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ABSTRACT proved quite difficult. Most existing systems work only in

This paper describeour ongoing work on ahybrid restricted domains, and have not really achieved significant
approach to process planning, that attempts to combine the besindustrial use.
characteristics oboth variantand generative procesglanning This paper describes a hybrjatocess planningapproach
while avoiding the worst limitations of each. Our approach uses that we are developing. This approach attempts to combine the
a database of desigasd process planghat are classifiedusing best characteristics ofboth variantand generative process
design signaturegraphical structurebBased on detailed product planning while avoiding the wordimitations of each. As
design attributes that are more meaningful acciratehan GT shown in Figure 1, our approach involves the following steps:

codes andcan be computecutomatically from thedesigns
stored inthe database. We argeveloping ways to usdesign
signatures to classify andtrieve “slices” of designandplans,
so that when a process plan is needed for a new designillwe
be able to retrievéhe plan slices thaare most relevant, and
combine themand modify them toproduce gplan for the new

e Create a database of desigm&lprocess plansimilar to a
variant database—but instead uging GT codes to index
and classify the entries in ttiatabaseyse detailed product
design attributes that are more meaningful and accurate than
GT codes anctan be computecutomatically from the
designs stored in the database.

design.
« Given a new design for which a procqsan is needed,
INTRODUCTION retrieve relevant procesglanning information from the
In process planning practice, variaichniquesare the database—butinlike traditional variant procegslanning,
tools of choice: they currently suppodlmost all practical this information is not a single plan bircludesinstead
implementations otomputer-aidegbrocessplanning. Several portions or “slices” of severalplans, each ofwhich is

variant process planning systems are commercially available and  relevant for a different portion of the design.

have provided significant benefits—butdespite the relative . | . hni bi d

popularity of this approach, variant process planning has some®  US€ generative plan-merging techniques ¢ombine an

well known drawbacks. modify the retrievedplan slices inorder to synthesize a
A generative process plannirat provides realistiprocess process plan for the new design.

plans fora reasonably wide spectrum of products would make a This paper describethe basicapproach we are deve|oping

greatimpact on industrial practice. Thus, agreat deal of for each of these steps. Some of the swpsmplemented and
research has beeione ongenerative approachesnd anumber working, and some of them are still work in progress.

of experimental systems have been developed for various aspects
of process planning. However, generative process planning has
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Figure 1. Hybrid variant/generative process planning.

BACKGROUND

Classifying Designs

Group Technology. Group Technology (GT) is a
manufacturing philosophy that was fiiatroduced byRussian
gun manufacturers during/orld War | andnow widely used in
industry [Mitr66].
similar productsinto groups inorder to achieveeconomies of
scalenormally associatedwith high-volume production. In
order to implement GT, one must have a concise caslthgme
for describing productsand a method for grouping (or
classifying) similar products. Mamgsearcherbavedeveloped
GT codingand classification systems, including th@opular
Opitz, DCLASS [Bond88],andMICLASS [Orga86] schemes.
In each casghe basicidea is to capture critical design and
manufacturing attributes of a part in an alphanumstriag, or
GT code, that is assigned to that part.

The typical GTcode[Hout75] consists of two types of
positions. In onecase, aposition describessome global
property of the design such as material, size,

what values arstored elsewhere. ltihe other case, position

Group Technology involves classifying

type, . ; . .
functionality, etc., and its meaning is completely independent of Solids based on properties of their boundary representations.

Geometric Approaches. Another possible basis for
classifying designs is to use geometric properties of solid and
CAD models. Most otoday'sCAD/CAM systems useeither
constructive or boundary models to represent solids.

The use of CSG trees as a way to classify designs has two
appealing characteristics: the analdgtweenvolumetric CSG
primitives andthe volumes of materiakmoved bymachining
operationsandthe readyavailability of CSGtrees as a basic
representational scheme in several geometric modelers.
However, theapproach sufferfrom two drawbacks First, the
CSG representation for a design mot unique and arobust
method for computing a unique CSG representation fdesign
has not yetbeen found(many believe that such method
simply cannot befound [Lee87]).Second, theCSG primitives
that would be involved insuch a representation do not
necessarilycorrespond tothe manufacturing operations that
would be used to manufacturghe design—andthus the
classification might not bevery useful for manufacturing
practice. As far as we know, moethods to measu@milarity
on the basis of CSG trees were developed.

Sunet al. [Sun95] havedescribed aimilarity measure for

The
approach involves representing a polyhedggbroximation of a

represents some details that are relevant only for certain types of0lid using a graph, in which the vertices corresponthdes of

designsandthus its meaninglepends orthe values ofother
positions.

GT classification schemeare essentially tablesnd rules
that help adesigner determinéhe GT code of apart from a
drawing manually. One camse adatabase othe GT codes for
design retrieval, variant procesplanning, and other
manufacturing applications. Since the 198@seralresearchers
[Shah89, Hend88, Srik94] have worked on automatingthis
manual process for classes of machined parts.

One issue is theelevance of GTmethods to specificeal
world design retrieval problems. As it has besedduring the
last 35 years it works—but it has aninherited drawback:
describing designs as short strings creategaaseclassification
scheme. Moreover, from the beginning @dding wasintended
to be human interpretablaencethe typical questiondescribe
somewhat subjective human impressions of 2D drawihigis.

has caused difficulty in automating the generation of GT codes.

a solid and have labels capturing faees'orientationand area,
and the edges correspond to #ujacencyrelation between solid
faces,and arelabeled bythe correspondingsolid angles. To
comparetwo solids they use a sophisticated algorithmtatke
the graphs of these solids and map them into each otlsercn
way that the area and orientation of corresponding vertices are as
close as possible. The results of such mappiegexpressed as
a realnumber in arangefrom 0 to 1. As a newneasure of
“relaxed” geometrical similarity their work looks very
interesting, butthere are several difficulties to beovercome
before it can beuseful as a classification scheme for
manufacturing:

e As described in[Sun95], themethod worksonly with
polyhedral objects—any non-planafaces ofthe designs
must first bereplacedwith planar approximations. This
may cause difficulty in classifying solids with a significant
number of cylindrical or sculptured surfaces.

e The measure ofsimilarity is not symmetrical (similarity
betweensolids A and B is not equal tothe similarity
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between B and A). This will cause difficulties in using it as feasible processes on the basis of geomatritmanufacturing-
the basis for a traditionaatabaséndexing schemesince related constraints,and combining the choseprocesses in a
such schemes assume a symmetrical measure. proper sequence.
. . . A great deal of researcthas beendone on generative
' é)?’ dfgﬁggte)d 'giﬁﬂéi]{u:&eme?ffs?ggfar&gtn'sncorspuogﬁte as approachesand anumber of experimentaystemshave been
. oo g N ' ) developedfor various aspects of process planning [Mant89,
approachability, f|xtur|ng,and operationinterference; and Kamb93, Gupt94a, Yue94]However, generative process
we do not see any obvious way to add them. planning has unfortunatelyroved quite difficult. Difficulties
. arise from interaction among various aspects of the problem,
Process Planning , such asworkpiece fixturing, process selectionand process
The two primaryapproaches to computer-aided process sequencing. As eesult, most existing systems work only in

planningarethe variantand generative approacheshich are restricted domains. Although one generative systemP&RT
descrlbeobrle_fly below. For a moréetailedsurvey of variant system [Geel95]) is being marketedcommercially, generative
and generative approaches, see [Ham86, Hama8]. systems have not really achieved significant industrial use.
_ _ _ . Even in the absence ofcomplete and comprehensive

Variant Process Planning. Variant process planningee solutions to theentire process planningroblem, generative
Figure 2) ishased orthe use of the Group Technologgding process planningiechniques can beuseful in design for
schemeslescribecearlier. Given a new desidh for which a manufacturing [Boot94], in which theéesignertries to take
process plan imeededthe processngineerfirst determines a  manufacturability considerationisto account duringhe design
GT codefor D, andthen uses thixode as anindex into a stage. For example, byeneratingand evaluating operation
database to retrieve a process @arfor a desigrD’ similar to plans for a part, it is possible to gifeedback to designers
D. Oncethis is done, the processengineer modifies the  about possible manufacturability problems with the peasti/or
retrievedprocess plan manually tproduce aplan P for the to suggestchanges tothe part that may improve its
designD. Some of our group’s work on variairocess manufacturability [Mant89, Gupt94a, Gupt95, Das95, Lam95,
planning includes [Cand95, Cand96, lyer95]. Hebb96].

In process planning practice, variamichniquesare the
_tools of cho_ice: they currently suppodlmost aII_ practical Hybrid Approaches. By a hybrid approach, we mean any
implementations of computer-aided process planning. However, gnproachthat attempts to exploknowledge inexisting plans
variant process planning also has some significaatvbacks. while generating a process plan for a new design. Though some
If the part mix varies over time, then for a nproposed design approaches have been propoggato are describecbelow),
it may bedifficult to find existing designs in thedatabasehat researchers have not yet developed comprehensive solutions:

satisfy similar design specifications orrequire similar . B
manufacturing processes. Furthermore, if the process plan® Park et al. [Park93] describe an approacfor acquiring

retrieved bythe variant system usesit-of-dateprocesses, then knowledgeuseful for generating proceggans. Given a
these will propagate tathe process plan for the nedesign process plan for a design, it useerencerules tofind the

unless the procesmgineemmakes a point ofeplacingthem. explanationsbehindthe plan (what part of the plan did
Finally, adrastic reduction irthe batch size of an existing what). Then it stores thknowledge as achema,which
product may require re-planning to derive an economically describeshow in general to makesome collection of
sensible process plan. features. Planning idone byseeking theelevantschema
and inserting the necessary values to construct a pkid

Generative Process Planning. Given a new desigb for A relevant schema is onwith the same collection of

features. This is a versimple designsimilarity measure:
it uses no other manufacturing information (such as
precedences or tolerances) to identify the relevant schema.

which a process plan iseeded, agenerative procesglanning
system attempts to synthesizepacess plardirectly for D.
For machined parts, the typicapproach is to dthe planning

on a feature—by-featurbasis by retrieving:andidatepro_cesses «  MarefatandBritanik [Mare94] propose a hybricapproach
from the manufacturinknowledge repository, selecting the that capturesplan knowledgethat specifies theprocesses

design GT coding scheme GT code database

P [ 1035926478 | retrieval ©

database of

process plan for !Or:ZZi;ed b
a similar design d
GT codes

modifications

process plan - by the user - /\
for the design — | - N
shown above e e

Figure 2. Variant process planning.
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Figure 3: A machined part d,, and a piece of stock from which to make it. The part is an adaptation of a part design that Boeing Aircraft contributed to the NIST

design repository.

necessary tanake a certairfeature (with a specific size,
hardness, surfacefinish, and tolerances). Planning
decomposes a design by generatsupplans foreach
featureand then searchingthe old subplans for thenost
appropriateone. The mosappropriate olglan is the one
that makes deaturethat is most similar to the new
design's feature. Similaritigere is hierarchicathe feature

must be the same type, then the same dimensions, then thé

same tolerances. Correspondingechlevel of feature
properties are process capabilities. Because theandveld
featureswill be different atsome level, theold plan is

modified: the planner keeps the process information that

corresponds to the levels at which tld and new features
are identical, discardsthe remainder,and generates new
information using process capability rule3his approach
assumes thatach feature can bmadeindependently and
thus does not group features in any way.

As these examples show, the existimgbrid approaches
have limited capabilities. A robusthybrid approachmust
consider featurénteractions,precedencedplerances.and other
critical designinformation that impacprocessplanning. In
addition it must considerhow to store, classifyand retrieve
useful design and process planning information.

L

et

. I
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B 13

.
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OUR APPROACH

Overview
As described in the following sections, the oveaglproach
includes two major phases:

Preprocessing: given adatabase ogxisting designs and
process plans, build an indexiagd classification structure
for search and retrieval.

Planning for newdesigns: given a new design, use the
classification structure toretrieve relevant planning
information from thedatabaseanduse this information to
synthesize a plan for the new design.

Preprocessing

Design Signatures. Given a set of CAD designs and
process plans for those designs, we wandrganizethem into
a databassimilar to a variantdatabase. However, instead of

using GT codes to index and classify the entries indHtabase,
we aredeveloping a moraletailed structure called a design
signature

A design signature is a graph structure that

14 T M5

Figure 4: Volumetric machining features for the part d, of Figure 3, found by the F-Rex feature extractor.
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Figure 5: The basic signature s,(d,) for d,. The vertices represent the features in Figure 4, and the boxes and edges represent some of the relationships

among them. For brevity, the other design attributes have been omitted.

represents a number of desigtiributes thatare relevant for
manufacturingand can be computecutomatically from the
designs. Below is a summary of tiiea; for additionaldetails
we refer the reader to [Elin97].

A design can havenultiple signatures, thatepresent the
design at differentevels of detail. The mosletailedsignature
for a design is the desigrbmsicsignature. The basic signature
representsall properties of thalesignthat are relevant for the
current application. Thus, if twdesigns have basic signatures
that are isomorphic, then for the purposes of tlarrent
application, the twalesignsareidentical. To reasombout a
design at a higher level @bstraction, we may computgher
signatures for the design. These signatungsl be
simplifications of the basic signaturproduced byremoving
some of the less important details from the basic signature.

The preciseattributes one might want toepresent in a
design signaturevill depend onthe particularmanufacturing
application—but for each manufacturing application, the
attributes should be things thate specifiedexplicitly in the
CAD model or can bededucedautomatically fromit. For
machinedparts (ourcurrentfocus), the attributes that we use
include volumetric machined featureand various relationships
among them toleranceinformation, and many of the usual
kinds of propertieaneasured in GTcoding schemes, such as
material, quantity, and so forth.

As an exampleconsiderthe machinedpart d, shown in
Figure 3. Using the F-Rex feature extractor develope&éyli
et al [Regl95, Regl97], we get the volumetric machining
features shown in Figure 4. By augmenting this sdeatiires
to includethe designattributes mentioned above, we gk
basic signature,(d,), which is shown in Figure 5.

Design Similarity. Figure 6 shows alesignd, that is
different fromd, but similar to it. The similarity between the
two designs isreflected in similarities between their basic
signaturess(d,) and s,(d,), which are shown in Figure 5 and
Figure 7, respectively.
removing some of the less important details, this prtiduce
simplified design signatures fdg andd, that areisomorphic, as
shown in Figure 8 and Figure 9. The more similar tesigns
are, thefewer the simplificationsneeded inorder to produce
simplified design signaturethat are isomorphic—so we can
judge how similar two designs bylooking at how much
simplification is needed. We formalize this idea as follows.

Figure 6: A machined part d, similar to d,.

(&)
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Figure 7: The basic design signature sy(d,) for d,. Just as in Figure 5, the vertices represent the features found by the F-Rex feature extractor, the boxes and
edges represent some of the relationships among these features, and other design attributes have been omitted for brevity.
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Let D be a set of designs. LBtbe the set of altesign
properties thatare relevant forthe current application, and
suppose wehave partitioned® into subsetsP,, P,, ..., P,

procedurdind-best-match(d)
v = the root vertex of the classification tree

. . . ; loop
whereP, is the set oflesign propertiethat we consider least . .
important, P, is the set ofdesign propertieshat we consider ![Lgr??aiist nr(()atur}:ﬁitgh any ok children
second-least important, and so forth. déke a design i, and clsey = \;vhicheverg,éhild of matchesd
let s,(d) be its basic signature, which represents the valued that repeat -

has forall of the properties inP. Then wecan produce a
sequence oprogressively simpledesign signatures,(d), s,(d), Figure 11 gives an example of the operation of this algorithm.
..., §(d), by taking

s,(d) = the parts o,(d) that represent properties#y,...,P,;
s,(d) = the parts o$,(d) that represent properties®,...,P,;

S..1(d) = the parts 0§, ,(d) that represent propertiesiy;

s(d) =00.

Letd’ be another design D, and lets,(d’), s,(d’), ..., s(d")
be its designsignaturescomputed inthe same manner as the
corresponding signatures fod. Then fork =0, 1, ...,n, we
definethe relationR(d,d") to hold if andonly if s(d) = s(d’).
Thus, R(d,d") is an equivalenceelation that has following
basic properties:

the designs most
similar to d

) ) ) Figure 11. Using the search algorithm to search the classification tree of
* Ry(d,d) holds only ifd andd’ areidentical forthe purposes Figure 10.

of the current application. Thus tlequivalenceclasses of
R, are singleton sets;

. . . Computational Issues. To determine whether a vertex
* Sinces(d) =s,(d") =0, R(d,d’) holds for all designd,d’ in

of depthk in the classificatiortree matches a desigh the

D. ThusR, has a singleequivalenceclass consisting ob above algorithm compares the design signatsyrgsd) ands,

itself. d’), whered’ is some design in thequivalenceclassrepresented
« Fork=1,...n, the equivalence classesRyf, aresubsets of by v. This is a speciatase ofthe subgraph isomorphism

the equivalence classesRyf problem, which is well known to be computationatlifficult.

. . It is not known whether ornot the subgraph isomorphism
From these properties, it follows that tbquivalenceclasses of problem is NP-complete, but no known algorithm for it runs in

Ry, R, ..., R can bearrangechierarchically in a tree structure  |gss than exponential time.
such as the one shown in Figure 10. We call thee a In our casethere are ways to speed upthe computation
classification tree considerably. The details of how we do thear in[Elin97],
equivalence classes of R, but here are two examples:
equivalence classes of R, *  We make use of special properties of our problem that do
. not occur inthe generalsubgraph isomorphism problem.
equivalence classes of R, For example, by keepingack of whether corresponding

: edges have the same edge labels, weoftam veryquickly

equivalence classes of R detect cases in whichandd’ do not match.

@ d, d, d; indvidualdesigns e The algorithm will notevenattempt tocheck whethed

] ) o matches a vertex at depthk of the tree unlessd matches

Figure 10. A simple example of a classification tree. Each vertex represents V's parent at deptk-1. Since thedesign signaturessed at

an equivalence class. depthk—1 are simpler than thosesed at deptk, checking
whetherd matchesv's parent can takexponentially less

Finding similar designs. Given a new desigrd, the time than checking whethématches.

classification tree provides an easy way to fxikting designs _— . S
similar to d. For eachvertexv of the tree, we say that Validation. To validate our classification system, we
matches df d is a member of thequivalenceclassrepresented wanted toshow that for areasonablecollection of realistic
by v. It immediately follows that i/ matchesd, then atmost objects, the techniques correctly and efficiently (1) inkehtical
one ofv's children matches. Furthermore, theleepest vertex ~ Objects and (2) return reasonablyintuitive estimations  of
matchingd represents the set of designs that are most similar toSimilarity between different objects.

d, and wecan find this vertex using the following search One major obstacle is the lack of a generally availtde
algorithm: and varied dataet of CAD models fomechanical designs. A

further complication is the lack of aagreed-upon standard for
what it means to bsimilar from the manufacturingpoint of

7 Copyright © 1997 by ASME



view—answers vangdepending orthe individual to whom the
guestion is posed. Hencégrge-scalevalidation was not
possibleand wechose to perform controlled experiments to

determine how well the prototype system operates on reasonablend the holeh,.

examples.

To perform our study, wased acollection of solidstaken
from the NIST Design, Process Planningnd Assembly
Repository and employedthe experimental F-Rex [Regl95,
Regl97] feature recognizerpreviously developed at the
University of Maryland at College Park.

The prototype systernsed few feature parametdiat was
able to identify identical designandits similarity estimations
correspondedlosely to thedesignfamilies. The experiments,
once pre-processing waerformed, ran inmoderateuser-time,
and we did not observe that the isomorphdmackscreated any
computational bottlenecks. Interestingly, weticed that the
approachworkedeven onthose partsvherethe F-Rexfeature
recognizer had difficulty or produced spurious results. We
believe that wecan enhancéhe implementation by using the
design features inthe CAD model and integrating a
commercially tested features tool.

Planning for New Designs

If one wants to construct a process plan for a degign
using thetraditional approach to variant procedanning, one
begins by retrieving (from the variadatabase) arocess plan
for an existingdesignthat is similar to the new design. One

and the pocketp; depend oneachother, becausehe process
details for each will depend on which of themnischinedfirst.
However, no such dependency exists between theséeatures
Theidea of adesignslice is that it is a
collection of d's featuresthat depend oneach other for
manufacturing purposes.

Manufacturing dependencies can arise in a number of ways;

below are a few examples:

if two features intersect (like, andp, in Figure 12) , then
they will usually depend oneach other; this dependence
may form aprecedenceonstraint if ondeatureestablishes
or deniesthe approachability, accessibility, emergence
conditions of another feature.

One feature will depend on another if st featurehas a
tolerance attribute that is defined relative to a datian is
created by the second feature.

One featurewill dependupon another if there is dhin
section between them.

Onefeaturewill dependupon another if the saméool is
used to produce both.

One feature will depend upon another if both havestmae
approach direction.

In practice, it isnot appropriate totry to capture all
manufacturingdependencies in designslice, because we want

drawback to this approach is that although some portions of theour characterization of a desiglice to dependonly on the

existing designmay closely match theorrespondingportions

designandthe designsignature,and some dependencies would

of the new design, other portions may not match so well. Our be quite difficult to detectvithout knowing theprocess plan as

goal is tofind close matches to as much of the ndsgign as
possible, using the following approach:

decomposehe design signature fothe new design into
slicesthat are meaningful from the point of view of process
planning;

retrieveprocess plan slicethat correspond to similar design
slices;

combineandmodify the plan slices tgroduce a process
plan for the new design.

Below, we describe the techniquesthat we are currently
developing for these tasks.

Figure 12. In this design, the hole h, and the pocket p, are dependent on
each other for manufacturing purposes, but both are independent of the
hole h,.

Slicing Designs. Given a design, soméeatures of a
designmay be independent of eacbther for manufacturing
purposes, and some features may depend on other features.
example, in the simple design shown in Figure 12, the ole

well. Thus, for practical purposes, we wilbnsider a feature
to depend onanother feature g only under the following
conditions:

f andg intersect;

datum that is created loy

f andg have the same corner radii;

f andg have the same approach direction.

Given this set of conditionsthere are several possible

things that we might mean by a design slice. The first possible

meaning is that given a desidrand a featuréof d, the slice of
d by fis the set of all features ththatf dependn. This can
be computedising the algorithnslicel shown below;and the
set of all such slices af is thusS ={slicel(d,f): f is a feature

of d}.

procedureslicel(d,f)

s:=0
t::_{f} _
while t is not a subset afdo
s:=s0t
t:= U {all features ofd that featurey depends on}
gl
repeat
returns

Not every set of features found slycelwill actually be of
interest to us. For example, if one feattidepends oranother

F%ature g, then we will notcare about the setslicel(d,g),

Copyright © 1997 by ASME
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because it will be a subset of the sktel(d,f). This leads to

the second possible meaning of a design slice: that it is any se
of features found byglicelthat is not a subset of some other set
of features found bglicel The set of all such slices dfcan

be found using the algorithslice2 below.

procedursslice2(d)

S:=0
for each featuréof d do
s:=slice(d,f)
if sis not a subset of any of the setsSin
then do
remove fromS every set that is a subsetsof
S:=S0 {s}
end
repeat
returnS

For the design shown in Figure 1ice2 will return a set
S consisting of two slices:H,p;} and {h,}. In this case the
slicesaredisjoint, but in othecaseshey may overlap. This
leads to athird possible meaning of designslice: that the
slices ofd consist of the set®und by slice2 but modified by
taking the unions of all overlapping setsThesesetscan be
computed using the algorithgtice3shown below.

procedursslice3(d)
S:=slice2(d)
let the members dBbe calleds,,s,,...,$
fori =1tokdo
if 5 is stillinS
then forj =i+1 tok do
if s is stillinSands n s# 0
then removes from Sand sets :=s 0 §
repeat
repeat
returnS

We have not yetleterminednvhether it is preferable to use
the sets computed blce2 or slice3 Decidingthis will be an
important topic for future work, as it h@snsequencefor the
details of the plametrievaland combiningtechniquesdescribed
in the following sections.

Retrieving Plans and Extracting Plan Slices. Once we
have computed the design slices for a new desigs described
above, the next step feachslice s of d is to matchs to a
correspondingslice s’ of somedesignd’ in the database. We
can dothat by using thetechniquesdescribedearlier in the
“Preprocessing’section tocreate aclassification tree oflesign
slices and search for a design slice simila: to

Once we have found’ andd’, we need tdake theprocess
planp’ for d’ and extract the plan sliag of p’ that corresponds
to the design slice’. This plan slice consists of the set of all
operations inp’ that createthe features ind’, as well as any
other operations ip’ that are needed toestablish thenecessary
preconditions. The conditiongnder which we consider an
operationm to establish grecondition of another operatian
are similar to the conditions for feature dependency above:

mis the setup needed for operatmn

m creates a featurethat mustprecedethe featureg that
operatioro creates.

y\/e canuse this set of conditions textractthe plan sliceq

using the following algorithm:

procedureslice-plan(p’,s’)
q:=0
r' :={the operations gb’ that create the featuressi}
whiler’ is not a subset af do

q:=q Or

for each operatiomofr’ do

r.= U {all operations ofp’ on whichm depends}
mOr'

repeat
repeat
returng’

Combining Plan Fragments. Suppose that for a desigh
we have used the techniques of the previous sections to compute
design slices,, s,, ..., § andsuppose that using these slices
we haveretrievedplan slicesq,, @, ..., ¢. Eachplan sliceqg
consists of a lineasequence obperations,and we wish to
interleave theseequences téorm a single plarg; and change
the parameters othe operations img so that they will fit the
requirements othe designd. In doing this, we need to be
careful about the way in which we interleave the operations, for
not every possible interleaving will work correctly.

As an exampleconsiderthe designshown in Figure 12.
Regardless ofvhich design-slicing algorithm we use, well
get the slices, = {h,,p,} and s, = {h,}. Suppose that from a
database oplans for machining prismatic parts onvaertical
machining center, weetrieve the following plan slices(for
brevity, many details have been omitted from these plans):

plan sliceq;:
Step 1.
Step 2.
Step 3.

plan sliceq,:
Step 1. setup the part so thats vertical
Step 2. drillh,

In the plan slicey,, setting up the part so thiat is vertical
is one of the preconditions needed in order totdrih a vertical
machining center. If we interleave the two plan slices in such a
way that the first step af; comesbetweenthe firstand second
steps ofq,, then the first operation ofy, will deny this
precondition, and thus it will not be possible to drill

If the design slices are independent and gdah slice fully
createsthe corresponding desigslice, then one simplglan-
merging approach is to do each plan slice in turn. Ehahe
new process plamwould equal the sequenceq;, @, Q.
However, it may be possible to create a better plaretiycing
the number of setups and tool changes, as described below.

Note that in the machining domain, each plan slice consists
of one or more subslices (whichust bedone inthe specified
order). Eactsubslice begins with a setdipllowed by one or
more machining operatiorgerformed inthat setup. Thaext
subslice begins with a setup in a different direction. In the new
plan formed by merging the plan slices, it is possible for a
subslice toprecedeone or more subslices with the same setup
direction. In thiscase we cawoften mergehe subslices into a
single subslice, by removing the following subslices’ setups
(since the first subslice’s setupould be sufficient). Having

setup the part so thatandp, are vertical
end-mif,
drillh,
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done this, we may now also be ablerémovetool changes if

consecutive machining operatiomsthin the subslice use the ACKNOWLEDGMENTS
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