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ABSTRACT
Human social preferences have been shown to play an important role in
many areas of decision-making. There is evidence from the social science
literature that human preferences in interpersonal interactions depend
partly on a measurable personality trait called, Social Value Orientation
(SVO). Automated agents are often written by humans to serve as their
delegates when interacting with other agents. Thus, one might expect
an agent’s behaviour to be influenced by the SVO of its human designer.
With that in mind, we present the following: first, we explore, discuss and
provide a solution to the question of how SVO tests that were designed
for humans can be used to evaluate agents’ social preferences. Second,
we show that in our example domain there is a medium–high positive
correlation between the social preferences of agents and their human
designers. Third, we exemplify how the SVO information of the designer
can be used to improve the performance of some other agents playing
against those agents, and lastly, we develop and exemplify the behavioural
signature SVOmodel which allows us to better predict performances when
interactions are repeated and behaviour is adapted.
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1. Introduction

Human social preferences have been shown to play an important role in many areas of decision-
making; e.g. interaction in labour markets (Kniesner, Grodner, & Bishop, 2011), bilateral or small-
group bargaining (Bolton & Ockenfels, 2000), and social welfare considerations (Charness & Rabin,
2002). There is evidence from the social science literature that human preferences in interpersonal
interactions depend partly on a measurable personality trait called a human’s Social Value Orientation
(SVO) (Bogaert, Boone, & Declerck, 2008; Messick & McClintock, 1968). The SVO trait quantifies the
personality differences among humans in the way they approach interdependent others and can be
used to cluster people to have pro-self vs. pro-social orientations. It can also be used to label humans
to having a ‘cooperative’, ‘competitive’ or ‘individualistic’ nature, and on the extreme cases humans
as ‘aggressors’, or of ‘altruistic’ nature. Analysis of many SVO based experiments reveal that most
people are classified as cooperators (50%), followed by individualists (24%), followed by competitors
(13%) (Murphy, Ackermann, & Handgraaf, 2011).1

In multiagent systems, agents are often written by humans to serve as their delegates when
interacting with other agents. Thus, one might expect an agent’s behaviour to be influenced by the
SVO of its human designer. The purpose of this paper is to explore ways to model SVO in automated
agents, to test the correlation hypothesis, and to exemplify how this information can be utilised in
strategic reasoning.
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There are few methods to gauge human social preferences or even personalities, as several
measurement methods for quantifying variations in SVO across individuals have been developed (see
Liebrand & McClintock, 1988; Murphy et al., 2011; Van Lange, De Bruin, Otten, & Joireman, 1997).
However, using those to quantify the social preferences of computer agents is challenging, as the
tests that were designed for humans cannot be easily converted to automated agents. For instance,
an agent that was constructed to play in a simple repeated game cannot provide answers to questions
out of the game contexts, such as ‘what will you do in this situation?’, which are often part of SVOs’
psychological test.

We started by defining a simple ‘para-SVO’ measure for automated agents that is evaluated by
assuming a random opponent. On top of the above limitation of using human test for automated
agents, our ‘para-SVO’ measure also has to deal with the fact that the human tests are constructed
on a series of one-shot questions, while we need to evaluate the agents’ SVO in a repeated game,
where strategic behaviours can adapt according to the behaviour of the opponent. We evaluated it
by collecting a set of students’ agents and conducting psychological SVO based evaluation to get the
correspondingSVOvalueof thehumanwhoconstructed the agent.Weestimated the social preference
of computer agents by the proposed methods, and studied the correlation. The results show that the
SVO of the human designer is highly correlatedwith the social preference of the corresponding agent.

In the next step, we extended the simple ‘para-SVO’ model by developing what we denote, a
behavioural signature, a model of how agents’ behaviour over time will be affected by both their own
SVO and the other agents SVO. Alongside the presentation of the model we also provide a way to
measure an agent’s behavioural signature, and methods for using behavioural signatures to predict
agents’ performance.

Having the ability to model the SVO of agents and knowing that it correlates to the SVO values of
its designer is only part of the story. Opponent modelling is not a mean by itself, but a way to gain
strategic advantages in various interactions (e.g Wilson, Zuckerman, & Nau, 2011). With that in mind
we provide several experimental evaluations that demonstrate the value of having the SVO of the
agent’s designer for strategic reasoning. In the first experiment, we improved the performances of
two basic agents by composing them to a single agent that decides which of them to play based only
on a single input: the SVO value of the human delegator of the agent whom it is playing against. In
our second experiment, we took the state-of-the-art life game automated agent (Cheng, Zuckerman,
Nau, & Golbeck, 2011), provided him with the same SVO value as before, and used it to improve its
performance by avoiding early exploitation by selfish agents. Lastly, we present experimental results
using a large set of agents written by students for a repeated-game tournaments (71 students in 2
countries), that show that our predictions based on the human designer’s SVO are highly correlated
with the agents’ actual performance.

To sum up, in this paper we propose to use ideas and techniques derived from SVO theory to
measure computer agents’ social preference. To the best of our knowledge, this is the first attempt to
quantify the social preference of computer agents using a theory from social psychology. Specifically,
we had three goals in our series of studies: first, to explore the ability of the SVO theory as a way to
model agents’ social preferences. Second to explore the correlation between the SVO of agents, and
the human who designed them. Third, to demonstrate utilisation of the SVO information for strategic
reasoning. Our main results can be summarised as follows:

• We explore, discuss, and provide a solution to the question of how SVO tests that were designed
for humans can be used to evaluate agents’ social preferences (Section 3).

• We show that in our example domain (the life game) there is amedium–high positive correlation
between the social preferences of agents and their human designers (Section 3.1).

• We exemplify how the SVO information of the designer can be used to improve the performance
of some other agents playing against those agents (Section 4).

• Wedevelop and exemplify the behavioural signature SVOmodel which allows us to better predict
performances when interactions are repeated and behaviour is adapted (Section 5).
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The implications of our results are extensive and can be used in various forms. Moreover, with the
emerging ability to quantify users social orientation on social networks (Golbeck, Robles, Edmondson,
& Turner, 2011), and recent advancements in transfer learning (Pan & Yang, 2010), we can safely assume
that transferring information across domains will be another possibility to utilising out results.

2. Background and related work

We begin with providing the necessary background on the life game, originating in Bacharach’s
researchoncollective rationality (Bacharach,Gold,&Sugden, 2006), andon theSocial ValueOrientation
(SVO) theory which is one of the prominent class of social motivation theories in the behavioural
sciences (Bogaert et al., 2008; Messick & McClintock, 1968). Following that we provide some related
work on the notion of agent-modelling and specifically, peer-designed agents.

2.1. The life game

Manymultiagentdomains involvehumanandcomputerdecision-makers that areengaged in repeated
collaborative or competitive activities. Examples include online auctions, financial trading and com-
puter gaming. Repeated games are often viewed as an appropriate model for studying these kinds of
repeated interactions between agents. In a traditional, game-theoretic repeated-game model, agents
repeatedly play a game called the stage game. Many types of games can be used as the stage game.
For example, Axelrod’s famous Iterated Prisoner’s Dilemma (IPD) competitions showed the emergence
of cooperation when the game is played repeatedly without knowing in advance when it ends, even
though the rational dominant equilibrium in a one-shot Prisoner’s Dilemma is to defect (Axelrod,
1984). Maynard-Smith (1982) studied the two-player Chicken game with a population of Hawks and
Doves, andSkyrms (2004) studied the evolvedpopulationwhen individualswereplaying the Stag-hunt
game.

The importance of Axelrod’s work is that even-though the mathematical analysis shows that
continuous defection is the equilibrium choice for rational agents, successful agents in his competition
as well as its evolutionary work following the competition showed that cooperation can emerge. This
lead to oneof themost interestingquestions inmodern science,whydoes cooperation emerge among
self-interested agents?

Each of these studies used a highly simplified game model in which the same stage game was
used at every iteration. In other words, they assumed that the agents would interact with each other
repeatedly in exactly the same environment. However, as pointed out by Bacharach et al. (2006, p.
100), repeatedly playing the same game is unlikely to be an accurate model of any individual’s life. In
many real-life situations, agents may interact with each other repeatedly in different environments.

As more accurate model, Bacharach proposed the Life game, in which an individual plays a mixture
of games drawn sequentially according to some stochastic process frommany stage games. Bacharach
referred to the size and variety of this set as the game’s ludic diversity (thus an ordinary non-stochastic
repeated game has minimal ludic diversity). The rich variety of stage games also allows agents to
express a larger spectrum of social preferences, resulting in an adequate playground for agents of
differentpersonalities andbehaviours.Webelieve thismakes the Life gameabettermodel for repeated
interaction in different environments – so in this paper we concentrate on studying social preferences
of automated agents in the Life game of high ludic diversity.

To the best of our knowledge there is currently no bio-evolutionary game theory model that
studies repeated interaction of high ludic diversity. Moreover, while classical game theory classified
and presented equilibrium solutions to various classes of games, discussions on life games has been
absent from the literature. In Bacharach’s words, ‘Although game theory studies games of very varied
structures, there has been almost no interest in what happens in the game of life, or even short
sequences of diverse interactions.’ [ref, page 116].

In this paper, wemodel the life game as an iterated game inwhich each stage game is a 2×2 normal-
form game that is generated randomly by choosing independent random values for the payoffs a, b, c
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Table 1. Stage game for the life game. The values a, b, c, d are generated randomly as described in the text.

Player 2

2×2 symmetric game A1 A2

A1 (a, a) (b, c)
Player 1 A2 (c, b) (d, d)

Figure 1. social behaviours spectrum.

and d in the payoffmatrix shown in Table 1. The payoffs a, b, c, d are chosen fromauniformdistribution
over the set [0, 9].2 At each stage, each agent knows the complete payoffmatrix. After deciding on the
actions, each agent will be notified of the action chosen by the other agent. The two agents will play
the games in succession, without knowing when the series of games will end. We do not place any
restrictions on the agents’ memory, and they may record past matrices and the actions taken by both
agents and use it in their strategy.

Depending on the randomly chosen values of a, b, c and d, each stage game may or may not be
an instance of a well-known social dilemma game (e.g. Prisoner’s dilemma, Chicken game Stag-Hunt).
Consequently, the semantics of the actions are subjective and depend on the value of a, b, c and d. For
example, if a = 3, b = 0, c = 5 and d = 1 (a Prisoner’s dilemma), then A1 and A2 can be considered as
‘Cooperate’ and ‘Defect’. This additional layer of uncertainty might cause situation such as that when
one agent considers a certain action to be a reasonably cooperative action, it will be captured as a
competitive action in the eyes of its opponent.

2.2. The social value orientation (SVO) theory

There is a substantial set of evidence from the social and behavioural sciences literature showing that
players explicitly take into account the outcome for the other player when considering their course
of action (Au & Kwong, 2004). Moreover, the choices people make depend, among other things, on
personality differences in how they approach interdependent others. This observation can be traced
back to the seminal work by Messick and McClintock (1968) in which they presented a motivational
theory of choice behaviour that considers both players’ payoffs in game situations. This class of
theorems was later denoted as the Social Value Orientation theory (Bogaert et al., 2008).

The foundation of the SVO theory can be explained using Figure 1 which describes a two-person
preference model of the major interpersonal orientations that can occur between players. In this
model, the player’s utility is defined on the horizontal axis, and the outcome of the ‘other’ player is on
the vertical axis. Each outcome increases monotonically along each axis, and the values reflect a linear
combination of payoffs to both players.
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Figure 2. Social value orientation space.

The social-orientation space of a game can be viewed as a two-dimensional Euclidean space, as
illustrated in Figure 2 (McClintock & Allison, 1989) for Player i and Player j. The social orientation of
Player i is a unit vector ŝi such that ŝi ’s initial point is at the origin of the social-orientation space. We
represent ŝi by the angle, θi between ŝi and the x-axis of the social-orientation space.

For example, when θi = 0 then, Player i acts as a pure individualistic. If θi = π/4, this means that
player is fair, i.e. it acts to balance the accumulated total payoffs of two players. When θi = π/2, (i.e.
ŝi = 〈0, 1〉), the player is purely prosocial, i.e. it never attempts to maximise its own payoff, but rather
it tries to increase the payoff of the other player. The values of θ can also be used to represent other
social orientations such as altruism, aggression and so forth. Note that the behaviours on the left side
of the graph are considered mental disorders (e.g.Masochism, Sado-Masochism).

Most of the SVO based studies typically recognise two opposing social value orientations: pro-self
and prosocial orientations. A proself orientation is one that gives higher consideration to its ownpayoff;
while a prosocial orientation gives givesmore equal consideration to the payoff of the agents he or she
is interacting with. The social orientation of a player is not an absolute value; it describes a spectrum of
possible behaviours, in which one end of the spectrum denotes proself behaviour, and the other end
denotes prosocial behaviour.

In contrast to the diversity of the SVO theory, the traditional rationality assumption dictates that
all individuals are proself, without any difference among them. As most social or psychological traits,
the claim that SVO is a fundamental personality trait is supported by both biological and sociological
findings (Au & Kwong, 2004). Biological support also can be found, among others, in Van Lange et al.
(1997) and Sutter et al. (2010) showing that the basic form of SVO is visible early in life as part of a
child’s temperament. Thedevelopment of the SVO fromsocial interactions is supportedbymanyworks
shown in Au and Kwong (2004) review. The validity of SVO based theorems, shown both in laboratory
and field studies, indicates that prosocial generally cooperate more and show greater concern for the
effect of their actions on the well being of others and on the environment. For examples, McClintock
and Allison (1989) showed that prosocial students weremore willing to contribute time to help others,
and Joireman, Lasane, Bennett, Richards, and Solaimani (2001) showed that prosocial participants
tend to take more pro-environmental and collective policies than self-interest actions.

Over the years, there have been significant advances on social dilemmas and various aspects of the
social value orientations since the seminal work of Messick andMcClintock (1968). For example, Parks
and Rumble (2001) showed that different aspects of the Tit-for-Tat strategy have different effects on
the cooperation rates of individuals with different SVO values. In addition, there were several other
research questions that considered some relaxation of the rationality assumption in their solution,
for instance, de Jong, Tuyls, and Verbeeck (2008) presented a computational model that allows for
achieving fairness in multiagent systems. Their computational model uses the Homo Egualis utility
function that has been shown to adequately describe human behaviour in several games.
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Table 2. An example from the ring measurement questionnaire.

Choose between:
A: 26 for me, and 97 for other
B: 38 for me, and 92 for other.

Table 3. An SVO based interpretation of the a symmetric game.

Player 2

A B

A pself,i(A) + pother,i(A) pself,i(A) + pother,i(B)
Player 1 B pself,i(B) + pother,i(A) pself,i(B) + pother,i(B)

2.3. Measuring SVO

There are few measurement methods proposed by social psychologist for measuring human SVO
(see Liebrand & McClintock, 1988; Murphy et al., 2011; Van Lange et al., 1997). To measure the SVO
of a person x , x is usually asked a series of questions in which he needs to select between certain
distributions of resources, some amount to himself/herself, and some amount to be allocated to some
other randomly determined person y. The examiner will ask x to imagine that the points involved with
the decisions have value to you: specifically, the more of them you accumulate the better. Similarly, x
needs to imagine that the other person y feels about his/her own points the same way. It is told that
x and y will remain mutually anonymous during and after the decision is made, and there is nothing
y can do to affect x in any way. In other words, it is a one-shot game. Hence, the choice made by x is
not a strategic decision, but rather this is a one-shot individual decision under certainty. Nonetheless
this choice has a social dimension, as x ’s action will affect y’s behaviour and x is aware of this potential
effect.

For example, one well-known technique for measuring SVO used in social psychology is the Ring
measure (Liebrand & McClintock, 1988). Typically, the ring measure involves a series of 24 decision
tasks between two options. The participants are told to be randomly paired with another person
whom the question refers to as ‘other’. In the decision task, the participants will be making choices by
circling the letter ‘A’ or ‘B’ on a response sheet. The participants’ choices will produce points/money
for themselves (pself,i(A)) and the other (pother,i(A)). The options involve combinations of own outcome
and other outcome. One of the questions in the ring measurement questionnaire is shown in Table 2.

Adding up the chosen amounts separately for the self and for the other player provides an
estimation of the weights assigned by the participant to own and others payoffs. These weights
are used to estimate the SVO angle (θ ) of the participant by the formula below:

θ = arctan
(∑

pother,i(ri)∑
pself,i(ri)

)
, where ri = i − th response (1)

All angles between 112.5◦ and 67.5◦ were classified as altruistic; those between 67.5◦ and 22.5◦
were classified as cooperative; those between 22.5◦ and 337.5◦ as individualistic, and angles between
337.5◦ and 292.5◦ as competitive (Liebrand & McClintock, 1988).3

Since the total number of points a participant receives on each decision problem is determined
by the combination the choices of both participants, the participants are in fact playing the following
symmetric game for the i-th decision problem (Table 3):

The abovematrix is a two-players normal-formgame similar to thegeneral onepresented in Table 1,
where in this case the possible actions for each player are denoted as A and B, and the outcomes are
the sum of the payoffs from the 24 Ring method questions. For example, the sample decision task
mentioned above in Table 2 can be written as the following symmetric game (Table 4):
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Table 4. An example of a decision task.

Player 2

A B

A 123 118
Player 1 B 135 130

There are several other techniques formeasuring social preferences, such as the decomposed game
measure, the triple dominance measure and the slider measure. In a decomposed game, participants
choose between three options that offer points to the self and another person. The most commonly
used measure of SVO is the nine-item triple-dominance measure. Typically, participants are classified
as one of three orientations (cooperators, individualists or competitors) if theymake 6 out of 9 choices
consistent with the orientation. Like the ringmeasure, the slidermeasure can help us estimate the SVO
angles of participants; and it has been reported that the slidermeasure has better test–retest reliability
(Murphy et al., 2011); but as described in the next section, the Ring measure is the only one that can
be adapted for use in a repeated-game setting.

2.4. Agent-modelling

Previous research in agent-modelling has proposed modelling other agents by estimating agents’
personalities. For example, Talman, Hadad, Gal, & Kraus (2005) proposed a decision-theoretic model
that explicitly represents and reasons about agents’ personalities in environments in which agents are
uncertain about each others’ resources. Similar to our agents, their agents can identify and negotiate
with those who are cooperative while avoiding those who are exploiter. Gal, Grosz, Kraus, Pfeffer,
and Shieber (2010) proposed several new decision-making models that represent, learn and adapt to
various social attributes that influence people’s decision-making in a group of human and computer
agents.

Cheng et al. (2011) developed a successful strategy for the life game, using agent-modelling by
estimating agents’ SVO orientation, and Wilson et al. (2011) showed how social preferences can be
used in classical adversarial game-tree search algorithms. Lastly, Zuckerman andHadad (2012) showed
a BDI-based architecture that provide reasoning capabilities on the social behaviour spectrum.

From the above related work (and others) we can see works that use different models for agent’s
behaviour in repeated games settings. Our work in this paper is different because the model is based
on a well-established theory from social psychology that has been known and used for more than 50
years. This allows us to consider and correlate the personalities of the human designer. In addition, our
proposed method can measure the social orientation quantitatively, instead of simply classifying the
social preferences. In our experiments, we used the correlation to initialise the agent model, but the
SVO information can also be used in other ways (which we leave for future research).

Peer-Designed Agents have been recently used with great success in AI to evolve and evaluate
state-of-the-art cognitive agents for various tasks such as negotiation and collaboration (see Au, Kraus,
& Nau, 2008; Lin, Kraus, Oshrat, & Gal, 2010; Manisterski, Lin, & Kraus, 2008). Lin et al. (2010) provided
an empirical proof that PDAs can alleviate the evaluation process of automatic negotiators, and help
their designs, while Manisterski et al. (2008) studied how people design agents for online markets
and how their design changes over time. Their results show that most human subjects modified their
agents’ strategic behaviour; for example, they increased their means of protection against deceiving
agents. PDAs have also been used with great success in Chalamish et al. (2013) to improve parking
simulations. Au et al. (2008) used agents written by students to study enhancing agent by combining
a set of interaction traces produced by other agents.

However, while using PDA’s instead of human is very attractive, there are also limitations that
must be taken into account. Elmalech and Sarne (2012) showed that there are limitations for the
ability to generalise results from one successful implementation of PDA-based systems to another. As
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such, the decision to prefer working with PDAs instead of humans must dependent on the domain in
question. Another interesting and (very recent) result from the same authors suggest that the process
of developing a programmable strategy for a PDAmight affect the behaviour of its designer (Elmalech,
Sarne, & Agmon, 2015). There are also some evidence of discrepancies between actual and reported
humanbehaviour in variousdomains, inparticular inmeta-cognition research (Harries, Evans, &Dennis,
2000), however overall the sum of evidence do show that PDA designers do manage to describe their
strategy in a way that reflects their real-life strategy.

Our research has very limited exposure to these weaknesses of the PDA methodology, as our
correlation result is, at least theoretically, independent from any specific domain. Based on the strong
findings from the social and behavioural sciences stating that the SVO is consistent in time, we can
hypotheses that the correlation observed on one domain will be transferable to another. There might
be some deviations to the observed social behaviour, but the central social tendency should remain
the same.

3. Measuring agents’ social preferences

In order tomodel the behaviour of an agent, wewould like to have a precise quantitativemeasurement
(like SVO angle) on computer agents. For example, a Maximin agent maximises its worst-case payoff,
so its SVO angle always equals to 0◦. A Minimax agent minimises other agent’s best-case payoff, so its
SVO angle always equals to−90◦. Except for Ringmethod, all the othermeasurementmethods cannot
be transformed into 2×2 games, so they cannot be used to measure social preferences of computer
agents playing 2×2 games (e.g. life game). Therefore, we use a modified version of Ring method to
measure social preference of agents.

Although the choice questions in the Ring measurement can be presented as 2×2 normal form
games, most of the payoff values of the game matrices are not valid for the life game model we
used. In the life game model we used, the payoff values must be in the range [0, 9]. To apply Ring
measurement on automated agents, we modified the game matrices to GRing by down-sampling,
scaling, and translating, so that all payoff values will sit within [0, 9].

Another problem is that the agents were designed under the assumption that they may have
repeated interactionswith the other agents. It is likely that the social preference of an agent varies with
the current number of iterations and the behaviour of the other agent. For example, an aggressive
partner might trigger an aggressive behaviour even from an initially cooperative agent. This is so
because the decision may involve many factors like behaviour of other agent, social preference and
competence of the humandesigner. However, one-shot games are used in all of the SVOmeasurement
methods for human, and the participants are told that they will remain mutually anonymous during
and after their decisions are made. This non-repetitive interaction assumption is not valid in most
multiagent environments. In the environment we used, the repeated interaction is modelled by a
repeated game with unknown number of iterations.

In repeated games, an agent’s social preference can be influenced not only by the agent’s own SVO,
but also by how the agent reacts to the other agent’s SVO. For example, let x be an agent whose SVO
is 45◦ (i.e. it prefers equal payoffs for both agents) and y be amemory-less agent whose SVO is 0◦ (i.e. y
cares only aboutmaximising its own payoff in the current iteration). If x and y interact repeatedly, then
after repeated observations of y’s behaviour, xmight decide that the best way to equalise both agents’
cumulative payoffs might be for x to try to maximise its own payoff at each iteration. Consequently,
if we perform a Ring measurement of x after it has had many interactions with y, x ’s ‘apparent’ SVO
value may be closer to 0◦ than 45◦. We will call this x ’s para-SVO against y.

The para-SVO, θn(x|y), of agent x at the n-th iteration with tester agent y is measured by applying
the modified Ring measurement on the agent at the (n + 1)-th iteration after it interacted with the
tester agent y for n iterations. In this chapter, we use a random agent as the tester agent y.4 The
parameter n is introduced, because we would like to measure social preference, which might change
during the interactions, at a specified iteration. Ourmeasurement algorithm uses the behavioural data
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Figure 3. Procedure of measuring para-SVO of an agent x with a tester agent y after n random games.

of the agent at the last iteration, therefore the para-SVO represents just the latest social preference
of the agent after n games. Figure 3 shows the complete procedure for measuring θn(x|y) using the
modified gamematrices GRing. It will get the responses from the testee agent at the last gamewhich is
one of the games in GRing, and then calculate the para-SVO using Formula (1). We verified the validity
of themeasurement by applying it on some simple agents with known para-SVO angles (e.g. para-SVO
angles of Maximin, Minimax and a prosocial agent are 0◦, −90◦, and 45◦, respectively).

3.1. Experiments onmeasuring agents’ para-SVO

In this section, we will present some results on the relationship between social preferences of agents
and that of their designers. Our experimental results are based on a (large) set of peer-designed agents
(PDAs) of students in advanced-level AI and Game theory classes in the US and Israel. Before giving
the programming task we also asked the students to complete an online questionnaire for measuring
their SVO (Liebrand & McClintock, 1988). We did not reveal the purpose of that questionnaire, and we
did not provide themwith their quantified SVO value based on their results. Next, we collected a set of
PDAs, where the students were instructed that their agent would compete against all the agents of the
other students in the class in a round-robin fashion. The instructions stated that, at each iteration, they
will be given a symmetric game with a random payoff matrix. The students did not know in advance
the number of iterations in each game. The total agent’s payoffwill be the accumulated sumof payoffs
with each of the other agents. We have developed a framework code in Java that was provided to
the students to get them started, and the students could focus solely on their agent’s strategy. For
motivational purposes, the project grade was positively correlated with their agents overall ranking
based on their total payoffs in the competition.

In the first step, we collected 28 agents with SVO of the corresponding designer. That is, we have
28 ‘life game’ agents, with strategies of varying complexities, alongside the SVO value of its designer.
Figure 4 shows the SVO distribution of all 28 students. 21 of them are cooperative (67.5◦ > SVO angle
> 22.5◦), and 7 of them are individualistic (22.5◦ > SVO angle > −22.5◦).5
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Figure 4. SVO of 28 students.

Figure 5. Correlation of human SVO and agents’ para-SVO.

3.1.1. Agent-human SVO Correlation
We used the modified ring method presented in Section 2.3 to measure the para-SVO of all computer
agents using different tester agents, and then calculated the Pearson correlation of the agents’ social
preferences and human SVO. Figure 5 shows the correlation of human SVO and agents’ para-SVO
measured by the modified ring method using different tester agents.

The x-axis of Figure 5 is thenumber of iterations (n) used formeasuring the agent SVO. ThePearson’s
correlation at the first iteration is medium-positive correlation (r = 0.4,N = 28, p < .05), and then
rises to around r = 0.55 for several iterations, before decreasing and leveling off for the rest of the
repeated game.

After reading the source codes of the agents, we found that some students wrote specific parts of
their codes for the first iteration only. In other words, they hard coded some initial behaviour that may
be different from other iterations. This might be partly related to the fact that the Ringmethod (as well
as all other available methods) uses a one-shot games, but we hypothesis that as there is no available
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Figure 6. Correlation between human SVO and agents using non-stationary strategy.

information in the first round (no past behaviours to observe), a reasonable solution is to hard code
the first iteration before trying to build a model of the other agent in the game, based on the history
of interaction.

As the game progresses, the agent’s behaviour will come to depend partly on the social preference
of the designer, and partly on the agent’s predictions of the other agent’s behaviour. We surmise that
this effect is responsible for the correlations shown in Figure 5.

3.1.2. Stationary vs. non-stationary strategies
The guess of the previous subsection motivated us to classify and investigate the agents based on
the complexity of their strategies. We divided the agents’ strategies into two groups, stationary and
non-stationary, according to the variance of their para-SVO:

(1) For agents using stationary strategy, given a tester agent, their para-SVOs remain the same all
the time, because their choices at each iteration dependonly on thepayoffmatrix of the current
game. They usually have shorter and simpler codes. For example, some students’ agents use a
simple competitive strategy that choose action A1 when b > c, and choose action A2 otherwise.
We have about 12 agents using stationary strategy among those students’ agents, and the
correlation is approximately 0.6.

(2) For agents using non-stationary strategy, given a tester agent, their para-SVOs change as the
game progresses, because their choices at each iteration depend on the previous history of the
interactions. Theymaybuild predictivemodels of some kind andmake some strategic decisions
based on the model. For example, some students’ agents estimate the probability of the other
agent choosing some kind of action in different situations, and then respond accordingly.

Figure 6 shows the correlation of human SVO andpara-SVOof agents using non-stationary strategy,
which is the subset of 16 agents out of the collected data. Comparing with the correlation for agents
using stationary strategy (≈ 0.6 for all iteration), the correlation for agents using non-stationary
strategy is lower (ranging from -0.4 to 0.4). This is consistent with our previous guess that para-SVOs
of agents using non-stationary strategies correlate less with the social preferences of their designers.
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4. Utilising the SVO information

There aremany possible applications of utilising the SVO information. Having the SVO information, we
can predict the behaviours of the other agents in various situations (as we will do next in Section 5),
and our agents can interact with them in some better ways. For example, our agent can avoid possible
exploitation by agent that is probably competitive. On the other hand, if we know that the other
agent is possibly cooperative according to the SVO information, our agent can possibly increase
mutual benefits by working closely with the other agent. If the other agent is neither competitive nor
cooperative, our agent can start with some safe actions and learn more accurate model of the other
agent from interaction. Using that kind of strategy, we can develop a collaborative agent to enhance
safety and productivity by utilising the SVO information.

In this section, we present two examples that use the SVO information. First, we show how we can
use the SVO information to composite two simple and non-adaptive agents to form a better non-
adaptive agent. Second, we present howwe can improve an adaptive agent (Cheng et al., 2011) using
the SVO information.

4.1. Improving a non-adaptive agent

In this subsection, we present a way to use the data of other agents’ designer to combine two simple
agents to form a better agent. The two agents we used are social agent and Maximin agent. Both
of them are non-adaptive, thus they do not apply any agent-modelling technique during the game.
Social agent always chooses an action that maximises the sum of payoff of itself and other, so its
SVO angle is 45◦ and it performs better if the other agent is also cooperative. Maximin agent always
chooses an action that maximises its own minimum possible payoff, so its SVO angle is 0◦ and it can
avoid being exploited by other non-cooperative (individualistic or competitive) agents.

It would be better if we can combine the advantage of both agents in following way: if the other
agent is cooperative, our agentwill act like the social agent to gain the benefit ofmutual cooperation; if
the other agent is non-cooperative, our agent will act like the Maximin agent to avoid being exploited
by them. However, as we do not know the exact social preference of other agents before interacting
with them, we propose to approximate the social preference of the other agents by the SVO of their
designer. In other words, if the SVO of other agent’s designer is in the cooperative range (≥ 22.5◦), our
agent will act like a social agent; otherwise (< 22.5◦), our agent will act like a Maximin agent.

We implemented the simple agents and the proposed composite agent described above, and
compared their performance in tournaments (10000 runs) with the 28 students’ agents. Figure 7
shows the average payoffs when the three agents playing with all 28 students’ agents. It shows that
the average payoff of the composite agent is (almost, except one point) always higher than both
simple agents, because it has the strengths of both agents in different situations (p < .05). The result
also shows that the performances of the simple and composite agents drop when there is more
iterations. It is because some students’ agents apply agent-modelling technique that they can easily
exploit agents using stationary strategies (including the simple and composite agents) after they
have enough interaction data. As we shown in Section 3.1.2, if the other agents use non-stationary
strategy, designers’ SVO is not enough tomodel them later in the game.We still need agent-modelling
techniques during interaction to being exploited by those agents.

4.2. Improving an adaptive agent

In this subsection, we show a way to use the data of other agents’ designer to improve an adaptive
agent that apply agent-modelling techniques. We use an adaptive agent which is a state-of-the-art life
game agent (Cheng et al., 2011). The agent is an automated agent for the life game which performs
agent-modelling using a cognitive agent model based on the Social Value Orientation (SVO) theory. In
this subsection, we exemplify a way to modify that agent with the newly discovered SVO correlation
results, by providing it the SVO data of other agent’s designer.
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Figure 7. Performance of the simple and composite agents.

Since the original adaptive agent does not have any prior knowledge about the other agent, the
agent does not know the social preference of the other agent. Therefore, the agentwill start with some
default models, and will estimate the orientation of other agent from the history of interactions. More
precisely, the agent starts by assuming that the other agent is fully cooperative. After accumulating
some interaction histories, the agent will learn the true social orientation of the other agent, and will
adapt and use it to the best of its capacity (for example, if the other agent is cooperative, the agent
will also be cooperative). To minimise exploitation, the estimated cooperativeness of the other agent
is decreased whenever a defect-like action is observed. There are five types of cooperativeness: type 0
(fully non-cooperative), 1, 2, 3 and 4 (fully cooperative). Agents with higher cooperativeness will tend
to cooperate on a larger subset of games.

Although it can prevent future exploitation by decreasing the estimated cooperativeness of the
other agent whenever a defect-like action is observed, it cannot prevent the initial exploitation of
non-cooperative agents. Avoiding initial exploitation is importance, especially when the expected
number of iteration is small. We propose to use the SVO information of the designer of other agent
to minimise the exploitation by selfish agent. If the designer of other agent has higher SVO angle,
the higher initial estimated cooperativeness of the agent. More precisely, instead of initialising the
estimated cooperativeness (Ca) of other agent (a) to fully cooperative (4), we initialise it according to
the agent designer’s SVO (θa) using following formula:

Ca = max
(
min

(
θa

10
, 4

)
, 0

)

In other words, we have a higher Ca value for an agent a written by a designer having higher SVO
angle θa.

To evaluate the performance improvement of the agent with the help of the human SVO data,
we implemented a forewarned adaptive agent described above, and evaluated its performance in
tournaments (10000 runs) with students agents. Figure 8 shows the average payoffs the agents at
different iteration when they play with all 28 students’ agents.

The payoff of the original agent is very low at the beginning, because it begins by assuming the
other agent is fully cooperative and so applying the ‘nice’ strategy towards all other agents. If the other
agent is non-cooperative, the original agent may be exploited for the first few games, and lose some
payoffs at the beginning. On the other hand, the forewarned adaptive agent has higher payoff at the
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Figure 8. Performance of agents playing with all 28 students’ agents.

beginning, because it prevents some of the exploitation by having a more accurate initial model. The
results also shows that the significance increase in performance (p < .05) mainly comes from avoiding
being exploited by agents written by individualistic human. The human SVO data can help the agent
to estimate the cooperativeness of other agents, rather than learning through interaction.

With an increasing number of iterations, both agents’ performances improve and converge. It is
probably because both agents are doing agent modelling. With more interaction data, the modelling
will be more accurate, and so they can better predict other agents’ action to get higher payoffs. For
example, even though the original agent always starts with being nice, when it knowsmore about the
other agents, it will stop cooperating with the defectors and keep cooperating with the cooperators.

In summary, there are at least three main factors for a good life game agent: (1) apply agent-
modelling techniques during interaction; (2) start with a more accurate model; (3) maintain mutual
cooperation with other agents if possible.

5. The behavioural signaturemodel

Recall that the para-SVO, θn(x|y), of agent x at the n-th iteration with tester agent y is measured by
applying the modified Ring measurement on the agent at the (n + 1)-th iteration after it interacted
with the tester agent y for n iterations.

In previous sections, we used a random agent as our tester agent in the first steps of exploration.
However, while measuring against a random agent did manage to provide a sufficient measuring
method for agent’s SVO as we saw in previous sections results, it might lead to various errors in the
SVO estimations, especially for the adaptive behaviour agents. For instance, a prosocial agent whose
random opponent played aggressively due to chance, might quickly adapt its behaviour to avoid
exploitation. In order to account for such situations, we now suggest a slightly more complicated
opponent model, the behavioural signature. This model will allow the agent to exhibit more fine-
tuned social orientation when interacting with different tester agents.

We define a behavioural signature for a to be a vector σn(a) that includes a’s SVO and a collection
of para-SVO values for a against several different ‘constant-SVO agents’:

�n(a) = (θ0(a), θn(a|C−90), θn(a|C−80), ..., θn(a|C90)),
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Figure 9. Procedure of measuring para-SVO of an agent a (which uses strategy Sa) at n-th iteration.

where θ0(a) is a’s SVO, and θn(a|Cx) is a’s para-SVO at the n-th iteration when a plays with the agent
Cx defined below.

Each agent Cx is a memory-less agent whose SVO is x degrees. Cx maximises the quantity S cos x +
O sin x , where S is it’s expected payoff and O is other agent’s expected payoff if Cx plays against an
agent that chooses each action with equal probability.6 For example, if x = 0 and the game matrix is
the one shown in Figure 1, the Constant-SVO agent will choose A1 if a + b > c + d, otherwise it will
choose A2.

The para-SVO, θn(a|Cx), of agent a at the n-th iterationwith tester agent Cx is measured by applying
the modified Ring measurement on the agent at the n-th iteration after it interacted with the tester
agent Cx for n − 1 iterations. The parameter n is introduced, because we would like to measure social
preference, which might change during the interactions, at a specified iteration. Our measurement
algorithm uses the behavioural data of the agent in the last iteration (the n-th iteration), therefore, the
para-SVO represents just the latest social preference of the agent after (n− 1)-th iteration. We verified
the validity of themodifiedmeasurement by applying it on some simple agents with known para-SVO
angles (e.g. para-SVO angles of Maxmin, Minmax and a prosocial agent are 0◦, −90◦, and 45◦).

Figure 9 shows the complete procedure for measuring θn(a|Cx) using the modified game matrices
Gr . It will get the responses from the testee agent at the n-th game which is one of the games in Gr ,
and then calculate the para-SVO using Formula (1).

If we know the behavioural signatures of two agents a and b, we can estimate the cumulative payoff
when a and b play with each other. In this paper, we will study and evaluate twomethods, E0(a, b) and
En(a, b), for estimating a’s average payoff when it plays with b for m iterations (where m > n). Both
methods use a EC function to approximate the payoff. EC [x , y] is the payoff of Constant-SVO agent Cx
when it plays with another Constant-SVO agent Cy form total number of iterations. Note that EC [x , y]
can be computed quickly because the Constant-SVO agents are very simple.

E0 estimation:

E0(a, b) = EC [θ0(a), θ0(b)]
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Figure 10. Distribution of students’ agents’ SVO.

En estimation:

En(a, b) = EC [θn(a|Cβ), θn(b|Cα)],
where α = θ0(a) rounded off to the nearest tens digit, and β = θ0(b) rounded off to the nearest
tens digit.

The first method uses (initial) SVO values of a and b as the input to EC . The second method uses a
more sophisticated input that involves the behavioural signatures of both agents. Note that E0(a, b) is
a degenerated case of En(a, b)when n = 0, because all elements in the behavioural signature equal to
SVO of the agent when n = 0.

We have evaluated our model experimentally on a large collection of agents that were written by
students in several advanced-level AI and Game Theory classes. In each case, the students wrote their
agents to compete in a round-robin tournament among all the agents in their class. To attain a richer
set of agents, the classes were held at two different universities in two different countries: one in the
USA, and one in Israel.

Our experimental studies involved measuring the agents’ behavioural signatures, playing round-
robin tournaments among the entire set of agents, and comparing the agents’ performance with the
predictionsmade by ourmodel. To eliminate random favourable payoff variations, we randomised the
series of games, and used the same series between all agents in the population. The instructions stated
that at each iteration, they will be given a symmetric game with a random payoff matrix of the form
shown in Figure 1. Following Axelrod’s methodology, we did not tell the students the exact number of
iterations in each life game. The total agent’s payoff will be the accumulated sum of payoffs with each
of the other agents. For motivational purposes, the project grade was positively correlated with their
agents overall ranking based on their total payoffs in the competition. Overall, we collected 71 agents
(47 from the USA and 24 from Israel).

5.1. Measuring agents’ behavioural signatures

Weuse the para-SVOmeasurement procedure (shown in Figure 9) to find the behavioural signatures of
all students’ agent. Figure 10 shows the distribution of (initial) SVO of students’ agents.7 While most of
them are individualistic (to different degrees), there were somewho had competitive and cooperative
orientations.
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Figure 11. Average para-SVO values θ10(a|Cx ) for x = −90◦ to 90◦ , averaged over all a in the entire set of students’ agents.

Figure 12. Average para-SVO values θn(a|Cx ) with different tester agents Cx , averaged over all a in the entire set of students’
agents.

Figure 11 shows the average, over all of the students’ agents, of the para-SVO value θ10(a|Cx). Recall
that θ10(a|Cx) is agent a’s para-SVO value at 10th iteration against a memory-less agent Cx whose SVO
is x degrees. Notice that the average para-SVO of the students’ agents increases with the para-SVO of
the tester agents, because it is beneficial to bemore cooperative if the other agent ismore cooperative.
The magnitude of change of the average is not large, because para-SVO values of about 45 (out of 71)
agents remain constant across different tester agents.

Figure 12 shows the average para-SVOof students’ agentswhen the tester agents are Constant-SVO
agents with SVO = −40◦,−20◦, 0◦, 20◦, or 40◦. Again, the results show that the average para-SVO of
the students’ agents increases with the para-SVO of the tester agents. Moreover, when n increases,
most of the averages decrease, and all of them level off after about 20 iterations. From examining the
code, we found that many of the agents try to build a model of the other agent in the game, based on
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Figure 13. Correlation between predicted and actual payoffs (when student agents play in a tournament).

Figure 14.Mean square error of predicted payoffs (when student agents play in a tournament).

the history of interactions, and the model tend to be stabilised after some number of iterations. All of
the above results show that the apparent social preferences of agents change with the behaviours of
other agents, because the action of an agent is usually determined by both its SVO and its prediction
of the opponent action.

5.2. Predicting agents’ performances

Our next goal was to evaluate the accuracy of our prediction algorithms. In the following experiments,
the total number of iterations (m) is 100, and the number of runs is also 100. We predicted the average
payoff of all possible games of any two students’ agents (including playing with itself, i.e. 71× 71 data
points for each run), using the method mentioned in Section 5.1.

Figures 13 and 14 show the correlation and mean square error between predicted payoffs and
actual payoffs. Regardless the value of n, the predicted payoffs have high correlation with the actual
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payoffs. Their mean square errors are low, comparing with the average payoff ≈ 5.5. When n = 0, the
accuracy of En is good (mean square error = 0.289). As n increases, the accuracy of En also increases
until n = 20, at which point it levels off (similar to Figure 12).

When n = 0, En degenerates to E0 which only considers the (initial) SVO value of the agents.
When n > 0, En takes the agents’ adaptive behaviours into account by considering their behavioural
signatures. The better performance of En shows that our extended SVOmodelworks better in repeated
games than the original SVOmodel.

6. Conclusions

Human social preferences,i.e. human preferences for the outcomes of their interactions with others,
have been shown to play an important role inmany areas of decision-making. As agents are developed
that exhibit more autonomy and take an increasing role in interacting with other human and agents,
it is becoming important to understand the social preferences of agents as well as humans.

We have developed away tomeasure the social preferences of computer agents, by adapting some
concepts and techniques from social psychology. In our study of agents that were designed to play
a repeated stochastic game (the life game), we have found a strong correlation between the agents’
social preferences, measured using para-SVO, and the social preferences of their human designers. We
have shown that this correlation can be used to make useful strategic predictions of what choices an
agent will make over the course of a game, and have shown that these predictions can be used to
improve the performance of other agents that interact with the given agent.

We have also extended the SVO model from social psychology, to provide a behavioural signature
that models how an agent’s behaviour over multiple iterations will depend on both its own SVO and
theSVOof the agentwithwhich it interacts.Wehaveprovidedaway tomeasure anagent’s behavioural
signature, and a way to use this behavioural signature to predicting the agent’s performance. In our
study of agents that were designed to play a repeated stochastic game (the Life Game) in classroom
tournaments, the predictions made by our model were highly correlated with the agents’ actual
performance.

However, in order to utilise the correlation in real deployment scenarios, one still needs to develop
ways to evaluate the SVO of agents or its human designers from real world interactions. Techniques
such as transfer learning and data mining can be used to evaluate the SVO of the human (or agent)
frompast interactions, and utilised via the presented correlation result. For example, in Au et al. (2008)
the authors presents a way to take a set of interaction traces produced by different pairs of players in
a two-player repeated game, and combine them into a composite strategy. This strategy can in turn
be evaluated using the para-SVO technique and quantified into an SVO value.

The implications of the correlation results are extensive and are not limited to the psychological
SVO exam employed in this paper. Automated agents are increasingly becoming more widespread
in various domains such as online commerce, social networks (Aiello, Deplano, Schifanella, & Ruffo,
2012), online games (Golle & Ducheneaut, 2005) and automated negotiations (Rosenfeld, Zuckerman,
Segal-Halevi, Drein, & Kraus, 2016). In addition, we also see an increase in simplified architectures and
interfaces that allow people to define and form behaviour rules for their agents without complex
programming. As automated agents are formed to replace humans in simple tasks, the ability to infer
from the agent’s behaviour information about the social tendencies of its designer might be valuable
in any situation where the interaction is repeated and quick understanding of your opponent is of an
advantage. For example, in the yearly automated negotiation agents competition (ANAC) (e.g. Fujita
et al., 2017), where time and modelling your opponent are important factors, one could learn the SVO
information of agents from the past year competition, and use it to boot-strap its agent when playing
again with an agent of the same designer.

Although our study was restricted to the life game, we believe there is a strong potential for
extendingour results toother contexts. Suchextensionsmayprovidebothan improvedunderstanding
of agent behavioir, and ways to improve the effectiveness of agents in their interactions with others.
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Also, in the future we plan to deepen our understanding and find new ways to measure SVO in an
automated agent.

Notes

1. The remaining 13% could not be classified as having a consistent SVO.
2. The [0, 9] range was selected arbitrarily, and the results in the paper are general for any selected range.
3. The boundary between cooperative and individualistic is 45◦+0◦

2 = 22.5◦ . Other boundary angles can be derived
similarly.

4. In the next chapter, we further extend the notion of para-SVO by having a special set of tester agents.
5. It skews toward cooperative orientation, possibly because we collected the data from students voluntarily

responding to our survey.
6. The ‘equal probability’ assumption is needed to calculate the expect payoff for each action. It can be shown that

this assumption is compatible with the para-SVOmeasurement.
7. SVO of a is measured by testing awith one-shot games, i.e. it is equals to the initial para-SVO of a.
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