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Abstract

In this paper, we examine how the complexity of domain-independent planning with
STRIPS-style operators depends on the nature of the planning operators.

We show conditions under which planning is decidable and undecidable. Our results
on this topic solve an open problem posed by Chapman [8], and clear up some difficulties
with his undecidability theorems.

For those cases where planning is decidable, we show how the time complexity varies
depending on a wide variety of conditions:

e whether or not function symbols are allowed;

e whether or not delete lists are allowed;

e whether or not negative preconditions are allowed;

e whether or not the predicates are restricted to be propositional (i.e., 0-ary);

e whether the planning operators are given as part of the input to the planning
problem, or instead are fixed in advance.

e whether or not the operators can have conditional effects.

Furthermore, we provide insights about the reasons for our results.
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1 INTRODUCTION

Table 1: Decidability of domain-independent planning.®

Allow Allow infi- Allow infi- | Allow delete lists || Telling
function | nitely many | nite initial | and/or negated whether a
symbols? | constants? states? preconditions? plan exists
yes yes/no yes/no yes/no/no” semidecidable
no no no” decidable
yes yes/no semidecidable
no yes no yes semidecidable
no decidable
no no’ yes/no decidable

“These results are independent of whether the operators are fixed in
advance and/or have conditional effects.
#No operator has more than one precondition.
YWith acyclicity and boundedness restrictions as described in Section 3.3.
8The other restrictions ensure that the initial state will always be finite.

Table 2: Complexity of domain-independent planning.”

Language | How are Allow | Allow ne- Telling Telling whether
restric- the opera- | delete | gated pre- whether a there is a plan
tions tors given? | lists? conditions? || plan exists of length < k

no given yes yes/no EXPSPACE-comp. NEXPTIME-comp.
function | in the yes NEXPTIME-comp. | NEXPTIME-comp.
symbols, | input no no EXPTIME-comp. NEXPTIME-comp.
and no” PSPACE-complete | PSPACE-complete
finitely yes yes/no PSPACE ° PSPACE °

many fixed in yes NP © NP °

constant advance no no p NP ©

symbols no” NLOGSPACE NP

all pre- given yes yes/no PSPACE-complete® | PSPACE-complete
dicates in the yes NP-complete® NP-complete

are input no no p° NP-complete
0-ary no” /no” NLOGSPACE-comp. | NP-complete
(propo- fixed in yes/no | yes/no constant constant

sitions) advance time time

“These results are independent of whether the operators have conditional effects.
#No operator has more than one precondition.
YEvery operator with more than one precondition is the composition of other operators.
SWith PSPACE- or NP-completeness for some sets of operators.
‘Results due to Bylander [5].

1 Introduction

Much planning research has been motivated, in one way or another, by the difficulty of
producing complete and correct plans. For example, techniques such as abstraction [29, 7,
28, 38] and task reduction [33, 7, 38] were developed in an effort to make planning more
efficient, and concepts such as deleted-condition interactions were developed to describe
situations which make planning difficult.
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Despite the acknowledged difficulty of planning, it is only recently that researchers have
begun to examine the computational complexity of planning problems and the reasons for
that complexity [8, 5, 19, 20, 26, 27]. This research has yielded some surprising results.
For example, Gupta and Nau [19, 20] have shown that contrary to prior expectations,
deleted-condition interactions are easy to handle in blocks-world planning.

Pednault [30] suggests that since planning is intractable in general, researchers should
try to identify constraints that will lead to efficient planning. The current paper addresses
this goal, by examining how the complexity of domain-independent planning depends on
the nature of the planning operators.

We consider planning problems in which the current state is a set of ground atoms,
and each planning operator is a STRIPS-style operator consisting of three lists of atoms: a
precondition list, an add list, and a delete list. OQur results can be summarized as follows:

1. The decidability results are shown in Table 1. If function symbols are allowed,
then determining, in general, whether a plan exists! is undecidable (more specifically,
semidecidable).? This is true even if we have no delete lists and the precondition list
of each operator contains at most one (non-negated) atom. If no function symbols are
allowed and only finitely many constant symbols are allowed, then plan existence is
decidable, regardless of the presence or absence of delete lists and/or negated precon-
ditions.

Even when function symbols are present, plan existence is decidable if the planning
domains being considered have no deletion lists, no negated atoms occur in the pre-
condition list, and the domains satisfy certain acyclicity and bounded-ness properties.

Whether the planning operators are fixed in advance or given as part of the input,
and whether or not they are allowed to have conditional effects, does not affect these
results.

2. The complexity results are shown in Table 2. When there are no function symbols
and only finitely many constant symbols (so that planning is decidable), the compu-
tational complexity varies from constant time to EXPSPACE-complete, depending on
the following conditions:

e whether or not we allow delete lists and/or negative preconditions,
e whether or not we restrict the predicates to be propositional (i.e., 0-ary),

e whether we fix the planning operators in advance, or give them as part of the
input.

The presence or absence of conditional operators does not affect these results.

3. We have solved an open problem stated by Chapman in [8]: whether or not planning
is undecidable when the language contains infinitely many constants but the initial
state is finite. In particular, this problem is decidable in the case where the planning
operators have no negative preconditions and no delete lists. If the planning operators
are allowed to have negative preconditions and/or delete lists, then the problem is
undecidable.

!The formal definition of this problem appears in Section 2.
2We use “decidable” and “undecidable” interchangably with “recursive” and “recursively enumerable,”
respectively.
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4. Chapman’s Second Undecidability Theorem states that “planning is undecidable even
with a finite initial situation if the action representation is extended to represent
actions whose effects are a function of their input situation” [8], i.e., if the language
contains function symbols and infinitely many constants. Our results show that even
with a number of additional restrictions, planning is still undecidable.

We also correct a misimpression about this theorem, which has been thought by some
researchers [31, 11] to refer to operators that have conditional effects. It does not—
and as we mentioned above, our decidability and complexity results are unaffected by
whether or not the operators have conditional effects.

The rest of this paper is organized as follows. Section 2 contains the basic definitions.
Section 3 contains the decidability and undecidability results, and Section 4 compares and
contrasts them with Chapman’s results. Section 5 presents the complexity results. Section 6
discusses the related work. Section 7 contains concluding remarks. Section 7.3 discusses
future research directions. The proofs of the theorems and lemmas appear in the appendices.

2 Preliminaries

Researchers in planning have long been interested in planning with STRIPS-style operators,
and this interest still continues [5, 8, 19, 26, 27]. In the original STRIPS planner [12], the
planning operators’ precondition lists, add lists, and delete lists were allowed to contain
arbitrary well-formed formulas in first-order logic. However, there were a number of prob-
lems with this formulation, such as the difficulty of providing a well-defined semantics for
t [23]. Thus, in subsequent work, researchers have placed severe restrictions on the nature
of the planning operators [28]. Typically, the precondition lists, add lists and delete lists
contain only atoms, and the goal is a conjunct of ground or existentially quantified atoms.
Our definitions below are in accordance with such commonly accepted formulations.

Definition 2.1 Let £ be any first-order language generated by finitely many constant
symbols, predicate symbols, and function symbols. Then a state is any finite set of ground
atoms in £.3

Intuitively, a state tells us which ground atoms are currently true: if a ground atom A is in
state S, then A is true in state S, and if B ¢ 5, then B is false in state 5. Thus, a state is
simply an Herbrand interpretation for the language £, and hence each formula of first-order
logic is either satisfied or not satisfied in S according to the usual first-order logic definition
of satisfaction.

Definition 2.2 Let £ be an ordinary first-order language. Then a planning operator « is
a 4-tuple (Name(a), Pre(a), Add(a), Del(a)), where

1. Name(a) is a syntactic expression of the form a(Xqy,...,X,) where each X; is a
variable symbol of £;

2. Pre(a) is a finite set of literals, called the precondition list of o, whose variables are
all from the set {Xy,..., X, };

1t is standard practice to assume that first-order languages contain only finitely many constant symbols,
and that states contain only finitely many atoms. However, in order to compare some of our results with
Chapman’s [8] results, in a few places in this paper we will be interested in violating one or both of these
assumptions. When we do so, we will say so explicitly.
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(a) initial configuration (b) goal configuration

Figure 1: Initial and goal configurations for five blocks a,b, ¢, d,e.

3. Add(a) and Del(«) are both finite sets of atoms (possibly non-ground) whose variables

are taken from the set {Xy,...,X,}. Add(a) is called the add list of a, and Del(a)
is called the delete list of a.

Observe that negated atoms are allowed in the precondition list, but not in the add and
delete lists.

When defining a planning operator a, often Name(«a) will be clear from context. In such
cases, we will not always specify Name(a) explicitly.

Definition 2.3 A first-order planning domain (or simply a planning domain) is a pair
P = (50,0), where Sy is a state called the initial state, and O is a finite set of planning
operators. The language of P is the first-order language £ generated by the constant,
function, predicate, and variable symbols appearing in P, along with an infinite number of
additional variable symbols.

Definition 2.4 A goal is a conjunction of atoms which is existentially closed (i.e., the
variables, if any, are existentially quantified).

Definition 2.5 A planning problem is a triple P = (Sg, O, G), where (Sp, Q) is a planning
domain and G is a goal.

Example 2.1 (Blocks World) Suppose we want to talk about a blocks-world planning
domain in which there are five blocks a, b, ¢, d, e, along with the “stack”, “unstack”, “pickup”,
and “putdown” operators used by Nilsson [28]. Suppose the initial configuration is as shown
in Fig. 1(a), and the goal is to have b on ¢ on d, as shown in Fig. 1(b). Then we will define
the language, operators, planning domain, and planning problem as follows:

1. The language £ will contain five constant symbols a, b, ¢,d, e, each representing (in-
tuitively) the five blocks. £ will contain no function symbols, and will contain the
following predicate symbols: “handempty” will be a propositional symbol (i.e. a 0-ary
predicate symbol), “on” will be a binary predicate symbol, and “ontable”, “clear”, and
“holding” will be unary predicate symbols. In addition, we will have a supply of vari-
able symbols, say, X1, Xs,.... Note that operator names, such as “stack”, “unstack”,

etc., are not part of the language L.

2. The “unstack” operator will be the following 4-tuple:

Name(unstack) = unstack(X7, X2)
Pre(unstack) = {on(Xy, X3),clear(X7), handempty()}
Del(unstack) = {on(X1, X2),clear(Xy), handempty()}
Add(unstack) = {clear(X3z), holding(X1)}
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The “stack”, “pickup”, and “putdown” operators are defined analogously.

3. The planning domain will be (Sy, O), where Sy and O are as follows:

So = {clear(a),on(a,b),on(b, c),ontable(c), clear(d),
on(d, e),ontable(e), handempty()};
O = {stack, unstack, pickup, putdown}.

The planning problem will be (Sq, O, G'), where G = {on(b, ¢),on(c,d)}.

Definition 2.6 Let P = (5p, Q) be a planning domain, a be an operator in O whose name
is @(X1,...,X,), and @ be a substitution that assigns ground terms to each X;,1 <17 < n.
Suppose that the following conditions hold for states S and S

{Af : Ais an atom in Pre(a)} C 5;
{B0 : =B is a negated literal in Pre(a)} N S = 0;
5" = (5 — (Del(a)f)) U (Add(a)h).

Then we say that « is 8-executable in state S, resulting in state S’. This is denoted sym-

bolically as

a,d

S == 5.

Definition 2.7 Suppose P = (5p, ) is a planning domain and G is a goal. A plan that

achieves GG is a sequence Sy, ..., 5, of states, a sequence aq, ..., a, of planning operators,
and a sequence #4,...,0, of substitutions such that
a1,01 az,02 on,fn
SOZ>51:>SQ"':>Sn (1)

and G is satisfied by 5, i.e. there exists a ground instance of GG that is true in 5,,. The
length of the above plan is n.
We will often say that (1) above is a plan that achieves G.

Definition 2.8 Let P = (5, 0) be a planning domain or P = (5S¢, 0, G) be a planning
problem; and let £ be the language of P. Then

1. ais positive if Pre(a) is a finite set of atoms (i.e. negations are not present in Pre(a)).
2. «ais deletion-free if Del(a) = 0.

3. a is context-free if |Pre(a)| < 1, i.e., @ has at most one precondition.

4. ais side-effect-free if [Add(a) U Del(a)| < 1, i.e., a has at most one postcondition.
5. L is function-free if it contains no function symbols.

6. L is propositional if every predicate P in L is propositional (i.e., 0-ary).

If every operator in O is positive, deletion-free, context-free, and/or side-effect-free, then
we say that O (and thus P) is, too. Likewise, P is function-free and/or propositional if £
is. Note that if P is propositional, then no operator will ever use function symbols, hence
it will not matter whether P is function-free or not.
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Definition 2.9 PLAN EXISTENCE is the following problem:

Given a planning problem P = (¢, 0, ), does there exist a plan in P that
achieves G'7

Definition 2.10 PLAN LENGTH is the following problem:*

Given a planning problem P = (50,0, G) and an integer k encoded in binary,
does there exist a plan in P of length k& or less that achieves G'7

3 Decidability and Undecidability Results

In this section, we show that logic programming is essentially the same as planning without
delete lists. This is established by showing how to transform a deletion-free planning domain
into a logic program such that for all goals ¢, the goal G is achievable from the planning
domain iff the logical query that G represents is provable from the corresponding logic
program.® Furthermore, we show that every logic program may be transformed to an
equivalent planning domain. As a consequence of these equivalences, we can use results
on the complexity of logic programs and deductive databases to demonstrate the following
results:

e In the presence of function symbols, PLAN EXISTENCE is undecidable even if:

— we have no delete lists;

— we have no delete lists, and all operators have a most one positive precondition
and no negative preconditions.

The presence or absence of negative preconditions in the planning operators makes
no difference where decidability is concerned® (though, as we shall see later, it does
make a difference when we study the complexity of decidable planning domains).

*This definition follows the standard procedure for converting optimization problems into yes/no decision
problems. What really interests us, of course, is the problem of finding the shortest plan that achieves G.
This problem is at least as difficult as PLAN LENGTH, and in some cases harder. For example, in the Towers
of Hanoi problem [1] and certain generalizations of it [17], the length of the shortest plan can be found in
low-order polynomial time—but actually producing this plan requires exponential time and space, since the
plan has exponential length. For more information on the relation between the complexity of optimization
problems and the corresponding decision problems, see [16, pp. 115-117].

®This should be intuitively true, anyway, but the formal establishment of this equivalence is necessary
before attempting to apply results from logic programming and deductive databases to planning problems.
An important point to note is that we will only be considering truth in Herbrand models (cf. Shoenfield
[35]) in this paper. Our undecidability/decidability results rely on this fact. In the context of our domain
representation, it doesn’t make much sense to consider non-Herbrand models because the domains of such
models often contain objects that do not occur in the language, and these objects can not be referred to
indirectly either, as we do not allow universal quantification. In the case of blocks world, for instance, this
corresponds to assuming (inside the model) that there are blocks on the table that cannot be referred to
in the language. Obviously, this is not relevant to planning. Thus, when we talk of logical consequences of
programs, we will be referring to those sentences that are true in all Herbrand models of the program. For
function-free languages, this condition is well known to yield decidability of logical consequence [32, 39].

6The only exception is when £ is extended to contain infinitely many constants. This is discussed in
detail in section 4.1
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e PLAN EXISTENCE is decidable if we do not allow function symbols in our language
and our first-order language is finitely generated (in particular, this means that only
finitely many ground terms are present in the language). The presence or absence of
delete lists does not affect the decidability result.

e In the presence of function symbols, PLAN EXISTENCE is decidable for positive, deletion-
free planning domains that possess certain acyclicity and bounded-ness properties.
Acyclicity properties are defined in terms of the syntactic dependencies between dif-
ferent operators in the planning domain, and are independent of the initial state.

e When our planning domain P = (.S, O) is fixed in advance, then the problem “given a
goal G, does there exist a plan that achieves G7” may still be undecidable depending
on P.” The presence or absence of delete lists does not affect this result.

e Even if we extend the operator definition to allow conditional effects, all of the above
results still hold.

3.1 Equivalence between Logic Programming and Planning

We now proceed to establish the equivalence between logic programming and planning
without delete lists. Subsequently (in Section 3), we show how to do away with delete lists
when function symbols are absent.

If P is deletion-free, then the logic program translation of an operator @ € O, denoted
by LP(a), is the set of clauses

LP(a)={(V)(A — B1 &...& B,): A € Add(a)},
where Pre(a) = {B1,..., B.}.

Definition 3.1 The logic program translation of a planning domain P = (5S¢, O), denoted
LP(P), is the set of clauses
LP(P)= S U (] LP(a).
a€e0

Remark 3.1 Note that if we consider planning domains P = (Sp, O) where Sy is infinite,
then LP(P) would contain infinitely many unit clauses. The infinite nature of LP(P) will
turn out to be irrelevant as far as establishing the equivalences between planning and logic
programming are concerned (cf. Theorems 3.1 and 3.2) and the undecidability results that
follow from the equivalence (cf. Theorem 3.8). This irrelevance is due to the compactness
theorem for first-order logic.

Note that if P = (59, Q) is a positive deletion-free planning domain, then LP(P) is a
definite (i.e., negation-free) logic program. The following theorem shows that achievability
of a goal G in P is identical to provability of G from LP(P).

"The phrase “P = (So, O) is fixed in advance” means that the planning domain P is not part of the input
to a Turing machine; the only input is the goal G. In other words, P is a specific planning domain, and
hence, there are Turing machines that can (intuitively) be specialized for the purpose of generating plans in
this specific domain. In many well known planning problems, the set of operators is fixed; for example, in
the blocks world (see Example 5.1), we have only four operators: stack, unstack, pickup and putdown. Our
result shows that even if the set of operators is fixed, then depending on what the operators are, it still may
be undecidable whether or not there is a plan for G.
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Theorem 3.1 (Equivalence Theorem I) Suppose P = (Sy,0) is a positive, deletion-
free planning domain and G is a goal. Then there is a plan to achieve G from P iff

LP(P) E G.

Definition 3.2 Suppose C is a definite Horn clause, i.e. a universally closed statement of
the form

where A, By,..., B, are all atoms. When n = 0, (' is said to be a fact. The planning
operator associated with C', denoted opc, is specified as follows:

Name: opc()Z), where X is a vector of all variables occuring in C
Pre: {B1,...,B,}

Add: {4}

Del: 0.

Given a definite logic program P, the planning domain translation of P, denoted PD(P), is
the pair (S(P),O(P)), where

S(P) = {A:Aisaground instance of a fact in P};
O(P) = {opc:C is aclause in P, C not a fact}.

Theorem 3.2 (Equivalence Theorem II) Suppose P is a definite logic program and G
is any goal. Then P |= G iff there is a plan to achieve G' from PD(P) = (S(P),O(P)).

Theorem 3.1 holds only when P is positive. The reason for this is that if P is not
positive, then LP(P) is a logic program that may contain negation in its body. Logic
programming interprets negation in LP(P) as “failure to prove”, which is different than
the interpretation of negation in the planning domain P. Intuitively, negation in logic
programming says “conclude —p if it is impossible to prove p”. The corresponding notion
of negation in planning would be “conclude —p if there is no plan to achieve p” which is
much stronger than saying “p is false in the current state.” Thus, if P is not positive, then
in some cases G will be achievable in P but LP(P) |= G will be false. To see this, consider
the following example:

Example 3.1 Consider the planning domain P = (5p, Q) that contains the following two
operators ay, as:

Pre(ay) = {-b} Pre(az) = A{c}
Add(ay) = {a} Add(ay) = {b}

Suppose our initial state is the state {c¢}. Clearly, there is a plan to achieve a by simply
executing operation ag in the initial state.
Now consider LP(P), which is the following logic program:

a «— —b
b—c¢

C «—

The set of atoms provable from this program according to logic programming (all major
semantics for logic programs agree on this program) is {b, c},i.e. @ cannot be obtained even
though our planning domain admits a plan that achieves a.
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3.2 Undecidability and Decidability

By combining Theorem 3.1 and Theorem 3.2 with various known decidability and undecid-
ability results about logic programs, we obtain the following results. For our purposes, the
most important of these results is Corollary 3.3, which says that even if we place some rather
strict restrictions on the nature of the planning operators, PLAN EXISTENCE is undecidable.

At this point we should emphasize that function symbols are allowed, unless explicitly
stated otherwise.

Corollary 3.1 (Semi-Decidability Results)

1. {G : G is an existential goal such that there is a plan to achieve G from P = (5o, O)}
s a recursively enumerable subset of the set of all goals.

2. Given any recursively enumerable collection X of ground atoms (which, of course, are
goals), there is a positive deletion-free planning domain P = (So, O) such that {A : A
is a ground atom such that there is a plan to achieve A from P} = X

3. If we restrict P to be positive and deletion-free, then PLAN EXISTENCE is strictly
semi-decidable.

Corollary 3.2 The problem “given a positive deletion-free planning domain P = (5q, 0),
is the set of goals achievable from P decidable?” is 119-complete.

Corollary 3.3 If we restrict P to be positive, deletion-free, and context-free, then PLAN
EXISTENCE s still strictly semi-decidable.

Corollary 3.4 Suppose P = (S, Q) is a positive, deletion-free planning domain. Then the
problem: “given a goal G, does there exist a plan to achieve G 97 is decidable iff the set of
goals provable from LP(P) is decidable.

In the above undecidability results, one restriction we did not make was to disallow
function symbols in the planning language. In this section, we show that if function symbols
are not allowed, then planning is decidable. To do this, we first prove decidability in a
restricted case, where the planning operators are also deletion-free and function-free:

Theorem 3.3 If we restrict P to be deletion-free and function-free, then PLAN EXISTENCE
s decidable.

We now show that when £ contains no function symbols, we can do away with delete
lists. The idea is intuitively the same as that of Green [18, 28] (vis-a-vis the famous “Green’s
formulation of planning”), with one difference: Green introduces function symbols even if
the original language contained none: we introduce new constants. When the language is
function-free, only finitely many new constants are included.

Theorem 3.4 (Eliminating Delete Lists and Negated Preconditions) Suppose P is
a function-free planning domain. Then there is a positive deletion-free planning domain
P’ = (5], Q") such that for each goal

G= (DA &...&A,),
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there is a goal

G'= (A &... & Al & poss(9)),

where “poss” is a new unary predicate symbol and for all 1 < i < n, if A; = p(t1,...,tn),
then AL = p(ty,...,t,,5) where S is a variable symbol. Furthermore, G is achievable from

P iff G' is achievable from P’.

An important point to note is that even though delete lists may be removed, the size
of P’ is much larger than P, and our reduction is by no means polynomial. It is possible,
but very unlikely that such a polynomial reduction exists, because we have proved that
plan existence without any restrictions is EXPSPACE-complete, where as the same problem
for positive deletion-free domains is EXPTIME-complete. A polynomial reduction from the
unrestricted case to the other would imply EXPTIME = EXPSPACE, which would be a very
significant result indeed. Whether EXPSPACE = EXPTIME or not, has been one of the most
difficult questions of theory of computing. Although most researchers believe it is false,
nobody has been able to come up with a proof of it (so far).

Theorem 3.4 allows us to establish the decidability of plan existence in function-free
domains as follows: given a function-free planning domain P, convert it into a function-
free, deletion-free planning domain P’ by using the transformation procedure in the proof of
Theorem 3.4 (which is contained in the appendix). Theorem 3.3 then allows us to conclude
that plan existence in the function-free, deletion-free domain P’ is decidable. As exactly
the same goals are achievable in the domains P’ and P, it follows that plan existence in P
is decidable. This summarizes the proof of the following result.

Theorem 3.5 (Decidability of Function-Free Planning) If we restrict P to be function-
free, then PLAN EXISTENCE is decidable.

3.3 Restricted Planning Domains

Though Corollary 3.1 indicates that planning in the presence of function symbols is un-
decidable, we can place specific restrictions on planning domains (even in the presence of
function symbols) that guarantee decidability. In Section 3.3.1, we introduce certain syn-
tactic acyclicity properties, and in Section 3.3.2, we introduce two semantic properties: one
defines a class of planning domains (called weakly recurrent domains), while the other char-
acterizes a class of goals called bounded goals. Any planning domain that is acyclic turns
out to be weakly recurrent as well. We then use known results on weakly recurrent logic
programs [3] to derive decidability results for weakly recurrent planning domains.

3.3.1 Acyclic Planning Domains

Definition 3.3 A level mapping for a language L is a mapping ¢ : AT(L) — N where
AT(L) is the set of ground atoms in language I and N is the set of natural numbers.

A predicate level mapping for a language L is a mapping § : Pred(L) — N where Pred(L)
is the set of predicate symbols in language L.

Definition 3.4 A logic program P is said to be atomically acyclic iff there exists a level
mapping £ such that whenever
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is a ground instance of a clause in P, {(A) > {(B;) for all 1 < ¢ < n. (is said to be a witness
to the atomic acyclicity of P.

Analogously, a logic program P is said to be predicate acyclic there exists a predicate level
mapping § such that whenever

—

polto) — pi(t)& ... & pa(tn)

is a clause (not necessarily ground) in P, §(po) > §(p;) for all 1 <i < n.

Intuitively, atomic acyclicity guarantees that the dependencies expressed in the program
are not recursive. For example, the program containing clauses

p = q
9 — P

involves a cycle. This program is not acyclic.

It is also easy to see that predicate acyclicity implies atomic acyclicity — to see this, note
that if § is a witness to the predicate acyclicity of P, then we can define a level mapping ¢
as follows:

Up(t)) = t(p)

It is straightforward to verify that ¢ is a witness to the atomic-acyclicity of P.

Furthermore, observe that predicate-acyclicity can be checked in linear-time. To see this,
observe that given a logic program P, we can draw a graph on the predicate symbols in P
as follows: there is an arc from p to ¢ iff there is a clause in P having an atom of the form
p(t_j in its head, and an atom of the form ¢(§) in its body. This graph can be constructed
in linear time by reading in clauses in P one by one. P is acyclic iff the resulting graph is
acyclic. The result follows as checking for cycles in a graph can be solved in linear time.

We now show how the definitions of predicate acyclicity and atomic acyclicity can be ex-
tended to apply to positive, deletion-free planning domains.

Definition 3.5 Suppose P = (5g, Q) is a positive, deletion-free planning domain. P is said
to be atomically acyclic iff there exists a level mapping £ such that for all ground instances,
a, of operators in P, it is the case that ((A) > {(B) for all A € Add(a) and B € Pre(a).

Definition 3.6 Suppose P = (59, 0) is a positive, deletion-free planning domain. P is
said to be predicate acyclic iff there exists a predicate level mapping £ such that for all
operators a in P, it is the case that §(p) > §(¢) for all predicates p occurring in Add(«) and
all predicates ¢ occurring in Pre(a).

As in the case of logic programs, if a planning domain is predicate acyclic then it is also
atomically acyclic. Furthermore, the following two results shows a close connection between
acyclicity of logic programs and planning domains.
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Proposition 3.1 Suppose P = (5q, Q) is a positive, deletion-free planning domain. Then:

1. If P is atomically acyclic, then the logic program translation, LP(P), of P, is atomi-
cally acyclic.

2. If P is predicate acyclic, then LP(P) is predicate acyclic.

The above proposition is true because the level mapping that witnesses the predi-
cate/atomic acyclicity of P also witnesses the predicate/atomic acyclicity of LP(P). The
same reasoning may be applied to prove the next result.

Proposition 3.2 Suppose P is a definite logic program. Then:
1. If P is atomically acyclic, then PD(P) is atomically acyclic.

2. If P is predicate acyclic, then PD(P) is predicate acyclic.

3.3.2 Weakly Recurrent Planning Domains

The above two results show that our transformations, LP, and PD, from logic programs to
planning domains (and vice-versa) preserve atomic and predicate acyclicity. Bezem [3] has
shown that a class of logic programs called weakly recurrent programs possess appealing
decidability properties. All predicate and atomically acyclic programs are weakly recurrent
(though the converse may not be true). Below, we will present Bezem’s definition of weakly
recurrent logic programs, and then show how to define an analogous notion for planning
domains which allows these decidability properties to be applied to planning.

Definition 3.7 (Bezem [3]) A definite logic program is weakly recurrent iff there exists a
level mapping ¢ such that for every clause in P having a ground instance of the form:

such that if P [£ A (i.e. A is not a logical consequence of P), there exists an 1 < < n such
that P £ B; and (A) > ((B;).

Intuitively, a weak recurrence says that non-provability of A can be established by verifying
the non-provability of some strictly lower-level atoms B.

Theorem 3.6 (Bezem [3]) If P is a weakly recurrent definite logic program, then the set
of ground atoms provable from P is recursive (i.e. decidable).

Furthermore, every recursive set of ground atoms of language L can be expressed as the set
of ground atoms provable from some weakly recurrent logic program P.

Note that the second part of the above theorem does not say that every program whose
set of ground atomic consequences is recursive is weakly-recurrent. There are non-recurrent
programs with a recursive set of ground atomic consequences. We now show how the notion
of weakly recurrent logic programs can be used to define a similar notion for planning
domains.

Definition 3.8 A planning domain P = (Sy, O) is weakly recurrent iff there exists a level
mapping ¢ such that for every ground instance, a, of an operator in O, it is the case that:
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If A € Add(a)is such that there is no plan to achieve A from P, then there is a
B; € Pre(a) such that there is no plan to achieve B; from P and ((A) > ((B;).

The property of weak recurrence is preserved by the transformations PD and LP.

Proposition 3.3 (1) If P = (S0, O) is a weakly recurrent, positive, deletion-free planning
domain, then LP(P) is a weakly recurrent logic program.

(2) Conversely, if P is a weakly recurrent definite logic program, then PD(P) is a weakly
recurrent planning domain.

Part (1) of Proposition 3.3 follows immediately because the level mapping that witnesses
the weakly-recurrent property of P also witnesses the weakly-recurrent property of LP(P).
Part (2) follows similarly.

Definition 3.9 Suppose G = (3)(A;1 & ... &A,) is a goal. Let Grd(G) denote the set of all
ground instances of the quantifier-free conjunction (43 &...&A,). G is said to be bounded
w.r.t. a level mapping ( iff there exists an integer b such that for every ground instance

(A1 & ... &A)0 in grd(G), it is the case that
((A;) < b.

Note, in particular, that when our language L is function-free, all goals are bounded w.r.t.
any level mapping.

Example 3.2 Consider the language L containing one unary predicate symbol p one unary
function symbol s, and one constant symbol a. Let £ be the level mapping which assigns 0 to
p(a), 1to p(s(a)),2to p(s(s(a))), and i to p(s'(a)). Then the goal (X )p(X)is not bounded
w.r.t. level mapping £. On the other hand, if we consider the level mapping ¢’ that assigns 0

to p(a), p(s(s(a)),...,p(s*(a)),...,and 1 to p(s(a)), p(s(s(s(a)))),..., p(s*+(a)),. .., then
(3X)p(X) is bounded w.r.t. level mapping ¢'.

Theorem 3.7 (Decidability for Weakly Recurrent Planning Domains) IfP = (5, O)
is restricted to be weakly recurrent (via witness (), positive, and deletion-free, and G is re-
stricted to be bounded w.r.t. £, then PLAN EXISTENCE s decidable.

As
Predicate Acyclic = Atomically Acyclic == Weakly Recurrent,

the following results are immediate.

Corollary 3.5 If P is a (predicate, resp. atomically) acyclic planning domain, and G is
a bounded goal (w.r.t. the level mapping that establishes P’s acyclicity), then the problem:
“Is G achievable from P ?7 is decidable.

Furthermore, for all predicate acyclic (via §) planning domains, every goal (¢ is bounded—
take the bound b to be

1+ max {§(p)|p is a predicate symbol in language L}
Hence:

Corollary 3.6 If P is a predicate acyclic planning domain, and G is any goal, then the
problem: “Is G achievable from P ¢” is decidable.
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3.4 Extended Planning Domains

Earlier, we defined the language £ to contain only finitely many constant symbols, and
states in L to contain only finitely many ground atoms. In this section, we consider what
happens when one or both of these assumptions is violated. We also consider what happens
if the planning operators are extended to allow conditional effects.

3.4.1 Infinite Initial States; Infinitely Many Constants

Corollary 3.1 showed that PLAN EXISTENCE is semi-decidable even if P is positive and
deletion-free. One might think that allowing infinite initial states would increase the diffi-
culty of PLAN EXISTENCE even further, but the following theorem shows that it does not.

Theorem 3.8 If P = (Sy,0) is restricted to be positive and deletion-free, but the initial
state So is allowed to be an infinite, decidable set of ground atoms, PLAN EXISTENCE is
(strictly) semi-decidable.

The following theorem states that if the initial state is allowed to be infinite and the
number of constant symbols in the language is allowed to be infinite, then any planning
domain whose language contains function symbols can be reduced to an equivalent planning
domain whose language contains no function symbols.

Theorem 3.9 Let P = (Sy, O) be any planning domain whose language L contains function
symbols, and whose initial state Sy may possibly be infinite. Then there is a planning domain
P’ = (5),0") having the following properties: P'’s language L' contains infinitely many
constants but no function symbols, the initial state S}, may be infinite, and for every goal G
in P, there is a goal G' in P’ such that there is a plan for G in P iff there is a plan for G’
in P’.

In the above theorem, the basic idea is to encode each term f(t1,...,%,) of £ as a
constant symbol kg, ¢,y in L'. To do this, we must also add an “equivalence condition”,
i.e., an atom saying that applying f to t1,...,1, yields kg, . ¢,). This atom must appear
in the preconditions of every planning operator that contains the term f(¢1,...,t,), and
thus it must also appear in every state. Furthermore, if any of the terms t1,...,t, contains
function symbols, then it must be encoded in the same way.

Since the above encoding adds no deletions and no negative preconditions to the oper-
ators, the following corollary follows immediately:

Corollary 3.7 If P is positive and/or deletion-free, then P’ is too.

From Corollary 3.3, if the language contains function symbols then planning is undecid-
able, even if the planning domain is restricted to be positive and deletion-free. Thus, from
the above results, the following corollary follows immediately:

Corollary 3.8 If we restrict P = (S, O) to be positive, deletion-free, and function-free, but
allow So to be infinite and allow P ’s language to contain infinitely many constant symbols,
then PLAN EXISTENCE s semi-decidable.

Corollary 3.8 subsumes Theorem 3.8, in the following sense. Although the theorem restricts
the set of constant symbols to be finite, it allows function symbols. Any function-free
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planning domain that contains infinitely many constant symbols ¢1,¢q,... can easily be
mapped into an equivalent planning domain that contains one constant symbol ¢ and one
unary function symbol f, by mapping ¢1 — ¢, ¢z — f(¢), and so forth. Thus, Corollary 3.8
shows that even with further restrictions than described in Theorem 3.8, planning is still
undecidable.

One might think that if the planning language is allowed to contain infinitely many
constants, this should be sufficient to make PLAN EXISTENCE undecidable even if the initial
state is restricted to be finite. However, decidability depends on whether all of these con-
stants are relevant for planning. If the initial state is finite, then all but a finite number of
ground atoms will be false in the initial state. An operator can introduce a new constant to
a plan only if that constant does not appear in any of the operator’s positive preconditions.
Thus, when we restrict the domain to be positive and deletion-free, the only way we can
introduce a new constant is by using an operator with no preconditions. However, in this
case there is no reason why we should not use a basic constant (i.e., a constant that appears
in the initial state or in an operator definition) to do the same job. Hence the problem is
decidable. On the other hand, if we allow negated preconditions, the previous argument
does not hold. We can introduce new constants by using operators with negated precon-
ditions, and we cannot replace these constants with basic constants. Hence the problem
becomes undecidable.

The above argument leads to the following theorems:

Theorem 3.10 If P’s language L is allowed to contain infinitely many constants, then
PLAN EXISTENCE is semi-decidable even if P = (Sy, Q) is restricted to be deletion-free and
Junction-free (and Sy is finite).®

The statements of Theorem 3.10 and Corollary 3.8 are quite similar. In both of them,
we have extended the language to allow infinitely many constant symbols, and have re-
stricted the operators to be deletion-free and function-free. Under these conditions, PLAN
EXISTENCE is undecidable if we either

o allow the initial state to be infinite (Corollary 3.8), or
e allow non-positive operators (Theorem 3.10).

Under this same set of conditions, the following theorem says that if we restrict the initial
state to be finite and the operators to be positive, then PLAN EXISTENCE is decidable.

Theorem 3.11 If the language is allowed to contain infinitely many constants but P =
(S0, O) is restricted to be positive, deletion-free, and function-free (and Sy is finite), then
PLAN EXISTENCE is decidable.

3.4.2 Conditional Operators

Several researchers [8, 10, 31, 30] have been interested in actions whose effects are context
dependent, that is, dependent on the input situation. Thus, we found it necessary to
examine the complexity of planning with such operators. We will be using Dean’s [10]
formulation of these operators, which is a more general version of what Chapman [8] uses.

#Tom Bylander (personal communication) has proved a more restricted version of this theorem, in which
he requires that the planning operators be allowed to contain delete lists. In proving our more general
theorem, we have benefited from his proof technique.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 17

Definition 3.10 A conditional operator « is a finite set {ty,t3,...,t,}, where each ¢; is a
triple of the form (Pre;, Del;, Add;). Pre;, Del;, and Add; correspond to the precondition
list, delete list and add list associated with the ¢’th triple, respectively. Hence each of these
lists are sets of atoms.

Definition 3.11 Let a be a conditional operator, # be a ground substitution for the vari-
ables appearing in «a, S be a state, and

"= (5 — | JDeli) U | J Add;b,
el €]

where

I = {i: S satisfies Pre;0}.
Then we say that a is #-executable in state S, resulting in state S’. This is denoted as

0
S ==

s

The definitions of positive and deletion-free can be trivially extended to include condi-
tional operators.

Obviously, planning with regular operators is a special case of planning with condi-
tional operators, where each conditional operator is restricted to contain exactly one triple
(Pre,Del, Add). Thus planning with conditional operators is at least as hard as planning
with regular operators, so all of our undecidability results still hold if conditional operators
are allowed.

The next point to be investigated is whether allowing conditioal operators affects our
decidability results (Theorems 3.3, 3.5, 3.7, and 3.11). Below, we show that it does not:

o Theorems 3.3 and 3.5 restrict the planning domain to be function-free. Thus we have
only a finite number of ground terms, so the number of states is finite. Hence, we
can search all the states reachable from the initial state to see whether one of them
satisfies the goal in finite time, so the problem remains decidable. Thus Theorems 3.3
and 3.5 are unaffected if conditional operators are allowed.

e Theorems 3.7 and 3.11 restrict the planning domain to be positive and deletion-free. If
a positive, deletion-free planning domain contains conditional operators, the following
transformation creates an equivalent positive and deletion-free planning domain that
has no conditional operators. This shows that allowing conditional operators does not
affect Theorems 3.7 and 3.11.

Let P = (Sp,O) be a planning domain in which the operator definition is extended
to allow conditional operators. Let = {t1,...,%,} be any one of these conditional
operators, where for each ¢, t; = (Pre;, Del;, Add,).

We can define an equivalent set of STRIPS-style operators, none of which has con-
ditional effects. For every subset I C {1,...,n}, as is the following STRIPS-style
operator:

Name: aj(Vy)
Pre: U;er Pre;
Del: Uier Del;
Add:  J;ey Add;
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where V7 consists of all variables appearing in Pre(ag), Del(ay), and Add(ay).

Suppose we are given a planning domain P that contains the conditional operator
a = {ty,...,t,}, and let P’ be the planning domain in which « is replaced by the
set of unconditional operators {a;} defined above. Then P and P’ are equivalent

. . . ,0 . . . .
planning domains, in the sense that 5 =2 67 in P if and only if there is an operator
. . . ird
o in P’ that is f-executable in 9, and § == 5.

The above arguments prove the following:

Proposition 3.4 (Irrelevance of Conditional Operators for Decidability) Whether
or not the definition of a planning domain is extended to allow conditional planning opera-
tors makes no difference in any of our decidability and undecidability results.

4 Comparison with Chapman’s Undecidability Results

To date, the best-known results on decidability and undecidability in planning systems
are those of Chapman [8]. However, there is a certain amount of confusion about what
Chapman’s undecidability results actually say, because some of his assumptions become
clear only after a careful reading of the paper. To clarify the meaning of Chapman’s
undecidability results, we now compare and contrast his results with ours.

4.1 First Undecidability Theorem

Chapman’s first undecidability theorem ([8, pp. 370-371]) says that all Turing machines
with their inputs may be encoded as planning problems in the TWEAK representation, and
hence planning is undecidable. To prove this theorem, Chapman makes use of the following
assumptions:

1. the planning language is function-free;

2. “an infinite [but recursive] set of constants ¢; are used to represent the tape squares”
[8, p. 371];

3. the initial state is infinite (but recursive). In particular, “there must be countably
many successor propositions to encode the topology of the tape (and also countably
many contents propositions to make all but finitely many squares blank)” [8, p. 371].

Our Corollary 3.8 subsumes this result, by showing that with the same set of assump-
tions, PLAN EXISTENCE is undecidable even if all of the planning operators are positive and
deletion-free.

In his discussion of the First Undecidability Theorem [8, p. 344], Chapman says:

This result is weaker than it may appear ... the proof uses an infinite (though
recursive) initial state to model the connectivity of the tape. It may be that if
problems are restricted to have finite initial states, planning is decidable. (This
is not obviously true though. There are infinitely many constants, and an action
can in effect “gensym” one by referring to a variable in its post-conditions that
is not mentioned in its preconditions.)
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Our Theorems 3.10 and 3.11 solve the open problem posed in the above quote. In particular,
suppose that Chapman’s first two assumptions are satisfied (i.e., the language is function-
free, and there are infinitely many constant symbols), but the initial state is finite. Then:

e PLAN EXISTENCE is undecidable, even if all operators are deletion-free;

e if the operators are both deletion-free and positive, then PLAN EXISTENCE is decidable.

4.2 Second Undecidability Theorem

The statement of Chapman’s second undecidability theorem is that “planning is undecidable
even with a finite initial state if the action representation is extended to represent actions
whose effects are a function of their input situations” [8, p. 373].

The meaning of the phrase “effects are a function of their input situations” has caused
some confusion. Several researchers, including ourselves [11] and Mark Peot (in his confer-
ence presentation of [31]), thought that Chapman meant a special case of the conditional
operators defined in Section 3.4.2. However, our Proposition 3.4 shows that whether or not
such operators are allowed makes no difference in the decidability of PLAN EXISTENCE—and
an examination the proof of Chapman’s theorem makes it clear he is referring to a different
kind of operator.

In Chapman’s proof of the theorem, he makes use of operators that increment and
decrement two counters. Since there is no upper bound on the value of those counters, to
define such operators formally would require the use of function symbols. Thus, his phrase
“effects are a function of their input situations” apparently refers to operators that contain
function symbols. Qur Corollary 3.1 shows that if function symbols are allowed, then even if
there are only finitely many constant symbols, then PLAN EXISTENCE is undecidable. Thus,
Corollary 3.1 subsumes the Second Undecidability Theorem.

5 Complexity Results

As shown in Theorem 3.5, planning is decidable if our language contains finitely many
constant symbols, and no function symbols. We now study the complexity of planning
domains that satisfy these conditions. We discuss how delete lists, negated preconditions,
propositional operators, and fixing the set of operators affects the complexity of planning.

5.1 Preliminaries for the Complexity Results
5.1.1 What is considered as Input?

Since the complexity of a problem is evaluated with respect to the length of the input,
it is important to understand precisely what the input is. According to the definitions
of PLAN EXISTENCE and PLAN LENGTH the problem input consists of a planning problem
P = (50,0, G), where

o 5o is the initial state (a set of ground atoms);
o () is the set of available planning operators;

e (7 is the goal (an existentially closed set of atoms).
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The planning language is the language £ generated by the predicate symbols, function
symbols, and constant symbols that appear in this input.

Unless we state otherwise, all complexity terms (polynomial, exponential, etc.), should
be understood in terms of the length of the input, which we will denote by ||P||. In
Section 5.3, we consider what happens if the set of operators is fixed, and thus excluded
from the input—but we state this condition explicitly in each result that uses it.

5.1.2 Eliminating Negated Preconditions

In Theorem 3.4, we proved that delete lists and negated preconditions could be “compiled
away,” but this translation cannot be done in polynomial time. We show below that if
we are willing to allow delete lists, then we can remove negations from preconditions of
operators in polynomial time. Thus, if delete lists are allowed, then negated preconditions
do not affect the complexity of planning.

Theorem 5.1 (Eliminating Negated Preconditions) In polynomial time, given any
planning domain P = (S, 0) we can produce a positive planning domain P' = (S}, 0’)
having the following properties:

1. For every goal G, a plan exists for G in P if and only if a plan exists for G in P’.

2. For every goal G and non-negative integer l, there exists a plan of length | for G in P
if and only if there exists a plan of length 1+ 2% for G in P’, where k is the mazimum
arity among the predicates of P and v = [lgc|, where ¢ is the number of constants in
P (i.e., v is the number of bits necessary to encode the constants in binary).

To prove the above theorem, the basic idea is this:” for each predicate P in P, we
introduce another complementary predicate P’ such that whenever P is true, P’ is false.
The operators in O can easily be modified to achieve this. The problem is that for every
atom that is false in P’s initial state Sy, we need to assert the corresponding complementary
atom in P’. Since there might be an exponential number of such atoms, we cannot just
place them in S5(. Instead, we assert all these atoms using operators, using a “counter”
predicate to keep track of how many of them have been asserted. When all of these atoms
have been asserted, we delete the ones corresponding to those appearing in g, assert the
atoms of P that are in Sy, and set start() so that we can start imitating the behavior of the
original planning problem.

Note that P’ will not be deletion-free, even if P is.

5.2 Planning When the Operator Set is Part of the Input

In this section, we consider the complexity of planning in the “domain-independent” case,
in which the operators are part of the input and thus different problem instances may have
different operator sets.

5.2.1 Propositional Operators

The following theorems deal with the special case in which all predicates are propositions
(i.e., 0-ary). In this case, the number of ground atoms in £ is polynomial in ||P||, since

®We again remind the reader that complete proofs appear in the appendix.
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each atom must appear somewhere in the input. Since a state may be any set of ground
atoms, there is an exponential number of states. Since there are no variables, the number
of operator instances is |O|, which of course is polynomial in ||P]].

Theorem 5.2 (Bylander [5])
1. If we restrict P to be propositional, then PLAN EXISTENCE is PSPACE-complete.

2. If we restrict P to be propositional and positive, then PLAN EXISTENCE is PSPACE-
complete.

3. If we restrict P to be propositional and deletion-free, then PLAN EXISTENCE is NP-
complete.

4. If we restrict P to be propositional, positive, and deletion-free, then PLAN EXISTENCE
s in P.

5. If we restrict P to be propositional, positive, and side-effect-free, then PLAN EXISTENCE
s in P.

Synopsis of proof. Here are the basic intuitions behind the above theorem; for the details
see [5]. In general, we might need to use the same operator instance more than once. For
example, consider the propositional planning problem in which the initial state is Sy = 0,
the goal is G = {p, q, 7}, and the operators are

Name: A Name: B
Pre: Pre: {p}
Del: 0 Del:  {q}

Add: {p,q} Add:  {r}

In order to achieve r, we need to use operator B. To satisfy the precondition p, we need to
use operator A. However, since operator B deletes ¢, we need to use operator A a second
time, to reassert ¢. Thus the plan is (A, B, A).

To handle such situations, we might have to search through all the states, using some
operators more than once, doing an exponential amount of work—but since the size of each
state is at most polynomial, we can do this search in pspacE.!®

If P is deletion-free, then once a proposition is asserted, it remains asserted throughout
the plan. Thus, no operator needs to be used more than once, and the length of the plans
are constrained to be polynomial. We still need to decide how to choose the operators and
how to order them in the plan, and thus the problem is NP-complete.

If P is both positive and deletion-free, then no operator can clobber any goal nor any
other operator, and any operator that is executable remains so throughout the plan. Thus,
we no longer care which operators we choose, or how they are ordered. Instead, we can ar-
bitrarily choose operators and apply them until either the goal is achieved, or no executable
operator that has not yet been used remains. This takes polynomial time. [ |

If P is positive, deletion-free, and context-free, then we can do a backwards search
for each proposition in the goal set. At each iteration, we nondeterministically choose an
operator that achieves the subgoal, and we make its precondition the new subgoal. We

19 Although it has not been proved, PSPACE is believed to be equal to EXPTIME.
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repeat this until the subgoal is in the initial state, or no such operator to choose exists. If
we can find a plan for each of the propositions in the goal, then these plans can be combined
to make a plan for the goal. Since P is deletion free and positive, no operator can delete any
of the preconditions of the other operators. We can do the backwards chaining because each
operator has at most one precondition, and thus the number of subgoals do not increase. All
these require logspace, and since we need to make non-deterministic choices, the problem is
NLOGSPACE-complete. Thus, we have the following result, which is proved in the appendix.

Theorem 5.3 If we restrict P to be propositional, positive, context-free, and deletion-free,
then PLAN EXISTENCE is NLOGSPACE-complete.

The following theorems and corollaries state our results on the complexity of PLAN
LENGTH. Note that in several cases where PLAN EXISTENCE is in P (items 3 and 4 of
Theorem 5.2, and Theorem 5.3), the corresponding PLAN LENGTH problem (Corollaries 5.2
and opty-1-cor, and Theorem 5.4, respectively) is NP-complete. The reason for this is as
follows. For PLAN EXISTENCE, the restrictions allowed us to plan for each subgoal separately,
using backwards chaining. We cannot do this for PLAN LENGTH, because of enabling-
condition interactions. Enabling-condition interactions are discussed in more detail in [20],
but the basic idea is that a sequence of actions that achieves one subgoal might also achieve
other subgoals or make it easier to achieve them. Although such interactions will not affect
PLAN EXISTENCE, they will affect PLAN LENGTH, because they make it possible to produce
a shorter plan. It is not possible to detect and reason about these interactions if we plan
for the subgoals independently; instead, we have to consider all possible operator choices
and orderings, making PLAN LENGTH NP-hard.

Theorem 5.4 If we restrict P to be propositional, positive, context-free and deletion-free,
then PLAN LENGTH is NP-complete.

Corollary 5.1 If we restrict P to be propositional, positive and deletion-free, then PLAN
LENGTH is NP-complete.

Corollary 5.2 If we restrict P to be propositional and deletion-free, PLAN LENGTH is NP-
complete.

If we allow non-empty delete lists, then we are no longer confined to plans of polynomial
length, and thus the complexity of PLAN LENGTH increases, as stated in the following
theorem.

Theorem 5.5 PLAN LENGTH is PSPACE-complete if we restrict P to be propositional. It is
still PsPACE-complete if we restrict P to be propositional and positive.

5.2.2 Propositional Operators with Operator Composition

Both Theorem 5.3 and Clause 5 of Theorem 5.2 require restrictions on the number of clauses
in the preconditions and/or postconditions of the planning operators. These restrictions can
easily be weakened by allowing the operators to be composed, as described below.

Definition 5.1 An operator « is composable with another operator 3 if the positive pre-
conditions of 3 and del(a) are disjoint, and the negative preconditions of 5 and add(«) are
disjoint.
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Definition 5.2 If o and 8 are composable, then the composition of a with 8 is

Pre:  Pre(a)U (P — Add(a)) U (P, — del(a))
Add:  Add(p)U (Add(«) — Del(3))
Del:  Del(3) U (Del(a) — Add(3))

where Py and P, respectively, are the positive and negative preconditions of /.

Theorem 5.6 (Composition Theorem) Let P = (5o, 0) be a planning domain, and O’
be a set of operators such that each operator in (' is the composition of operators in O.
Then for any goal G, there is a plan to achieve G in P iff there is a plan to achieve G in
P’, where P’ = (S5, 0 U O").

This theorem allows us to extend the scope of several of the complexity theorems.

Corollary 5.3 Suppose we restrict P = (5o, 0,G) to be such that O = O1 U Oy, where
04 is propositional, deletion-free, positive and context-free, and every operator in Oy is the
composition of operators in O1. Then PLAN EXISTENCE is NLOGSPACE-complete.

Proof. Immediate from Theorem 5.6 and Theorem 5.3. [ |

Corollary 5.4 Suppose we restrict P = (5o, O, G) to be such that O = O1 U Oq, where Oy
s propositional, positive, and side-effect-free, and every operator in Oy is the composition
of operators in Q1. Then PLAN EXISTENCE is in P.

Proof. Immediate from Theorem 5.6 and Theorem 5.2. [ |

Example 5.1 (Blocks World) Bylander [5] reformulates the blocks world so that each
operator is restricted to positive preconditions and one postcondition. Instead of the usual
“on” and “clear” predicates, he uses proposition off;; to denote that block 7 is not on block
7. For each pair of blocks ¢ and j, he has two operators: one that moves block ¢ from the
top of block 7 to the table, and one that moves block ¢ from the table to the top of block
7. These operators are defined as follows:

Name: totable;;

Pre: {off1 ;,0ff5;, ..., off, ;,offy ;,0ff5 5, ... off;_q ;,0ffi1qy ;... 0ff, ;}
Del: 0

Add:  {off; ;}

Name: toblock;;

Pre: {off1 ;,0ff5;,...,off, ;,offy ;,0ff5 ;... off, ;,0ff; 1, 0ff; 5, ..., off; ,}
Del: {off; ; }

Add: 0

In Bylander’s formulation of blocks world, P is positive and side-effect-free. Thus as a
consequence of Clause 5 of Theorem 5.2, in Bylander’s formulation of blocks world PLAN
EXISTENCE can be solved in polynomial time.

In Bylander’s formulation of the blocks world, it is not possible for blocks to be moved
directly from one stack to another. This has two consequences, as described below.

The first consequence is that in Bylander’s formulation of blocks world, PLAN LENGTH
can be solved in polynomial time. To show this, below we describe how to compute how
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many times each block b must be moved in the optimal plan. Thus, to see whether or not
there is a plan of length £ or less, all that is needed is to compare k with

Zhow many times b must be moved.
b

Let 5 be the current state, and b be any block. If the stack of blocks from b down to the
table is consistent with the goal conditions (whether or not this is so can be determined in
polynomial time [20]), then b need not be moved. Otherwise, there are three possibilities:

1. If bis on the table in S and the goal conditions require that b be on some other block
¢, then in the shortest plan, b must be moved exactly once: from the table to c.

2. If b is on some block ¢ in S and the goal conditions require that b be on the table,
then in the shortest plan, b must be moved exactly once: from ¢ to the table.

3. If b on some block ¢ in S and the goal conditions require that b be on some block d
(which may be the same as ¢), then in the shortest plan, b must be moved exactly
twice: from ¢ to the table, and from the table to d.

The second consequence is that translating an ordinary blocks-world problem into By-
lander’s formulation will not always preserve the length of the optimal plan. The reason for
this is that in the ordinary formulation of blocks world, the optimal plan will often involve
moving blocks directly from one stack to another without first moving them to the table,
and this cannot be done in Bylander’s formulation. It appears that Bylander’s formulation
cannot be extended to allow this kind of move another without violating the restriction that
each has only positive preconditions and one postcondition.

The above problem can easily be overcome by augmenting Bylander’s formulation to
include all possible compositions of pairs of his operators. Theorem 5.2 does not apply to
this formulation, but Corollary 5.4 does apply, and gives the same result as before: PLAN
EXISTENCE can be solved in polynomial time.

Since this extension to Bylander’s formulation allows stack-to-stack moves, there is a
one-to-one correspondence between plans in this formulation and the more usual formula-
tions of the blocks world, such as those given in [7, 21, 28, 37, 40, 19, 20]. Thus, from results
proved in [20], it follows that in this extension of Bylander’s formulation, PLAN LENGTH is
NP-complete.

5.2.3 Datalog Operators

Below, we no longer restrict the predicates to be propositions. As a result, planning is much
more complex than in the previous case.

In datalog planning, the number of ground terms we have is pc®, where p is the number
of predicates, ¢ is the number of constants, and a is the arity of predicates. This value
is exponential in terms of the size of the input. Each state is a subset of ground terms,
and hence the number of states is double exponential. In the unrestricted case, we need to
search through this space, requiring a doubly exponential amount of work. Since the size
of a state is at most exponential, we can make a nondeterministic forward search starting
with the initial state, and solve the problem in EXPsPAcE.'! This is stated formally below.

11 Although it has not been proved, it is believed that EXPSPACE equals double exponential time.
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Theorem 5.7 PLAN EXISTENCE is EXPSPACE-complete. It is still EXPSPACE-complete if
we restrict P to be positive.

When we restrict P to be deletion-free, we still need to search through the same space
as before. However, now we have a monotonicity property. Since all delete-lists are empty,
what ever is asserted at a step in a plan remains true after that point. Hence no operator
instance needs to appear in a plan more than once, as the latter appearances would not
have any affect. The number of operator instances is exponential, and all we need to do
is to non-deterministically guess a sequence of operator instances, and verify it. Thus the
problem is NEXPTIME-complete, as stated below.

Theorem 5.8 If we restrict P to be deletion-free, then PLAN EXISTENCE is NEXPTIME-
complete.

When we restrict P to be both positive and deletion-free, then just as above, each
operator instance needs to appear in a plan at most once. In addition, the ordering of the
operators in a plan does not matter as long as their preconditions are satisfied. The reason
for this is as follows: since P is deletion-free, whatever is asserted remains asserted; and
since P is positive, all the operators have only positive preconditions; and thus any operator
that is executable at some point in the plan remains executable at subsequent points in the
plan. As a result, we can keep executing operator instances, until we reach the goal, or all
the executable operator instances have been used. Since this takes exponential time, we
have the following result.

Theorem 5.9 If we restrict P to be positive and deletion-free, then PLAN EXISTENCE is
EXPTIME-complete.

Now, in addition to the above restrictions, suppose we require each planning operator to
have at most one precondition, which must be positive. Then we can do backward chaining,
starting with the set of goals, and at each step on-deterministically choosing an operator
instance, removing the subgoals it adds, and inserting the precondition of the operator as
a new subgoal. Each new operator achieves at least one subgoal and introduces at most
one new subgoal, so the size of the set of unachieved goals is monotonically non-increasing.
Furthermore, since P is positive and deletion-free, no operator will clobber a previously
achieved subgoal, so we do not need to keep track of subgoals that have already been
achieved. Thus, we can solve PLAN EXISTENCE in PSPACE. More formally, we have the
following result.

Theorem 5.10 If we restrict P to be context-free, positive, and deletion-free, then PLAN
EXISTENCE is PSPACE-complete.

We now examine the complexity of PLAN LENGTH.

Theorem 5.11 If we restrict P to be deletion-free, positive, and context-free, then PLAN
LENGTH is PSPACE-complete.

Here is a brief explanation of the above result. Since P is deletion-free, no operator need
to appear more than once in a plan. Thus, we can show that PLAN EXISTENCE is a special
case of PLAN LENGTH, with k£ = the number of operator instances. PLAN EXISTENCE was
proved to be pspace-hard (Theorem 5.10), hence hardness follows. For proving membership,
remember that the algorithm we provided for the existence problem was nondeterministic.
Whenever this is the case, we can always introduce a counter to keep track of number of
operators in the plan, and fail when it exceeds k.
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Theorem 5.12 PLAN LENGTH is NEXPTIME-complete in each of the following cases:

1. P is deletion-free and positive;

2. P is deletion-free;

3. P is positive;

4. no restrictions (except, of course, that P is function-free).

The reason for the above result is as follows. For membership, notice that the length
of the plan is bound by k, which is part of the input. Since k is encoded in binary, it
will confine us to plans of at most exponential length. Thus we can solve the problem in
NEXPTIME. For the hardness result, we only need to discuss case 1, which is a special case
of the other cases. Remember that PLAN EXISTENCE is EXPTIME-complete in this case,
because of the property that the ordering of operators does not matter as long as all the
preconditions are satisfied. This property allowed us to do a forward search, arbitrarily
choosing the next operator. However, in the case of PLAN LENGTH, we can not choose the
operators arbitrarily: we need to choose them so that the plan length does not exceed k.
This makes the problem harder.

When we have an overall look at the results in this section, we note that if delete
lists are allowed, then PLAN EXISTENCE is EXPSPACE-complete but PLAN LENGTH is only
NEXPTIME-complete. Normally, one would not expect PLAN LENGTH to be easier than PLAN
EXISTENCE, and if we look at Table 2, this is true in all cases except this one. The reason
for this anomaly is that the length of a plan can sometimes be doubly exponential in the
length of the input. In PLAN LENGTH we are given a bound k., encoded in binary, which
confines us to plans of length at most exponential in terms of the input. Hence in the worst
case of PLAN LENGTH, finding the plan is easier than in the worst case of PLAN EXISTENCE.

We do not observe the same anomaly in the propositional cases described in Section 5.2.1,
because in those cases the lengths of the plans are at most exponential in the length of
the input, so giving an exponential bound on the length of the plan does not reduce the
complexity of PLAN LENGTH. As a result, in the propositional case, both PLAN EXISTENCE
and PLAN LENGTH are PSPACE-complete.

5.3 Planning When the Operator Set is Fixed

The results in Section 5.2 were for the case in which the set of operators is part of the input.
However, in many well known planning problems, the set of operators is fixed in advance.
For example, in the blocks world (see Example 5.1), we have only four operators: stack,
unstack, pickup and putdown.

In this section we will present complexity results on planning problems in which the set
of operators is fixed, and only the initial state and goal are allowed to vary. The problems
we will consider will be of the form: “given the initial state Sy and the goal (7, is there a plan
that achieves G777 We assume every predicate symbol appearing in &' and Sy appears in
at least one of the planning operators. This restriction is reasonable because the operators
can neither add nor delete atoms constructed from any other predicate symbols.

5.3.1 Propositional Operators

Propositional planning with a fixed set of operators is very restrictive. The number of possi-
ble plans is constant. We include the following two results just for the sake of completeness.
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Theorem 5.13 PLAN EXISTENCE can be solved in constant time if we restrict P = (Sp, O, G)
to be propositional and O to be a fized set.

Corollary 5.5 PLAN LENGTH can be solved in constant time if we restrict P = (Sg, O, G)
to be propositional and O to be a fized set.

5.3.2 Datalog Operators

The number of ground instances of predicates is pc®, where p is the number of predicates, ¢
is the number of constants, and « is the arity of the predicates. When the set of operators is
fixed, @ will be a constant value, hence we will have a polynomial number of ground instances
of predicates. These can be mapped into propositions in polynomial time, providing a
reduction from datalog planning with a fixed set of operators to propositional planning
with a varying set of operators. Note that this reduction will also preserve the length of
the plans. Thus datalog planning with a fixed set of operators has the same complexity as
propositional planning with varying sets of operators, as stated in the following theorem.

Theorem 5.14

1. If we restrict P to be fived, deletion-free, context-free and positive, then PLAN EXIS-
TENCE is in NLOGSPACE and PLAN LENGTH is in NP.

2. If we restrict P to be fixed, deletion-free, and positive, then PLAN EXISTENCE is in P
and PLAN LENGTH s in NP.

3. If we restrict P to be fixed and deletion-free, then PLAN EXISTENCE and PLAN LENGTH
are in NP.

4. If we restrict P to be fized, then PLAN EXISTENCE and PLAN LENGTH are in PSPACE.

The above theorem puts a bound on how hard planning can be with a fixed set of
operators. Naturally, the exact complexity of the problem depends on which particular
fixed set of operators we are dealing with. The following theorems state that we can find
fixed sets of operators such that their corresponding planning problems are complete for
the complexity classes mentioned in the previous theorem.

Theorem 5.15 There exists a fixzed positive deletion-free set of operators O for which PLAN
LENGTH s NP-hard.

Theorem 5.16 There exist fized deletion-free sets of operators O for which PLAN EXIS-
TENCE and PLAN LENGTH are NP-hard.

Theorem 5.17 There exists a fixed set of positive operators O for which PLAN EXISTENCE
and PLAN LENGTH are PSPACE-hard.

Note that all three of the previous theorems prove hardness for some fixed sets of
operators. For some other sets of operators, the problem might be much easier, even
constant time. (e.g. think of an empty set of operators)
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5.3.3 Conditional Operators

In Proposition 3.4, we showed that if the planning operators are extended to allow condi-
tional effects, this does not affect our decidability and undecidability results. The following
theorem makes the same statement about our complexity results. As with Proposition 3.4,
this theorem is stated in a rather unconventional way, in order to avoid duplicating the
statements of the fifteen theorems mentioned in it.

Theorem 5.18 (Complexity of planning with conditional operators) Theorems 5.3 through 5.5,
5.7 through 5.17, and their corollaries still hold when O is allowed to contain conditional
operators.

The fact that conditional operators do not affect the complexity should not be surprising.
In a single-agent static world with complete information, one does not need conditional
actions. Conditional operators are useful only when we have incomplete information about
the initial state of the world, or the affects of the operators, so that we can try to come
up with a plan that would work in any situation that is consistent with the information
available. Otherwise, we can replace the conditional operators with a number of ordinary
STRIPS-style operators, as described in Section 3.4.2, to obtain an equivalent planning
domain. Although this reduction is sufficient for proving that conditional operators do
not affect our decidability and undecidability results (Proposition 3.4), it is not sufficient
to prove Theorem 5.18, because there are an exponential number of combinations, and
thus the reduction is not polynomial. However, with minor modifications, the proofs of
Theorems 5.2 through 5.17 will do the job.

6 Related Work

6.1 Planning

Bylander has done several studies on the complexity of propositional planning [5, 6]. We
have stated some of his results in Theorem 5.2 and Table 2. More recently, he has studied
the complexity of propositional planning extended to allow a limited amount of inference
in the domain theory [6]. His complexity results for this case range from polyomial time to
PSPACE-complete.

Chapman was the first to study issues relating to the undecidability of planning; we
have discussed his work in detail in Section 4.

Backstrom and Klein found a class of planning problems called SAS-PUBS, for which
planning can be done in polynomial time [2]. Their planning formalism is somewhat different
from ours: they make use of state variables that take values from a finite set, and consider a
planning state to be an assignment of values to these state variables. Since they restrict each
state variable to have a domain of exactly two values, we can consider each state variable
to be a proposition; thus, in effect they are doing propositional planning. However, their
operators have further restrictions: they restrict each operator to change at most one state
variable, and do not allow more than one operator to change a state variable to a given
value. Their restrictions are so strict that they were unable to find any domains (not even
blocks world) that they could represent in their formalization. They tried to overcome this
problem by weakening some of their restrictions, making the complexity of their algorithm
go to exponential time—but still could not find any reasonable domain. It is not very
easy to compare our results with theirs, because we use a different formalism—but we can
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safely state that we analyze a much broader range of problems, and we require less severe
restrictions to get polynomial-time results.

Korf [22] has pointed out that given certain assumptions, one can reduce exponentially
the time required to solve a conjoined-goal planning problem, provided that the individual
goals are independent. Yang, Nau, and Hendler [42] have generalized this result by showing
that one can still exponentially reduce the time required for planning even if the goals are
not independent, provided that only certain kinds of goal interactions are allowed. Under
this same set of goal interactions, they have also developed some efficient algorithms for
merging plans to achieve multiple goals [41, 42].

Complexity results have been developed for blocks-world planning by Gupta and Nau
[19, 20] and also by Chenoweth [9]. Gupta and Nau [19, 20] have shown that the complexity
of blocks-world planning arises not from deleted-condition interactions as was previously
thought, but instead from enabling-condition interactions. Their speculations that enabling-
condition interactions are important for planning in general seem to be corroborated by some
of our results, as discussed in Section 7.2 below.

6.2 Temporal Projection

Another problem that is closely related to planning is the problem of temporal projection,
or what Chapman calls the “modal truth” of an atom [8]. Given an atom a, an initial state
So, and a partially ordered set of actions P, the question is whether a is necessarily /possibly
true after execution of P. This question is especially important in partial-order planners
such as NOAH [13], NONLIN [14], and SIPE [15]. For example, McDermott [25] says
“unfortunately, partial orders have a big problem, that there is no way of deciding what is
true for sure before a step without considering all possible step sequences consistent with
the current partial order,” and Pednault [30] also expresses similar sentiments.

One problem is what it means for @ to be necessarily true if some of the total orderings
of P are unexecutable. Chapman [8] assumes that a is necessarily true after executing P
only if every total ordering of P is both executable and achieves a; and in return, he comes
up with a polynomial-time algorithm for determining the necessary truth of a. However,
his algorithm does not work correctly for establishing the possible truth of a (in a paper
currently in progress, we prove that problem is NP-hard).

Chapman also proves that with conditional planning operators, establishing the nec-
essary truth of a is co-NP-hard; and Dean and Boddy [10] prove a similar result with a
more general notion of conditional planning operators (the same definition we use in Section
3.4.2).12 Dean and Boddy [10] also try to come up with approximate solutions for the prob-
lem. They present algorithms for computing a subset of the propositions that are necessarily
true, and for computing a superset of the propositions that are possibly true. Furthermore,
the complexity of these algorithms is polynomial if the number of triples for each operator
is bounded with a constant. However, we do not know of any results concerning how close
the approximations are.

7 Conclusion

In this paper, we have studied the decidability and complexity of planning with STRIPS-
style planning operators (i.e., operators comprised of preconditions, add lists, and delete

1211 both cases, they state that the problem is NP-hard, but their proofs establish co-NP-hardness instead.
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lists). Our results show that planning is a hard problem even under severe restrictions on
the nature of planning domains. We have been able to classify sets of problems in terms of
syntactic domain parameters, establish the decidability and computational complexity of
each of these classes, and gain insight into why and how these classes of problems are so

hard.

7.1 Decidability and Undecidability

We have proved equivalence theorems relating definite logic programs to planning with
positive, deletion-free operators. This equivalence allows us to transport many results from
logic programming to planning, leading to a number of decidability and undecidability
results, as summarized in Table 1. If we use the conventional definitions of a first-order
language and a state (i.e., the language contains only finitely many constant symbols and
all states are finite), then whether or not PLAN EXISTENCE is decidable depends largely on
whether or not function symbols are allowed:

o If the language is allowed to contain function symbols (and hence infinitely many
ground terms), then, in general, PLAN EXISTENCE is undecidable, regardless of whether
or not the planning domain is positive, deletion-free, and context-free. However, if
the planning domains are restricted to be weakly recurrent, and only bounded goals
are considered, then PLAN EXISTENCE is decidable even in the presence of function
symbols.

o If the language does not contain function symbols (and hence has only finitely many
ground terms), then PLAN EXISTENCE is decidable, regardless of whether or not the
planning domain is positive, deletion-free, and context-free.

For comparison with Chapman’s [8] results, Table 1 also includes decidability and un-
decidability results for the cases where we allow infinitely many constant symbols, infinite
initial states, and operators with conditional effects. These results relate to Chapman’s
work as follows:

1. They solve an open problem posed in [8], regarding the decidability of planning if
infinitely many constants are allowed. Unless P is restricted to be positive or deletion-
free, the problem is undecidable.

2. It clarifies one of the results in [8]. In particular, whether or not the definition of
a planning domain is extended to allow conditional planning operators makes no
difference in any of our decidability and undecidability results.

When certain syntactic (predicate and atomic acyclicity) and semantic properties (weak-
recurrence) are satisfied by positive, deletion-free planning domains (even those containing
function symbols), we have proved, in addition, that plan existence for bounded goals is

decidable.

7.2 Complexity

Based on various syntactic criteria on what planning operators are allowed to look like,
we have developed a comprehensive theory of the complexity of planning; the results are
summarized in Table 2. Examination of this table reveals several interesting properties:
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. Comparing the complexity of PLAN EXISTENCE in the propositional case (in which all

predicates are restricted to be 0-ary) with the datalog case (in which the predicates
may have constants or variables as arguments) reveals a regular pattern. In most
cases, the complexity in the datalog case is exactly one level harder than the com-
plexity in the corresponding propositional case. We have EXPSPACE-complete versus
PSPACE-complete, NEXPTIME-complete versus NP-complete, EXPTIME-complete versus
polynomial.

. If delete lists are allowed, then PLAN EXISTENCE is EXPSPACE-complete but PLAN

LENGTH is only NEXPTIME-complete. Normally, one would not expect PLAN LENGTH
to be easier than PLAN EXISTENCE. In this case, it happens because the length of a
plan can sometimes be doubly exponential in the length of the input. In PLAN LENGTH
we are given a bound k, encoded in binary, which confines us to plans of length at
most exponential in terms of the input. Hence in the worst case of PLAN LENGTH,
finding the plan is easier than in the worst case of PLAN EXISTENCE.

We do not observe the same anomaly in the propositional case, because the lengths
of the plans are at most exponential in the length of the input. Hence, giving an
exponential bound on the length of the plan does not reduce the complexity of PLAN
LENGTH. As a result, in the propositional case, both PLAN EXISTENCE and PLAN
LENGTH are PSPACE-complete.

. When the operator set is fixed in advance, any operator whose predicates are not all

propositions can be mapped into a set of operators whose predicates are all propo-
sitions. Thus, planning with a fixed set of datalog operators has basically the same
complexity as planning with propositional operators that are given as part of the
input.

. PLAN LENGTH has the same complexity regardless of whether or not negated precon-

ditions are allowed. This is because what makes the problem hard is how to handle
enabling-condition interactions, i.e., how to choose operators that achieve several sub-
goals in order to minimize the overall length of the plan [20], and this task remains
equally hard regardless of whether negated preconditions are allowed.

. Delete lists are more powerful than negated preconditions. Thus, if the operators are

allowed to have delete lists, then whether or not they have negated preconditions has
no effect on the complexity.

Below, we summarize how and why our parameters affect the complexity of planning:

If no restrictions are put on P, any operator instance might need to appear many
times in the same plan, forcing us to search through all the states, which are double
exponential in number. Since the size of any state is at most exponential, PLAN
EXISTENCE can be solved in EXPSPACE.

When P is restricted to be deletion-free, any predicate instance asserted remains
true throughout the plan, hence no operator instance needs to appear in the same
plan twice. Since the number of operator instances is exponential, this reduces the
complexity of PLAN EXISTENCE to NEXPTIME.

When P is further restricted to be positive, we get the nice property that no operator
clobbers another. Thus the order of the operators in the plan does not matter, and
the complexity of PLAN EXISTENCE reduces to EXPTIME.
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o Inspite of the restrictions above, PLAN LENGTH remains NEXPTIME. Since we try to
find a plan of length at most k, which operator instances we choose, and how we order
them makes a difference.

e When P is also restricted to be context-free, we can do backward search, and since
each operator has at most one precondition, the number of the subgoals does not
increase. Thus both PLAN EXISTENCE and PLAN LENGTH with these restrictions can
be solved in PSPACE.

e The previous arguments also hold for propositional planning, with the exception of the
anomaly in the unrestricted case for PLAN LENGTH, which we have discussed before.
As a result of restricting predicates to be 0-ary, the number of operator instances, the
size of states reduce to polynomial from exponential, hence in general, the complexity
results for propositional planning are one level lower than the complexity results with
datalog operators.

7.3 Future Work

Although our equivalence between planning and logic programming only holds in certain
limited cases, this equivalence has allowed us to transport many results from logic program-
ming to planning. It is not a trivial task to extend this equivalence, because negation has
different semantics for logic programming and planning—but it is certainly worth investi-
gating, and we intend to do so in the future.

Although much research has been done on more general operator representations such
as those used in hierarchical nonlinear planning, most theoretical studies of planning have
been confined to planning with strips-like operators. As a result, much of the current work
in planning is without much theoretical basis. For example, in his paper on regression
planning [25], McDermott states that

... there are two main choices in the space of refinement planners: (1) a heuris-
tic, nonlinear, progressive planner, and (2) a rigorous, linear, regressive planner.

In the conclusion of his paper, McDermott continues:
For the time being, practical work on planning will continue to focus on nonlinear

planning, because all planning algorithms are exponential.

...But theoretical work in the field should go on, if for no other reason than that
it might inspire us to come up with a theory of nonlinear planning in realistic
domains, which is so far entirely lacking. ...

The next task we intend to undertake is to develop a formalization of hierarchical nonlinear
planning, and to investigate how difficult hierarchical nonlinear planning is, and how to
develop more efficient algorithms.
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A Proofs of Decidability and Undecidability Results

A.1 Equivalence between Logic Programming and Planning

Lemma A.1 Suppose that P = (Sg, O) is any positive, deletion-free planning domain, and

,0 ,0 n,0n
So 22t 6, B g, .. 2 g

is a plan that achieves some goal G (we really don’t care what G is as far as this lemma is
concerned). Then:

1. S50 C 5 C5---C 85,

2. If operator a is f-executable in state S;, then a is §-exvecutable in state Sy for all
k>7j.

Proof.

1. Immediate consequence of the fact that Del(a) = @ for all & € O. Hence, for all
0<1<n—1,
Si-|—1 =5; U Add(ai)ei.

2. Suppose a is f-executable in state S;. Then Pre(a)d C 5; C S;. As Pre(a) is
negation-free, the condition that {B6 : =B is a negated atom in Pre(a)} N S, =0 is
immediately satisfied and hence « is executable in state Sy.
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Before proving the following theorem, we need to introduce an operator, called Tp, asso-
ciated with any logic program P. The operator, which is well-known in logic programming,
maps states (i.e. Herbrand interpretations) to states. Intuitively, given an interpretation I,
Tp(I) is the (smallest) interpretation obtained as follows: if there is a clause in P having
a ground instance €' with A in the head, and whose body is satisfied by interpretation I,
then A € Tp([). In particular, / may not necessarily be a subset of Tp(1)[24].

Definition A.1 Given a logic program P that contains no negative atoms in the body of
any clause, Tp is an operator associated with P that maps sets of ground atoms to sets
of ground atoms as follows: Tp(l) = {4 : A is a ground atom and there is a clause in P
having a ground instance of the form A — By &...& B, such that {By,...,B,} C I}.

When we start deducing ground atoms from a program, nothing is initially known to be
true. Applying the Tp operator once, we know that all ground instances of facts are true.
Repeating this process one step further, we can conclude all the facts as well as all the
ground atoms that can be deduced by applying one rule. The following definition specifies
how Tp may be iterated upwards in this way starting from the empty set of atoms:

Tp 10 = 0
Tp | (n+1) = Tp(Tp | n)
Tplw = UTan
nw

It turns out that Tp | w is the least fixed point of Tp for those programs P that contain
no negations in clause bodies.

Theorem 3.1 (Equivalence Theorem I) Suppose P = (59, 0) is a positive, deletion-
free planning domain and G is a goal. Then there is a plan to achieve G from P iff

LP(P) E G.
Proof. Let G = (3)(A4; &...& Ay).

(=): Suppose LP(P) |= GG. Then there is a ground instance, Go of GG such that LP(P) |=
Go and an integer n < w such that Typpy | n | Go, ie. {A10,..., 450} C Tipp) | n.
We proceed by induction on n.

Base Case (n = 1). In this case, for each 1 < ¢ < s, there is a clause in LP(P) hav-
ing a ground instance of the form
Ao — .

Consider an arbitrary A;, 1 <7 < s. The unit clause
Ao — .

could have been placed in grd(LP(P)) for one of two reasons:

Case 1: A;0 is in Sy or

Case 2: There is a planning operator a such that Pre(a) = ) and Add(«) contains an atom
Al such that A;o is a ground instance of A} (via an mgu o;, say).
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Thus, the set X = {Aj0,...,As0} can be partitioned into two parts: The set X,
consisting of those atoms satisfying case 1 above, and the set Xy of those atoms that do
not satisfy Case 1 above (and hence must satisfy case 2 above).

Suppose Xz = {A,1)0,..., 4,0} where 0 <r < s. Then

(o} R & o(r )90 o
So p(gp(l) S-Sy P():>P( ) S,

is a planning sequence such that Ajo & ...& Ao is true in S,.. To see this, observe that
every A;o € X1 is true in Sy and hence must be true in 5, by Lemma A.1. Likewise, every
Ap(j) € X, is true in Sp(j) C S5, by Lemma A.1.

Inductive Case (n + 1). Suppose Tipp) | (n+ 1) | Go. Then for each 1 < i < s,
there is a clause C; € grd(LP(P)) of the form

Ajo — B &...&Bj,

such that B{ & .. .&B}'M is true in Typ(p) | n. By the induction hypothesis, forall 1 <@ <'s,
there is a planning sequence, ®; that achieves the goal (Bi& ...& B} ). Clause C; is obtained
from a planning operator a; by applying a ground substitution 6; to a clause in LP(a).
Hence,

R 22,
would be a planning sequence that achieves A;o (where S; is the state that results by
f;-executing a; in the last state of ;). Call the above planning sequence g;.

Clearly, each p; achieves goal A;0. The only remaining problem is to put together the
planning sequence g; in such a way that we achieve the conjunctive goal (410 & ... & A 0).
We do this as follows.

We first show how to put p; and o together to get a plan that achieves (410 & Az0).
Suppose pq is the sequence

O‘vlvevl O‘v27€v2 Ay(k 7€vk
Sp D) g1 Te@ | et g1

and g9 is the sequence

O‘wlvewl aw27€w2 Sk ﬁwkw
R L L

The following is a valid planning sequence that achieves (410 & Ay0).

ay(1):80(1)

So == St
Tl o1y g2
Al g1y g2 gl
e g1y g2 gl 52

y(hy) Bo(ry) & Famt
v(kq)Yo(ky 1 2
= Usilul U s?

Fu(kg) Py ) & -2
= Usiutys?).
7=1 z=1
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The above sequence achieves the goal (410 & Az0). To see this, observe the following:

L. Each of the a,(;’s is ,(;)-executable in the state 51, and hence, by Lemma A.1, it
is also #,(;)-executable in the state U;Zl S} U U};ll 5?. The same reasoning applies
to the ay(;)’s.

To see how the states generated in the above planning sequence are constructed, we
now explain how we construct the state (5] U S7) after 0. (1)-execution of ay, in
state 1. In the above sequence, 0,(1)-execution of (1) in state Sy leads to state Si
(according to ¢1). Furthermore, as (1) is positive and deletion-free, we know that
So C St. As all operators in P are positive and deletion-free, any operator that is
-executable in state Sy is also §-executable in any state 5 such that S C 57 As a,,
is 0,(1)-executable in state Sy and as 5o C 51, we know that a,, is 0.(1)-executable
in state S7 as well, resulting in state (5] U Add(a,,)). But from po, we know that
Add(ea,,) C (S — So). Hence, (57 U Add(a,,)) C (ST U (57 — Sp)). As So C 51,
(51U Add(a,)) C (5} U 52).

It can similarly be shown that (S} U 5%) C (ST U Add(a,,)). Suppose not. Then there
must be an A € S7 such that A ¢ (9] U Add(ay,)). As A € 57 = Sy U Add(ay,),
there are two cases. If A € Sy, then A € S{ because Sy C Si. This contradicts out
assumption that A ¢ (57 U Add(ay,)). If A € Add(a,,), then we likewise obtain
a contradiction. Hence, the state obtained by 6,,)-execution of a,, in state Stis

(51 U 5P).
2. As Ajo € S}, and as Ayo € 52, it follows that {As0, Ayo} C (USL, 51) U (U, 52).

To achieve the goal (Aj0 & Ayo & Aszo), we simply repeat the same process by com-
bining together the above sequence with p3. On iterating this process till we have finished
processing p,, we would have a plan that achieves (410 & ... & As0).

(«<): Suppose on the other hand, that there is a plan g that achieves G = (I)(A:1& ... &A,)
from P. The @ must be of the form:

1,01 Qp—1,09r—1
i Sl"' r W ST‘

50

We proceed by induction on r.

Base Case (r = 0). In this case, G is true in S itself. As each clause in Sy is in LP(P), G
is true in Tp T 1 and hence is entailed by P.

Inductive Case (r =t + 1). Suppose our plan is of the form

-
By the induction hypothesis, each atom A € S; is entailed by LP(P) and hence S; C

Trprpy | w.
As all operators in O have empty delete lists, Si41 = S¢ U Add(ayy1)oe41. For each
atom H in the add list of ayyq, there is a clause in LP(P) of the form

(V)(H &KEPre(atH)I()'



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 39

The atoms in the ground conjunction &fepre(a,y,) N 0tt1 is a subset of S; and hence of
Trpp) | w. As this conjunction is finite, there is an integer z such that the atoms in the
ground conjunction &g epre(a,y ;) ot+1 is a subset of Trppy | 2. It follows, by definition
of Tp, that for all H € Add(ary1), Horpr € Trppy 1 (2 + 1) € Tppy | w. Hence, every
atom in S¢yq is entailed by LP(P) and consequently, GG is a logical consequence of LP(P).
|

Theorem 3.2 (Equivalence Theorem II) Suppose P is a definite logic program and
(i is any goal. Then: P |= G iff there is a plan to achieve ¢ from PD(P) = (S(P), O(P)).

Proof. (=) Suppose P |= . Then there is a ground instance G’ of G, and a minimal
integer n > 0 such that G’ is true in Tp | n (see Definition A.1 and the paragraph im-
mediately following it for an explanation of this notation). Let G’ = (4; & ... & A4,,). We
proceed by induction on mn.

Base Case (n = 1). In this case, for each 1 < i < m, there is a clause in P having a
ground instance of the form:

A, —.

Then {A4,..., A} C S(P), and hence, G/ (and hence ) is true in the initial state of the
planning domain PD(P).

Inductive Case (n = k + 1): Suppose GG is true in Tp | (k+ 1). Then, for each 1 < i < m,
there is clause C; in P having a ground instance, C,6;, of the form

A; — Bi&...& B,

such that {B,.. .,Biul.} C Tp T k. Thus, the goal

g

k2
B;
1

~ -

G// _
12

K3

is true in Tp | k. Note that G” is a ground goal. By the induction hypothesis, there is a
plan, Py, to achieve G”. Let Wy be the the state obtained from the initial state S(P) by
executing the operations in Py. Then it is straightforward to see that

P opcy st 0Py 02 0P Cynsfm
S(P)=2 W, = W, =" Wy.. W, ="W,

is a plan that achieves G’. (Note that as each operator opc,, 1 < i < m, is deletion-free,
Wit1 = W, U Add(opc, )0;). Furthermore, as each operator, opc, is executable in Wy, it fol-
lows that it is also executable in W; for all 1 <7 < m.) Furthermore, as Add(opc,)0; = {A;},
it follows that {Ay,..., A} € W,,. The above plan achieves G.

(<) Suppose there is a plan to achieve G from PD(P). Then there is a ground instance
G'=(A1&... & A,,) of G that is achievable by this plan. Let

an,dn

S 2l gy 1wl g, mle g (2)
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be such a plan, where Sy = S(P). We proceed by induction on n, the length of the plan.

Base Case (n = 0). In this case, G' = (41 & ... & A,,), is true in Sp = S(P), i.e. each A;,
1 <i<m,is true in S(P). But then, each A;, 1 < i< m, is a ground instance of a fact in
P. Clearly, P = A; for all 1 < i < m, and hence, P = G’ and hence P |= G.

Inductive Case (n = k + 1). As each operator in O(P) contains only one element in
its add list, there are exactly two possibilities: either the atom added by 6,,-execution of the
operator a,, is some A;, 1 < i < m, or it is not. In the latter case, as 9, satisfies G, and
as the last step in the plan does not cause any of the A;’s to be added, G’ must be true in
Sy—1. Hence, by the induction hypothesis, we can assume that P |= G, and hence, P | G.
In the other case, there is an integer 1 < 7 < m such that A; is the atom added by 6,-
executing a,,. Furthermore,

G = A& LA & A & & A,

is true in S,,. Hence, by the induction hypothesis, as there is a plan of length (n — 1) to
achieve G*, it follows that P = G*. Furthermore, as a,, is 6,-executable in state 9,_1, it
follows that the goal

G o= /\ B,
BePre(an)

is true in S,_1. Let C be the clause in P such that opc = «,. Then the clause C8, is of
the form:

A = /\BEPre(an) Bo,.

As ABePre(ay) BOn 1s truein Sy, by the induction hypothesis, it follows that P = ABePre(an) BOn-
As C € P, P = C, and hence P |= C8,; thus, P = A;. We already know that P |= G*;
the conjunction of G* and A; is equivalent to G’. Consequently, P = G'. As G’ is a ground
instance of G, it follows that P = G. [ |

A.2 Undecidability and Decidability Results
Corollary 3.1 (Semi-Decidability Results)

1. {G : G is an existential goal such that there is a plan to achieve G from P = (5p, 0)}
is a recursively enumerable subset of the set of all goals.

2. Given any recursively enumerable collection X of ground letion-free, then PLAN EX-
ISTENCE is strictly semi-decidable.

Proof. Immediate consequence of Theorem 3.1 and a result of Blair which shows that any
recursively enumerable set of ground atoms can be represented as the set of ground atoms
provable from a logic program [4]. [ |

Corollary 3.2 The problem “given a positive deletion-free planning domain P = (.5, O),
is the set of goals achievable from P decidable?” is II9-complete.
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Proof. Immediate consequence of Theorem 3.1 and a result of Blair [4] which shows that
the class of determinate logic programs ([4]) is 113-complete. [ |

Corollary 3.3 If we restrict P to be positive, deletion-free, and context-free, then pLAN
EXISTENCE is still strictly semi-decidable.

Proof. Immediate consequence of Theorem 3.1 and a result of Sebelik and Stepanek [34]
that shows that all recursively enumerable sets of ground atoms can be captured as the set
of ground atomic consequences of a logic program whose rules contain at most one atom in
the body. [ |

Theorem 3.3 If we restrict P to be deletion-free and function-free, then PLAN EXISTENCE
is decidable.

Proof. As P contains no function symbols, and as our language has only finitely many
constant and predicate symbols, the set of ground atoms in our language is finite, and hence
so is the power set of this set (i.e. the set of states is finite). Furthermore, the number
of ground instances of operators in our planning domain is also finite. Associate with the
planning domain P = (5o, 0), a finite graph. For each state s, there is a vertex labeled s
in the graph. There is an edge from the vertex labeled s to the vertex labeled s’ iff there
is an operator in O having a ground instance such that s satisfies the preconditions of the
ground instance, and s’ is the state obtained by applying the ground operator in state s.
The graph is finite, and clearly, there is a plan to achieve a given goal G iff there is a path
from Sy to a state 57 in which G is true. This problem is clearly decidable. [ |

Theorem 3.4 (Eliminating Delete Lists and Negated Preconditions) Suppose P
is a function-free planning domain. Then there is a positive deletion-free planning domain
P’ = (5§, O0') such that for each goal

G=(DA &...&4,)
there is a goal
G'= (A & ... & A, & poss(9))

where “poss” is a new unary predicate symbol and for all 1 <1 < n,if 4; = p(t1,...,tn),

then Al = p(ty,...,t,,5) where S is a variable symbol. Furthermore, GG is achievable from
P iff  is achievable from P’.

Proof. As £ is function free, the set of ground atoms is finite (say k in number). Hence
there are only 2¥ states expressible in language £. Extend £ to a new language £’ by adding
the following new symbols:

1. new constant symbols s1,..., S9x;
2. a new unary predicate symbol “poss.”

Intuitively, think of each new constant symbol s; as representing a state, denoted REP(s;),
of language £. Thus, REP(s;) is a collection (finite) of ground atoms of £. Clearly, REP is
a bijection between {si,...,sqx} and the set of states of £. We assume that the constant
symbol sjni¢, 1 < init < 2’“, denotes the initial state Sy of P. Construct S as follows:



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 42

1. poss(Sinit) € 9.
2. Forall 1 <i<2%if A=p(ty,...,1,) € REP(s;), then A = p(ty,...,t,,5;) € S).
3. Nothing else is in 5.

Note that S}, as defined above, only contains ground atoms in the expanded language £’.
Now construct operators as follows: Suppose a € O, 5;,5; are states of £ and 0 is a
ground substitution for the variables in Name(«) such that

a,d

9 = S]‘.

Then the following operator is in O':

Pre:  {poss(s;)}
Add:  {poss(s;)}
Del:

(Here, s; and s; are the constant symbols corresponding to states S;, .S; respectively). Thus,
(' is constructed by considering all possible combinations of a € O, states .5;, 5; and ground
substitutions for the variables in each a. As L is function-free (and hence contains only
finitely many ground terms), O is finite and contains no delete lists. It is easy to see, from
the construction, that (7 is achievable form P iff G’ is achievable from P’. [ |

Theorem 3.5 (Decidability of Function-Free Planning) If we restrict P to be
function-free, then PLAN EXISTENCE is decidable.

Proof. Immediate consequence of Theorems 3.4 and 3.3. [ |

A.3 Restricted Planning Domains

Theorem 3.7 (Decidability for Weakly Recurrent Planning Domains) If P =
(S0, O) is restricted to be weakly recurrent (via witness £), positive, and deletion-free, and
G is restricted to be bounded w.r.t. ¢, then PLAN EXISTENCE is decidable.

Proof. Here’s an algorithm for this purpose. Let G = (3)(A1 & ... & A,). Let pey be a
new propositional symbol not present in P. Introduce a new operator, a,.,, as follows:

Pre:  {Ay,...,A,}

Add: {pnew’
Del: 0.

Let P' = (50,0 UA{anew}). It is easy to see that P’ achieves the ground goal p.,, iff P
achieves goal G. P’ can clearly be effectively constructed from P. Let ¢ be the level mapping
which witness the weakly-recurrent property of P and let b be the integer via which G is
bounded by (. Extend ( so that {(pnew) = b+ 1. { extended in this manner witnesses the
weakly-recurrent property of P’.

Convert P’ to LP(P’). By theorem 3.1, there is a plan to achieve p,,, from P’ iff LP(P’) =
Prew- By Proposition 3.3, LP(P’) is weakly recurrent. Hence, by Theorem 3.6, there is a
terminating procedure that, given a logic program ) and any bounded goal G’ as input,
will determine whether @ |= G’. Apply this terminating procedure with inputs LP(P’) and
G' = ppew. If the procedure terminates with yes, then goal GG is achievable from P, whereas
if it terminates with a no, G is not achievable. [ |
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A.4 Extended Planning Domains

Theorem 3.8 If P = (5g, ) is restricted to be positive and deletion-free, but the initial
state Sp is allowed to be an infinite, decidable set of ground atoms, PLAN EXISTENCE is
strictly semi-decidable.

Proof. It is easy to see that each Typp) | n is decidable. Thus, Typp) | w is semi-
decidable as A € Trppy T w iff (In < w)A € Trppy T n. As there exists a plan that
achieves goal G from P iff there exists an n < w such that G is true in Typ(p) | n, it follows
that the problem at hand is semi-decidable. [ |

Theorem 3.9 Any planning domain P = (5p, ) whose language £ contains function
symbols can be reduced to an equivalent planning domain P’ = (5§, O") whose language
L' contains infinitely many constants but no function symbols, provided that we allow the
initial state S to be infinite. P’ is equivalent to P in the sense that for every goal G in P,
there is a goal G’ in P’ such that there is a plan for G in P iff there is a plan for G’ in P’.

Proof. The reduction is as follows:

o [’ contains all of the constant symbols, variable symbols, and predicate symbols found
in £. For each term ¢ in £ that is not a constant or variable symbol, £’ contains a new
constant symbol ¢;. For each n-ary function symbol f in £, £’ contains a new n + l-ary
predicate symbol ey.

e Let t be any term, atom, or negated atom in £. Then t’s translation T'(t) and equivalence
conditions E(t) are defined as follows:

1. If s is a predicate symbol, constant symbol, or variable symbol, then 7(s) = s, and

E(s)=10.
2. Suppose t is a term of the form f(¢1,...,t,). Then
E(t) = {ef(k, T(t1),T(t2),...,T(t,))} UE(t) U...UE(t,).

3. Suppose t = p(t1,...,t,), where p is a predicate symbol, and t1,%s,...,%, are terms.
Then

Tt) = plky,kiy,. ..ok,
E(t) E(t)U...UE(t,).

4. The only other possibility is that ¢ = =p(t1,...,%,), where p is a predicate symbol,
and tq,%s,...,1, are terms. In this case,

T(t) = _'p(ktl ) k‘t2, ey ktn)7
E(t)U...UE(t,).

=
~~
o~
~—

Below are two examples:
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1. If a is the atom p(f(z,d),g(b),z,c) then

T(a) = p(kf(x,d)vkg(b)vyvc);
E(a) = {egp(@,d,kpay)seq(b,kypy)}-

2. If a is the atom a = =p(g(f(z),y),h(c),z), then

T(a) = _'p(kg(f(x),y)v kh(c)v @/);
E(a) {eg(kf(x)v Y, kg(f(x),y))v 6f($, kf(x))v en(e, kh(c))'

e In P’ the initial state S{ contains the translations and equivalence conditions for all
atoms in Sp, plus the equivalence conditions for all terms in L.

e To translate planning operators, we remove function symbols, and include the corre-
sponding equivalence conditions as preconditions. More specifically, let O be any planning
operator in (). Then the translation O’ of O is as follows:

1. If Name(O) = O(a1,...,2,), then Name(O') = O'(a1,...,2,).

2. Pre(O’) contains the translations and equivalence conditions of all atoms in Pre(O),
plus the equivalence conditions for all atoms in Add(O) and Del(O).

3. Add(O’) contains the translations of all atoms in Add(O).

4. Del(O’) contains the translations of all atoms in Del(O).

¢ Using the above, it is easy to show that

,0 ,0 n,0n
So 22t 6, B g, .. 2 g

is a plan in P that achieves some goal G, iff

gy B gy Bl gyl g
is a plan in P’ that achieves {T'(a):a € G}. [ |

Theorem 3.10 If P’s language £ is allowed to contain infinitely many constants, then
PLAN EXISTENCE is semi-decidable even if P = (Sy, O) is restricted to be deletion-free and
function-free (and Sy is finite).

Proof. Here, we show that given any deterministic TM M, we can encode it as a deletion-
free planning problem with infinitely many constants.

The TM is denoted by M = (K,X,T,#,6,q0, F). K = {qo,...,qx} is a finite set of
states. ' C K is the set of so called final states. I' is the finite set of allowable tape symbols.
3 C TI' is the set of allowable input symbols. # is the blank tape symbol. ¢y € K is the
start state. 6 is the next move function.

Suppose we are given a TM M, and an input string = (2o, 21, ..., 2, ) such that z; € ¥
for each ©. We can map this into the following planning problem :
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Constant symbols: We have an infinite number of constant symbols. Some of them are
designated to denote the states of the Turing machine, the tape symbols, the tape
cells, the steps of the Turing machine.

Predicates:
done() is a propositional predicate denoting that the goal is achieved.
state(t, s) is used to denote that the machine is in state s at step t.
contains(?, j, ) is used to denote that at step ¢, the tape cell j contains the symbol z.
head(t,7) is used to denote that at step ¢, the head is at cell j.
cell(7) is used to denote that j is a tape cell.
right(7, k) is used to denote that cell k is to the right of cell j.
same(j, k) is used to denote that j and k refer to the same cell.
used(j) is a predicate used to create new cells.
oldstep(j) is used to keep track of steps.
next(t,t') is used to denote that ¢’ is the step that follows t.

Initial State:
state(0, sg), head(0,0),
contains(0, 0, zg),. . ., contains(0, n, z,,)
right(0,1),.. . right(n — 1, n),
cell(0),.. ., cell(n),
same(0,0),..., same(n,n),

used(0),. .., used(n — 1), oldstep(0)
Operators: For each ¢ € F', we have the operator

Pre:  {state(V,q)}
Del:
Add:  {done()}

Whenever 6(q,a) = (¢, b, Right), we have the following two operators.

Pre:  {state(T,q),head(T,J), contains(T, J, a), right(J, J), ~oldstep(T”)}
Del: 0
Add:  {state(T’,q¢"), head(T’,.J"), contains(T’, J, a"), next(T,T"), oldstep(T”)}

Pre:  {contains(T,J, X ), head(7, J'), nsame(J, J'), next(T,T")}
Del:
Add:  {contains(1”,J, X )}

Whenever é(q,a) = (¢',b, Le ft), we have two other operators that are obtained by
replacing right(J, J') with right(.J’, J) in the two operators above.

Here is the operator used to create new tape cells:

Pre:  {cell(V), ~used(V), —~cell(V')}
Del: 0
Add:  {used(V), cell(V"), right(V, V"), contains(0, V', #), same(V', V') }

The planner simulates the Turing machine, move for move. There exists a plan for done()
iff the Turing machine halts. Hence planning in a deletion-free domain with infinitely many
constants but a final initial state is undecidable. [ |
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Definition A.2 A constant that appears in the initial state or in an operator definition is
called a basic constant. All other constants are called non-basic constants.

Lemma A.2 Let P = (Sp,0) be a function-free, deletion-free, positive planning domain
such that the planning language L contains infinitely many constants (but Sy, as usual, is
finite). For every goal G, there is a plan in P that achieves G iff there is a plan in P with
Sfinitely many constants that achieves G. Furthermore, this finite set of constants contains
only those constants found in the initial state or the operator definitions, if any (otherwise,
it contains a single constant).

Proof. (<«). This direction is trivial.

(=). Assume there exists a plan that uses possibly non-basic constants. Pick up arbi-
trarily, one of the basic constants, if there exists any. Otherwise, pick any one constant.
Let us call the constant we picked as a.

In the plan, replace all non-basic constants with a. We get a valid plan that achieves
the goal. Here is why.

Recall that Pis positive and deletion free. Hence, anything asserted remains asserted,
and all preconditions are positive. Consider a precondition of any operator or any goal.
Since the original plan is valid, either there is a previous operator that asserts it, or it
is true in the initial state. If there is a previous operator that asserts it, then the same
operator in the modified plan will assert the modified precondition/goal. If it is true in the
initial state, then it did not contain any non-basic variables, hence, it was not affected by
the replacement. It should be satisfied in the modified plan, too. [ |

Theorem 3.11  If the language is allowed to contain infinitely many constants but P =
(S0, Q) is restricted to be positive, deletion-free, and function-free (and Sy is finite), then
PLAN EXISTENCE is decidable.

Proof. Direct consequence of Lemma A.2 and Theorem 3.5. [ |

B Proofs of Complexity Results

B.1 Binary Counters

Several of the proofs in this paper depend on using function-free ground atoms to represent
binary n-bit counters, and function-free planning operators to increment and decrement
these counters. Below, we show how this can be done.

To represent a counter that can be incremented, we would like to have an atom ¢(¢)
whose intuitive meaning is that the counter’s value is ¢, and an operator “incr” that deletes
¢(7) and replaces it by ¢(i + 1), respectively. The problem is that without function symbols,
we cannot directly represent the integer ¢ nor the arithmetic operation on it. However, since
we have the restriction 0 < ¢ < 2" — 1 for some n, then we can achieve the same effect by
encoding ¢ in binary as

= X2V iy x 27T iy x 2V 40y,

where each i is either 0 or 1. Instead of the unary predicate ¢(i), we can use an n-ary
predicate ¢(iq,%2,...,4,); and to increment the counter we can use the following operators:
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Name: incry(i1,22,...,0,-1)
Pre: {e(t1,92, ., 0p-1,0)}
Del: {C(il,ig,. . .,in_l,())}
Add: {C(il,iz,...,in_l,l)}

Name: incra(iy,t2,...,0h—2)

Pre: {1,792, in—2,0,1)}
Del: {C(il,ig,...,in_g,o,l)}
Add: {C(il,ig,...,in_g,l,())}

Name: incr,()

Pre: {c(0,1,1,...,1)}

Del: {c(0,1,1,...,1)}

Add: {¢(1,0,0,...,0)}
For each i < 2" — 1, exactly one of the incr; will be applicable to ¢(iy,42,...,1%,), and it will
increment ¢ by one. If we also wish to decrement the counter, then similarly we can define
a set of operators {decry : k = 1,...,n} as follows:

Name: decrg(i1,82,. .., tn—kt1)

Pre: {e(t1,92, .oy tn—kt1,1,0,...,0)}
Del: {C(il,ig,...,in_k+1,1,0,...,0)}
Add: {C(il,ig,...,in_k+1,0,1,...,1)}

For each ¢ > 0, exactly one of the decr; will be applicable to ¢(iy,i2,...,17,), and it will
decrement ¢ by one.

Suppose we want to have two n-bit counters having values 0 <1 < 2" and 0 < j < 2",
and an operator that increments ¢ and decrements j simultaneously. If we represent the
counters by n-ary predicates ¢(iq,72,...,4,) and d(j1,jz2,.-.,jn), then we can simultane-
ously increment ¢ and decrement j using a set of operators {shifty; : h = 1,2,....n, k =
1,2,...,n} defined as follows:

Name: Shifthk(il, iz, .. .,in_h_|_1,j1,j2, e 7jn—k—|—1)

Pre: {C(il, iz, Ceey in_h_|_1, 0, 1, 1, PN 1), d(jl,jg, e 7jn—k—|—17 1, 0, 0, .. ,0)}
Del: {C(il, iz, Ceey in_h_|_1, 0, 1, 1, PN 1), d(jl,jg, e 7jn—k—|—17 1, 0, 0, .. ,0)}
Add: {C(il, iz, Ceey in_h_|_1, 1, 0, 0, PN 0), d(jl,jg, e 7jn—k—|—17 0, 1, 1, ceey 1)}

For each 7 and j, exactly one of the shift,; will be applicable, and it will simultaneously
increment ¢ and decrement j.

For notational convenience, instead of explicitly defining a set of operators such as the set
{incry, : h = 1,...,n} defined above, we sometimes will informally define a single “abstract
operator” such as

Name: incr(z)

Pre: {e()}
Del: {e()}
Add: ez + 1)}
where ¢ is the sequence y,19,...,%, that forms the binary encoding of 7. Whenever we

do this, it should be clear from context how a set of actual operators could be defined to
manipulate (i1, %2,...,%,).
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B.2 Eliminating Negated Preconditions

Theorem 5.1 (Eliminating Negated Preconditions) In polynomial time, given any
planning domain P = (59, O) we can produce a positive planning domain P’ = (57, O’)
having the following properties:

1. For every goal (G, a plan exists for G in P if and only if a plan exists for G in P’.

2. For every goal G and non-negative integer [, there exists a plan of length [ for G in P
if and only if there exists a plan of length [ 4+ 2*¥ for G in P’, where k is the maximum
arity among the predicates of P and v = [lg ¢|, where ¢ is the number of constants in
P (i.e., v is the number of bits necessary to encode the constants in binary).

Proof. Here is the transformation:

Predicates: P’ = PU{p|p € P} U {counter, start}

Intuitively, p’ is the complementary predicate for p. That is, whenever the ground
atom p(...) is true, p'(...) is false. Without loss of generality, we assume all predicates
in P have the same arity. This can be achieved by adding dummy arguments to some
of the predicates; we modify G' and Sy so that these dummy arguments have fixed
values. Furthermore, we use {0,1} as our set of constants; this can easily be achieved
by encoding each constant as a binary string of ones and zeroes, and increasing the
number of arguments to the predicates by v.

counter(...) kv-ary.

start() is 0-ary (i.e., it is a proposition).
Initial state: {counter(0)}{p'(0):p € P}
Goal state: &

Operators: For each operator O € O, we have the following operator O’ € (O that imitates
it:

Pre: 57U 53 U {start()}
Del:  Del(O)U {p'|p € Add(0)}
Add:  Add(O) U {p'|p € Del(0)}

where 55 is the set of all nonnegated atoms in Pre(O), and S5 is the set of comple-
mentary predicates corresponding to the negated atoms in Pre(O).

The idea is to replace the negative literals in the precondition list with complementary
predicates. Whenever we add a predicate instance, we delete its complementary predi-
cate instance, and whenever we delete a predicate instance, we add its complementary
predicate instance.

We have the following two operators to reach the state corresponding to the initial
state of the original planning problem. Increments and decrements (such as mapping
itoi+4 1 or¢— 1) should be handled as described in Section B.1.

Pre:  {counter(i)}
Del:  {counter(i)}
Add:  {counter(i 4+ 1)} U{p'(z+1):p € P}
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Pre:  {counter(2"” — 1)}
Del:  {counter(2® — 1)} U {p/(j) : p(j) € So}
Add: {p(j) : p(j) € So} U {start()}

In the first 25V steps of any plan in P, start() would be false. These steps are used
to assert the instances of complementary predicates. Then, we start imitating the original
planning problem move to move. Hence if there exists a plan of length [ in the original
planning problem, there exists a plan of length [ 4+ 2*¥ in this planning problem. The
transformation is obviously polynomial.

|

B.3 Planning When the Operator Set is Part of the Input

Theorem 5.3 If we restrict P to be propositional, positive, context-free, and deletion-free,
then PLAN EXISTENCE is NLOGSPACE-complete.

Proof. Below, we show that the problem is in NLOGSPACE and that it is NLOGSPACE-hard.

Membership. Here is an NLOGSPACE algorithm that decides this problem:

1. For each proposition p in G do:

(a) g:=p
(b) if ¢ is in the initial state, continue with the next proposition in G.

(¢) Nondeterministically choose an operator with g in the addlist. If no such operator
exists, halt and reject.

(d) ¢ := the precondition of the operator if it exists, TRUFE otherwise.
(e) Go to Step 1(b).

2. Halt and accept.

The algorithm is based on two facts: Since P is restricted to be positive and deletion-free,
the subgoals do not interact. Hence we can look for a plan for each of them separately. Sec-
ondly, P is restricted to be context-free, that is each operator has at most one precondition.
As a result, in step (b), we do not need to consider multiple preconditions.

The algorithm accepts iff there exists a plan that achieves the goal. Only space required
is for ¢, and for keeping track of the iteration in the for loop. Hence the problem is in
NLOGSPACE.

Hardness. In order to complete the proof, we give a logspace reduction from off-line
logspace-bounded nondeterministic TM acceptance problem to the propositional planning
problem with the previous restrictions.

An off-line logspace-bounded TM is defined as an n-tuple M = (...). Basically, it is a
Turing machine with one read-only input tape, one write only output tape, and a read/write
work tape. The head of the output tape can not move left. Given input z in the input tape,
it uses at most [lg |z|] cells on the work tape. A configuration of the TM can be represented
with the positions of the three heads, the current state, and the contents of the work tape.
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We do not need to include the contents of the output tape since we can not read it anyway,
and we do not need the contents of the input tape explicitly as it never changes.

Given an off-line logspace-bounded nondeterministic TM, and input z, the number of
possible configurations is polynomial in terms of the input. Hence, a configuration of M can
be encoded in logarithmic space. We introduce a proposition for each of these configurations.
We enumerate all these configurations and for each of them we output operators such that
precondition list contains the proposition corresponding to the configuration, and the addlist
contains a proposition corresponding to a configuration reachable from the configuration
in the precondition via some move. In addition to these, we create an operator for each
halting configuration such that the precondition contains the proposition corresponding to
it, and the addlist contains a special proposition called done, which will also be the goal.
Note that these can be done in NLOGSPACE.

The TM will accept z iff there exists a plan that achieves done, starting from proposition
So, which corresponds to the initial configuration of the TM. [ |

Theorem 5.4 If we restrict P to be propositional, positive, context-free and deletion-free,
then PLAN LENGTH is NP-complete.

Proof. Since we do not have any delete lists, any operator need to appear in a plan at
most once. Number of operators is bounded by the length of the input. Hence we can
nondeterministically guess a sequence of operators and verify that the sequence is a plan of
length at most k, in polynomial time. Therefore, the problem is in NP.

The Set Cover problem, defined defined below, is known to be NP-complete [16].

Given a set 5, a set C' which is a collection of subsets of .5, and a positive integer
k encoded in binary, is there a subset C’ C ' of size at most k, such that each
element of S appears in some set in C’?

To prove that our planning problem is NP-hard, we define the following polynomial-time
reduction from the Set Cover problem:

Propositions: For each element a of 5, we have a proposition p,.

Operators: For each subset {ay,as,...,a,} € C, we have the following operator:
Pre: 0
Add: {palvpa27 s 7pam}
Del: 0

Initial state: 0
Goal state: {p,la € 5}

S has a set cover of size at most k, iff there exists a plan of size at most k. The
reduction is obviously polynomial. Note that all the operators are context-free,deletion-free
and positive. [ |

Theorem 5.5 PLAN LENGTH is PSPACE-complete if we restrict P to be propositional. It
is still PsPACE-complete if we restrict P to be propositional and positive.
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Proof.

Membership. Since P is restricted to be propositional, the size of any planning state
will not exceed number of propositions. Hence any state can be represented in polynomial
space.

The following algorithm solves the problem in NPSPACE. Starting with the initial state,
we nondeterministically choose an operator, apply it to get the next state, and decrement
k. We repeat this until we find a plan in which case we accept, or until £ = 0, in which
case we reject. Since PSPACE equals NPSPACE, the problem is in PSPACE.

Hardness. The existence version of this problem has been shown to be PSPACE-complete.
(Theorem 5.2) We can reduce it to our problem, just by setting & = 2", where n is the
number of propositions. Notice that k& will be encoded in n bits. If there exists a plan, there
also exists a plan of length no more than k, because the number of states in the planning
problem is exponential in terms of number of propositions. This completes the proof that
our problem is PSPACE-complete. [ |

Theorem 5.6 (Composition Theorem) Let P = (55, O) be a planning domain, and
(O’ be a set of operators such that each operator in (0’ is the composition of operators in O.
Then for any goal G, there is a plan to achieve G in P iff there is a plan to achieve G in

P’, where P’ = (55,0 U O").

Proof. Since operators in O’ are compositions of operators in (3, any plan that contains
operators from O can be expressed without these operators, just by replacing each occur-
rence of operators from ', by the sequence of operators in O, whose composition gives
these operators.

Thus, there exists a plan to achieve ¢ in P iff there exists a plan to achieve G in P’. W

Theorem 5.7 PLAN EXISTENCE is EXPSPACE-complete. It is still EXPSPACE-complete if
we restrict P to be positive.

Proof. Below, we show that the problem is in EXPSPACE and that it is EXPSPACE-hard.

Membership. The number of ground instances of predicates involved is exponential in
terms of the input length. Hence the size of any state can not be more than exponential.
Starting from the initial state, we nondeterministically choose an operator and apply it.
We do this repeatedly until we reach the goal, solving the planning problem in NEXPSPACE.
NEXPSPACE is equal to EXPSPACE, hence our problem is in EXPSPACE.

Hardness. To complete the proof, we define a polynomial reduction from the EXPSPACE-
bounded TM problem, which is defined as follows:

Given a TM M that uses at most an exponential number of tape cells in terms
of the length of its input, and an input string z, does M accept the string a7

A Turing machine M is normally denoted by M = (K,%,1',6,q0, F'). K = {qo,.--,qm} is
a finite set of states. F C K is the set of final states. I' is the finite set of allowable tape
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symbols. ¥ C I' is the set of allowable input symbols. gy € K is the start state. §, the next
move function, is a mapping from K x I' to K x I' x {Left, Right}

Suppose we are given M, and an input string « = (2, 23, ..., 2,—1) such that z; € ¥ for
each ¢. To map this into a planning problem, the basic idea is to represent the machine’s
current state, the location of the head on the tape, and the contents of the tape by a set of
atoms.

The transformation is as follows:

Predicates: contains(z, ¢) means that ¢ is in the ¢’th tape cell, where ¢ = i1,13,...,14, is
the binary representation of i. We can write ¢ on cell ¢ by deleting contains(z,d) and
adding contains(z, ¢), where d is the symbol previously contained in cell 7.

state(q) means that the current state of the TM is g.

h(i) means that the current head position is ¢. We can move the head to the right or

left by deleting h(i), and adding h(i+ 1) or h(i —1).
counter(z) is a counter for use in initializing the tape with blanks.

start() denotes that initialization of the tape has been finished.
Constant symbols: I'U K U {0,1}

Operators: Each operator below that contains increment or decrement operations (such
as mapping ¢ to ¢ + 1 or ¢ — 1) should be expanded into n operators as described in
Section B.1.

Whenever 6(q, c¢) equals (s, ¢, Left), we create the following operator:

Name: L C/(')

Pre: {h(g) state(q), contains(z, ¢), start()}
Del: {h(7), state(q), contains(, c)}

Add:  {h(i—1),state(s), contains(z, ')}

Whenever é(q, ¢) equals (s, ¢, Right), we create the following operator:

Name: R C/(')

Pre: {h( /), state(q), contains(z, ¢), start()}
Del: {h(7), state(q), contains(, c)}

Add:  {h(i41),state(s), contains(z, ')}

We have the following operator that initializes the tape with blank symbols:

Name: [(3)
Pre: {counter(z), -start()}
Del: 0

Add:  {counter(i + 1), contains(z, #)}
The following operator ends the initialization phase.

Pre:  {counter(2" — 1), —~start()}
Del: 0
Add:  {contains(2" — 1,#),start()}

Finally, for each ¢ € I we have the operator
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Name: Fy()
Pre: {state(q)}
Del: 0

Add:  {done()}
Initial state: {counter(n),state(qp),(0)} U {contains(z, z;):¢=0,...,n—1}
Goal condition: done().

The transformation is polynomial both in time and space. It directly mimics the behav-
ior of the TM. This ends the proof that planning with delete lists is EXPSPACE complete.
|

Theorem 5.8 If we restrict P to be deletion-free, then PLAN EXISTENCE is NEXPTIME-
complete.

Proof. Below, we show that the problem is NEXPTIME and that it is NEXPTIME-hard.

Membership. Since we do not have delete lists, the instances of predicates true in a state
grow monotonically during the plan, hence no instance of an operator needs to be used more
than once. Besides we have only an exponential number of operator instances in terms of
the length of the input. We can nondeterministically guess a sequence of operator instances
(of length at most exponential) and check whether it is a plan that satisfies our goal. Hence
the problem is in NEXPTIME.

Hardness. Next, we show that given any nondeterministic TM M that halts in at most
exponential steps in terms of its input, we can encode it in polynomial time as a deletion-free
planning problem.

The TM is denoted by M = (K,X,T,#,6,q0, F). K = {qo,...,qx} is a finite set of
states. ' C K is the set of so called final states. I' is the finite set of allowable tape symbols.
3 C TI' is the set of allowable input symbols. # is the blank tape symbol. ¢y € K is the
start state. 6 C (I x I') x (K X (I' = #)) x {Left, Right}. ¢ is the next move relation.

Suppose we are given a nondeterministic TM M that runs in exponential time, and an
input string @ = (2, 21,...,2,—1) such that z; € ¥ for each 7. Note that M runs for at
most 2" steps. We can map this into the following planning problem :

Constant symbols: I'U K U {0,1}

Predicates: done() is a propositional predicate denoting that the goal is achieved.

counter;(...) and countery(...) are n-ary predicates used as binary counters. Recall
that n is the length of the input string z.

start(...) is an n-ary predicate used to denote that the :’th step of the TM is being
simulated.

same(...) is a (2n)-ary predicate used to denote that the first n bits and the second
n bits encode the same numbers.

state(...) is a (n 4 1)-ary predicate. The first n bits encode the step, the last place
holds the current state at that step.
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h(...)is a (2n)-ary predicate, the first n bits encode the step, and the second n bits
encode the head position at that step.

contains(...) is a (2n 4 1)-ary predicate, the first n bits encode the step, the second n
bits encode the cell number, and the last place holds the contents of the cell at that
step.

Operators: Each operator below that contains increment or decrement operations (such
as mapping 7 to 1+ 1 or ¢ — 1) should be expanded into n operators as described in
Section B.1.

For each ¢ € F, we have the operator

Name: final(V)
Pre: {state(V,¢)}
Del: 0

Add:  {done()}

The following operator asserts the “same” predicates.

Name: 5(2)
Pre: {countery(i)}
Del: 0

Add:  {countery(i+ 1),same(i+ 1,1+ 1)}

The following operator writes blank symbols at the end of the input string. Notice
we need to go up to cell 2" — 1 only, because M runs in NEXPTIME, and it can not
access the remaining cells.

Name: W(z)
Pre: {countery(z)}
Del: 0

Add:  {countery(i 4 1), contains(0,¢4+ 1,#)}

The following operator creates the initial configuration of M after the blank symbols
have been written, and the “same” predicates have been asserted:

Pre:  {counter;(2” — 1), countery(2” — 1)}
Del: 0
Add: {state(0, qo), head(0,0), contains(0, 0, z¢), . . ., contains(0,n — 1, 2,_1)}

Whenever 6(q,a) contains (¢’,b,t) where t is left or right, we have the following two
operators.

The first operator makes the nondeterministic choice and changes the content of the
current cell, the state, and the head position

Name: Ng:&“/(g', 7)

Pre: {state(z,q), h(i, 7), contains(i, j,a), start(i)}

Del: 0 - -

Add:  {state(i+ 1,¢’),head(i+ 1,7 + d), contains(i + 1, j, b), start(i)}

dis 4+1 if ¢ is right, and it is -1 if ¢ is left.

The second operator copies the remaining cells in step ¢ to step ¢ + 1.
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Name: C'(4,7, V1, Va)

Pre: {contains(z, V1, V3), (4, j), ~same(j, V1), start(z) }
Del: 0

Add:  {contains(z+4 1,V3,V5)}

Notice that all the cells are not necessarily copied before continuing with the next
step. However, as soon as the head position is at one of the not copied cells, all
operators are disabled, except those that copy the cells. Hence this does not cause
any problem.

Initial state: {counter;(n — 1), countery(0),same(0,0)}
Goal condition: done().

The operators in the planning problem directly mimic the behavior of M. Furthermore,
the transformation can be produced in polynomial time. Thus, planning with no delete
lists, but negation is NEXPTIME-complete. [ |

Theorem 5.9 If we restrict P to be positive and deletion-free, then PLAN EXISTENCE is
EXPTIME-complete.

Proof.

Membership. Since the planning domain does not have delete lists and negated precon-
ditions, any operator whose precondition list is satisfied remains so throughout the plan.
Furthermore, no operator instance needs to appear in a plan more than once. Starting with
the initial state, we can iteratively choose an unused operator instance whose precondition
list is satisfied, and append it to our plan. We do this until either the current state satisfies
the goal in which case we accept and halt, or no such operator remains in which case we
, where ¢ is the number of
constants in the domain, and m is the number of variables appearing in the operator. Hence

halt and reject. The number of instances for an operator is ¢

there are only an exponential number of operator instances in terms of the input length,
and the algorithm halts in exponential time. Thus, the problem is in EXPTIME.

Hardness. An ATM is normally denoted by M = (K, X, I',#,6,q0,U). K = {k1,..., kmn}
is a finite set of states. U C K is the set of so called universal states. Other states
are called existential states. I' is the finite set of allowable tape symbols. ¥ C I' is the
set of allowable input symbols. # is the blank tape symbol. ¢g € K is the start state.
6 C (N xTI')x (I x(I'=4#)) x{L,R,S}. 6is the next move relation, where L, R, 5 mean
“left”, “right”, and “stationary”, respectively. A configuration of ATM consists of the
contents of the non-blank portion of the tape, the current state, and the head position,
denoted by the triple (s,q,7). A configuration is an accepting configuration if one of the
following holds:

e The state of the configuration is a universal state with no possible moves.

o The state of the configuration is an existential state, and there exists a move in é that
leads the configuration to an accepting configuration.
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o The state of the configuration is a universal state and all moves lead to an accepting
configuration.

This is a recursive definition, and the first bullet provides the base case.

A Linearly Bounded ATM (LBATM) is one which is restricted to use at most n + 1
tape cells, where n is the length of the input. LBATM ACCEPTANCE is the problem of telling
whether, given a LBATM M and string s € ¥*, (s, qo,1) is an accepting configuration.
LBATM ACCEPTANCE has been proven to be exponential time complete.

We make a polynomial reduction from LBATM ACCEPTANCE to our problem to show
that it is EXPTIME-hard. Suppose we are given an LBATM M, and an input string z =

(z1,%2,...,%,-1) such that z; € ¥ for each i. We can map this into the following planning
problem P(M,z):

Constant symbols: I'U K U {py,p2,...,pn}, where the p;’s are any n distinct symbols
used to represent the position of the head.

Variable symbols: {vi,vg,..., 0,12}

Predicates: accept(vy,...,v,42). The first n arguments are used to store the contents of
the tape, and the next two arguments are used to store the state and head position.
Operators: Let ¢ be any state and A be any tape symbol.

If 6(¢q, A) contains (¢’, A’, L) and ¢ is an existential state, then there are operators
{24 i =2,...,n} as follows:

VA
Name: LI (01, .. 0im1, Vig1y -0y 0p)
Pre: {accept(vy,...,vi—1, A", vit1, .. 00, ¢ pic1)}
Del: 0

Add: {accept(v,...,vi—1, A, Vig1, .-, V0, ¢, D) }

If 6(¢q, A) contains (¢', A’, R) and ¢ is an existential state, then there are operators
{R?’A ci=1,...,n — 1} as follows:

VA
Name: RP(v1,...,0ic1, Vig1y -y 0p)
Pre: {accept(vy, ..., vi—1, A, Vig1s oo 00, ¢, Pig1)}
Del: 0

Add: {accept(v,...,vi—1, A, Vig1, .-, V0, ¢, D) }

If 6(q, A) contains (¢', A’,5) and ¢ is an existential state, then there are operators
{Sf’A :i=1,...,n} as follows:

A

Name: ST (01, ..., 0im1, Vig1y. .-y 0p)

Pre: {accept(vy, ..., vi—1, A vig1, .o 00, ¢ i)}

Del: 0]

Add: {accept(v,...,vi—1, A, Vig1, .-, V0, ¢, D) }

If ¢ is a universal state, then there are operators {UZ»q’A :t=1,...,n} as follows:

A

Name: UP™ (01, ...y 0im1, Vig1y .oy 0p)

Pre: {Prer, UPrer U Preg}

Del: 0]

Add: {accept(v,...,vi—1, A, Vig1, .-, V0, ¢, D) }
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where
PI’eL = {accept(vlv' . '7vi—17A/7vi+17' . '7vn7q/7pi—1)|(q/7A/7L) € 6(Q7A)}
PI’GR = {accept(vlv' . '7vi—17A/7vi+17' . .,vn,q/,p¢+1)|(q/,A/,R) € 6(Q7A)}
PI’GS = {accept(vlv' . '7vi—17A/7vi+17' . '7vn7q/7pi)|(q/7Alvs) € 6(Q7A)}

Note that Prey, is empty if i = 1, and Preg is empty if ¢ = n. Furthermore, the pre-
condition list for this operator will be empty when ¢ does not contain any transitions
for the state ¢. This is in accordance with the definition of an accepting configuration.

Initial state: The initial state is empty.
Goal condition: accept(z1,z2,...,%n-1,%#,q0,P1)-

The operators in the planning problem directly mimic the definition of an accepting
configuration. Thus M accepts z if and only if there is a plan that achieves

accept(wl, L2505 Tn—1, #7 q07p1)-

Furthermore, P(M,z) can be produced in low-order polynomial time. Thus, planning with
no delete lists, no negation and no function symbols is EXPTIME-hard. [ |

Theorem 5.10 If we restrict P to be context-free, positive, and deletion-free, then PLAN
EXISTENCE is PSPACE-complete.

Proof. Below, we show that the problem is PspPACE-hard and that it is in PSPACE.

Hardness. This is established by showing that the acceptability problem for linearly
bounded automatons (LBAs), which is known to be pspAacE-complete (Garey and Johnson
[16]) reduces to the problem in polynomial time.

An LBA is normally denoted by M = (K, %, I',6,q0, F'). K = {qo,...,qn} is a finite
set of states. F' C K is the set of final states. I' is the finite set of allowable tape symbols.
3 C T is the set of allowable input symbols. gg € K is the start state. ¢, the next move
function, is a mapping from K x I' to subsets of K’ x I' x {Left, Right}. An LBA uses only
n tape cells, where n is the length of the input string.

Suppose we are given an LBA M, and an input string @ = (21, 22,...,%,) such that
x; € 3 for each ¢. We can map this into the following planning problem :

Constant symbols: I'U K U {py,p2,...,pn}, where the p;’s are any n distinct symbols
used to represent the position of the head.

Variable symbols: {Vi,V;,...,V, 12}

Predicates: configuration(Vi,...,V,42), done(). The first n positions in configuration()
are used to store the contents of the tape, and the next two positions are used to store
the state and head position.

Operators:

Whenever 6(q,a) contains (¢’,a’, Left), we create the following operator for each
piyt £ Lt
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Pre:  {configuration(Vy,...,Vi_1,a,Vig1, ..., Vo, ¢, pi)}
Del: 0
Add:  {configuration(Vy,...,Vi_1,d', Vigr,.. .. Vo, ¢/, pic1)}

Whenever 6(¢,a) contains (¢’,a’, Right), we create the following operator for each

Piyt #£ ne
Pre:  {configuration(Vy,...,Vi_1,a,Vig1, ..., Vo, ¢, pi)}
Del: 0

Add:  {configuration(Vy,..., Vi1, d', Vigr, ..., Vi, ¢y pig1) }
For each state ¢ € F we create the following rule:

Pre:  {configuration(Vi,..., V., q, Viya)}
Del: 0
Add:  {done()}

Initial state: configuration(zq,...,2,,qo,p1)
Goal: done()

The operators directly mimic the possible actions of M on z. Thus M accepts z if and
only if there is a plan for done. The transformation is obviously polynomial. Hence, the
problem at hand is PsPACE-hard.

Membership. We present an algorithm below that demonstrates membership of our
problem in NPSPACE. As NPSPACE = PSPACE, this establishes that the problem is in PSPACE.
Intuitively, ¢) is the set of subgoals that have not been achieved yet.

1. Q =G - So.

2. If Q = 0, then halt and accept.

3. Nondeterministically choose an operator instance « such that QNAdd(«a) # 0.
4. @ = (Q — Add(a)) U (Pre(a) — Sp).

5. Go to Step 2.

Note that size of ¢) never grows, as each operator has at most one precondition, hence
it can be represented in PSPACE.

If there is a plan for the goal, then there will be a sequence of choices that would end up
achieving all the subgoals, hence the algorithm would halt and accept; If there is no plan
for the goal, no sequence of choices would end up achieving all the subgoals , and input will
be rejected.

Since PSPACE = NPSPACE, we are done. [ |

Theorem 5.11 If we restrict P to be deletion-free, positive, and context-free, then PLAN
LENGTH is PSPACE-complete.

Proof. Below, we show that the problem is PSPACE and that it is PSPACE-hard.
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Membership. We had proved the existence version of this problem to be in NPSPACE.
All we need to do is to modify the previous algorithm so that we also verify the length
of the plan found to be at most k. Since PSPACE = NPSPACE, this proves membership in
PSPACE. Here is the algorithm:

@ := G — Sp; counter := k

. If Q =0, then halt and accept.

. Nondeterministically choose an operator instance a such that QNAdd(«) # 0.
. Decrement counter. Halt and reject if counter=0.

. Q= (@ — Add(a)) U (Pre(a) — Sp).

. Go to step 2.

O U W N

Hardness. We had proved the plan existence version of this problem to be pspACE-hard.
(Theorem 5.10) Since we do not have delete lists, the length of any plan need not exceed
number of operator instances. We can reduce the existence version to this problem by
setting k to this value.

|

Theorem 5.12 PLAN LENGTH is NEXPTIME-complete in each of the following cases:
1. P is deletion-free and positive;
2. P is deletion-free;
3. P is positive;

4. no restrictions (except, of course, that P is function-free).
Proof.

Membership. Since k is part of the input, and it is encoded in binary, k can be at most
exponential in terms of length of the input. We can nondeterministically guess a sequence
of instances of the operators, and in exponential time, we can verify that it is a plan of
length at most k& that achieves the goal. Hence the problems are in NEXPTIME.

Hardness. Next, we show that Case 1, which is a special case of Cases 2, 3, and 4, is
NEXPTIME-hard. Given a nondeterministic Turing machine M, that runs in exponential
time, and an input string x = zq,...,2,_1, we reduce it to the optimum planning problem
without delete lists and negated preconditions

Without loss of generality we assume when the TM enters a halting state, 6() will be
such that it will stay in the same state, write the same symbol it reads, and the head
position will remain stationary.

We create the following planning problem:

Predicates: greater(s, ) is a 2n-ary predicate to assert that i is greater than j. It is used
to assert instances of the “diff” predicate.

diff(z, j) is a 2n-ary predicate used to assert that ¢ and j are different numbers.

choicecounter(...)is an n-ary predicate used when making the nondeterministic choices.
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choice(Z, p) is an n+ 1-ary predicate. The first n places encode the step in binary, the
n + 1th place holds the nondeterministic choice for this step.

filltape(. .. ) is an n-ary predicate used as a counter while initializing the blank portion
of the tape.

counter(z, j) is a 2n-ary predicate denoting that the j’th tape cell at step i is being
processed.

contains(i, j, ¢) is a 2n 4 l-ary predicate denoting that at i’th step tape cell j contains
c.

state(7, ¢) is a n + l-ary predicate holding the current state at step ¢.

h(z, j) is a 2n-ary predicate denoting that at step 7, the head is at position j.
laststate(q) is a unary predicate denoting the state after the last (27) step.
done() is a propositional symbol denoting that the TM accepted the input string.

Initial state: {diff(0,1),diff(1,0), greater(1,0)} U {contains(0,, ;) : ¢ < n}
Goal: done()

Operators: FEach operator below that contains increment or decrement operations (such
as mapping ¢ to ¢+ 1 or 7 — 1) should be expanded as described in Section B.1.

The following operators assert instances of the “diff” predicate.

Name: D(z,j)

Pre: {greater(z, j)}

Add:  {greater(: 4 1,7),diff (i + 1,7), diff(j,2 4+ 1)}
Del: 0

Name: G(j)

Pre: {gﬂeater(?” —1,5)}
Add: {greater(j + 2,7+ 1),diff(j +2,; 4+ 1),diff(j + 1,7+ 2)}
Del: 0]

Pre:  {greater(2" —1,2" — 2)}
Add:  {choicecounter(0)}
Del: 0

The following operator makes the nondeterministic choices of the TM for every step:

Name: C(z,V)

Pre: {choicecounter(z)}

Add:  {choicecounter(i 4 1), choice(, V')}
Del: 0

Name: CU(V)

Pre: {choicecounter(2” — 1)}
Add:  {choice(2" —1,V),filltape(n)}
Del: 0

The following operators initialize the blank portion of the tape:
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Name: F(i)

Pre: {filltape(z)}

Add: {filltape(? + 1), contains(0, 7, #)}
Del: 0]

Pre:  {filltape(2" — 1)}
Add:  {counter(0,0), contains(0,2" — 1,#)}
Del: 0

The following two operators copy the contents of the tape at step i to step ¢+ 1:

Name: Copy(s, j, K, V)

Pre: {counter(z, ), h(z, K), diff(j,
Add:  {counter(i, j + 1), contains(i
Del: 0 -

V), contams( i, 7,V)}
1,3, V)}

Name: Copyl(z, k, V)

Pre: {counter(z,2" — 1), h(s, k), diff(¢, k), contains(z,2" — 1,V)}
Add:  {contains(z4 1,2" — 1, V'), counter(z 4 1,0)}

Del: 0

The following imitates the moves of the Turing machine, by writing the appropriate
symbol on the current cell, changing the state, and moving the head. Whenever
(¢',c',t) is the p’th element in (¢, ¢) we have the operators:

Name: Mgc’fpt( 7«1)
Pre: {counter(z, ), h(Z, j), state(i, ¢), contains(, j, ¢), choice(z, p)}
Add:  {counter(7, j + 1),state(i+ 1,¢), contains(i + 1, j, ¢ )h(i 4+ 1,5 + d)}

dis 1if tis right, -1 if ¢ is left, and 0 otherwise.

Name: Mlqcp(z 7)

Pre: {counter(2” — 1,0),h(2" = 1,),state(2" — 1,¢),
contains(2” — 1, j, ¢), choice(z, p)}

Add:  {laststate(q’)}

For each ¢ € F' we have the following operator:

Name: Fj()
Pre: {laststate(q)}
Add: {done()}

The planning system works in phases. In the first phase, instances of the “diff” predicate
are asserted. In the end of this phase the next phase which makes the nondeterministic
choices is enabled. In the end of this , the next phase, which initializes the blank portion of
the tape is enabled. When the tape is filled with blanks, we enable the next phase, which
actually mimics the behavior of the TM. We make use of the predicate counter(z, j) in this
phase. Suppose, we are at step ¢ and we are examining cell j. if head is not in position j at
that step, we simply copy the contents of this cell to the next step. If head is at position
J at that step, we make the move according to the nondeterministic choice that we have
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made before, and set the new state, head position, contents of cell j for the next step. Then
we consider the cell j + 1. When we reach the end of the tape (cell 2" — 1), we turn back
to cell 0 and proceed with the next step. In the very last step (step 2") we do not need to
do all this. We just determine what the next state would be. Then if this state is a final
state, we assert “done().”

Note that each operator enables the next one, hence there is no plan that would follow
a different order. The only remaining problem is ensuring that the operator that makes
the nondeterministic choices does not fire more than once for the same step. We do this by
putting a bound on the length of the plan so that if we make more than one nondeterministic
choice at some step, the remaining number of steps will not be enough to complete the plan.

We spend (2" — 1)2"! steps in asserting instances of the “diff” predicate, 2" steps in
making the nondeterministic choices, 2" — n steps for initializing the tape, (2" — 1)2" steps
for simulating the moves, 1 step for the last move, and 1 step for asserting done(), giving
E=3x22n"1 4 9n=1 _ 5 4 9in total.

The Turing machine accepts z iff there exists a plan of length k that achieves done. The
reduction is obviously polynomial. [ |

B.4 Planning When the Operator Set is Fixed

Theorem 5.13 PLAN EXISTENCE can be solved in constant time if we restrict P =
(S0, O, G) to be propositional and O to be a fixed set.

Proof. Both the number of operators, and the number of propositions we need to consider
are constant, which implies that the number of possible plans and their lengths are bounded
by a constant. Thus we can solve the planning problem in constant time. [ |

Corollary 5.5 PLAN LENGTH can be solved in constant time if we restrict P = (.Sy, O, G)
to be propositional and O to be a fixed set.

Proof. Since the number of possible plans is constant, we can check all of them in constant
time. [ |

Theorem 5.14

1. If we restrict P to be fixed, deletion-free, context-free and positive, then PLAN EXIS-
TENCE is in NLOGSPACE and PLAN LENGTH is in NP.

2. If we restrict P to be fixed, deletion-free, and positive, then PLAN EXISTENCE is in P
and PLAN LENGTH is in NP.

3. If we restrict P to be fixed and deletion-free, then PLAN EXISTENCE and PLAN LENGTH
are in NP.

4. If we restrict P to be fixed, then PLAN EXISTENCE and PLAN LENGTH are in PSPACE.

Proof. When the set of operators is fixed, we can enumerate all ground instances in
polynomial time, reducing the problem to propositional planning. Hence the theorem follows
from propositional planning results. [ |
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Theorem 5.15 There exists a fixed positive deletion-free set of operators O for which
PLAN LENGTH is NP-hard.

Proof. Here are the operators:

Pre:  {counter(X),next(X,Y)}
Add:  {counter(Y),true(X)}
Del:

Pre:  {counter(X),next(X,Y)}
Add:  {counter(Y),false(X)}
Del:

Pre:  {counter(last), poslit(X, ('), true(.X )}
Add:  {done(C)}
Del:

Pre:  {counter(last), neglit(X, ('), false( X )}
Add:  {done(C)}
Del:

We can reduce the satisfiability problem, which is known to be Np-complete, to this problem
as follows.

Given a boolean expression F in CNF form containing variables {zy,...,z,}, we output
the following;:

k = n + the number of clauses in F
= {done(c): ¢ is a clause of I}
So = {poslit(z,¢): 2 is an atom of ¢} U {neglit(z,¢) : z is a negative literal of ¢}

U{next(z;,z41) 11 =1,...,n — 1} U{next(n,last)}

The “counter” predicate is used to ensure that the operators that assign truth values to
variables of the boolean expression, are enabled sequentially. Together with the bound
on the plan length, this ensures that each variable is assigned a unique truth value. F is
satisfiable iff there exists a plan of length k. The reduction is clearly polynomial. [ |

Theorem 5.16 There exist fixed deletion-free sets of operators O for which PLAN EXIS-
TENCE and PLAN LENGTH are NP-hard.

Proof. n~p-hardness for PLAN LENGTH follows from Theorem 5.15. Here are the operators
for which PLAN EXISTENCE is NP-hard:

Pre:  {—true(X)}
Add: {false(X)}
Del:

Pre:  {—false(X)}
Add:  {true(X)}
Del:
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Pre:  {poslit(X, ), true(X )}
Add:  {done(C)}
Del:

Pre:  {mneglit(X, (), false(X)}
Add:  {done(C)}
Del:

Intuitively, false(X) and true(X) stands for X is asserted true and false respectively.
poslit(X,C) and neglit(X,C) stands for the assertions that X is a positive literal of clause
C, and X is a negative literal of clause C, respectively.

We reduce the satisfiability problem (which is known to be NP-complete) to this problem.
Given a boolean expression in CNF form, we create the initial state as

So = Aposlit(z,c) : x is an atom of ¢} U {neglit(z,c) : « is a negative literal of ¢}

G

{done(c) : ¢ is a clause}

The expression is satisfiable iff there exists a plan to assert done(c) for each clause c.
The reduction is clearly polynomial. [ |

Theorem 5.17 There exists a fixed set of positive operators O for which PLAN EXISTENCE
and PLAN LENGTH are PSPACE-hard.

Proof. Here is the set of operators:

Name: R(I,J,V,Q,5,Y)

Pre: {head([l),next(1,.J), contains(/, V), state(Q), delta(Q, V, S, Y, Right)}
Add:  {head(J), contains(/,Y),state(.5)}

Del: {head(I), contains(f, V'), state(Q)}

Name: L(I,J,V,Q,5,Y)

Pre: {head([]), next(.J, I), contains(/, V'), state(Q), delta(Q, V, S, Y, Left)}
Add:  {head(J), contains(/,Y),state(.5)}

Del: {head(I), contains(f, V'), state(Q)}

Name: D(Q)

Pre: {state(Q), final(Q)}
Add: {done()}

Del: ]

We can reduce the linearly bounded automata (LBA) acceptance to this problem as
follows. Given a TM M that is linearly bounded, and an input string z = z,...,2, we
create the initial state and the goal

So = Anext(pi,piy1):i=1,...,n— 1} U{contains(p;,z;) 11 =1,...,n}
U{delta(@,V, S,Y, Left) : (5,Y, Left) € 6(Q,V)}
U{delta(@,V, S, Y, Right) : (9,Y, Right) € 6(Q,V)}
U{final(Q)) : @ € F'} U {state(qo), head(p1)}

G = {done()}
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The operators mimic the moves of the LBA, one for one. The LBA accepts x iff there is a
plan that achieves done(). The reduction is obviously polynomial. Thus PLAN EXISTENCE
with this set of operators is psPACE-hard.

The same set of operators works for PLAN LENGTH well. Since the number of distinct
LBA configurations is exponential in terms of the input string length, LBA halts within
that many moves. Since the planning operators mimic the LBA move for move, all we need
to do is set £ = the number of configurations. Then PLAN EXISTENCE is just a special case
of it. [ |

Theorem 5.18 (Complexity of planning with conditional operators) Theorems 5.3
through 5.5, 5.7 through 5.17, and their corollaries still hold when O is allowed to contain
conditional operators.

Proof.

Varying set of operators. Hardness follows directly because planning with regular op-
erators is a special case of planning with conditional operators, where each operator is
restricted to contain exactly one triple. For membership, we will outline the modifica-
tions needed for each case. The modifications for both propositional planning and datalog
planning will be the same, so we will not state them twice.

PLAN EXISTENCE:

o Deletion-free, positive, context-free. The same algorithm given for membership will
work, except when we choose an operator, we should nondeterministically choose a
subset of the triples such that each triple chosen achieves at least one distinct subgoal,
and use the add list and preconditions of all these triples.

o Deletion-free, positive. The membership proof is based on the fact that no operator
needs to be applied more then once (because it is deletion-free), and the order of the
operators does not matter (because they are positive). When we have conditional
operators, the only difference is that each operator needs to be used at most n times,
where n is the number of triples it contains. This difference does not affect the proof
at all.

e Deletion-free. As mentioned above, we do not need to use any operator more times
than the number of triples it contains. Hence the lengths of the plans are still at
the same level (exponential for datalog, polynomial for propositional case) as before.
Thus, the same proof as before works.

o Unrestricted. The algorithm given for this proof was based on a non-deterministic
forward search. Since state size is not affected by conditional operators, the same
algorithm still works. The only difference is, when we have chosen the operator,
and computing the next state, we need to use the effects of all the triples whose
precondition lists are satisfied in the current state.

PLAN LENGTH:

e Datalog operators. The same NEXPTIME proof will work, since k still confines us to
plans of exponential length.
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o (Context-free,positive, deletion-free. The same algorithm used for PLAN EXISTENCE will
work, if we introduce a counter, initialize it to k, and decrement it at each iteration.
We add a new step that checks the counter, and fails when it hits 0.

e Propositional planning (unrestricted). Same modification as the previous one.

e Propositional, deletion-free. since P is deletion-free, each operator instance need to
be used no more than the number of triples it contains. Thus the plans need not
be longer than polynomial, and nondeterministically, we can choose a sequence of
operator instances and verify that it is a plan that achieves the goal, and that it is at
most of length k.

Fixed set of operators. Propositional planning with a fixed set of operators is obviously
still constant time. As before, the results for datalog planning follow from the results about
propositional planning with a varying set of operators. [ |



