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Abstract—Standard models in bio-evolutionary game theory
involve repetitions of a single stage game (e.g., the Prisoner’s
Dilemma or the Stag Hunt); but it is clear that repeatedly playing
the same stage game is not an accurate model of most individuals’
lives. Rather, individuals’ interactions with others correspond to
many different kinds of stage games.

In this work, we concentrate on discovering behavioral strate-
gies that are successful for the life game, in which the stage game
is chosen stochastically at each iteration. We present a cognitive
agent model based on Social Value Orientation (SVO) theory.
We provide extensive evaluations of our model’s performance,
both against standard agents from the game theory literature
and against a large set of life-game agents written by students
in two different countries. Our empirical results suggest that for
life-game strategies to be successful in environments with such
agents, it is important (i) to be unforgiving with respect to trust
behavior and (ii) to use adaptive, fine-grained opponent models
of the other agents.

Keywords-repeated games, non-zero-sum games, stochastic
games, social value orientation

I. INTRODUCTION

An interesting puzzle in the evolution of human societies is
the dissonance between Darwin’s principle of natural selection
and cooperative actions commonly observed in human (and
animal) societies. A prominent way to study this problem
has been to use repeated games, to discover its equilibrium
properties under different environmental properties, starting
conditions, and reproduction mechanisms.

In the standard repeated-game model, a set of agents re-
peatedly play a game called the stage game. Many different
games can be used as the stage game. For example, Axelrod’s
famous Iterated Prisoner’s Dilemma competitions showed the
emergence of cooperation, even though the rational dominant
equilibrium in a one-shot Prisoner’s Dilemma is to defect
[3]. Maynard Smith studied two-player Chicken game with a
population of Hawks and Doves [14], and Skyrms studied the
evolved population when individuals were playing the Stag-
hunt game [17].

Each of the above studies used a simple game model in
which the same stage game was used at every iteration.
However, as pointed out by Bacharach [5, p. 100], repeatedly
playing the same game is unlikely to be an accurate model
of any individual’s life. As more accurate model, Bacharach

Player 2Prisoner’s Dilemma
𝐴1=Cooperate 𝐴2=Defect

𝐴1=Cooperate (3, 3) (0, 5)Player 1
𝐴2=Defect (5, 0) (1, 1)

Fig. 1. Prisoner’s Dilemma payoff matrix.

proposed the life game, in which an individual plays a mixture
of games drawn sequentially according to some stochastic
process from a large set of stage games. Bacharach referred
to the size and variety of this set as the game’s ludic diversity
(thus an ordinary non-stochastic repeated game has minimal
ludic diversity).

In this paper, we concentrate on discovering behavioral
strategies that are successful in life games of high ludic
diversity. These games pose difficulties when trying to describe
a successful strategy. For example, well-known strategies such
as the famous tit-for-tat strategy cannot be used verbatim,
because not all iterations will have actions in which the actions
correspond to “cooperate” and “defect.” The complexity of
the game dictates a large, complex strategy space, but our
objective is to discover important general properties that
characterize successful strategies.

This paper makes the following contributions. We formally
describe the life game (which Bacharach only described infor-
mally), and discuss its inherent challenges. We then propose a
cognitive behavioral model for agents in the life game, based
upon a prominent social-preference theory called Social Value
Orientation theory (SVO). We also refine and extensively
evaluate our model using a large set of peer designed agents
written by students in two different countries. Our empirical
results suggest that an unforgiving strategy performs better
than a tit-for-tat-like strategy. That is, in stage games where
there are analogs of “cooperate” and “defect” (as in the
Prisoner’s Dilemma), if another agent chooses the “defect”
action rather than the “cooperate” action, then we should
expect them to behave similarly in future iterations, and choose
our actions accordingly. The empirical work also demonstrates
the importance of an adaptive, fine-grained set of opponent
models in successful strategies.
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II. BACKGROUND

There have been many studies on iterated games in the game
theory literature. The most famous example is the Iterated
Prisoner’s Dilemma (IPD) (see Fig. 1), which is an iterated
variant of the Prisoner’s Dilemma that is played repeatedly
an unknown number of iterations. The Prisoner’s Dilemma
is a widely used model for social dilemmas between two
agents and has been often used to study theories of human
cooperation and trust. The intriguing characteristic of the
IPD is that while game theory analysis for a single iteration
suggests that rational agents should “defect”, cooperation often
emerges when the number of iterations is unknown.

One of the first interesting questions with respect to the
IPD was the discovery and description of successful IPD
strategies. These strategies and their properties were meant to
help enrich the theoretical biology/evolutionary discussion on
various mechanisms that complement the Darwinian process
(for instance: reciprocity, kin selection, group selection). An
important milestone was the completion of two publicly open
IPD tournaments that were run by Robert Axelrod in the
early 80s [3]. In his tournament, each strategy was paired
with each other strategy for 200 iterations of a Prisoner’s
Dilemma, and scored on the total payoffs accumulated through
the tournament. The winner of the first tournament was Anatol
Rapoport’s tit-for-tat strategy, which simply cooperates on the
first iteration of the game, and then repeats the other agent’s
action from the previous iteration. Surprisingly, the same tit-
for-tat strategy was also the winner in the second tournament.

Axelrod, in his post tournaments analysis, discovered that
greedy strategies tended to do very poorly in the long run
while cooperative strategies did better. Furthermore, by an-
alyzing the top-scoring strategies in the tournament, Axelrod
presented several properties that describe successful strategies:
nice (cooperate, never be the first to defect), provocable to
both retaliation and forgiveness (return defection for defection,
cooperation for cooperation), non-envious (be fair with your
partner), and clarity (don’t try to be tricky). Since Axelrod’s
IPD tournaments, there has been an extensive research on
finding and describing successful strategies [6], [15].

The most relevant piece of literature to our study is a recent
paper [7] where the authors presented an equilibrium analysis
for the emergent of cultures when playing multiple games.
Nevertheless, they were not concerned with the success of
individual strategies, and assumed a predefined set of 6 games
with explicitly labeled actions to avoid the semantic problem.

As our main focus of this paper is the life game, in
which a different stage game can be played at each iteration,
there is one crucial assumption behind the above strategies:
they assume that the semantic of the actions is a common
knowledge to all agents. For example, in order to reciprocate
or retaliate, a tit-for-tat agent needs to know the semantic of
the previous action of the other agent from the perspective
of the other agent. This assumption is valid for IPD, because
the semantic (Cooperate and Defect) is clearly defined for all
agents. However, in the life game, which is the main focus of

Player 22x2 symmetric game
𝐴1 𝐴2

𝐴1 (𝑎, 𝑎) (𝑏, 𝑐)Player 1
𝐴2 (𝑐, 𝑏) (𝑑, 𝑑)

Fig. 2. Generalized form of 2x2 symmetric games.

this paper, this assumption is no longer valid. As we will see
below (in Section IV), most known strategies simply cannot
be generalized to the complex world of the life game, and
consequently, new ones must be defined.

III. THE LIFE GAME MODEL

Our life game model is defined as a set of iterated and
symmetric 2x2 normal-form games, where the two agents are
denoted as 𝑃1 and 𝑃2. In every iteration, a symmetric random
game will be generated, and the agent’s strategy space will
be composed of two actions, namely 𝐴1 and 𝐴2. The game
is a complete information game, as each agent knows the
complete payoff matrix, and can compute the payoffs for each
combination of actions. As a normal form games, both agents
need to simultaneously choose one action from the random
game. After deciding on the actions, each agent will be notified
on the attained payoffs and the action chosen by the other
agent. The two agents will play the games in succession,
without knowing when the series of games will end. Each
game is randomly and independently generated. That is, the
randomized matrix in round 𝑛 − 1 does not have any impact
on the matrix generated for round 𝑛. We do not place any
restrictions on the agents’ memory, and they may record past
matrices and the actions taken by both agents and utilize it in
their strategy.

In this paper, we used a random matrix in which the payoff
values were chosen uniformly from [0, 9]. This kind of random
game is generalized enough to represent most of the interesting
games found in the game theory literature. Among the well-
known examples are the Prisoner’s Dilemma, Chicken Game,
and Stag-Hunt [16]. Fig. 2 shows a generalized form of the
payoff matrix for such games, where various constraints on the
payoff values can be used to define different classes of social
dilemmas. Note that the semantics of the actions depend on
the value of 𝑎, 𝑏, 𝑐 and 𝑑. For example, if 𝑎 = 3, 𝑏 = 0, 𝑐 = 5
and 𝑑 = 1 (a Prisoner’s Dilemma), then 𝐴1 and 𝐴2 can be
considered as “Cooperate” and “Defect” respectively.

Similarly to the IPD, in the life game competition each
agent will compete against all the agents in the population,
once against each agent in a round-robin fashion. To eliminate
random favorable payoff variations, we randomized the series
of games, and used the same series between all agents in the
population. The performance of an agent is the accumulated
sum of its payoffs with each of the other agents.

IV. STRATEGIES FOR THE LIFE GAME

The IPD competition was an important cornerstone for
studying the evolution of cooperation and led to some interest-
ing game strategies. However, extending the model to the life
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Player 2Stag Hunt
𝐴1=Stag 𝐴2=Hare

𝐴1=Stag (2, 2) (0, 1)Player 1
𝐴2=Hare (1, 0) (1, 1)

Fig. 3. The Stag Hunt game models two individuals go out on a hunt. If an
individual hunts a stag, he must have the cooperation of his partner in order
to succeed. An individual can get a hare by himself, but a hare is worth less
than a stag.

game, which is a more realistic description of the interactions
in a society, raises the following difficulties. First, from the
semantic point of view, unlike the Prisoner’s Dilemma in
which actions are labeled by “cooperate” or “defect”, in the
life game the actions are not labeled in advance. The agents
will need to define themselves the semantic of each of the
actions in each round of the game. Consequently, the intentions
behind the actions might be misinterpreted due to semantic
differences, which also complicates the playing strategies. For
example, what might look like a “cooperate” action for one
agent, might be interpreted differently by another. Secondly,
the semantic problems might also result in ambiguity with
respect to the intentions behind the actions, as the agent
cannot be sure whether an action is a result of an intentional
strategic decision, or due to semantic differences. As such,
successful strategies might require holding some form of
opponent model that can be reasoned upon for issues such
as mutual trust, cooperation and counter strategies.

To illustrate the problem, consider two tit-for-tat-like agents
(𝑃1 and 𝑃2) playing in a repeated game of Stag Hunt (Fig. 3).
Suppose both of them want to cooperate (hunt stag together)
in the Stag Hunt game, but 𝑃1 does not want to cooperate in
the Prisoner’s Dilemma (while 𝑃2 still want to cooperate). If
𝑃1 and 𝑃2 play in repeated sequence of only Stag Hunt games,
they will cooperate with each other forever. However, the
cooperation in Stag Hunt may not emerge if we have a mix of
Prisoner’s Dilemma and Stag Hunt games. For example, if the
first game is Prisoner’s Dilemma and the second game is Stag
Hunt, when 𝑃1 defects 𝑃2 in the first game, 𝑃2 retaliates by
“defecting” in the Stag Hunt game (i.e., hunt Hare). Therefore,
𝑃1 will also retaliate in the next game that may lead to a chain
of unnecessary retaliation.

The aforementioned difficulties as well as others bring about
the need for strategies that are far more complex than the ones
that came out of research on the traditional IPD. Intuitively,
simple strategies such as tit-for-tat cannot be directly applied
to the life game due to the labeling problem mentioned above.
Our first step in developing a strategy was to look in the social
and behavioral sciences literature and examine the behavioral
theories that guide human behaviors in similar situations.

V. SOCIAL VALUE ORIENTATION AGENT MODELS

In the social and behavioral sciences it is widely accepted
that agents explicitly take into account the outcome of the
other agents’ actions when considering their course of action.
Moreover, the choices people make depend, among other
things, on stable personality differences in the manner in

which they approach interdependent others. This observation
can be traced back to the seminal work by Messick and
McClintock [9] in which they presented a motivational theory
of choice behavior that considers both agents’ payoffs in game
situations. This theory was later denoted as the Social Value
Orientation (SVO) theory, that has since developed into a class
of theorems (see [8] for an excellent review).

SVO regards social values as distinct sets of motivational
or strategic preferences with the weighting rule depending on
the weights 𝑤1 and 𝑤2 of agents’ payoffs:

Utility of 𝑃1 = 𝑤1 × 𝑃1’s payoff + 𝑤2 × 𝑃2’s payoff

∙ Cooperative agent maximizes joint outcome.
(𝑤1 = 1, 𝑤2 = 1)

∙ Individualistic agent maximizes its own outcome.
(𝑤1 = 1, 𝑤2 = 0)

∙ Competitive agent maximizes its own outcome relative to
other. (𝑤1 = 1, 𝑤2 = −1)

In order to promote cooperation, both agents need to be
prosocial. As mentioned in [4], “An excellent way to promote
cooperation in a society is to teach people to care about the
welfare of others”. While various techniques to measuring the
SVO values in human subjects were suggested over the years, a
recent meta-analysis suggests that most people are classified as
cooperators (46%), followed by individualists (38%), followed
by competitors (12%) [2].

However, due to possible differences in the semantic of
the games, both agents should have some way to assess
mutual trust in order to deal with cases in which the different
semantic interpretation were the cause of cooperation break-
down (as oppose to intentional breakdown). In other words,
both agents need to believe that the other agent is prosocial.
From the social and behavioral literature we learn that social
value orientations significantly accounts for variation in trust
and reciprocity. Specifically, pro-social individuals reciprocate
more as the trust increases, while pro-self reciprocate less as
the trust increases [10]. People with a natural inclination to
cooperate are at the same time vulnerable to being exploited.

The cognitive model that will be developed in our suggested
agent will be based on the above insights from the social and
behavioral sciences. The following sections describe the agent
model for the three most common social orientations in real
world: cooperative, individualistic, and competitive.

A. Cooperative Model

A cooperative agent is one whose goal is to maximize (to
some degree) the joint outcome of both agents. In the context
of 2x2 symmetric games, a fully cooperative agent will choose
𝐴1 if 𝑎 > 𝑑 and 𝐴2 if 𝑎 < 𝑑. In IPD, the ALL C strategy,
which always cooperates with others, can be regarded as a
fully cooperative strategy. To account for the varying degrees
of prosocial tendencies and cope with the aforementioned
semantic problem, we need to be able to differentiate between
different types of cooperative behavior. To do so we define the
class of mutual-benefit games:
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Definition 1 (Mutual-Benefit game): a mutual-benefit game
is a 2x2 symmetric game in which there exist an unique action
𝐴𝑖 such that the joint outcome is maximized when both agent
choose 𝐴𝑖. Action 𝐴𝑖 will be denoted as a cooperative action.

The varying degrees of prosocial tendencies suggest that
different agents may want to restrict their cooperation to
specific classes of mutual-benefit games. In general, agents
with higher prosocial orientations will tend to cooperate on a
larger subset of mutual-benefit games, as long as they believe
that the other agent is also cooperative. We now present a
possible classification to mutual-benefit games:1

1) 𝑎 ∕= 𝑑 and 𝑚𝑎𝑥(𝑎, 𝑑) > 𝑚𝑎𝑥(𝑏, 𝑐)
2) 𝑎 ∕= 𝑑 and 𝑚𝑎𝑥(𝑎, 𝑑) ≥ 𝑚𝑎𝑥(𝑏, 𝑐)
3) 𝑎 ∕= 𝑑 and 𝑚𝑎𝑥(𝑎, 𝑑)× 2 > 𝑏+ 𝑐
4) 𝑎 ∕= 𝑑 and 𝑚𝑎𝑥(𝑎, 𝑑)× 2 ≥ 𝑏+ 𝑐

In this classification, type 𝑖 is a subset of type 𝑖 + 1. For
example, the Stag Hunt game (Fig. 3) is a member of all of
the above types, while the Prisoner’s Dilemma (Fig. 1) is a
member of types 3 and 4 only.

In many types of symmetric games cooperation is beneficial
for both agents in the long run. However, there are two
major problems. First, a cooperative agent may subject to
exploitation by the other agents. Second, the trustworthiness of
the other agent is unknown at the beginning. Those problems
will be addressed in the following trust mechanism.

We define the trustworthiness of an agent as follow: The
trustworthiness of an agent is 𝑖 if and only if the agent
cooperates in all mutual-benefit games of type 𝑖. It is easy
to notice that it is riskier to cooperate in type 𝑖 + 1 games
than in type 𝑖 games. Accordingly, the type number of a
mutual-benefit game can be considered as the trustworthiness
requirement of the game in order to cooperate with the other
agent. An agent will need higher trust levels to cooperate in
type 𝑖 + 1 games, while trustworthiness of zero reflects an
agent that does not cooperate at all.

Recall that according to Axelrod’s analysis of the IPD
competition, a “nice” strategy helps to promote cooperation.
Accordingly, our trust model will assume that the other agent
is trustworthy at the beginning, and will remain so as long
as it cooperates in all mutual-benefit games. Specifically, with
the mutual benefit games classification presented above, we
initialize the trustworthiness level of the other agent to 4.

To minimize exploitation, the trustworthiness of the other
agent should be decreased whenever a defect-like action is
observed. Suppose the current trustworthiness of the other
agent is 𝑡. Whenever the other agent defects in a mutual-benefit
game of type 𝑖, we update 𝑡 by 𝑡 = 𝑚𝑖𝑛(𝑡, 𝑖−1). For example,
if the trustworthiness of an agent is updated to 3, then our
agent will cooperate only in mutual-benefit games from type
1 to 3, but not type 4. This allows the agent to maximize the
amount of cooperation, while minimizing exploitation.

When an untrusted agent (with low trustworthiness) try
to establish cooperation in some mutual-benefit games, one

1Note that the presented classification is one possible example of coping
with the semantic problem. Naturally, a finer classification might allow the
agent to distinguish between finer behavioral differences.

Player 2Chicken game
𝐴1=Swerve 𝐴2=Straight

𝐴1=Swerve (4, 4) (3, 5)Player 1
𝐴2=Straight (5, 3) (0, 0)

Fig. 4. The Chicken game models two drivers, both headed for a single lane
bridge from opposite directions. The first to swerve away yields the bridge
to the other. If neither agent swerves, the result is a potentially fatal head-on
collision.

may forgive it (increase its trustworthiness) or not forgive it
(trustworthiness remains unchanged). We parameterize these
behaviors by a forgiving threshold, 𝑓 : The trustworthiness of
an agent can be restored back to 𝑡 when 𝑓 cooperative actions
in a game of type 𝑡 were observed. In IPD, a SVO agent with
𝑓 = 1 will behave like tit-for-tat. If 𝑓 =∞, an untrusted agent
can never be trusted again. In other words, the trustworthiness
of other agent is monotonically decreasing. This replicates the
grim trigger strategy in IPD, which upon defection responds
with defection for the remainder of the iterated game.

B. Individualistic Model

According to the SVO theory, an individualistic agent will
try to maximize its own outcome. However, the information
that an agent 𝑃𝑖 is a self maximizing agent is insufficient to
model and predict its behavior, as its behavior will depend on
its belief about the strategy of the other agent 𝑃𝑗 . For instance,
its actions might be different if it assumes 𝑃𝑗 picks its actions
randomly, or tries to intentionally decrease 𝑃𝑖’s payoff.

To cope with this problem, we suggest using two-level agent
modeling. In this model, when an individualistic agent 𝑃𝑖 is
playing with another agent 𝑃𝑗 , 𝑃𝑖 behavior depends on the
second-level model – model of 𝑃𝑗 from 𝑃𝑖’s perspective. With
that assumption, 𝑃𝑖 can construct a best response strategy.

These behavior models will be input to the algorithm
beforehand and will depend on the underlying game. We
hypothesize that a larger and more diverge set of predefined
models, will allow the SVO agent to better adapt its behavior
(this will be explicitly tested in Section VI). For the life game,
we can suggest the following types of second-level model
which represents the simplest forms of opponent reasoning
in this domain: adversary, altruistic, random, and recursive.
We also present the best response strategy to each of them.

We illustrate it by following example: an individualistic
agent 𝑃1 is playing the Chicken game (Fig. 4) with 𝑃2.

∙ Adversary model - 𝑃1 assumes that 𝑃2 wants to mini-
mize its outcome. Then, it reasons that (1) 𝑃2 will choose
𝐴2 if 𝑃1 chooses 𝐴1; (2) 𝑃2 will still choose 𝐴2 if 𝑃1

chooses 𝐴2. The payoffs are (3, 5) and (0, 0) respectively,
and 𝑃1 will choose 𝐴1. In other words, 𝑃1 best response
is to be playing a maximin strategy.

∙ Altruistic model - 𝑃1 assumes that 𝑃2 is wants to
maximize 𝑃1’s outcome. Then, it reasons that (1) 𝑃2 will
choose 𝐴1 if 𝑃1 chooses 𝐴1; (2) 𝑃2 will still choose
𝐴1 if 𝑃1 chooses 𝐴2. The payoffs are (4, 4) and (5, 3)
respectively, and 𝑃1 will choose 𝐴2. In this case 𝑃1’s
best response strategy is the maximax strategy.

98



∙ Random model - 𝑃1 assumes 𝑃2 is purely random with
50% chance for both 𝐴1 and 𝐴2. This can happen,
for example, in cases where it does not have enough
information. The expected payoff of choosing 𝐴1 is
𝑎+𝑏
2 = 3.5, and of choosing 𝐴2 is 𝑐+𝑑

2 = 2.5. 𝑃1 will
choose 𝐴1 only if 𝑎+𝑏

2 > 𝑐+𝑑
2 , and choose 𝐴2 otherwise.

Therefore, 𝑃1 will choose 𝐴1 in the Chicken game. We
will call 𝑃1 is playing a maxi-random strategy.

∙ Recursive model - Finally, 𝑃1 can assume that 𝑃2 is any
kind of agent described above. 𝑃1 will first predict 𝑃2

action using that assumption, and then choose an action
to maximize its own payoff. In other words, in terms
of traditional game theory, given a game, 𝑃1’s strategy
is the best response to the assumed 𝑃2’s strategy. For
example, 𝑃1 can assume that 𝑃2 is an individualistic agent
with random opponent assumption (i.e., 𝑃2 uses the maxi-
random strategy). From the previous paragraph, we know
that 𝑃2 will choose 𝐴1 in the Chicken game. Therefore,
𝑃1 will also choose 𝐴1 in order to maximize its own
payoff. We will call 𝑃1 is playing a maxi-maxi-random
strategy.

C. Competitive Model

According to the SVO theory, a competitive agent will try
to maximize (to some degree) its own outcome with respect to
the other agent. In the context of 2x2 symmetric games, this
amounts to maximizing the payoff differences of both agents,
and will choose 𝐴1 if 𝑏 > 𝑐 and 𝐴2 if 𝑏 < 𝑐.

When we sum up the total payoffs for each agent in a
tournament of a group of agents, a competitive strategy is not
necessary the best one. For example, in the IPD competition,
a competitive agent acts like a ALL D agent which always
defects. If there are only two agents, ALL D always perform
at least as good as the other agent. However, ALL D performs
poorly in a group of tit-for-tat agents, because the group of
tit-for-tat agent will cooperate with each other and obtains a
huge amount of payoff from the cooperation [4].

D. The Combined SVO Agent Modeling Strategy

Based on the SVO agent models present above, we propose
a SVO agent modeling strategy for playing with other agent
in the life game. The complete procedure for our SVO agent
is shown in Fig. 5. Since we assume that all agents does not
have any prior knowledge about the other agent, the SVO agent
does not know the social orientation of the other agent. The
agent will start with some default models, and will estimate
the orientation of other agent from the history of interactions.

As we mentioned before, the agent starts by assuming that
the other agent is cooperative for all types of mutual-benefit
games. For non-mutual-benefit games, the cooperative agent
model is not applicable. For those games, the SVO agent
initially assumes the other agent is random (i.e., no social
orientation at all) and will use the maxi-random strategy for the
first few games. After accumulating some interaction histories,
the agent will learn the true trustworthiness (i.e., 𝑡 in Fig. 5)

Procedure SvoAgentPlayingLifeGame
Input:

𝑖 = current iteration number
𝑔𝑖 = current game matrix
𝑔𝑖−1 = previous game matrix
𝐵𝑖−1 = previous opponent’s action

Output:
𝐴𝑖 = my action for the current game 𝑔𝑖

State:
𝑀 = current set of candidate opponent models
𝑡 = current trustworthiness of the opponent

Begin procedure
(1) update opponent’s trustworthiness and models
if 𝑔𝑖−1 ∕= ∅ then

if 𝑔𝑖−1 is a mutual-benefit game then
𝐶𝑖−1 ← cooperative action of 𝑔𝑖−1

𝑡𝑖−1 ← trustworthiness requirement of 𝑔𝑖−1

if 𝑡 ≥ 𝑡𝑖−1 then
if 𝐵𝑖−1 ∕= 𝐶𝑖−1 then

𝑡← 𝑡𝑖−1 − 1
if 𝑡 is not updated above then

increase the counters of all correct models in 𝑀 ,
which correctly predicts 𝐴𝑖−1 for 𝑔𝑖−1

(2) choose an action for the current game 𝑔𝑖
if 𝑔𝑖 is a mutual-benefit game then

𝐶𝑖 ← cooperative action of 𝑔𝑖
𝑡𝑖 ← trustworthiness requirement of 𝑔𝑖
if 𝑡 ≥ 𝑡𝑖 then

return 𝐴𝑖 = 𝐶𝑖

if 𝑖 ≤ 5 then
return 𝐴𝑖 = maxi-random action in 𝑔𝑖

𝑚← the most accurate model in 𝑀
if accuracy of 𝑚 < 70% then

return 𝐴𝑖 = maxi-random action in 𝑔𝑖
𝐵′𝑖 ← the predicted action in 𝑔𝑖 of the opponent using 𝑚
return 𝐴𝑖 = the best response to 𝐵′𝑖 in 𝑔𝑖

End procedure

Fig. 5. Procedure for an unforgiving SVO agent playing a life game.

and social orientation of the other agent, and will adapt and
utilize it to the best of its capacity.

Similarly to humans, as long as there is some degree of
cooperation, our agent will cooperate with others as much
as they cooperate with it. However, when the trust model
suggests that the other agent is not cooperative in some
mutual-benefit games or the game itself is a non-mutual-
benefit game, one should refer to a different state of mind to
achieve its goal while avoiding exploitation. To better estimate
whether the other agent is an individualistic agent (under
the different predefined models), or a competitive one, we
incorporated opponent modeling techniques. Specifically, the
SVO agent will use a model-and-counter strategy, which first
approximates what strategy the other agent uses and then
counters that strategy. First, it creates and maintains a pool
of possible individualistic or competitive models (i.e., 𝑀 in
Fig. 5). In this paper, we consider the following five non-
cooperative opponent models described before:

1) Competitive
2) Individualistic with maximin assumption
3) Individualistic with maximax assumption
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4) Individualistic with maxi-random assumption
5) Individualistic with maxi-maxi-random assumption

Each model has a counter variable for counting the number
of correct predictions. If the previous action of the other agent
matches the prediction of one of the model, our agent will
increase the counter of that model by one. The model with the
highest counter is considered as the most accurate model (i.e.,
𝑚 in Fig. 5). However, if the top counter is small (e.g., less
than 70% of the total) when compared with the total number
of counted game, our agent will assume the opponent is a
random agent instead of the model with the highest count,
and will use the maxi-random strategy. After knowing the
most accurate model of our opponent, our agent will try to
counter that strategy by maximizing its own payoff using that
opponent model, i.e., it first predicts opponent’s action using
the opponent model, and then it chooses an action which
maximizes its own payoff assuming that the other agent will
choose the predicted action (i.e., 𝐵′

𝑖 in Fig. 5).

VI. EXPERIMENTS AND RESULTS

In this section our goal is to evaluate the performance of our
SVO agent and investigate the properties of successful strate-
gies in the life game. As such, we implemented an automated
SVO based agent and in order to evaluate its performance we
implemented the following agents that represent well-known
strategies in the game theory literature:

1) Nash agent – chooses pure Nash equilibrium strategy if
it’s unique; else plays mixed Nash equilibrium strategy.

2) Maximin agent – maximizes its min. possible payoff.
3) Minimax agent – minimizes other agent’s max. payoff.
4) Minimax-regret agent – minimizes its worst-case regret

(difference between actual payoff and the payoff had a
different action been chosen).

5) Random agent – probability 1/2 of either action.

To the best of our knowledge, the above standard strategies
represent the best available strategies from the literature of
repeated games, which are applicable to the life game. As
discussed earlier, other strategies such as the successful tit-
for-tat cannot be generalized and used in the life game.

Due to the novelty of the life game, and in order to provide
a richer set of strategies to evaluate the SVO agent, we
collected a large set of Peer Designed Agents (PDAs). PDAs
have been recently used with great success in AI to evolve
and evaluate state-of-the-art cognitive agents for various tasks
such as negotiation and collaboration [12], [13], [1]. Lin et
al. provided an empirical proof that PDAs can alleviate the
evaluation process of automatic negotiators, and facilitate their
designs [12].

To obtain a large collection of PDAs, we asked students
in several advanced-level AI and Game theory classes to
contribute agents. To attain a richer set of agents, we used two
different universities in two different countries: University of
Maryland in the USA, and Bar-Ilan University in Israel. The
students were told that their agent would compete against all
the agents of the other students in the class (once against each

TABLE I
AVERAGE PAYOFFS AND RANKINGS OF THE SVO AGENT, STANDARD

AGENTS AND TOP THREE PDAS

Agent Rank and (Avg Payoff)
SVO agent 1 (5.836)

The best PDA 2 (5.831)
The 2nd best PDA 3 (5.792)
The 3rd best PDA 4 (5.789)

Minimax regret agent 6 (5.695)
Maximin agent 35 (5.453)

Nash agent 43 (5.271)
Random agent 52 (4.351)
Minimax agent 54 (3.954)

agent in a round-robin fashion). The instructions stated that
at each iteration, they will be given a symmetric game with a
random payoff matrix of the form shown in Fig. 2. Following
Axelrod’s methodology, we did not tell the students the exact
number of iterations in each life game. The total agent’s payoff
will be the accumulated sum of payoffs with each of the
other agents. For motivational purposes, the project grade was
positively correlated with their agents overall ranking based on
their total payoffs in the competition. Overall, we collected 48
agents (24 from the USA and 24 from Israel).

A. Evaluating the SVO agent

The first experiment was meant to assess the competence of
the suggested SVO based agent. The version that was used in
this experiment was with 𝑓 = ∞ (unforgiving trust method),
in which following a (perceived) defection and a consequent
lost of trust level, it cannot be recovered.

We ran tournaments with the unforgiving SVO agent and all
the other agents in the test set. Since the test set is composed
of 53 agents (48 PDAs + 5 standard strategies), the total
number of participant in each run of the competition is 54.
The tournament is similar to Axelrod’s IPD tournaments [3]
and the 2005 IPD tournament [11]. Each participant played
against every participant including itself (thus a tournament
among 𝑛 agents consists of 𝑛2 iterated games). The number of
iterations in one life game was set to 200. In each experiment,
we calculated the average payoff per game for each agent.
Since the values in the payoff matrix are chosen uniformly
from [0, 9], the expected average payoff of a random agent
who played with another random agent is 4.5. In order to
have a fair comparison, we used the same sequence of random
games for each of the pairs in the experiment. We repeated the
experiment 100 times using different random seeds, so each
average payoff is an average of 100 × 𝑘 × 𝑛 payoffs, where
𝑘 is the number of iterations in each life game and 𝑛 is the
number of participating agents. Hence, each average payoff is
computed from averaging the payoffs of 540000 games.

Table I shows average payoffs and rankings of the SVO
agent, standard agents and the top three PDAs. The SVO agent
has the highest average payoff, and so it ranked number one.
Because the standard agents are not adaptive, and cannot learn
from the history of interactions, their performances are bad in
general, except the minimax regret agent. The minimax regret
agent performed well in the tournament, unexpectedly. One
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TABLE II
EVALUATING TRUST ADAPTATION – RESULTS

Agent Rank and (Avg Payoff)
in Each Tournament

Unforgiving SVO agent (𝑓 = ∞) 1 (5.836)
Forgiving SVO agent (𝑓 = 1) 6 (5.689)
Forgiving SVO agent (𝑓 = 2) 5 (5.722)
Forgiving SVO agent (𝑓 = 3) 5 (5.744)
Forgiving SVO agent (𝑓 = 4) 5 (5.757)

possible reason is that it does not have any assumption on its
opponent, and focus on minimizing its own possible regret.

The performances of the top PDAs are very close to our
SVO agent. In our post-experiment analysis, we found that
most of them are doing some sort of opponent modeling by
counting (i.e., similar to our counting method), but none of
them are modeling the other agent using trust or SVO. More-
over, in contrast to the SVO algorithm which is relatively short
and simple, their algorithms are much longer and complicated.

B. Evaluating Trust Adaptation: to forgive or not forgive?

As mentioned in Section V-A, our agent trust adaptation
approach can be set using the 𝑓 parameter. We would like to
study if a forgiving approach is a better-suited approach in
repeated stochastic 2x2 symmetric games. As such, we varied
the 𝑓 parameter from the unforgiving approach (𝑓 = ∞) to
SVO agents with different forgiveness thresholds, and ran four
additional tournaments for each forgiving SVO agent (𝑓 =
1, 2, 3, 4). The methodology to evaluate an agent 𝑃 was to run
a tournament with 𝑃 and all the other agents in the test set.
In other words, for each SVO agent 𝑃 , we reran the previous
tournament with the original SVO agent replaced by 𝑃 .

As we can see in Table II, the average payoffs of all of
the forgiving agents are lower than that of the unforgiving
agent. This result is interesting as it may contradict to some
extent the “forgiving” property of successful strategies in
IPD as described by Axelrod. On the other hand, there is a
possible confounding factor in our experiments. In particular,
we have some preliminary results suggesting that the PDAs
(against which we tested our agents) behaved in ways that
were correlated with some of the personality characteristics
of the students who wrote those agents. As those students
were primarily young males, it is possible that the PDAs
constituted a biased sample. We observed that if a PDA defects
on another agent at the beginning of the life game, it is very
likely that it will defect again later. Therefore, the risk and
cost of a forgiving approach is high, which probably explains
the decrease in performance.

C. Evaluating the Individualistic Opponent Models

One of our hypotheses during the model’s construction
was that a larger set of opponent models would provide a
more refined playground to differentiate and classify different
models, which in turn will allow the agent to provide better
responses to their strategies. To investigate the significance
of each component of individualistic model, we implemented

TABLE III
EVALUATING THE INDIVIDUALISTIC OPPONENT MODELS – RESULTS

Agent Rank and (Avg Payoff)
in Each Tournament

SVO agent 1 (5.836)
Maxi-maxi-rand-only agent 2 (5.800)

Maxi-rand-only agent 5 (5.721)
Maximin-only agent 5 (5.700)
Maximax-only agent 9 (5.681)

Fig. 6. Average payoffs at each iteration.

four simplified versions of the SVO agent, where each con-
tained a single, predefined opponent model:

1) Maximin-only agent – uses the maximin model for
individualistic agent modeling.

2) Maximax-only agent – uses the maximax model for
individualistic agent modeling.

3) Maxi-rand-only agent – uses the maxi-random model for
individualistic agent modeling.

4) Maxi-maxi-rand-only agent – uses the maxi-maxi-
random model for individualistic agent modeling.

We tested the above four agents by running four additional
tournaments for each of them. Table III shows the average
payoffs and rankings of the four agents in each of the
tournament, as well as the complete SVO agent. We can see
that the average payoffs of all of the four simplified agents are
less than that of the complete SVO agent. These results ratify
our hypothesis that a single individualistic opponent model is
not refined enough for successful opponent modeling.

D. Evaluating Robustness to Number of Iterations

To investigate the performance of the SVO agent at different
number of iterations, we recorded the average payoffs the
agent accumulated at different iteration in the tournament.
Fig. 6 shows the trends of the average payoffs of the SVO
agent, the best PDA and the best standard agent (i.e., the min-
imax regret agent). With an increasing number of iterations,
both SVO agent and the best PDA obtained higher payoffs and
level off after 200𝑡ℎ iteration, while the payoff of the minimax
regret agent remains the same most of the time. The impact
is probably due to the fact that both SVO agent and the best
PDA are doing opponent modeling. With an increase in the
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Fig. 7. Distribution of trustworthiness of the PDAs at each iteration.

number of interactions, the modeling will be more accurate,
and so they can better coordinate with their opponents to get
higher payoffs. On the contrary, the minimax regret agent does
not change its strategy, so its performance remains unchanged
most of the time. The payoff of the SVO agent is low at the
beginning of the life games, because it begins by applying
the “nice” strategy towards all other agents. If the other agent
is non-cooperative, the SVO agent may be exploited for the
first few mutual-benefit games, and lose some payoffs at the
beginning. However, its performance catches up quickly and
outperforms others after the 100𝑡ℎ iteration, because it will
stop cooperating with the defectors and keep cooperating with
the cooperators. The best PDAs agents do not have trust
modeling and cannot fully cooperate with others, so it cannot
get the full benefit from mutual cooperation. Therefore, the
SVO can obtain higher payoff in long run, while the other
agents cannot.

E. Analyzing the Trustworthiness of the PDAs

With this analysis we seek to explore the trustworthiness of
the PDAs that were written by students, and investigate the
significance of each mutual-benefit game type. We did as fol-
lows: each of the PDAs played against our SVO agent. While
in game, at each iteration, the distribution of all five types of
cooperative agents was recorded. Fig. 7 shows the portion of
the five types of cooperation classification at each iteration.
At the beginning, as we mentioned in Section V-D, the SVO
agent assumed that all the other agents are trustworthy, so
100% of them are of the type 4 (most trustworthy). However,
the population of type 4 cooperation drops quickly as most of
the agents start defecting in mutual-benefit games. Therefore,
the population of the others, less trustworthy agents, increases
quickly. The fastest population growth is of type 0 agents,
which are not cooperative at all. After 100𝑡ℎ iteration, the
distribution starts to stabilize. At the end, the whole population
consists of 74.8% type 0 agent, 13.8% type 1 agent, 7.3% type
2 agent, 0% type 3 agent, and 4.1% type 4 agent. This also
shows that our classification of cooperative agent is effective.
For example, without that classification, we would expect our
agent to fail to cooperate with those 25.2% cooperative agents.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have described the life game, a stochastic
repeated game for studying social interactions. The life game
poses several new challenges, for example, strategies that work
well in conventional iterated games cannot be used directly.

In order to develop a successful cognitive strategy for the
life game, we utilized SVO theory, a motivational theory for
human choice behavior. Our method of agent modeling can be
used to learn strategies and respond to others’ strategies over
time, to play the game well. Our experiments demonstrated
that our SVO based agent outperformed both standard repeated
games strategies and a large set of peer designed agents.
Furthermore, our experimental work illustrates the importance
of adaptive and fine-grained opponent modeling, as well as
the impact that different trust adaptation strategies have on
the performance of the SVO agent.

In the future, we intend to investigate other versions of the
life game (e.g., a noisy version). We also plan to incorporate
the notion of nondeterministic trust models, as well as to
extend our algorithm for continuous SVO estimation and
modeling. Another interesting direction would be to account
for power relations as a way to describe different types of
intentional biases (e.g., cultural, personal or relational).
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