assumes that Player i’s model of Player
j is of a random player. In other words, Player i does not
have any background knowledge about the other player and
it cannot store and learn from the other player’s actions.

The expected utility vector for an action a ∈ {C,D} is

~g + ~pa,

where ~g is the game model and ~pa is the expected amount
of change in the game model by doing a.

During the course of the game, each player aims to bring
the game model closer to its social-orientation vector, ŝi. In
other words, each player aims to change the world to con-
form to its preference and social-orientation. The differences
between the orientations of the players create the tensions in
their social interactions – hence the social dilemmas. Note
that with the traditional rationality assumption, the players
will try to do utility-maximization on their own payoff. In
other words, the theta equals to zero and social orientation
equals to 〈1, 0〉.

Let ~g = 〈pi, pj〉 be the current game model. The objective
of each player is to minimize the in-between angle α
between its own social-orientation vector ŝi and the expected
utility vector ~g + ~pa. The angle α is computed as follows:

For cooperation: cosαC =
ŝi · (~g + ~pC)
|~g + ~pC |

.

For defection: cosαD =
ŝi · (~g + ~pD)
|~g + ~pD|

.

Thus, each player will choose an action a such that

a = argmaxa∈A cosαa.

Example 1. Consider the well-known Iterated Prisoner’s
Dilemma (IPD) game as depicted in Figure 1. Figure 4
shows how a fair player (i.e., θ = π/4) interact with
another player in an IPD game. For IPD, ~pC = 〈 32 , 4〉,
~pD = 〈3, 1

2 〉. At the beginning, ~g = 〈0, 0〉, αC is smaller
than αD, therefore, the fair player will cooperate at the first
iteration. When the other player defects at the first iteration,
the utility vector becomes 〈0, 5〉, and αD is smaller than αC .
Therefore, the fair player defects at the second iteration.
When the other player defects again, both of them get 1
and the utility vector becomes 〈1, 6〉. αD is smaller than
αC again, therefore, the fair player defects until the other
cooperates at some point after which the payoffs of both
players becomes balanced, i.e., ~g = 〈p, p〉 for some p. In
other words, a fair player in IPD game behaves exactly the
same as the well-known Tit-For-Tat (TFT) strategy. 2



Figure 4. An example reaction of a fair player (Player i)

IV. ANALYSIS

We are interested in the dynamics of a player’s behaviors
(strategies), based on its social-orientation, over the course
of its interaction with another player in a repeated game.
This section presents an exhaustive analysis of such dynam-
ics based on the model described earlier.

We use the definition for the social-orientation of a
player in the following form. Let the two players be i
and j, and their social-orientation angles be θi and θj ,
respectively. We define the preference ratios for each player
as ri = cos θi

cos θi+sin θi
and rj = cos θj

cos θj+sin θj
.

We define the following ratios for each action, C and
D, in the 2x2 symmetric game: rC = R+S

(R+S)+(R+T ) and
rD = T+P

(S+P )+(T+P ) . Intuitively, these ratios describe the
expected share of payoff that the first player will get by
choosing C and D, respectively. We assume that S < T ,
therefore, rC < 0.5 < rD. In other words, a cooperation by
Player i results in Player i receiving a smaller share of the
payoff and thus Player j will be receiving a larger share in
the game.

Let ~g = 〈pi, pj〉 be the current game model. We define the
current ratios for each player as gi = pi

pi+pj
and gj = pj

pi+pj
.

In a steady state, Player i cooperates whenever he is satisfied
with his current ratio, i.e., his current ratio is greater than
or equal to his preference ratio (i.e., gi ≥ ri), or defects
otherwise. Without loss of generality, we assume ri ≤ rj .
There are five possible cases in steady state:

Theorem 1. If rj ≥ ri > 0.5 (i.e., proself), both players
always defect and get P at each game in steady state.

Proof: When gi ≥ ri, Player i cooperates while Player
j defects, so gi moves toward S

S+T < ri. When gi < 1 −
rj , Player i defects while Player j cooperates, so gi moves
toward T

S+T > 1 − rj . Otherwise, both players defect and
gi moves toward P

P+P = 0.5.
For example, in an IPD game, let ri = 0.6 and rj = 0.7.

This means that Player i will always aim to get a share of
60% of the total payoff, while Player j will aim to get a
share of 70% of the total payoff. Therefore, both will never
be satisfied and will constantly defect to get a payoff of 1.

Theorem 2. If ri ≤ rj ≤ 0.5 (i.e., prosocial), both players
always cooperate and get R at each game in steady state.

Proof: When gi < ri, Player i defects while Player j
cooperates, so gi moves toward T

S+T > ri. When gi ≥ 1−
rj , Player i cooperates while Player j defects, so gi moves
toward S

S+T < 1 − rj . Otherwise, both players cooperate
and gi moves toward R

R+R = 0.5.
For example, in an IPD game, let ri = 0.3 and rj = 0.4.

This means that Player i will aim to get a share of 30% of the
total payoff, while Player j will aim to get a share of 40%
the total payoff. As such, they will both be easily satisfied,
and therefore always cooperate and get the rewards, i.e., 3.

Theorem 3. If ri < 0.5 and ri + rj = 1, there are two
cases:
• when rj >

T
S+T , Player i gets S while Player j gets

T ;
• otherwise, Player i gets ri(T + S), and Player j gets

(1− ri)(T + S).

Proof: The first case above immediately follows from
the fact that when rj > T

S+T , we will have the repeated se-
quence of Cooperate-Defect actions in all interaction traces.

The proof for the second case is as follows. When gi <
ri, Player i defects while Player j cooperates, so gi moves
toward T

S+T > ri. When gi ≥ ri, Player i cooperates while
Player j defects, so gi moves toward S

S+T < ri. In steady
state, they interact in a way that the ratio ri (and rj as well)
is achieved, so Player i gets ri(T + S) while Player j gets
T + S − ri(T + S).

For example, in an IPD game, let ri = 0.4 and rj = 0.6.
This means that Player i will always aim to get a share of
40% of the total payoff, while Player j will aim to get a
share of 60% of the total payoff. Therefore, they will try to
grasp the share alternatively. In a steady state, Player i gets
2 and Player j gets 3 at each game on average.

Theorem 4. If rj > 1− ri > 0.5, there are two cases:
• when rj >

T
S+T , Player i gets S while Player j gets

T ;
• otherwise, Player i gets p̄i = SP−PT

(P−T )−(P−S)
1−ri

ri

, and

Player j gets p̄j = p̄i
1−ri

ri
.

Proof: The proof for the first case is the same that of
Theorem 3 above. The proof of the second case is as follows.
When gi < ri, both players defect and get P . When gi ≥ ri,
Player i cooperates and gets S and Player j defects and gets
T . In steady state, they will get (S, T ) or (P, P ) in each
game in a way that ri is achieved. Let nDD be the portion
of the games resulted in DD, Player i gets p̄i and Player j
gets p̄j where p̄i = ri(p̄i + p̄j), p̄i = PnDD + S(1− nDD)
and p̄j = PnDD+T (1−nDD). Solving them, we can obtain
the above formula.

For example, in an IPD game, let ri = 0.4 and rj > 0.6.
Now we are in a situation where there is lack of resources



(as ri + rj > 1) and Player j is more proself than Player i.
As such, Player j will always defect, while Player i will
sometimes cooperate, and sometimes defect. In a steady
state, Player i will get 10

11 and Player j will get 15
11 at each

game on average.

Theorem 5. If ri < 1− rj < 0.5, there are two cases:
• when ri <

S
S+T , Player i gets S while Player j gets

T ;
• otherwise, Player i gets p̄i = p̄j

1−rj

rj
and Player j gets

p̄j = TR−RS
(R−S)−(R−T )

1−rj
rj

.

Proof: The proof for the first case is the same that
of Theorem 3 above. The proof of the second case is as
follows. When gj < rj , Player i cooperates and gets S and
Player j defects and gets T . When gj ≥ rj , both players
cooperate and get R. In steady state, they will get (S, T )
or (R,R) in each game in a way that rj is achieved. Let
nCC be the portion of the games resulted in CC, Player
i gets p̄i and Player j gets p̄j where p̄j = rj(p̄i + p̄j),
p̄i = RnCC +S(1−nCC) and p̄j = RnCC + T (1−nCC).
Solving them, we can obtain the above formula.

For example, in an IPD game, let rj = 0.6 and rj < 0.4.
Then, as resources are plentiful (as ri + rj < 1) and Player
i is more prosocial than Player j, Player i will always
cooperate, while Player j will sometimes cooperate, and
sometimes defect. In a steady state, Player i will get 30

13
and Player j will get 45

13 at each game on average.

V. EXPERIMENTS

We have performed several experiments in order to in-
vestigate the emergence of cooperative populations. These
experiments involve evolutionary simulations on a society
of players and the simulations are designed based on social
orientations of individuals, as described below.

We used the replicator dynamics for evolutionary simu-
lations [19]. We used the well-known “infinite population”
setup for initializing the population as described in [15],
[16], [7]. We randomly generated 10 theta values from the
interval [0, π/2] and assumed the size of a group with a
particular θ value constitutes 10% of the entire population.

In each generation, the players engaged in pairwise en-
counters, resulting in a payoff for each of the players that is
equal to the sum of the payoffs from each individual round
of the game. The expected values of the score of a player in
a pairwise game in steady state are described in the previous
section. After each generation, each player had a number of
offspring that is proportional to its expected total payoff.
Each offspring had the same social-orientation value θ as
its parent. If the frequency of a group of players with a
particular θ value drops below a threshold 0.001 then the
group is discarded from the population.

On average, in every 100 generations, a small amount
(frequency of 0.01) of new randomly generated mutant

Figure 6. Invasion of fair player.

players are introduced into the population. Each simulation
was performed for 10,000 generations, resulting a total of
about 100 mutant strategies.

A. Prisoner’s Dilemma with Constant Payoffs

Figure 5 shows the average population θ and average
population payoff of an evolutionary process of over 105

generations in the Prisoner’s Dilemma (PD) game. Here, the
average payoff varies between P and R, which correspond
to full defection and full cooperation, respectively. At the
beginning of the evolutionary simulation, cooperative play-
ers in the population which have high θ values dominate the
population quickly. Then, proself players (with low θ value)
emerge gradually to dominate after about 4000 generations.
At around the 10000th generation, cooperative players sud-
denly regain the majority of the population. This wave-like
behavior between cooperation and defection (prey-predator
cycle), is a widely known phenomenon in repeated PD
games, that was observed under various conditions [16], [7].
As can be seen in Figure 5, similar behavior also emerges
in our experiments with players modeled by their social
orientation values.

By examining the evolutionary traces, we found that this
phenomenon is caused by mutant players introduced in the
population with θmutant ≈ π/4. These fair players avoided
the exploitation of proself players with θproself < π/4,
and at the same time cooperated with the other cooperative
players with θcooperative > π/4. In other words, the mutant
players were using strategies similar to Tit-For-Tat.

Figure 6 illustrates the change of population frequencies
of three types of players (selfish, altruistic and fair) without
mutation. At the beginning, altruistic players dominate the
population. The theta value of an altruistic player is π/2; i.e.,
it will always cooperate. Therefore, it can be easily exploited
and invaded by a selfish players (θ = 0). When the altruistic
players are extinct, selfish players can also be invaded by a
group of fair players who will cooperate among themselves.
This evolutionary pattern is similar to the one that emerges
in the classical rational agent model [8].



Figure 5. An evolutionary simulation of IPD. The top graph shows the average theta per generation. The bottom graph shows the average payoff per
generation.

Our results shown in Figure 5 also suggested that after
the fair player beats the selfish player, the population enters
a random drift period. Due to the random mutation, the
average theta of the population increases slowly to a point
at which there are many highly-cooperative players. Then,
mutations introduce selfish players into the populations
and their numbers grow quickly until they dominate the
entire population. This pattern repeats at least until 107

generations. This ratifies previous findings on evolutionary
cycles of cooperation and defection [10], which shows that
our model based social orientations is capable of explaining
those findings.

B. Prisoner’s Dilemma with Varying payoffs

We also investigated the effects that different matrix
values have on the result of the evolutionary process and
the resulting cooperative societies. In these experiments, we
varied one of the entries in the PD game matrix while
keeping the others constant with their original values as well
as keeping the preference relations in the PD matrix, i.e,
S < P < R < T and 2R > S + T , so that the game will
still be a PD game. For each matrix generated in this way,
we ran 20 evolutionary simulations with 105 generations in
each run with a total of about 1000 mutant strategies.

Figure 7 shows the effect of varying R on the average
theta and average payoff of the population. We report the
average of the data after 1000 generations because often
the majority of the groups of players did not emerge before
that. Increasing R provides added incentive to cooperate.
Therefore, both the theta and average payoff increase with R.
Note that the payoff almost reaches the maximum (i.e., R)
after R = 4.7, i.e., it becomes always full cooperation when
R is large enough. The bottom graph shows the effect of R
on the percentage of cooperative agents which is defined by
the portion of agents whose θ is greater than the π/4 (i.e.,
the θ of a fair player).

Figure 8 shows the effect of T on the average payoff and
the cooperativeness of the population. These results suggest

Figure 7. Top graph: effect of R on average payoff. Middle graph: effect
of R on average theta. Bottom graph: effect of R on the percentage of
cooperative agents.

that increasing T will lead to increase in the incentive to
defect. In any situation that can be modeled by a 2x2 game
similar to Prisoners’ Dilemma, which shows that there is a
degradation in the cooperation level. Therefore, both θ and
payoff decrease when T increases.

Figure 9 shows the effect of P on the average payoff
and the cooperativeness of the population. In general, the
average payoff increases when P increases. However, unlike



Figure 8. Top graph: effect of T on average payoff. Middle graph: effect
of T on average theta. Bottom graph: effect of T on the percentage of
cooperative agents.

the case for R or T , the average of θ drops sharply when
P is very large compared to R. These results suggest that
increasing P will lead to an increase in the average payoff,
but not increase the cooperativeness of the population. In
other words, using our model we are able to notice that there
is no one-to-one correlation between the observed average
payoff and the society’s cooperativeness level. In this case,
using previously suggested models one could mistakenly
reason that increasing P and R has the same effect on the
society, while with our new model the difference in the true
cooperativeness of the society is apparent by looking at the
theta values of its individuals.

VI. CONCLUSIONS AND FUTURE WORK

We have described a formal model that combines game-
theoretical analyses for cooperation in repeated 2x2 sym-
metric games (where S < T ) with insights from social and
behavioral sciences. Our model is not claimed to be the
most accurate account of social orientations; rather, it is a
simple model that takes the first step in the above direction.
Unlike existing models, this formalism captures the notion
of prosocial vs. proself orientations exhibited in human
behavior and explicitly provides an abstract representation
for how a player develops its strategies in repeated games.

Figure 9. Top graph: effect of P on average payoff. Middle graph: effect
of P on average theta. Bottom graph: effect of P on the percentage of
cooperative agents.

We have presented theorems showing how players with
different social tendencies interact. Our theorems identify
five general steady-state behavioral patterns, that can be
explained in terms of the players social orientation values.
We have also performed an experimental evaluation of our
model using evolutionary simulations in the well-known IPD
game. The results of the experiments demonstrated that our
model captures the well known behavior patterns in IPD.
Furthermore, it allows modeling richer behavior patterns
since it does not depend on the particular game matrix.

When we varied the payoffs in the game matrix while
keeping the preference relations intact in the PD game,
one set of experiments showed that prosocial tendency
increases when the reward (i.e., R) of the game increases
or when the temptation (i.e., T ) decreases. Another set of
experiments identified a class of scenarios in which the evo-
lution simulations produced a population that is not socially-
oriented toward cooperation, whereas the average payoff of
the population is still high. This result is contrary to the
implicit assumption of all previous works that considered
cooperative populations, that the high-payoff was assumed to
be an indicator for cooperativeness. Our experiment showed
that social orientations in a population could be a more
realistic representations of the cooperativeness of the entire



population.
In the near future, we intend to generalize our model and

analysis to repeated heterogeneous games, where different
generations may interact using payoff matrices from differ-
ent games. We believe the social orientation of the players
in such situations will provide insights on how they decide
on their strategies and how/if cooperation evolves in more
more general and accurate real-world situations.

ACKNOWLEDGMENT

This work was supported in part by AFOSR grant
FA95500610405, NAVAIR contract N6133906C0149 and
NGA grant HM1582-10-1-0011. The opinions in this paper
are those of the authors and do not necessarily reflect the
opinions of the funders.

REFERENCES

[1] W. T. Au and J. Y.-y. Kwong. Measurements and effects
of social value orientation in social dilemmas: A review. In
R. Suleiman, D. V. Budescu, I. Fischer, and D. M. Meesick,
editors, Contemporary Approaches to Social Dilemma Re-
search, pages 71–98. Cambridge University Press, Cam-
bridge, UK, 2004.

[2] R. Axelrod. The Evolution of Cooperation. Basic Books,
New York, 1984.

[3] R. Axelrod and W. Hamilton. The evolution of cooperation.
Science, 211(4489):1390, 1981.

[4] Bogaert, Sandy, Boone, Christophe, Declerck, and Carolyn.
Social value orientation and cooperation in social dilemmas:
A review and conceptual model. British Journal of Social
Psychology, 47(3):453–480, September 2008.

[5] C. G. M. David M. Messick. Motivational bases of choice in
experimental games. Experimental Social Psychology, 1(4):1–
25, 1968.

[6] S. de Jong, K. Tuyls, and K. Verbeeck. Artificial agents
learning human fairness. In AAMAS, pages 863–870, 2008.

[7] A. Eriksson and K. Lindgren. Evolution of strategies in
repeated stochastic games with full information of the payoff
matrix. In GECCO, pages 853–859, 2001.

[8] J. Hirshleifer and J. C. M. Coll. What strategies can support
the evolutionary emergence of cooperation? Journal of
Conflict Resolution, 32(2):367–398, June 1988.

[9] R. Hoffmann. Twenty years on: The evolution of cooperation
revisited. J. Artificial Societies and Social Simulation, 3(2),
2000.

[10] L. Imhof, D. Fudenberg, and M. Nowak. Evolutionary cycles
of cooperation and defection. Proceedings of the National
Academy of Sciences, 102(31):10797, 2005.

[11] D. Kahneman, J. Knetsch, and R. H. Thaler. Fairness and the
assumptions of economics. Journal of Business, 59(4):S285–
300, 1986.

[12] C. G. McClintock and S. T. Allison. Social value orientation
and helping behavior. Journal of Applied Social Psychology,
19(4):353 – 362, 1989.

[13] J. V. Neumann and O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944.

[14] M. Nowak. Five rules for the evolution of cooperation.
Science, 314(5805):1560, 2006.

[15] M. Nowak and K. Sigmund. Tit for tat in heterogeneous
populations. Nature, 355(6357):250–253, 1992.

[16] M. Nowak and K. Sigmund. A strategy of win-stay, lose-shift
that outperforms tit-for-tat in the prisoner’s dilemma game.
Nature, 364(6432):56–58, July 1993.

[17] C. D. Parks and A. C. Rumble. Elements of reciprocity and
social value orientation. Personality and Social Psychology
Bulletin, 27(10):1301–1309, 2001.

[18] A. Rapoport. Two-Person Game Theory. The Essential Ideas.
The University of Michigan Press, Ann Arbor, 1966.

[19] J. M. Smith. Evolution and the Theory of Games. Cambridge
University Press, Cambridge, UK, 1982.

[20] P. Van Lange, E. De Bruin, W. Otten, and J. Joireman.
Development of prosocial, individualistic, and competitive
orientations: Theory and preliminary evidence. Journal of
personality and social psychology, 73(4):733–746, 1997.


