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Abstract. In this paper we introduce a formalism for solving Hierar-
chical Task Network (HTN) Planning using Answer Set Programming
(ASP). We consider the formulation of HTN planning as described in
the SHOP planning system and define a systematic translation method
from SHOP’s representation of the planning problem into logic programs
with negation. We show that our translation is sound and complete: an-
swer sets of the logic program obtained by our translation correspond ex-
actly to the solutions of the planning problem. We compare our method
to (1) similar approaches based on non-HTN planning and (2) SHOP,
a dedicated planning system. We show that our approach outperforms
non-HTN methods and that its performance is better with ASP systems
that allow for nonground programs than with ASP systems that require
ground programs.
Keywords: HTN planning, nonmonotonic reasoning, ASP systems,
benchmarks

1 Introduction

In the past few years, the availability of very fast nonmonotonic systems based
on logic programming (LP) made it possible to attack problems from other,
non-LP areas, by translating these problems into logic programs and running a
fast prover on them. One of the first such system was smodels [1] and one of the
early applications [2] was to transform planning problems in a suitable way and
to run smodels on them (see also [3]).

Since then more implemented systems with different properties for dealing
with logic programs have become available: DLV [4], XSB [5, 6] to cite the
most well-known. In addition, the paradigm of Answer Set Programming (ASP)
! This paper is an extended abstract of a paper that is currently submitted as a regular
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emerged [7] is based on the following two key ideas: (1) solving problems by
computing models for logic programs rather than by evaluating queries against
logic programs (as used to be done in conventional logic programming), (2) ad-
dressing the problems located on the second level of the polynomial hierarchy
which seem to be well suited to be tackled with the machinery of answer sets.
In particular many planning problems fit in this picture. Indeed, the problems
on the first two levels of polynomial time hierarchy are covered by the current
ASP implementations.

In this paper, we investigate the ways of formulating and solving Hierarchi-
cal Task Network (HTN) planning problems using nonmonotonic logic programs
under the ASP semantics. HTN planning [8–11] is an AI-planning paradigm in
which the goals of the planner are defined in terms of activities (tasks) and
the planning process is accomplished by using the techniques of task decompo-
sition. There are several well-known HTN planning systems such as Universal
Method Composition Planner (UMCP) [9], Simple Hierarchical Ordered Plan-
ner (SHOP) [11], and SHOP2 (a total-order planner with partially ordered sub-
tasks) [12]. In this work, we focus on the SHOP planning system, which is a
domain-independent HTN planning system that is built around the concept
called ordered task decomposition.

We describe a systematic translation method Trans(·) which transforms
HTN-planning problems as formalised in SHOP into logic programs with nega-
tion. Our basic goal is that an appropriate semantics of the logic program should
correspond to the solutions (plans) of the planning problem. We have adapted
the syntax of the smodels software for our transformation, although we are also
experimenting with other systems like DLV and XSB.

Our experimental results suggest that both (1) encodings using HTN plan-
ning are better than other encodings, because the HTN control knowledge can
be used very naturally to prune irrelevant branches of the search space; and
(2) running an ASP system on non-ground programs (obtained from planning
problems) results in a drastic performance relative to smodels, thus bringing our
method closer to dedicated planning systems like SHOP.

This paper is organised as follows. In the following section, we present the
related work. In Section 2, we describe the basic HTN Planning concepts as they
are defined in SHOP. In Section 3, we first present our causal theory for HTN
planning and then our translation methodology to transform HTN-planning
problems into logic programs with negation. Section 4 contains our theoretical
and experimental results. Our main theorem states that our translation method
is correct and complete with respect to SHOP. Finally, we conclude with Sec-
tion 5 and provide our future research directions.

1.1 Related Work

There are many efforts in the literature for formulating actions in logic programs
and solving planning problems by using formulations such as [13–17]. The idea
in all these works is that representing a given computational problem by a logic



program whose models correspond to the solutions for the original problem. This
idea was the main inspiration for our work presented here.

[18] proposes a declarative language, called the K language, for planning with
incomplete information. The K language makes it possible to describe transitions
between knowledge states, which may not be complete, regarding the world. This
language is implemented as a front-end to the DLV logic programming system.

[19] presents a language about actions using causal laws to reason in proba-
bilistic settings and solves the planning problems in such settings. The language
resembles similarities to those described above, but the action theory incorpo-
rates probabilities and probabilistic reasoning techniques to solve the planning
problems with uncertainty.

Dimopoulos, Nebel and Köhler ([2]) were the first to present a framework
for encoding planning problems in logic programs with negation-as-failure and
implementing it using an ASP engine. In this work, the idea is the same as ours,
that is, the models of the logic program correspond to the plans. However, their
work considers action-based planning problems and incorporates ideas from such
planners GRAPHPLAN and SATPLAN . In terms of the underlying assumptions
and methods presented in [2], our approach is completely different. Both methods
complement each other.

[20] discusses solving planning programs by logic programs. The difference
between this work and the one described above is that [20] incorporates domain-
dependent control knowledge to improve the performance of the planning. In
this respect, this work is similar to HTN planning algorithms. However, the
encoding provided in this work is conceptually not an HTN planner.

2 Definitions for HTN Planning: Syntax and Semantics

A term is either a constant or a variable symbol. A state S is a set of ground
atoms. An axiom is an expression of the form a ← l1, . . . , ln, where a is an atom
and the li are literals. Axioms need not be ground. We assume that the set of
axioms does not contain cycles through negation.

A task is an expression of the form (ht1t2 . . . tn), where h (the task’s name)
is a task symbol, and t1, t2, . . . , tn (the task’s arguments) are terms. A task can
be either primitive or composite. A task list is a list of tasks.

An operator is an expression of the form Op = (Op h χdel χadd), where h
(the head) is a primitive task and χadd and χdel are lists of atoms (called the add-
and delete-lists). The set of variables in the atoms in χadd and χdel is a subset
of the set of variables in h. Let t be a primitive task, Op = (Op h χdel χadd)
be an operator, and S be the current state of the world. Suppose that u is a
unifier for h and t. Then the operator instance Opu is applicable to t in S and
the result of applying it to t in S is a new state result(Opu,S) that is created
by first deleting every ground atom in χu

del from S and then by adding every
ground atom in χu

add to S.
A method is an expression of the form (Meth h χ t) where h (the method’s

head) is a compound task, χ (the method’s preconditions) is a conjunct and t is



a totally ordered list of subtasks, called the task list. Let t be a compound task,
S be the initial state, Meth = (Meth h χ t) be a method, and AX be an axiom
set. Suppose that u is a unifier for h and t, and that v is a unifier that unifies
χu with respect to S ∪AX . Then the method instance (Methu)v is applicable to
t in S, and the result of applying it to t is the task list r = (tu)v. The task list
r is a simple reduction of t by Meth in S.

A plan is a list of heads of ground operator instances. If P = (p1p2 . . . pn) is
a plan and S is a state (a set of ground atoms a), then the result of applying
P to S is the state result(S, P ) = result(result(. . . (result(S, p1), p2), . . .), pn). A
plan P is called a simple plan when n = 1.

A planning domain is a set of axioms, operators and methods. A planning
domain can contain more than one method applicable to a particular compound
task, but it must have only one operator applicable to a particular primitive
task. A planning problem is a triple (S, t,D), where S is a state, t= (t1t2 . . . tk)
is a task list, and D is a planning domain.

Suppose (S, t,D) is a planning problem and P = (p1p2 . . . pn) is a plan. We
say that P solves (S, t,D), or equivalently, that P achieves t from S in D (we
will omit the phrase “in D” if the identity of D is obvious) if any of the following
cases is true: (1) t and P are both empty, (i.e., k = 0 and n = 0); (2) t1 is
a primitive task, p1 is a simple plan for t1, (p2 . . . pn) achieves (t2 . . . tk) from
result(S, p1); and (3) t1 is a composite task, and there is a simple reduction
(r1 . . . rj) of t1 in S such that P achieves (r1 . . . rjt2 . . . tk) from S. The planning
problem (S, t,D) is solvable if there is a plan that solves it. We define Sol(S, t,D)
as the set of all possible plans that can be found given (S, t,D) as a solution
during planning. Note that Sol(S, t,D) is a multi set : it can contain the same
plan in a number of copies. This is because the same plans may be generated
during the planning process due to the fact that there may be different method
applicable to a particular compound task, thus creating a branching point in the
search space of the planner, and different branches may end up with same plans.

3 Encoding HTN Planning in Nonmonotonic LP

Our approach of encoding HTN-planning problems as logic programs is based
on SHOP’s representation of a planning problem.3 In this section, we present
first steps of a causal theory of HTN planning based on the SHOP formalism.
The reason for presenting this causal theory is not to give a formal semantics,
but to give some motivations for the more technical aspects of the translation
methodology presented in the later in this section.

Definition 1 (Causable Tasks). For a planning problem (S, t,D), the notion
of an ordered list of tasks to be causable wrt. (S,D) comes in 3 steps.
3 SHOP is a domain-independent HTN-planning system that plans for tasks in the

same order that they will later be executed. This provides the planner with a signifi-
cant inferencing and reasoning power, including the ability to call external programs
and the ability to perform numeric computations. Due to the lack space, we cannot
go into the details of SHOP in this paper; for more information please see [11, 21].



Literals: A literal l is caused by (S,AX ) if l is true in all answer sets of S∪AX ,
where AX is the set of axioms in D. A literal l is causable wrt. (S,D) if
it is caused by (S,AX ) A conjunction of literals is causable wrt. (S,D) if
every conjunct is causable wrt. (S,D).

Primitive tasks: An ordered list of primitive tasks t1, . . . , tn is causable wrt.
(S,D) if the following holds:

For each ti, there exists an operator (Op h χdel χadd) ∈ D such that
there is a unifier u for h and ti.

This includes that the empty list [] is causable.
Composite tasks: An ordered list of tasks t1, . . . , tj , . . . , tn, where tj is a com-

posite task and all tasks t1, . . . , tj−1 are primitive tasks, is causable wrt.
(S,D) if the following holds:
1. there exists a method (Meth h χ {tj1 , . . . , tjm}) ∈ D for tj such that

there is a unifier u for h and tj,
2. the preconditions-list χu, which is a list of literals representing a con-

junction, is causable wrt. (result(S, t1, . . . tj−1),D), and
3. the ordered list (t1, . . . , tj−1, tj1 , . . . , tjm , tj+1, . . . tn is causable wrt.

(S,D).

Theorem 1. Let a planning problem (S, t,D) be given, where S is the initial
state, t is the list of tasks to be achieved and D is the domain description.

There is a solution to (S, t,D) if and only if the list t is causable wrt. (S,D).

Using this causal theory as an intermediate step, we developed a system-
atic translation method for mapping planning problems to logic programs with
negation which we illustrate now.

Translating a planning problem (S, t,D) to its logic program counterpart
Trans((S, t,D)) requires encoding the methods, the operators, and the axioms
as logic program segments as well as the underlying ordered task decomposition
characteristics of SHOP.

Definition 2 (Trans((S, t,D)): Translation for the Planning Problem).
The logic program Trans((S, t,D)) that solves the planning problem (S, t,D) is
defined as

Trans((S, t,D)) = Trans(G) ∪ Trans(S) ∪ Trans(t) ∪ Trans(AX ) ∪
Trans(F ) ∪ Trans(OP) ∪ Trans(MET H), ∪ Trans(ST ),

where each Trans(. . .) is a logic program segment as defined in the following
subsections.

Encoding the Grounding Rules Given a planning problem, these rules en-
code all of the objects that may be used in solving the planning problem, the
type descriptions of those objects, and all of the atoms that may appear to be
true in some state of the planner during the planning process. The reason that we
need these rules are the following important distinction between SHOP and most
nonmonotonic systems: SHOP allows using variables in the domain descriptions



of the planning problems and all variables are implicitly universally quantified.
However, unlike most nonmonotonic systems, SHOP searches over the original
formulas without expanding the ground representation before search.

Definition 3 (Trans(G): Translation for the Grounding Rules).
Given a planning problem (S, t,D), we define Trans(G) as the logic program
segment that consists of the following set of rules:

– For each object o: [type](o) : −
– For each atom A: atom(A) : −

Encoding the Initial State. The initial state S is a set of ground atoms.
Definition 4 (Trans(S): Translation for Initial State).
Given a planning problem (S, t,D), for each ground atom a ∈ S, the logic pro-
gram segment Trans(S) contains the rule “ in state(a, 0) : −”, where 0 indicates
the initial time.

Encoding the Goal Task(s). In SHOP-like HTN planning, a task is accom-
plished if and only if it is causable with respect to the initial state and the domain
description given in the planning problem. This is due to the Definition 1 and
a direct consequence of Theorem 1. We denote the fact that whether a task is
causable by the following definition.

Definition 5 (CAUSABLE).
Given a task t, we define CAUSABLE(t, Tselected, Taccomplished) as follows:





false if t is a primitive task and
there is no operator for it in D, or
if t is a compound task and
there is no method for it in D,

currentTask(t, Tselected), if tk is a primitive task and
there is an operator for it in D,

causable(t, Tselected, Taccomplished) if tk is a compound task and
there is a method for it in D,

where the predicate currentTask(t, T ) encodes the fact that the task t is selected
as the ”current task” – i.e., the task that the planner will try to accomplish next
– at time T .

We are now ready to define the logic program that encodes the goal task list
of a given planning problem.

Definition 6 (Trans(t): Translation for Goal Tasks).
Given a planning problem (S, t,D), let t = h1, h2, . . . , hn be the ordered sequence
of goal tasks. Then, Trans(t) is the logic program segment that contains one
rule for each goal task hi, where i = 1, 2, . . . , n, as follows:

currentTask(h1, 0) : −
currentTask(hi, Ti) : − CAUSABLE(hi−1, Ti−1, Ti), Ti > Ti−1.



Note that if there exists only one goal task to be accomplished for the problem
in hand, then only defining the first rule will suffice. Definition 6 enforces the
fact that a goal task hi is designated as the current task to be accomplished if
the previous goal task hi−1 in t is causable. This is a direct consequence of our
Theorem 1. The planning process terminates successfully when all of the goal
tasks are accomplished (i.e., caused) in the order they are given in the planning
problems. The following definition is given to encode the successful termination
of the planning process.

Definition 7 (Trans(ST ): Successful Termination).
Given a planning problem (S, t,D), the logic program segment Trans(ST ) that
encodes the successful termination of the planning process (i.e., the fact that a
solution to the given planning problem is found) is defined as follows:

plan found : − CAUSABLE(hn, Tn, Tn+1).
: − not plan found.

Encoding the Domain Control Structures. Given a planning problem
(S, t,D), the domain description D contains axioms, operators and methods
as described in the previous section. For each of these constructs, we present a
translation procedure.

Definition 8 (Translation for Literals).
Given a literal, l, we define C(l, T ), the translation of l at time T (a is an atom):

C(l, T ) :=
{

in state(a, T ) if l = a,
not in state(a, T ) if l = ¬a.

Definition 9 (Trans(AX ): Translation for Axioms).
Given a planning problem (S, t,D), for all ”a ← l1, . . . , ln” ∈ AX , the logic
program segment Trans(AX ) contains the following rule

in state(a, T ) : − C(l1, T ), C(l2, T ), . . . , C(ln, T ),

where C(li, T ) is the translation of a literal as defined in Definition 8 above.

Definition 10 (Trans(OP): Translation for Operators).
Given a planning problem (S, t,D), for all Op ∈ OP, Trans(Op) is the logic
program segment that contains the following rules:

for all a ∈ Del(Op): out state(a, T + 1) : − currentTask(h, T ).
and for all a ∈ Add(Op): in state(a, T + 1) : − currentTask(h, T ).

Note that an operator only describes the change it causes to occur in the
current state. Therefore, we still need to address the famous Frame Problem as
follows.



Definition 11 (Trans(F ): Keeping Track of the State S). The logic pro-
gram segment Trans(F ) that encodes the frame axiom is defined as follows:

in state(A, T + 1) : − atom(A), in state(A, T ), not out state(A, T + 1).

Definition 12 (Trans(MET H): Translation for Methods). Given a plan-
ning problem (S, t,D), let h be a compound task that needs to be accomplished
in the solution of the given planning problem. Suppose the domain description D
contains N methods whose heads unify with h; namely, m1, m2, . . . , mN . Let
Pre(h)i be the label for the precondition list of the method mi. Then, the logic
program segment that encodes these methods is defined as follows:

1. The nondeterministic choice of which method to apply to the task h:

method1(h, Pre(h)1, T ) : − currentTask(h, T ),
notmethod2(h, Pre(h)2, T ), ...,
notmethodN (h, Pre(h)N , T )

...
...

...
methodN(h, Pre(h)N , T ) : − currentTask(h, T ),

notmethod1(h, Pre(h)1, T ), ...,
notmethodN−1(h, Pre(h)N−1, T )

2. The precondition list χi of each method mi: For each precondition p ∈ χi,
we have one of the following two cases:
(a) p is a positive literal and it contains free variables: The free variables

in a precondition literal are the variable symbols that do not appear in
the head of the method mi. We denote p as p = p(Y1, Y2, . . . , Yf ), where
Y1, Y2, . . . , Yf are the free variables in p.4 Let Rj denote the range of
the free variable Yj – i.e. the set of all possible values for the variable Yj

–, and for each such variable Yj, let Yj,k be a new variable symbol such
that k = 1, . . . , Rj. Then, Trans(MET H) contains the following rule to
encode the precondition p ∈ χi:

checked state(p(Y1,1, Y2,1, . . . , Yf,1), T ) : −
methodi(h, Pre(h)i, T ),
in state(p(Y1,1, Y2,1, . . . , Yf,1), T ),
not checked state(p(Y1,1, Y2,1, . . . , Yf,2), T ),
not checked state(p(Y1,1, Y2,1, . . . , Yf,3), T ),

...
not checked state(p(Y1,R1 , Y2,R2 , . . . , Yf,Rf ), T ),∧f

j=1 Yj,1! = Yj,2! = . . .! = Yj,Rj .

4 Note that p may also contain variable symbols that do appear in the head of the
particular method. However, those variables are not relevant for the discussion above,
so we omitted them for the sake of simplicity. Normally, those variables appear in
the translated logic programs.



(b) Otherwise: The logic program segment Trans(MET H) contains the
rule “ checked state(p, T ) : − C(p, T ), methodi(h, Pre(h)i, T )” (where
C(p, T ) is as defined in Definition 8) to encode the precondition p ∈ χi.

3. The decomposition list {t1, t2, . . . , tn} for mi: Let p1, p2, . . . , p|χi| be the
list of preconditions of the method mi. Then, the logic program segment
Trans(MET H) contains the following rules to encode the decomposition list
of mi (note that the time variable T1 in the following rule definitions in this
item denote the same value as the time variable T in the rule definitions
presented in other items does):

currentTask(t1, T1) : − methodi(h, Pre(h)i, T1),∧|χi|
k=1 checked state(pk, T1).

currentTask(t2, T2) : − methodi(h, Pre(h)i, T1),∧|χi|
k=1 checked state(pk, T1),

CAUSABLE(t1, T1, T2),
T2 > T1.

...
...

...
currentTask(tn, Tn) : − methodi(h, Pre(h)i, T1)∧|χi|

k=1 checked state(pk, T1),
CAUSABLE(tn−1, Tn−1, Tn),
Tn > Tn−1.

4. The accomplishment (i.e., causation) of h by the method mi:

causable(h, T1, Tn+1) : − methodi(h, T1),∧|χi|
k=1 checked state(pk, T1),

CAUSABLE(tn, Tn, Tn+1),
Tn+1 > Tn.

4 Results: Theory and Practice

In this section, we present our theoretical results on the correctness of our trans-
lation method and the soundness and the completeness of the resulting logic
programs as planning systems as well as the experiments we have undertaken.
Due to space limitations, we will not present the whole proofs here, the basic
ideas behind them can be found in [22].

4.1 Soundness and Completeness

Given an HTN-planning problem (S, t,D) for SHOP, let Trans((S, t,D)) be
the translated logic problem with negation as described in the previous section.
We are interested in the relationship between the models (or answer sets) of
Trans((S, t,D)) and the solutions to the planning problem.

Soundness and completeness are the two important requirements for any
planning system. Soundness means that all of the plans that are generated by



the planner are actually true solutions to the given planning problem; that is, no
plan, which is not solution to the problem, should be generated. Completeness
means that the planning system must be able to generate all of the possible
plans (solutions) for the given problem.

Theorem 2 (Soundness and Completeness of ASP using Trans(·)).
Given a planning problem (S, t,D), where S is the initial state, t is the list

of tasks to be achieved and D is the domain description, let Trans((S, t,D)) be
the corresponding logic program with negation. Furthermore, let Sol(S, t,D) be
the set of solutions of the planning problem.

Then, the answer sets of Trans((S, t,D)) correspond exactly to the plans
in Sol (S,t,D). There is a bijection between these two sets and each plan
in Sol (S,t,D) can be reconstructed from its corresponding answer set in
Trans((S, t,D)) and vice versa.

4.2 Experimental Study

In our experiments, we used three different planning domains:

The Travelling Domain: This domain is the one of the domains included in
the distribution of SHOP planning system. The scenario for the domain is
that we want to travel from one location to another in a city. There are three
locations: downtown, uptown, and park. There are three possible means of
transportation: taxi, bus and foot. The planning problem is to generate a
sequence of actions that needs to be taken in a trip from our original location
to our destination by using the available transportation means. More detailed
description of this domain is given in [22]

The Miconic-10 Elevator Domain: This domain was introduced as an of-
ficial benchmark domain during the AIPS-2000 competition (see [23]
and http://www.cs.toronto.edu/aips2000). Its simplest version (the
one referred to as the “first track” version at http://www.informatik.
uni-freiburg.de/~koehler/elev/elev.html) was one of the test cases in
[20], and we used the same version in our experiments. In this version, the
planner simply has to generate plans to serve a group of passengers of whom
the origin and destination floors are given. There are no constraints such
as satisfying space requirements of passengers or achieving optimal elevator
controls.

The Zeno-Travel Domain: The Zeno-Travel problem was one of the domains
that were introduced as recent benchmarks in International Planning Com-
petition (IPC-2002).5 This domain is again a transportation domain that-
involves transporting people from their original locations to their destina-
tions via planes using two different modes of movement: namely fast and
slow. There were four versions of the domain in the competition. In our

5 IPC-2002 was organised within the Sixth International Conference on AI Planning
and Scheduling 2002 (AIPS-2002).



experiments we used the simplest version. For more information on IPC-
2002, please see <http://www.dur.ac.uk/d.p.long/competition.html>.
For more information about the ZenoTravel planning problem, please see
<http://www.cs.washington.edu/ai/zeno.html>.

We prepared two sets of experiments: the first set aimed for investigating the
time performance of the logic programs generated by our translation method-
ology and the second set was for investigating the effects of grounding on
their performance. We ran our experiments on an HP OmniBook 6000 Lap-
top with 128MB RAM and an Intel Pentium III 600 Mhz processor. We used
both the software package smodels v2.7—which is available at http://www.
tcs.hut.fi/Software/smodels/—and the DLV system—which is available at
http://www.dbai.tuwien.ac.at/proj/dlv/—as testing environments for our
logic program encodings.

Efficiency of Encoding HTN Control Knowledge In this set of experi-
ments, we compared the time performance of the logic programs produced by
using our translation methodology with that of the logic-program encodings pre-
sented in [20]. In their paper, Son et al., showed that encoding control knowledge
has increased the time performance of the logic programs for solving planning
problems. The encoding methods proposed in [20], however, does not use actual
HTN control knowledge, rather they make use of only a few properties of HTNs
—as they are introduced in [9]— for implementing control knowledge in logic
programs that perform action-based planning.

In our experiments, we aimed to investigate the impact of using HTN control
knowledge as used in SHOP on the performance of logic programs that perform
planning, and we compared our results with those of [20]. The problems that
we used in these experiments are from http://www.CS.NMSU.Edu/~tson/asp_
planner. Table 1 shows both our results and the results from [20], which were
obtained on the smodels system.

Table 1. Comparison of HTN Encod-
ing, Trans(·), on smodels and DLV with
on Miconic-10 problems. All times are in
CPU seconds.

Problem smodels DLV [20]
S1-0 0.050 0.040 0.520
S2-0 0.330 0.060 12.410
S3-0 1.390 0.080 121.810
S4-0 4.540 0.260 883.700

S5-0s1 19.530 0.640 no solution
S5-0s2 20.630 0.680 no solution
S6-0 23.150 0.980 no solution

Table 2. Comparison of HTN Encod-
ing, Trans(·), on smodels and DLV with
SHOP on Travelling problems. All times
are in CPU seconds.

Problem smodels DLV SHOP
P1 3.23 0.20 0.026
P2 2.23 0.12 0.002
P3 2.19 0.22 0.003
P4 2.08 0.10 0.002
P5 2.20 0.19 0.004
P6 2.18 0.11 0.009
P7 2.21 0.19 0.003
P8 2.15 0.08 0.003



Table 3. Comparison of DLV with SHOP on ZenoTravel Domain. All
times are in CPU seconds.

Problem smodels DLV SHOP Performance Ratio(DLV / SHOP)
P2 no-solution 0.670 0.010 67.00
P4 no-solution 0.320 0.010 32.00
P8 no-solution 26.180 0.030 872.67
P9 no-solution 38.390 0.070 548.43
P12 no-solution 22.930 0.020 1146.50
P13 no-solution 16.560 0.060 276.00
P16 no-solution 78.060 0.090 867.34
P19 no-solution 146.030 0.120 1216.92
P20 no-solution 168.630 0.130 1297.15
P23 no-solution 4275.25 12.250 349.00
P24 no-solution 3612.96 7.980 452.75

The results clearly show that the logic programs produced by our translation
methodology outperform the logic programs produced in [20]. Our encoding was
even able to solve a problem, for a solution could not be found by [20]. In this
respect, these results that SHOP-like HTN planning is an effective way of solving
planning problems.

The Effects of Grounding We hypothesise that our translation methodol-
ogy provides more efficient logic programs with ASP semantics if the system
on which those programs are implemented allows the usage of variables in the
programs– that is, if the ASP systems do not require solely ground programs as
input, but can work with variables in the programs and ground those variables
as the search progresses. Most of the recent planning systems—such as SHOP
[11], TALPlanner [24], etc.—can work on planning-problem descriptions with
variables and these systems are proven to be faster than those which require
ground descriptions.

As we described earlier, the smodels system cannot work on the logic pro-
grams with variables. To test our hypothesis, we applied our translation method-
ology to our elevator and travelling examples to produce logic programs on a
different system called DLV . DLV is a deductive database system, and can be
used as a logic programming system as well. It implements stable model seman-
tics and it supports the usage of variables in the input logic programs to some
extent.

Table 2 show our results on the problems of the Simple-Travel domain. As
it can be seen, our programs are much more faster on DLV , than on smodels.
Like smodels, DLV also imposes a safeness restriction on the input programs,
but since it allows the usage of variables in the input programs, we do not have
to specify the ranges of the variables as long as they do not violate the safeness
restrictions required by the system, which is an important characteristic of DLV ’s
approach to grounding.



On the elevator problems, however, the performances of our programs are
almost the same (see Table 1). This is because the encodings for these problems
are mostly ground; they did not require using variables. Thus, we were not able
to observe the effect of grounding techniques used by the two systems on the
performance of our programs for these problems.

On the problems from the Zeno-Travel domain, smodels was not able to
solve any of the problems because of memory limitations. Table 3 shows our
results on DLV as well as on SHOP. In these experiments, we investigated the
ratio between the amount of time that our logic programs require and the time
required by SHOP. If the average-case time complexity of our programs were
worse than that of SHOP, then we would expect this ratio would get worse with
increasing problem size. However, it did not seem to be the case, as it can be seen
in Table 3. Although there is not enough data to say so conclusively, our results
suggest that the average-case time complexity of our programs may be roughly
the same as that of SHOP. This gives reason to hope that future improvements
in our programs and in ASP solvers may make it possible to get performance
competitive with planning systems such as SHOP.

5 Conclusions and Future Research Directions

In this paper, we have described a way to encode HTN-planning problems as
logic programs under the answer set semantics. This transformation is sound and
complete, and it corresponds to HTN-planning systems that generate plans by
using ordered task decomposition. In the view of the latter, our method differs
from the previous approachesfor encoding planning problems as logic programs
(as first introduced in [2] and further investigated in [20] by encoding control
knowledge to increase the performance of the logic programs).

Our overall aim was to investigate to what extent state-of-the-art nonmono-
tonic theorem provers can compete with dedicated planners (in particular those
based on HTN) and what lessons we could learn from the different translation
methods. In our experiments, we used our approach to create both smodels and
DLV logic programs on three different AI planning domains: the Simple-Travel
Domain, the “first track” version of the Miconic 10 Elevator Planning Domain,
and the simplest version of the ZenoTravel Domain. Here is a summary of our
experimental results and what we believe they signify:

1. Although the experiments we have done so far were on relatively simple plan-
ning domains, the results were encouraging since they showed the possibility
that encoding the HTN control knowledge in ASP programs may provide ef-
ficient solutions to planning problems. In the near future, we are planning to
conduct further experiments on more complicated HTN planning domains
to test this hypothesis.

2. Our experiments suggests that the average-case time complexity of our pro-
grams may be roughly the same as that of SHOP. Although we do not have
enough data to say so conclusively, this gives reason to hope that future



improvements in our programs and in ASP solvers may make it possible to
get performance competitive with planning systems such as SHOP.

3. Our experiments showed that the way that ASP systems perform ground-
ing is an important factor on the performance of the logic programs. In our
experiments, our ASP programs were slower than SHOP. Our explanation
for this difference in performance is the following: SHOP, like most plan-
ners, can work on planning-problem descriptions with variables. However,
the ASP systems we used requires safeness constraints and they are creat-
ing ground instances of clauses that are irrelevant for the planning process
in order to meet these constraints.

As a byproduct, like [2], we believe our method can be easily used as trans-
ferring benchmarks from the planning community to benchmarks for compar-
ing nonmonotonic systems based on computing answer sets.Furthermore, our
method complements the technique described in [2] as it enables to transfer
benchmarks for HTN-planning problems. In the near future, we will conduct
more experiments on translating more complicated HTN domains than the ones
presented in this paper.
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