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Abstract 
This paper describes comparisons of the minimax back- 
up rule and the product back-up rule on a wide variety 
of games, including P-games, G-games, three-hole 
kalah, Othello, and Ballard’s incremental game. In 
three-hole kalah, the product rule plays better than a 
minimax search to the same depth. This is a remarkable 
result, since it is the first widely known game in which 
product has been found to yield better play than 
minimax. Furthermore, the relative performance of 
minimsx and product is related to a parameter called the 
rate of heuristic flaw (rhf). Thus, rhf has potential use 
in predicting when to use a back-up rule other than 
minimax. 

I. Introduction 
The discovery of pathological games [Nau, 19801 has 
sparked interest in the possibility that various alterna- 
tives to the minimax back-up rule might be better than 
minimax. For example, the product rule (originally sug- 
gested by Pearl [1981, 1984]), was shown by Nau, Pur- 
dom, and Tzeng [1985] to do better than minimax in a 
class of board splitting games. 

Slagle and Dixon [1970] found that a back-up pro- 
cedure called “M & N” performed significantly better 
than minimax. However, the M & N rule closely resem- 
bles minimax. Until recently, poor performance of 
minimax relative to back-up rules significantly different 
from minimax has not been observed in commonly 
known games such as kalah. 

(1) 
This paper presents the following results: 
For a wide variety of games, a parameter called the 
rate of heuristic flaw appears to be a good predic- 
tor of how well minimax performs against the pro- 
duct rule. These games include three-hole kalah, 
Othello, P-games, G-games, and possibly others. 
This suggests that rhf may serve not only as a 
guideline for whether it will be worthwhile to con- 
sider alternatives to minimax, but also as a way to 
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relate other characteristics of game trees to the per- 
formance of minimax and other back-up rules. 

(2) In studies of three-hole kalah, the product rule 
played better than a minimax search to the same 
search depth. This is the first widely known game 
in which product has been found to play better 
than minimax. The product rule still has a major 
drawback: no tree-pruning algorithm has been 
developed for it, and no correct pruning algorithm 
for it can conceivably do as much pruning as the 
various pruning algorithms that exist for minimax. 
However, the performance of the product rule in 
kalah suggests the possibility of exploiting non- 
minimax back-up rules to achieve better perfor- 
mance in other games. 

efinitions 
By a game, we mean a two person, zero sum, per- 

fect information game having a finite game tree. All of 
the games studied in this paper satisfy this restriction. 

Let G be a game between two players called mux 
and min. To keep the discussion simple, we assume 
that G has no ties, but this restriction could easily be 
removed. If n is a board position in G, let u(.) be the 
utility function defined as 

t 

1 if n is a forced win node 
u(n) = 0 if n is a forced loss node. 

We consider an evaluation function to be a func- 
tion from the set of all possible positions in G into the 
closed interval [O,l]. If e is an evaluation function and 
n is a node of G, then the higher the value e(n), the 
better ii looks according to e. We assume that every 
evaluation function produces perfect results on terminal 
game positions (i.e., e(n) = u(n) for terminal nodes). 

If m is a node of G, then the depth d minimax and 
product values of m are 

(m) if depth(m)=d or m is terminal 
M(m,d) = in, M(n) if min has the move at m 

ax, M(n) if max has the move at m 
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e(m) if depth(m)=- or m is terminal 
P(m,d) = II, M(n) if min has the move at m 

l- II, (l-M(n)) if max has the move 

where n is taken over the set of children of m. 

Pr[u(t&m,n)) < u(-l,(m,n))J = 0. 

Therefore, since there are only a finite number of nodes 
at depth d, there is a value kE(O,l) such that for every 
node m at depth d, 

Let m and n be any two nodes chosen at random u(m) = 1 if and only if e(m) 2 k. 

from a uniform distribution over the nodes at depth cl 
of G. Let te(m,n) (and Le(m,n)) be whichever of m and 
n looks better (or worse, respectively) according to e. 
Thus if e(m) > e(n), then te(m,n) = m and -Ce(m,n) = 
n. If e(m) = e(n), we still assign values to t,(m,n) and 
Ae(m,n), but the assignment is at random, with the fol- 
lowing two possibilities each having probability 0.5: 
Cl) t eCmyn> = m and le(m,n) = n 
(2) “1 ,(m,n) = n and -Ce(m,n) = m. 

Since e may make errors, exhaustive search of the 
game tree may reveal that t,(m,n) is worse than 
Ae(m,n), i.e., that 

uct ,h-d) < u(~eb9nN. 
In this case, a heuristic flaw has occurred: the evalua- 
tion function has failed to give a correct opinion about 
m and n. The rate of heuristic flaw at depth d, denoted 
by rhf(d), is defined to be the quantity 

W-G ,(md) < u(~,(m9n)ll. 

hesretical Considerations 

erminating at depth d of a 
game tree. If rhf(d) is small, it is intuitively apparent 
that this search should perform quite well. The ques- 
tion is whether it will perform better than some other 
back-up rule. 

For simplicity, assume that the game tree is binary. 
Assume further that it is max’s move at some node c, 
and let m and n be the children of c. Let d be the 
depth of m and n. Then 

(1) Pr[u(c)=l] = Pr[u(t Jm,n))=l or u(.l,(m,n))=l] 

By mathematical induction, it follows that forced win 
nodes will always receive minimax values larger than 
forced loss nodes, so a player using a minimax search 
will play perfectly. 

n 

u=o 
P=.16 111 

A 

n2 p”!!i2 

nll n12 n21 n22 

u=o u=o u=o u=l 
e=.4 e=.4 e=.2 e=.6 

FIGURE 1: A case where product makes the wrong choice. 

But if the search is a product rule search rather 
than a minimax search, then the search will not always 
result in perfect play. For example, consider the tree 
shown in Figure 1. By looking at the four leaf nodes, it 
is evident that rhf=O with k=0.5. Thus, a minimax 
search at node n must result in a correct decision. How- 
ever, a nroduct rule search would result in incorrectly 
choosing the forced loss node nl. This suggests that 
when rhf is small, the minimax rule should perform 

ter than the product rule. 
. When Rhf is Large 

Let m and n be any two nodes at depth d. In general, 
rhf can take on any value between 0 and 1. But if e is 
a reasonable evaluation function, and if t ,(m,n) is a 
forced loss, this should make it more likely that le(m,n) 
is also a forced loss. Thus, we assume that 

Pr[u(Ae(m,n))=l I u(f e(m,n))=O] < Pr(u(Le(m,n))=l]. 

Thus since u(.) must be either 0 or 1, 
= Pr[u(t e(m,n>>=ll + Pr[u(~,(m,n))~u(t ,(m,n))] 
M Pr[u(t,(m,n))=l] + rhf(d). 

The smallest possible value for rhf(d) is zero. If 
rhf(d) is close to zero, then from (1) we have 

rhf = Pr[u(le(m,n))=l 2% u(t ,(m,n))=O] 
< Pr[u(t ,(m,n))=O] Pr[u(4e(m,n))=1]. 

Suppose rhf is large, i.e., 

Pr[u(c)=l] M Pr[u(t ,(m,n))=l], 

which says that the utility value of c is closely approxi- 
mated by the utility value of its best child. But accord- 
ing to the minimax rule, the minimax value of c is the 
minimax value of the best child. This suggests that in 
this case one might prefer the minimax back-up rule to 
other back-up rules. 

More specifically, consider the extreme case where 

rhf M Pr[u(t e(m,n))=O] Pr[u(le(m,n))=l]. 

Then from (l), 

Pr[u(c)=l] M Pr[u(t ,(m,n))=l] 
+ Pr[u(f e(m,n))=O] Pr[u(le(m,n))=l]. 

Thus, if e(te(m,n)) and e(re(m,n)) are good approxima- 
tions of Pr[u(t e(m,n))=l] and Pr[u(-Ce(m,n))=l], then 

rhf(d)=O. In this case, whenever m and n are two Wu(c)=ll M e(t &w4) + (1 - e(t ebb4>) @-&w>) 
nodes at depth d of 6, = 1 - (1 - 4t ,(m,n))> (1 - e(l,(m,n))), 
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which is precisely the formula for the product rule given 
in Section II. This suggests that when rhf is large, the 

,product rule might be preferable. 
IV. Empirical Considerations 

The arguments given in Section III suggest that 
minimax shoul$ do better against product when rhf is 
low than it does when rhf is high. To test this conjec- 
ture, we have examined five different classes of games. 
Space does not permit us to state the rules of each of 
these games here. However, detailed descriptions of 
these games may be found in the following references: 
G-games [Nau, 19831, Ballard’s incremental game [Bal- 
lard, 19831, Othello [Hasagawa, 19771, P-games [Nau, 
19821, kalah [Slagle & Dixon, 19691. 
A. G-Games 

A G-game is a board-splitting game investigated in 
[Nau, 19831, where two evaluation functions er and es 
were used to compare the performance of minimax and 
product. The product rule did better than minimax 
when er was used, and product did worse than minimax 
when es was used. 

For our purposes, the significance of this study is 
this: it can be proven that for every depth d, rhf(d) is 
higher using er than it is using es. Thus, on G-games, 
product performed better against minimax when using 
the evaluation function having the higher rhf. This 
matches our conjecture. 

Ballard’s Experiments 
used a class of incremental games with 

uniform branching factor to study the behavior of 
minimax and non-minimax back-up rules. One of the 
non-minimax back-up rules was a weighted combina- 
tion of the computational schemes used in the minimax 
and product rules. Among other results, he claimed 
that “lowering the accuracy of either max’s or min’s 
static evaluations, or both, serves to increase the 
amount of improvement produced by a non-minimax 
strategy.” Since low accuracy is directly related to a 
high rhf, this would seem to support our conjecture. 
But since Ballard did not test the product rule itself, we 
cannot make a conclusive statement. 
c. Othello 

Teague [1985] did experiments on the game of Othello, 
using both a “weak evaluation” and a “strong evalua- 
tion.” The weak evaluation was simply a piece count, 
while the strong one incorporated more knowledge 
about the nature of the game. According to Teague’s 
study, minimax performed better than product 82.8% of 
the time with the strong evaluation, but only 63.170 of 
the time with the weak evaluation. 

It would be difficult to measure the rhf values for 
Othello, because of the immense computational overhead 
of determining whether or not playing positions in 
Othello are forced wins. However, since rhf is a measure 
of the probability that an evaluation function assigns 

102 Automated Reasoning 

forced win nodes higher values than forced loss nodes, it 
seems clear that the stronger an evaluation function is, 
the lower its rhf value should be. Thus, Teague’s 
results suggest that our conjecture is true for the game 
of Othello. 
D. P-Games 

A P-game is a board-splitting game whose game tree is 
a complete binary tree with random independent assign- 
ments of “win” and “loss” to the terminal nodes. P- 
games have been shown to be pathological when using a 
rather obvious evaluation function el for the games 
[Nau, 1982]-and in this case, the minimax rule per- 
forms more poorly than the product rule [Nau, Purdom, 
and Tzeng, 19851. However, pathology in P-games 
disappears when a stronger evaluation function, e2, is 
used [Abramson, 1985]. 

It can be proven that e2 has a lower rhf than el. 
Both el and e2 return values between 0 and 1, and the 
only difference between el and e2 is that e2 can detect 
certain kinds of forced wins and forced losses (in which 
case it returns 1 or 0, respectively). 

Let m and n be any two nodes. If e2(t ,s(m,n)) = 
0, then it must also be that e2(AeJm,n)) = 0. But it 
can be shown that e2(x) = 0 only if x is a forced loss. 
Thus u(Lez(n, m))=O, so there is no heuristic flaw. It 
can also be shown that e2(x) = 1 only if x is a forced 
win. Thus if e2(tJm,n)) = 1, then u(tRz(m,n))=l, so 
there is no heuristic flaw. 

Analogous arguments hold for the cases where 
e2($&-4> = 0 or e2(&ez(m,n)) = 1. 

The cases described above are the only possible 
cases where e2 returns a different value from el. No 
heuristic flaw occurs for e2 in any of these cases, but 
heuristic flaws do occur for el in many of these cases. 
Thus, the rhf for e2 is less than the rhf for el. 

TABLE 1: P-game simulation results. 
TO wins for % wins for 

Search minimax minimax 
depth using el using e2 

2 51.0% 52.1% 
3 52.5% 51.8% 
4 49.9% 50.3% 
5 50.7% 49.3% 
6 46.2% 48.1% 
7 46.7% 48.4% 
8 44.9% 48.6% 
9 47.2% 50.0% 

We tested the performance of minimax against the 
product rule using el and e2, in binary P-games of 
depths 9, 10, and 11, at all possible search depths. For 
each combination of game depth and search depth, we 
examined 3200 pairs of games. The study showed that 
for most (but not all) search depths, minimax performed 
better against product when the stronger evaluation 



function was used (for example, Table P shows the 
results for P-games of depth 11). Thus, this result sup- 
ports our conjecture. 

E. alah 
Slagle and Dixon [1969] states that “Kalah is a 
moderately complex game, perhaps on a par with check- 
ers.” But if a smaller-than-normal kalah playing board 
is used, the game tree is small enough that one can 
search all the way to the end of the game tree. This 
allows one to determine whether a node is a forced win 
or forced loss. Thus, rhf can be estimated by measuring 
the number of heuristic flaws that occur in a random 
sample of games. By playing minimax against product 
in this same sample of games, information can be gath- 
ered about the performance of minimax against product 
as a function of rhf. To get a smaller-than-normal 
playing board, we used three-hole kalah (i.e., a playing 
board with three bottom holes instead of the usual six), 
with each hole containing at most six stones. 

One obvious evaluation function for kalah is the 
“kalah advantage” used by Slagle and Dixon [1969]. 
We let e, be the evaluation function which uses a linear 
scaling to map the kalah advantage into the interval 
[O,l].l If P(m,2) is computed using e,(m), the resulting 
value is generally more accurate than e,(m). Thus, 
weighted averages of e,(m) and P(m,2) can be used to 
get evaluation functions with different rhf values: 

e:(m) = w e,(m) + (1-w) P(m,2), 
for w between 0 and 1. 

We measured rhf(4), and played minimax against 
product with a search depth of 2, using the following 
values for w: 0, 0.5, 0.95, and 1. This was done using 
1000 randomly generated initial game boards for three- 
hole kalah. For each game board and each value of w, 
two games were played, giving each player a chance to 
start first. The results are summarized in Table 2. 

TABLE 2: kalah simulation results 
W rhf(4) % games won % games won 

by product by minimax 
1 0.135 63.4% 36.6% 
0.95 0.1115 55.5% 44.5% 
0 0.08 53.6% 46.4% 
0.5 0.0765 51.2% 48.8% _ 

Note that the lowest rhf was obtained with w = 
0.5. This suggests that a judicious combination of 
direct evaluation with tree search might do better than 
either individually. This idea needs to be investigated 
more fully. 

’ A preliminary study of rhf [Chi & Nau, 19861 compared minimax 
to the product rule using ea in three different variants of kalah. 
This study, which used a somewhat different definition of rhf than 
the one used here, motivated the more extensive studies reported in 
the current paper. 

Note also that product performs better than 
minimax with all four evaluation functions.2 This sug- 
gests that product might be of practical value in kalah 
and other games. Also, the performance of product 
against minimax increases as rhf increases. This 
matches our conjecture about the relation between rhf 
and the performance of minimax and product. 

ve -Games ith Varying 
Section Iv shows that in a variety of games, minimax 
performs better against product when rhf is low than 
when rhf is high. To investigate the specific relation- 
ship between rhf and performance of minimax versus 
product, we did a Monte Carlo study of the perfor- 
mance of minimax against product on binary P-games, 
using an evaluation function whose rhf could be varied 
easily. For each node n, let r(n) be a random value, 
uniformly distributed over the interval [O,l]. The 
evaluation function ew is a weighted average of u and r: 

e”(a) = w u(n) + (l-w) r(n). 

When the weight w = 0, ew is a completely random 
evaluation. When w = 1, ew provides perfect evalua- 
tions. For o < w < 0.5, the relationship between w and 
rhf is approximately linear. For w 2 0.5, rhf = 0 (i.e., 
ew gives perfect performance with the minimax back-up 
rule). 

In the Monte Carlo study, 8000 randomly gen- 
erated initial game boards were used, and w was varied 
between 0 and 0.5 in steps of 0.01. For each initial 
board and each value of w, two games were played: one 
with minimax starting first, and one with product start- 
ing first. Both players were searching to depth 2. Fig- 
ure 2 graphs the fraction of games won by minimax 
against product, as a function of rhf. Figure 2 shows 
that minimax does significantly better than product 
when rhf is small, and product does significantly better 
than minimax when rhf is large.3 Thus, in a general 
sense, Figure 2 supports our conjecture about rhf. But 
Figure 2 also demonstrates that the relationship 
between rhf and the performance of minimax against 
product is not always monotone, and may be rather 
complex. 

2 Table 2 shows results only for search depth 2. We examined depth 
2 to 7 and product rule played better than minimax in all of them 
except with less statistical significance for depth 3 and 6. 

3 Furthermore, the poor performance of minimax when rhf is large 
corroborates previous studies which showed that product did better 
than minimax in P-games using a different evaluation function 
[Nau, Purdom, and Tzeng, 19851. 
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% minimax wins against product References 
0.533 h 

0.5 . . . . . . . . .._ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0.473 ‘, 

I 
l rhf 

0.0 0.236 

FIGURE 2: Performance of minimax against 
product using e w as r;hf varies. 

VI. Conclusions and Speculations 
The results presented in this paper are summarized 

below: 
(1) Theoretical considerations suggest that for evalua- 

tion functions with low rhf values, minimax should 
perform better against product than it does when 
rhf is high. Our investigations on a variety of 
games confirm this conjecture. 

(2) In the game of kalah with three bottom holes, the 
product rule plays better than a minimax search to 
the same search depth. This is the first widely 
known game in which product has been found to 
yield better play than minimax. 
Previous investigations have proposed two 

hypotheses for why minimax might perform better in 
some games than in others: dependence/independence 
of siblings [Nau, 19821 and detection/non-detection of 
traps [Pearl, 19841. Since sibling dependence generally 
makes rhf lower and early trap detection always makes 
rhf lower, these two hypotheses are more closely related 
than has previously been realized. 

One could argue that for most real games it may 
be computationally intractable to measure rhf, since one 
would have to search the entire game tree. But since 
rhf is closely related to the strength of an evaluation 
function, one can generally make intuitive comparisons 
of rhf for various evaluation functions without searching 
the entire game tree. This becomes evident upon exam- 
ination of the various evaluation functions discussed 
earlier in this paper. 

There are several problems with the definition and 
use of rhf. Since it is a single number, rhf is not neces- 
sarily an adequate representation for the behavior we 
are trying to study. Furthermore, since the definition of 
rhf is tailored to the properties of minimax, it is not 
necessarily the best predictor of the performance of the 
product rule. Thus, the relationship between rhf and 
the performance of minimax versus product can be 
rather complex (as was shown in Section V). Further 
study might lead to better ways of predicting the per- 
formance of minimax, product, and other back-up 
rules. 
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