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A B S T R A C T
This paper describes our ongoing work on a hybrid

approach to process planning, that attempts to combine the best
characteristics of both variant and generative process planning
while avoiding the worst limitations of each. Our approach uses
a database of designs and process plans that are classified using
design signatures, graphical structures based on detailed product
design attributes that are more meaningful and accurate than GT
codes and can be computed automatically from the designs
stored in the database. We are developing ways to use design
signatures to classify and retrieve “slices” of designs and plans,
so that when a process plan is needed for a new design, we will
be able to retrieve the plan slices that are most relevant, and
combine them and modify them to produce a plan for the new
design.

INTRODUCTION
In process planning practice, variant techniques are the

tools of choice: they currently support almost all practical
implementations of computer-aided process planning.  Several
variant process planning systems are commercially available and
have provided significant benefits—but despite the relative
popularity of this approach, variant process planning has some
well known drawbacks.

A generative process planner that provides realistic process
plans for a reasonably wide spectrum of products would make a
great impact on industrial practice.  Thus, a great deal of
research has been done on generative approaches, and a number
of experimental systems have been developed for various aspects
of process planning.  However, generative process planning has

proved quite difficult.  Most existing systems work only in
restricted domains, and have not really achieved significant
industrial use.

This paper describes a hybrid process planning approach
that we are developing.  This approach attempts to combine the
best characteristics of both variant and generative process
planning while avoiding the worst limitations of each.  As
shown in Figure 1, our approach involves the following steps:

• Create a database of designs and process plans similar to a
variant database—but instead of using GT codes to index
and classify the entries in the database, use detailed product
design attributes that are more meaningful and accurate than
GT codes and can be computed automatically from the
designs stored in the database.

• Given a new design for which a process plan is needed,
retrieve relevant process planning information from the
database—but unlike traditional variant process planning,
this information is not a single plan but includes instead
portions or “slices” of several plans, each of which is
relevant for a different portion of the design.

• Use generative plan-merging techniques to combine and
modify the retrieved plan slices in order to synthesize a
process plan for the new design.

This paper describes the basic approach we are developing
for each of these steps.  Some of the steps are implemented and
working, and some of them are still work in progress.
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B A C K G R O U N D

     Classifying         Designs

     Group           Technology.    Group Technology (GT) is a
manufacturing philosophy that was first introduced by Russian
gun manufacturers during World War I and now widely used in
industry [Mitr66]. Group Technology involves classifying
similar products into groups in order to achieve economies of
scale normally associated with high-volume production.  In
order to implement GT, one must have a concise coding scheme
for describing products and a method for grouping (or
classifying) similar products.  Many researchers have developed
GT coding and classification systems, including the popular
Opitz, DCLASS [Bond88], and MICLASS [Orga86] schemes.
In each case the basic idea is to capture critical design and
manufacturing attributes of a part in an alphanumeric string, or
GT code, that is assigned to that part.

The typical GT code [Hout75] consists of two types of
positions.  In one case, a position describes some global
property of the design such as material, size, type,
functionality, etc., and its meaning is completely independent of
what values are stored elsewhere.  In the other case, a position
represents some details that are relevant only for certain types of
designs, and thus its meaning depends on the values of other
positions.

GT classification schemes are essentially tables and rules
that help a designer determine the GT code of a part from a
drawing manually. One can use a database of the GT codes for
design retrieval, variant process planning, and other
manufacturing applications. Since the 1980's several researchers
[Shah89, Hend88, Srik94] have worked on automating this
manual process for classes of machined parts.

One issue is the relevance of GT methods to specific real
world design retrieval problems. As it has been used during the
last 35 years it works—but it has an inherited drawback:
describing designs as short strings creates a coarse classification
scheme. Moreover, from the beginning GT coding was intended
to be human interpretable, hence the typical questions describe
somewhat subjective human impressions of 2D drawings. This
has caused difficulty in automating the generation of GT codes.

     Geometric           Approaches.    Another possible basis for
classifying designs is to use geometric properties of solid and
CAD models. Most of today's CAD/CAM systems use either
constructive or boundary models to represent solids.

The use of CSG trees as a way to classify designs has two
appealing characteristics: the analogy between volumetric CSG
primitives and the volumes of material removed by machining
operations, and the ready availability of CSG trees as a basic
representational scheme in several geometric modelers.
However, the approach suffers from two drawbacks. First, the
CSG representation for a design is not unique and a robust
method for computing a unique CSG representation for a design
has not yet been found (many believe that such a method
simply cannot be found [Lee87]). Second, the CSG primitives
that would be involved in such a representation do not
necessarily correspond to the manufacturing operations that
would be used to manufacture the design—and thus the
classification might not be very useful for manufacturing
practice. As far as we know, no methods to measure similarity
on the basis of CSG trees were developed.

Sun et al. [Sun95] have described a similarity measure for
solids based on properties of their boundary representations. The
approach involves representing a polyhedral approximation of a
solid using a graph, in which the vertices correspond to faces of
a solid and have labels capturing the faces' orientation and area,
and the edges correspond to the adjacency relation between solid
faces, and are labeled by the corresponding solid angles. To
compare two solids they use a sophisticated algorithm to take
the graphs of these solids and map them into each other in such
way that the area and orientation of corresponding vertices are as
close as possible. The results of such mapping are expressed as
a real number in a range from 0 to 1. As a new measure of
“relaxed” geometrical similarity their work looks very
interesting, but there are several difficulties to be overcome
before it can be useful as a classification scheme for
manufacturing:

• As described in [Sun95], the method works only with
polyhedral objects—any non-planar faces of the designs
must first be replaced with planar approximations. This
may cause difficulty in classifying solids with a significant
number of cylindrical or sculptured surfaces.

• The measure of similarity is not symmetrical (similarity
between solids A and B is not equal to the similarity
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Figure 1.  Hybrid variant/generative process planning.
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between B and A). This will cause difficulties in using it as
the basis for a traditional database indexing scheme, since
such schemes assume a symmetrical measure.

• As described in [Sun95], the method does not incorporate
(or reflect) manufacturing considerations, such as
approachability, fixturing, and operation interference; and
we do not see any obvious way to add them.

     Process         Planning
The two primary approaches to computer-aided process

planning are the variant and generative approaches, which are
described briefly below.  For a more detailed survey of variant
and generative approaches, see [Ham86, Ham88].

     Variant         Process         Planning.    Variant process planning (see
Figure 2) is based on the use of the Group Technology coding
schemes described earlier.  Given a new design D for which a
process plan is needed, the process engineer first determines a
GT code for D, and then uses this code as an index into a
database to retrieve a process plan P’ for a design D’  similar to
D.  Once this is done, the process engineer modifies the
retrieved process plan manually to produce a plan P for the
design D.  Some of our group’s work on variant process
planning includes [Cand95, Cand96, Iyer95].

In process planning practice, variant techniques are the
tools of choice: they currently support almost all practical
implementations of computer-aided process planning.  However,
variant process planning also has some significant drawbacks.
If the part mix varies over time, then for a new proposed design
it may be difficult to find existing designs in the database that
satisfy similar design specifications or require similar
manufacturing processes.  Furthermore, if the process plan
retrieved by the variant system uses out-of-date processes, then
these will propagate to the process plan for the new design
unless the process engineer makes a point of replacing them.
Finally, a drastic reduction in the batch size of an existing
product may require re-planning to derive an economically
sensible process plan.

     Generative         Process         Planning.    Given a new design D for
which a process plan is needed, a generative process planning
system attempts to synthesize a process plan directly for D.
For machined parts, the typical approach is to do the planning
on a feature-by-feature basis by retrieving candidate processes
from the manufacturing knowledge repository, selecting the

feasible processes on the basis of geometric and manufacturing-
related constraints, and combining the chosen processes in a
proper sequence.

A great deal of research has been done on generative
approaches, and a number of experimental systems have been
developed for various aspects of process planning [Mant89,
Kamb93, Gupt94a, Yue94]. However, generative process
planning has unfortunately proved quite difficult.  Difficulties
arise from interaction among various aspects of the problem,
such as workpiece fixturing, process selection, and process
sequencing.  As a result, most existing systems work only in
restricted domains.  Although one generative system, the PART
system [Geel95]) is being marketed commercially, generative
systems have not really achieved significant industrial use.

Even in the absence of complete and comprehensive
solutions to the entire process planning problem, generative
process planning techniques can be useful in design for
manufacturing [Boot94], in which the designer tries to take
manufacturability considerations into account during the design
stage.  For example, by generating and evaluating operation
plans for a part, it is possible to give feedback to designers
about possible manufacturability problems with the part, and/or
to suggest changes to the part that may improve its
manufacturability [Mant89, Gupt94a, Gupt95, Das95, Lam95,
Hebb96].

     Hybrid         Approaches       .    By a hybrid approach, we mean any
approach that attempts to exploit knowledge in existing plans
while generating a process plan for a new design.  Though some
approaches have been proposed (two are described below),
researchers have not yet developed comprehensive solutions:

• Park et al. [Park93] describe an approach for acquiring
knowledge useful for generating process plans.  Given a
process plan for a design, it uses inference rules to find the
explanations behind the plan (what part of the plan did
what).  Then it stores the knowledge as a schema, which
describes how in general to make some collection of
features.  Planning is done by seeking the relevant schema
and inserting the necessary values to construct a valid plan.
A relevant schema is one with the same collection of
features.  This is a very simple design similarity measure:
it uses no other manufacturing information (such as
precedences or tolerances) to identify the relevant schema.

• Marefat and Britanik [Mare94] propose a hybrid approach
that captures plan knowledge that specifies the processes
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Figure 2. Variant process planning.
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necessary to make a certain feature (with a specific size,
hardness, surface finish, and tolerances). Planning
decomposes a design by generating subplans for each
feature and then searching the old subplans for the most
appropriate one. The most appropriate old plan is the one
that makes a feature that is most similar to the new
design's feature.  Similarity here is hierarchical: the feature
must be the same type, then the same dimensions, then the
same tolerances.  Corresponding to each level of feature
properties are process capabilities. Because the new and old
features will be different at some level, the old plan is
modified: the planner keeps the process information that
corresponds to the levels at which the old and new features
are identical, discards the remainder, and generates new
information using process capability rules.  This approach
assumes that each feature can be made independently and
thus does not group features in any way.

As these examples show, the existing hybrid approaches
have limited capabilities.  A robust hybrid approach must
consider feature interactions, precedences, tolerances, and other
critical design information that impact process planning.  In
addition it must consider how to store, classify, and retrieve
useful design and process planning information.

OUR APPROACH

      Overview
As described in the following sections, the overall approach

includes two major phases:

• Preprocessing:  given a database of existing designs and
process plans, build an indexing and classification structure
for search and retrieval.

• Planning for new designs:  given a new design, use the
classification structure to retrieve relevant planning
information from the database, and use this information to
synthesize a plan for the new design.

     Preprocessing

     Design          Signatures.    Given a set of CAD designs and
process plans for those designs, we want to organize them into
a database similar to a variant database.  However, instead of
using GT codes to index and classify the entries in the database,
we are developing a more detailed structure called a design
signature.  A design signature is a graph structure that

Figure 3:  A machined part d0, and a piece of stock from which to make it.  The part is an adaptation of a part design that Boeing Aircraft contributed to the NIST
design repository.

Figure 4:  Volumetric machining features for the part d0 of Figure 3, found by the F-Rex feature extractor.
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represents a number of design attributes that are relevant for
manufacturing and can be computed automatically from the
designs.  Below is a summary of the idea; for additional details
we refer the reader to [Elin97].

A design can have multiple signatures, that represent the
design at different levels of detail.  The most detailed signature
for a design is the design’s basic signature.  The basic signature
represents all properties of the design that are relevant for the
current application.  Thus, if two designs have basic signatures
that are isomorphic, then for the purposes of the current
application, the two designs are identical.  To reason about a
design at a higher level of abstraction, we may compute other
signatures for the design.  These signatures will be
simplifications of the basic signature, produced by removing
some of the less important details from the basic signature.

The precise attributes one might want to represent in a
design signature will depend on the particular manufacturing
application—but for each manufacturing application, the
attributes should be things that are specified explicitly in the
CAD model or can be deduced automatically from it.  For
machined parts (our current focus), the attributes that we use
include volumetric machined features and various relationships
among them, tolerance information, and many of the usual
kinds of properties measured in GT coding schemes, such as
material, quantity, and so forth.

As an example, consider the machined part d0 shown in
Figure 3.  Using the F-Rex feature extractor developed by Regli
et al [Regl95, Regl97], we get the volumetric machining
features shown in Figure 4.  By augmenting this set of features
to include the design attributes mentioned above, we get d0’s
basic signature s0(d0), which is shown in Figure 5.

     Design          Similarity.    Figure 6 shows a design d1 that is
different from d0 but similar to it.  The similarity between the
two designs is reflected in similarities between their basic
signatures s0(d0) and s0(d1), which are shown in Figure 5 and
Figure 7, respectively.  If we simplify the basic signatures by
removing some of the less important details, this will produce
simplified design signatures for d0 and d1 that are isomorphic, as
shown in Figure 8 and Figure 9.  The more similar two designs
are, the fewer the simplifications needed in order to produce
simplified design signatures that are isomorphic—so we can
judge how similar two designs by looking at how much
simplification is needed.  We formalize this idea as follows.

Figure 6:  A machined part d1 similar to d0.
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Figure 5:  The basic signature s0(d0) for d0.  The vertices represent the features in Figure 4, and the boxes and edges represent some of the relationships
among them.  For brevity, the other design attributes have been omitted.
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Figure 7:  The basic design signature s0(d1) for d1.  Just as in Figure 5, the vertices represent the features found by the F-Rex feature extractor, the boxes and
edges represent some of the relationships among these features, and other design attributes have been omitted for brevity.
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Figure 8:  A simplified design signature for d0.
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Figure 9: A simplified design signature for d1.
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Let D be a set of designs.  Let P be the set of all design
properties that are relevant for the current application, and
suppose we have partitioned P into subsets P1, P2, …, Pn;
where P1 is the set of design properties that we consider least
important, P2 is the set of design properties that we consider
second-least important, and so forth. Let d be a design in D, and
let s0(d) be its basic signature, which represents the values that d
has for all of the properties in P. Then we can produce a
sequence of progressively simpler design signatures s1(d), s2(d),
…, sk(d), by taking

s1(d) = the parts of s0(d) that represent properties in P2,…,Pn;

s2(d) = the parts of s1(d) that represent properties in P3,…,Pn;

…;

sn–1(d) = the parts of sn–2(d) that represent properties in Pn;

sn(d) = ∅ .

Let d’ be another design in D, and let s0(d’), s1(d’), …, sn(d’)
be its design signatures, computed in the same manner as the
corresponding signatures for  d.  Then for k = 0, 1, …, n, we
define the relation Rk(d,d’) to hold if and only if sk(d) = sk(d’).
Thus, Rk(d,d’) is an equivalence relation that has following
basic properties:

• R0(d,d’) holds only if d and d’ are identical for the purposes
of the current application.  Thus the equivalence classes of
R0 are singleton sets;

• Since sn(d) = sn(d’) = ∅ , Rn(d,d’) holds for all designs d,d’ in
D.  Thus Rn has a single equivalence class consisting of D
itself.

• For k=1,…,n, the equivalence classes of Rk–1 are subsets of
the equivalence classes of Rk.

From these properties, it follows that the equivalence classes of
R0, R1, …, Rn can be arranged hierarchically in a tree structure
such as the one shown in Figure 10.  We call this tree a
classification tree.

d2 d3d0 d1

equivalence classes of R4

equivalence classes of R3

equivalence classes of R2

equivalence classes of R1

individual designs

Figure 10.  A simple example of a classification tree.  Each vertex represents
an equivalence class.

     Finding         similar          designs.    Given a new design d, the
classification tree provides an easy way to find existing designs
similar to d.  For each vertex v of the tree, we say that v
matches d if d is a member of the equivalence class represented
by v.  It immediately follows that if v matches d, then at most
one of v’s children matches d.  Furthermore, the deepest vertex
matching d represents the set of designs that are most similar to
d, and we can find this vertex using the following search
algorithm:

procedure find-best-match(d)
v = the root vertex of the classification tree
loop

if d does not match any of v’s children
then exit, returning v.
else v := whichever child of v matches d

repeat

Figure 11 gives an example of the operation of this algorithm.

d2 d3d0 d1

vertices
that
match d vertices 

that 
don’t 

match d 

the designs most
similar to d

Figure 11.  Using the search algorithm to search the classification tree of
Figure 10.

     Computational       Issues.    To determine whether a vertex v
of depth k in the classification tree matches a design d, the
above algorithm compares the design signatures sn–k( d) and sn–k(
d’), where d’ is some design in the equivalence class represented
by v.  This is a special case of the subgraph isomorphism
problem, which is well known to be computationally difficult.
It is not known whether or not the subgraph isomorphism
problem is NP-complete, but no known algorithm for it runs in
less than exponential time.

In our case, there are ways to speed up the computation
considerably.  The details of how we do this appear in [Elin97],
but here are two examples:

• We make use of special properties of our problem that do
not occur in the general subgraph isomorphism problem.
For example, by keeping track of whether corresponding
edges have the same edge labels, we can often very quickly
detect cases in which d and d’ do not match.

• The algorithm will not even attempt to check whether d
matches a vertex v at depth k of the tree unless d matches
v’s parent at depth k-1. Since the design signatures used at
depth k–1 are simpler than those used at depth k, checking
whether d matches v’s parent can take exponentially less
time than checking whether d matches v.

     Validation.    To validate our classification system, we
wanted to show that for a reasonable collection of realistic
objects, the techniques correctly and efficiently (1) find identical
objects and (2) return reasonably intuitive estimations of
similarity between different objects.

One major obstacle is the lack of a generally available large
and varied data set of CAD models for mechanical designs.  A
further complication is the lack of an agreed-upon standard for
what it means to be similar from the manufacturing point of
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view—-answers vary depending on the individual to whom the
question is posed.  Hence, large-scale validation was not
possible and we chose to perform controlled experiments to
determine how well the prototype system operates on reasonable
examples.

To perform our study, we used a collection of solids taken
from the NIST Design, Process Planning, and Assembly
Repository and employed the experimental F-Rex [Regl95,
Regl97] feature recognizer previously developed at the
University of Maryland at College Park.

The prototype system used few feature parameters but was
able to identify identical designs, and its similarity estimations
corresponded closely to the design families. The experiments,
once pre-processing was performed, ran in moderate user-time,
and we did not observe that the isomorphism checks created any
computational bottlenecks. Interestingly, we noticed that the
approach worked even on those parts where the F-Rex feature
recognizer had difficulty or produced spurious results. We
believe that we can enhance the implementation by using the
design features in the CAD model and integrating a
commercially tested features tool.

     Planning       for         New         Designs
If one wants to construct a process plan for a new design

using the traditional approach to variant process planning, one
begins by retrieving (from the variant database) a process plan
for an existing design that is similar to the new design.  One
drawback to this approach is that although some portions of the
existing design may closely match the corresponding portions
of the new design, other portions may not match so well.  Our
goal is to find close matches to as much of the new design as
possible, using the following approach:

• decompose the design signature for the new design into
slices that are meaningful from the point of view of process
planning;

• retrieve process plan slices that correspond to similar design
slices;

• combine and modify the plan slices to produce a process
plan for the new design.

Below, we describe the techniques that we are currently
developing for these tasks.

p1

h1
h2

Figure 12.  In this design, the hole h1 and the pocket p1 are dependent on
each other for manufacturing purposes, but both are independent of the
hole h2.

     Slicing          Designs.    Given a design, some features of a
design may be independent of each other for manufacturing
purposes, and some features may depend on other features.  For
example, in the simple design shown in Figure 12, the hole h1

and the pocket p1 depend on each other, because the process
details for each will depend on which of them is machined first.
However, no such dependency exists between these two features
and the hole h2.  The idea of a design slice is that it is a
collection of d’s features that depend on each other for
manufacturing purposes.

Manufacturing dependencies can arise in a number of ways;
below are a few examples:

• if two features intersect (like h1 and p1 in Figure 12) , then
they will usually depend on each other; this dependence
may form a precedence constraint if one feature establishes
or denies the approachability, accessibility, or emergence
conditions of another feature.

• One feature will depend on another if the first feature has a
tolerance attribute that is defined relative to a datum that is
created by the second feature.

• One feature will depend upon another if there is a thin
section between them.

• One feature will depend upon another if the same tool is
used to produce both.

• One feature will depend upon another if both have the same
approach direction.

In practice, it is not appropriate to try to capture all
manufacturing dependencies in a design slice, because we want
our characterization of a design slice to depend only on the
design and the design signature, and some dependencies would
be quite difficult to detect without knowing the process plan as
well.  Thus, for practical purposes, we will consider a feature f
to depend on another feature g only under the following
conditions:

• f and g intersect;

• a face created by f has a tolerance that is defined relative to a
datum that is created by g;

• f and g have the same corner radii;

• f and g have the same approach direction.

Given this set of conditions, there are several possible
things that we might mean by a design slice.  The first possible
meaning is that given a design d and a feature f of d, the slice of
d by f is the set of all features in d that f depends on.  This can
be computed using the algorithm slice1 shown below; and the
set of all such slices of d is thusS = {slice1(d,f) : f is a feature
of d}.

procedure slice1(d,f)
s := ∅
t := { f}
while t is not a subset of s do

s := s ∪  t

t := 

  g t∈
U {all features of d that feature g depends on}

repeat
return s

Not every set of features found by slice1 will actually be of
interest to us.  For example, if one feature f depends on another
feature g, then we will not care about the set slice1(d,g),
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because it will be a subset of the set slice1(d,f).  This leads to
the second possible meaning of a design slice:  that it is any set
of features found by slice1 that is not a subset of some other set
of features found by slice1.  The set of all such slices of d can
be found using the algorithm slice2  below.

procedure slice2(d)
S := ∅
for each feature f of d do

s := slice(d,f)
if s is not a subset of any of the sets in S
then do

remove from S every set that is a subset of s
S := S ∪  {s}

end
repeat
return S

For the design shown in Figure 12, slice2 will return a set
S consisting of two slices: {h1,p1} and {h2}.  In this case the
slices are disjoint, but in other cases they may overlap.  This
leads to a third possible meaning of a design slice: that the
slices of d consist of the sets found by slice2, but modified by
taking the unions of all overlapping sets.  These sets can be
computed using the algorithm slice3 shown below.

procedure slice3(d)
S := slice2(d)
let the members of S be called s1,s2,…,sk
for i  = 1 to k do

if si is still in S
then for j = i+1 to k do

if sj is still in S and si ∩  sj ≠ ∅
then remove sj from S and set si := si ∪  sj

repeat
repeat
return S

We have not yet determined whether it is preferable to use
the sets computed byslice2 or slice3.  Deciding this will be an
important topic for future work, as it has consequences for the
details of the plan retrieval and combining techniques described
in the following sections.

     Retrieving         Plans        and         Extracting         Plan         Slices.    Once we
have computed the design slices for a new design d as described
above, the next step for each slice s of d is to match s to a
corresponding slice s’ of some design d’ in the database.  We
can do that by using the techniques described earlier in the
“Preprocessing” section to create a classification tree of design
slices and search for a design slice similar to s.

Once we have found s’ and d’, we need to take the process
plan p’ for d’ and extract the plan slice q’ of p’ that corresponds
to the design slice s’.  This plan slice consists of the set of all
operations in p’ that create the features in d’, as well as any
other operations in p’ that are needed to establish the necessary
preconditions.  The conditions under which we consider an
operation m to establish a precondition of another operation o
are similar to the conditions for feature dependency above:

• m is the setup needed for operation o.

• m creates a feature f that must precede the feature g that
operation o creates.

We can use this set of conditions to extract the plan slice q’
using the following algorithm:

procedure slice-plan(p’,s’)
q’ := ∅
r’  := {the operations of p’ that create the features in s’}
while r’  is not a subset of q’ do

q’ := q’  ∪  r’
for each operation m of r’  do

r’ := 
  m r∈ '
U {all operations of p’ on which m depends}

repeat
repeat
return q’

     Combining         Plan         Fragments.    Suppose that for a design d,
we have used the techniques of the previous sections to compute
design slices s1, s2, …, sk; and suppose that using these slices
we have retrieved plan slices q1, q2, …, qk.  Each plan slice qi

consists of a linear sequence of operations, and we wish to
interleave these sequences to form a single plan q; and change
the parameters of the operations in q so that they will fit the
requirements of the design d.  In doing this, we need to be
careful about the way in which we interleave the operations, for
not every possible interleaving will work correctly.

As an example, consider the design shown in Figure 12.
Regardless of which design-slicing algorithm we use, we will
get the slices s1 = {h1,p1} and s2 = {h2}.  Suppose that from a
database of plans for machining prismatic parts on a vertical
machining center, we retrieve the following plan slices (for
brevity, many details have been omitted from these plans):

plan slice q1:
Step 1.  setup the part so that h1 and p1 are vertical
Step 2.  end-millp1

Step 3.  drill h1

plan slice q2:
Step 1.  setup the part so that h2 is vertical
Step 2.  drill h2

In the plan slice q2, setting up the part so that h2 is vertical
is one of the preconditions needed in order to drillh2 on a vertical
machining center.  If we interleave the two plan slices in such a
way that the first step of q1 comes between the first and second
steps of q2, then the first operation of q1 will deny this
precondition, and thus it will not be possible to drill h2.

If the design slices are independent and each plan slice fully
creates the corresponding design slice, then one simple plan-
merging approach is to do each plan slice in turn.  That is, the
new process plan would equal the sequence q1, q2, …, qk.
However, it may be possible to create a better plan by reducing
the number of setups and tool changes, as described below.

Note that in the machining domain, each plan slice consists
of one or more subslices (which must be done in the specified
order).  Each subslice begins with a setup followed by one or
more machining operations performed in that setup.  The next
subslice begins with a setup in a different direction.  In the new
plan formed by merging the plan slices, it is possible for a
subslice to precede one or more subslices with the same setup
direction.  In this case we can often merge the subslices into a
single subslice, by removing the following subslices’ setups
(since the first subslice’s setup would be sufficient).  Having
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done this, we may now also be able to remove tool changes if
consecutive machining operations within the subslice use the
same cutting tool.

More generally, we are interested in choosing an order for
interleaving the plan slices that is consistent with the relevant
manufacturing constraints and maximizes the amount of
subslice merging that can be done.  Finding an optimal solution
to this problem is NP-hard—but we been able to solve a closely
related problem quite efficiently using using branch-and-bound
techniques [Yang92], and we plan to adapt that approach to the
current problem.

SUMMARY AND CONCLUSIONS

     Current         Status
At this point we have made significant progress towards

implementing our hybrid approach.  We have created routines
that allow the user to define the design and the relevant feature
relationships. The feature extractor is complete, and we are
developing the program to create the design graph of these
features. We need to construct routines that divide a design
graph into design slices and search for similar design slices. We
will devise a design classification scheme that reflects the need
to find useful process plans. We have a routine for creating the
process plan slices.  Future work includes defining algorithms
and developing programs that combine the plan slices and
modify them to form a new process plan.

     Anticipated         Benefits
Our approach, when completed, will have the following

primary benefits:

• Accelerating the product development process. Like
traditional variant process planning, our hybrid approach
will construct process plans that the process engineer may
need to improve.  However, by automatically adapting the
retrieved plans to the new design requirements, our hybrid
approach will minimize the need for such improvements.

• Our approach will utilize, in an innovative way, the
strengths of both variant and generative process planning.
This approach also includes sophisticated feature
recognition and plan-based design evaluation in an
integrated methodology.

• Our approach will provide the designer feedback about the
achievable product quality, the cost, and time needed to
manufacture the product. By identifying those design
elements that are especially difficult to produce in a cost-
effective manner, our approach will help the designer
develop products that are easy to manufacture. This will
reduce the need for redesign during the production run,
resulting in reduced lead time and product cost.

In summary, adaptive process planning and plan-based
design evaluation will support agile manufacturing by
supporting a quick response to ever-changing market
opportunities. By using our hybrid variant-generative approach,
a firm will be able to develop a new product quickly and
manufacture a small production run economically.
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