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1 INTRODUCTION 2Table 1: Decidability of domain-independent planning.�Allow Allow in�- Allow in�- Allow delete lists Tellingfunction nitely many nite initial and/or negated whether asymbols? constants? states? preconditions? plan existsyes yes/no yes/no yes/no/no� semidecidableno no no
 decidableyes yes/no semidecidableno yes no yes semidecidableno decidableno no� yes/no decidable�These results are independent of whether the operators are �xed inadvance and/or have conditional e�ects.�No operator has more than one precondition.
With acyclicity and boundedness restrictions as described in Section 3.3.�The other restrictions ensure that the initial state will always be �nite.Table 2: Complexity of domain-independent planning.�Language How are Allow Allow ne- Telling Telling whetherrestric- the opera- delete gated pre- whether a there is a plantions tors given? lists? conditions? plan exists of length � kno given yes yes/no expspace-comp. nexptime-comp.function in the yes nexptime-comp. nexptime-comp.symbols, input no no exptime-comp. nexptime-comp.and no� pspace-complete pspace-complete�nitely yes yes/no pspace � pspace �many �xed in yes np � np �constant advance no no p np �symbols no� nlogspace npall pre- given yes yes/no pspace-complete� pspace-completedicates in the yes np-complete� np-completeare input no no p � np-complete0-ary no�/no
 nlogspace-comp. np-complete(propo- �xed in yes/no yes/no constant constantsitions) advance time time�These results are independent of whether the operators have conditional e�ects.�No operator has more than one precondition.
Every operator with more than one precondition is the composition of other operators.�With pspace- or np-completeness for some sets of operators.�Results due to Bylander [5].1 IntroductionMuch planning research has been motivated, in one way or another, by the di�culty ofproducing complete and correct plans. For example, techniques such as abstraction [29, 7,28, 38] and task reduction [33, 7, 38] were developed in an e�ort to make planning moree�cient, and concepts such as deleted-condition interactions were developed to describesituations which make planning di�cult.



1 INTRODUCTION 3Despite the acknowledged di�culty of planning, it is only recently that researchers havebegun to examine the computational complexity of planning problems and the reasons forthat complexity [8, 5, 19, 20, 26, 27]. This research has yielded some surprising results.For example, Gupta and Nau [19, 20] have shown that contrary to prior expectations,deleted-condition interactions are easy to handle in blocks-world planning.Pednault [30] suggests that since planning is intractable in general, researchers shouldtry to identify constraints that will lead to e�cient planning. The current paper addressesthis goal, by examining how the complexity of domain-independent planning depends onthe nature of the planning operators.We consider planning problems in which the current state is a set of ground atoms,and each planning operator is a STRIPS-style operator consisting of three lists of atoms: aprecondition list, an add list, and a delete list. Our results can be summarized as follows:1. The decidability results are shown in Table 1. If function symbols are allowed,then determining, in general, whether a plan exists1 is undecidable (more speci�cally,semidecidable).2 This is true even if we have no delete lists and the precondition listof each operator contains at most one (non-negated) atom. If no function symbols areallowed and only �nitely many constant symbols are allowed, then plan existence isdecidable, regardless of the presence or absence of delete lists and/or negated precon-ditions.Even when function symbols are present, plan existence is decidable if the planningdomains being considered have no deletion lists, no negated atoms occur in the pre-condition list, and the domains satisfy certain acyclicity and bounded-ness properties.Whether the planning operators are �xed in advance or given as part of the input,and whether or not they are allowed to have conditional e�ects, does not a�ect theseresults.2. The complexity results are shown in Table 2. When there are no function symbolsand only �nitely many constant symbols (so that planning is decidable), the compu-tational complexity varies from constant time to expspace-complete, depending onthe following conditions:� whether or not we allow delete lists and/or negative preconditions,� whether or not we restrict the predicates to be propositional (i.e., 0-ary),� whether we �x the planning operators in advance, or give them as part of theinput.The presence or absence of conditional operators does not a�ect these results.3. We have solved an open problem stated by Chapman in [8]: whether or not planningis undecidable when the language contains in�nitely many constants but the initialstate is �nite. In particular, this problem is decidable in the case where the planningoperators have no negative preconditions and no delete lists. If the planning operatorsare allowed to have negative preconditions and/or delete lists, then the problem isundecidable.1The formal de�nition of this problem appears in Section 2.2We use \decidable" and \undecidable" interchangably with \recursive" and \recursively enumerable,"respectively.



2 PRELIMINARIES 44. Chapman's Second Undecidability Theorem states that \planning is undecidable evenwith a �nite initial situation if the action representation is extended to representactions whose e�ects are a function of their input situation" [8], i.e., if the languagecontains function symbols and in�nitely many constants. Our results show that evenwith a number of additional restrictions, planning is still undecidable.We also correct a misimpression about this theorem, which has been thought by someresearchers [31, 11] to refer to operators that have conditional e�ects. It does not|and as we mentioned above, our decidability and complexity results are una�ected bywhether or not the operators have conditional e�ects.The rest of this paper is organized as follows. Section 2 contains the basic de�nitions.Section 3 contains the decidability and undecidability results, and Section 4 compares andcontrasts them with Chapman's results. Section 5 presents the complexity results. Section 6discusses the related work. Section 7 contains concluding remarks. Section 7.3 discussesfuture research directions. The proofs of the theorems and lemmas appear in the appendices.2 PreliminariesResearchers in planning have long been interested in planning with STRIPS-style operators,and this interest still continues [5, 8, 19, 26, 27]. In the original STRIPS planner [12], theplanning operators' precondition lists, add lists, and delete lists were allowed to containarbitrary well-formed formulas in �rst-order logic. However, there were a number of prob-lems with this formulation, such as the di�culty of providing a well-de�ned semantics forit [23]. Thus, in subsequent work, researchers have placed severe restrictions on the natureof the planning operators [28]. Typically, the precondition lists, add lists and delete listscontain only atoms, and the goal is a conjunct of ground or existentially quanti�ed atoms.Our de�nitions below are in accordance with such commonly accepted formulations.De�nition 2.1 Let L be any �rst-order language generated by �nitely many constantsymbols, predicate symbols, and function symbols. Then a state is any �nite set of groundatoms in L.3Intuitively, a state tells us which ground atoms are currently true: if a ground atom A is instate S, then A is true in state S, and if B =2 S, then B is false in state S. Thus, a state issimply an Herbrand interpretation for the language L, and hence each formula of �rst-orderlogic is either satis�ed or not satis�ed in S according to the usual �rst-order logic de�nitionof satisfaction.De�nition 2.2 Let L be an ordinary �rst-order language. Then a planning operator � isa 4-tuple (Name(�);Pre(�);Add(�);Del(�)), where1. Name(�) is a syntactic expression of the form �(X1; : : : ; Xn) where each Xi is avariable symbol of L;2. Pre(�) is a �nite set of literals, called the precondition list of �, whose variables areall from the set fX1; : : : ; Xng;3It is standard practice to assume that �rst-order languages contain only �nitely many constant symbols,and that states contain only �nitely many atoms. However, in order to compare some of our results withChapman's [8] results, in a few places in this paper we will be interested in violating one or both of theseassumptions. When we do so, we will say so explicitly.



2 PRELIMINARIES 5ab dc e(a) initial con�guration bcd(b) goal con�gurationFigure 1: Initial and goal con�gurations for �ve blocks a; b; c; d; e.3. Add(�) and Del(�) are both �nite sets of atoms (possibly non-ground) whose variablesare taken from the set fX1; : : : ; Xng. Add(�) is called the add list of �, and Del(�)is called the delete list of �.Observe that negated atoms are allowed in the precondition list, but not in the add anddelete lists.When de�ning a planning operator �, often Name(�) will be clear from context. In suchcases, we will not always specify Name(�) explicitly.De�nition 2.3 A �rst-order planning domain (or simply a planning domain) is a pairP = (S0;O), where S0 is a state called the initial state, and O is a �nite set of planningoperators. The language of P is the �rst-order language L generated by the constant,function, predicate, and variable symbols appearing in P, along with an in�nite number ofadditional variable symbols.De�nition 2.4 A goal is a conjunction of atoms which is existentially closed (i.e., thevariables, if any, are existentially quanti�ed).De�nition 2.5 A planning problem is a triple P = (S0;O; G), where (S0;O) is a planningdomain and G is a goal.Example 2.1 (Blocks World) Suppose we want to talk about a blocks-world planningdomain in which there are �ve blocks a; b; c; d; e, along with the \stack", \unstack", \pickup",and \putdown" operators used by Nilsson [28]. Suppose the initial con�guration is as shownin Fig. 1(a), and the goal is to have b on c on d, as shown in Fig. 1(b). Then we will de�nethe language, operators, planning domain, and planning problem as follows:1. The language L will contain �ve constant symbols a; b; c; d; e, each representing (in-tuitively) the �ve blocks. L will contain no function symbols, and will contain thefollowing predicate symbols: \handempty" will be a propositional symbol (i.e. a 0-arypredicate symbol), \on" will be a binary predicate symbol, and \ontable", \clear", and\holding" will be unary predicate symbols. In addition, we will have a supply of vari-able symbols, say, X1; X2; : : : : Note that operator names, such as \stack", \unstack",etc., are not part of the language L.2. The \unstack" operator will be the following 4-tuple:Name(unstack) = unstack(X1; X2)Pre(unstack) = fon(X1; X2); clear(X1); handempty()gDel(unstack) = fon(X1; X2); clear(X1); handempty()gAdd(unstack) = fclear(X2); holding(X1)g



2 PRELIMINARIES 6The \stack", \pickup", and \putdown" operators are de�ned analogously.3. The planning domain will be (S0;O), where S0 and O are as follows:S0 = fclear(a); on(a; b); on(b; c); ontable(c); clear(d);on(d; e); ontable(e); handempty()g;O = fstack; unstack; pickup; putdowng:The planning problem will be (S0;O; G), where G = fon(b; c); on(c; d)g.De�nition 2.6 Let P = (S0;O) be a planning domain, � be an operator in O whose nameis �(X1; : : : ; Xn), and � be a substitution that assigns ground terms to each Xi; 1 � i � n.Suppose that the following conditions hold for states S and S 0:fA� : A is an atom in Pre(�)g � S;fB� : :B is a negated literal in Pre(�)g \ S = ;;S 0 = (S � (Del(�)�)) [ (Add(�)�) :Then we say that � is �-executable in state S, resulting in state S 0. This is denoted sym-bolically as S �;�=) S0:De�nition 2.7 Suppose P = (S0;O) is a planning domain and G is a goal. A plan thatachieves G is a sequence S0; : : : ; Sn of states, a sequence �1; : : : ; �n of planning operators,and a sequence �1; : : : ; �n of substitutions such thatS0 �1;�1=) S1 �2;�2=) S2 � � � �n;�n=) Sn (1)and G is satis�ed by Sn, i.e. there exists a ground instance of G that is true in Sn. Thelength of the above plan is n.We will often say that (1) above is a plan that achieves G.De�nition 2.8 Let P = (S0;O) be a planning domain or P = (S0;O; G) be a planningproblem; and let L be the language of P. Then1. � is positive if Pre(�) is a �nite set of atoms (i.e. negations are not present in Pre(�)).2. � is deletion-free if Del(�) = ;.3. � is context-free if jPre(�)j � 1, i.e., � has at most one precondition.4. � is side-e�ect-free if jAdd(�) [ Del(�)j � 1, i.e., � has at most one postcondition.5. L is function-free if it contains no function symbols.6. L is propositional if every predicate P in L is propositional (i.e., 0-ary).If every operator in O is positive, deletion-free, context-free, and/or side-e�ect-free, thenwe say that O (and thus P) is, too. Likewise, P is function-free and/or propositional if Lis. Note that if P is propositional, then no operator will ever use function symbols, henceit will not matter whether P is function-free or not.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 7De�nition 2.9 plan existence is the following problem:Given a planning problem P = (S0;O; G), does there exist a plan in P thatachieves G?De�nition 2.10 plan length is the following problem:4Given a planning problem P = (S0;O; G) and an integer k encoded in binary,does there exist a plan in P of length k or less that achieves G?3 Decidability and Undecidability ResultsIn this section, we show that logic programming is essentially the same as planning withoutdelete lists. This is established by showing how to transform a deletion-free planning domaininto a logic program such that for all goals G, the goal G is achievable from the planningdomain i� the logical query that G represents is provable from the corresponding logicprogram.5 Furthermore, we show that every logic program may be transformed to anequivalent planning domain. As a consequence of these equivalences, we can use resultson the complexity of logic programs and deductive databases to demonstrate the followingresults:� In the presence of function symbols, plan existence is undecidable even if:{ we have no delete lists;{ we have no delete lists, and all operators have a most one positive preconditionand no negative preconditions.The presence or absence of negative preconditions in the planning operators makesno di�erence where decidability is concerned6 (though, as we shall see later, it doesmake a di�erence when we study the complexity of decidable planning domains).4This de�nition follows the standard procedure for converting optimization problems into yes/no decisionproblems. What really interests us, of course, is the problem of �nding the shortest plan that achieves G.This problem is at least as di�cult as plan length, and in some cases harder. For example, in the Towersof Hanoi problem [1] and certain generalizations of it [17], the length of the shortest plan can be found inlow-order polynomial time|but actually producing this plan requires exponential time and space, since theplan has exponential length. For more information on the relation between the complexity of optimizationproblems and the corresponding decision problems, see [16, pp. 115{117].5This should be intuitively true, anyway, but the formal establishment of this equivalence is necessarybefore attempting to apply results from logic programming and deductive databases to planning problems.An important point to note is that we will only be considering truth in Herbrand models (cf. Shoen�eld[35]) in this paper. Our undecidability/decidability results rely on this fact. In the context of our domainrepresentation, it doesn't make much sense to consider non-Herbrand models because the domains of suchmodels often contain objects that do not occur in the language, and these objects can not be referred toindirectly either, as we do not allow universal quanti�cation. In the case of blocks world, for instance, thiscorresponds to assuming (inside the model) that there are blocks on the table that cannot be referred toin the language. Obviously, this is not relevant to planning. Thus, when we talk of logical consequences ofprograms, we will be referring to those sentences that are true in all Herbrand models of the program. Forfunction-free languages, this condition is well known to yield decidability of logical consequence [32, 39].6The only exception is when L is extended to contain in�nitely many constants. This is discussed indetail in section 4.1



3 DECIDABILITY AND UNDECIDABILITY RESULTS 8� plan existence is decidable if we do not allow function symbols in our languageand our �rst-order language is �nitely generated (in particular, this means that only�nitely many ground terms are present in the language). The presence or absence ofdelete lists does not a�ect the decidability result.� In the presence of function symbols, plan existence is decidable for positive, deletion-free planning domains that possess certain acyclicity and bounded-ness properties.Acyclicity properties are de�ned in terms of the syntactic dependencies between dif-ferent operators in the planning domain, and are independent of the initial state.� When our planning domain P = (S0;O) is �xed in advance, then the problem \given agoal G, does there exist a plan that achieves G?" may still be undecidable dependingon P.7 The presence or absence of delete lists does not a�ect this result.� Even if we extend the operator de�nition to allow conditional e�ects, all of the aboveresults still hold.3.1 Equivalence between Logic Programming and PlanningWe now proceed to establish the equivalence between logic programming and planningwithout delete lists. Subsequently (in Section 3), we show how to do away with delete listswhen function symbols are absent.If P is deletion-free, then the logic program translation of an operator � 2 O, denotedby LP(�), is the set of clausesLP(�) = f(8)(A B1 & : : :&Bn) : A 2 Add(�)g;where Pre(�) = fB1; : : : ; Bng.De�nition 3.1 The logic program translation of a planning domain P = (S0;O), denotedLP(P), is the set of clauses LP(P) = S0 [ [�2OLP(�):Remark 3.1 Note that if we consider planning domains P = (S0;O) where S0 is in�nite,then LP(P) would contain in�nitely many unit clauses. The in�nite nature of LP(P) willturn out to be irrelevant as far as establishing the equivalences between planning and logicprogramming are concerned (cf. Theorems 3.1 and 3.2) and the undecidability results thatfollow from the equivalence (cf. Theorem 3.8). This irrelevance is due to the compactnesstheorem for �rst-order logic.Note that if P = (S0;O) is a positive deletion-free planning domain, then LP(P) is ade�nite (i.e., negation-free) logic program. The following theorem shows that achievabilityof a goal G in P is identical to provability of G from LP(P).7The phrase \P = (S0;O) is �xed in advance" means that the planning domain P is not part of the inputto a Turing machine; the only input is the goal G. In other words, P is a speci�c planning domain, andhence, there are Turing machines that can (intuitively) be specialized for the purpose of generating plans inthis speci�c domain. In many well known planning problems, the set of operators is �xed; for example, inthe blocks world (see Example 5.1), we have only four operators: stack, unstack, pickup and putdown. Ourresult shows that even if the set of operators is �xed, then depending on what the operators are, it still maybe undecidable whether or not there is a plan for G.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 9Theorem 3.1 (Equivalence Theorem I) Suppose P = (S0;O) is a positive, deletion-free planning domain and G is a goal. Then there is a plan to achieve G from P i�LP(P) j= G.De�nition 3.2 Suppose C is a de�nite Horn clause, i.e. a universally closed statement ofthe form A  B1& : : :&Bnwhere A;B1; : : : ; Bn are all atoms. When n = 0, C is said to be a fact. The planningoperator associated with C, denoted opC , is speci�ed as follows:Name: opC( ~X); where ~X is a vector of all variables occuring in CPre: fB1; : : : ; BngAdd: fAgDel: ;:Given a de�nite logic program P , the planning domain translation of P , denoted PD(P ), isthe pair (S(P );O(P )), whereS(P ) = fA : A is a ground instance of a fact in Pg;O(P ) = fopC : C is a clause in P , C not a factg:Theorem 3.2 (Equivalence Theorem II) Suppose P is a de�nite logic program and Gis any goal. Then P j= G i� there is a plan to achieve G from PD(P ) = (S(P );O(P )).Theorem 3.1 holds only when P is positive. The reason for this is that if P is notpositive, then LP(P) is a logic program that may contain negation in its body. Logicprogramming interprets negation in LP(P) as \failure to prove", which is di�erent thanthe interpretation of negation in the planning domain P. Intuitively, negation in logicprogramming says \conclude :p if it is impossible to prove p". The corresponding notionof negation in planning would be \conclude :p if there is no plan to achieve p" which ismuch stronger than saying \p is false in the current state." Thus, if P is not positive, thenin some cases G will be achievable in P but LP(P) j= G will be false. To see this, considerthe following example:Example 3.1 Consider the planning domain P = (S0;O) that contains the following twooperators �1; �2: Pre(�1) = f:bg Pre(�2) = fcgAdd(�1) = fag Add(�2) = fbgSuppose our initial state is the state fcg. Clearly, there is a plan to achieve a by simplyexecuting operation �1 in the initial state.Now consider LP(P), which is the following logic program:a :bb cc The set of atoms provable from this program according to logic programming (all majorsemantics for logic programs agree on this program) is fb; cg, i.e. a cannot be obtained eventhough our planning domain admits a plan that achieves a.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 103.2 Undecidability and DecidabilityBy combining Theorem 3.1 and Theorem 3.2 with various known decidability and undecid-ability results about logic programs, we obtain the following results. For our purposes, themost important of these results is Corollary 3.3, which says that even if we place some ratherstrict restrictions on the nature of the planning operators, plan existence is undecidable.At this point we should emphasize that function symbols are allowed, unless explicitlystated otherwise.Corollary 3.1 (Semi-Decidability Results)1. fG : G is an existential goal such that there is a plan to achieve G from P = (S0;O)gis a recursively enumerable subset of the set of all goals.2. Given any recursively enumerable collection X of ground atoms (which, of course, aregoals), there is a positive deletion-free planning domain P = (S0;O) such that fA : Ais a ground atom such that there is a plan to achieve A from Pg = X3. If we restrict P to be positive and deletion-free, then plan existence is strictlysemi-decidable.Corollary 3.2 The problem \given a positive deletion-free planning domain P = (S0;O),is the set of goals achievable from P decidable?" is �02-complete.Corollary 3.3 If we restrict P to be positive, deletion-free, and context-free, then planexistence is still strictly semi-decidable.Corollary 3.4 Suppose P = (S0;O) is a positive, deletion-free planning domain. Then theproblem: \given a goal G, does there exist a plan to achieve G?" is decidable i� the set ofgoals provable from LP(P) is decidable.In the above undecidability results, one restriction we did not make was to disallowfunction symbols in the planning language. In this section, we show that if function symbolsare not allowed, then planning is decidable. To do this, we �rst prove decidability in arestricted case, where the planning operators are also deletion-free and function-free:Theorem 3.3 If we restrict P to be deletion-free and function-free, then plan existenceis decidable.We now show that when L contains no function symbols, we can do away with deletelists. The idea is intuitively the same as that of Green [18, 28] (vis-a-vis the famous \Green'sformulation of planning"), with one di�erence: Green introduces function symbols even ifthe original language contained none: we introduce new constants. When the language isfunction-free, only �nitely many new constants are included.Theorem 3.4 (Eliminating Delete Lists and Negated Preconditions) Suppose P isa function-free planning domain. Then there is a positive deletion-free planning domainP0 = (S 00;O0) such that for each goalG � (9)(A1 & : : :& An);



3 DECIDABILITY AND UNDECIDABILITY RESULTS 11there is a goal G0 � (9)(A01 & : : :&A0n & poss(S));where \poss" is a new unary predicate symbol and for all 1 � i � n, if Ai � p(t1; : : : ; tn),then A0i � p(t1; : : : ; tn; S) where S is a variable symbol. Furthermore, G is achievable fromP i� G0 is achievable from P0.An important point to note is that even though delete lists may be removed, the sizeof P0 is much larger than P, and our reduction is by no means polynomial. It is possible,but very unlikely that such a polynomial reduction exists, because we have proved thatplan existence without any restrictions is expspace-complete, where as the same problemfor positive deletion-free domains is exptime-complete. A polynomial reduction from theunrestricted case to the other would imply exptime = expspace, which would be a verysigni�cant result indeed. Whether expspace = exptime or not, has been one of the mostdi�cult questions of theory of computing. Although most researchers believe it is false,nobody has been able to come up with a proof of it (so far).Theorem 3.4 allows us to establish the decidability of plan existence in function-freedomains as follows: given a function-free planning domain P, convert it into a function-free, deletion-free planning domain P0 by using the transformation procedure in the proof ofTheorem 3.4 (which is contained in the appendix). Theorem 3.3 then allows us to concludethat plan existence in the function-free, deletion-free domain P0 is decidable. As exactlythe same goals are achievable in the domains P0 and P, it follows that plan existence in Pis decidable. This summarizes the proof of the following result.Theorem 3.5 (Decidability of Function-Free Planning) If we restrict P to be function-free, then plan existence is decidable.3.3 Restricted Planning DomainsThough Corollary 3.1 indicates that planning in the presence of function symbols is un-decidable, we can place speci�c restrictions on planning domains (even in the presence offunction symbols) that guarantee decidability. In Section 3.3.1, we introduce certain syn-tactic acyclicity properties, and in Section 3.3.2, we introduce two semantic properties: onede�nes a class of planning domains (called weakly recurrent domains), while the other char-acterizes a class of goals called bounded goals. Any planning domain that is acyclic turnsout to be weakly recurrent as well. We then use known results on weakly recurrent logicprograms [3] to derive decidability results for weakly recurrent planning domains.3.3.1 Acyclic Planning DomainsDe�nition 3.3 A level mapping for a language L is a mapping ` : AT (L) ! N whereAT (L) is the set of ground atoms in language L and N is the set of natural numbers.A predicate level mapping for a language L is a mapping ] : Pred(L)! N where Pred(L)is the set of predicate symbols in language L.De�nition 3.4 A logic program P is said to be atomically acyclic i� there exists a levelmapping ` such that whenever A  B1 & : : :& Bn



3 DECIDABILITY AND UNDECIDABILITY RESULTS 12is a ground instance of a clause in P , `(A) > `(Bi) for all 1 � i � n. ` is said to be a witnessto the atomic acyclicity of P .Analogously, a logic program P is said to be predicate acyclic there exists a predicate levelmapping ] such that wheneverp0(~t0)  p1(~t1) & : : :& pn(~tn)is a clause (not necessarily ground) in P , ](p0) > ](pi) for all 1 � i � n.Intuitively, atomic acyclicity guarantees that the dependencies expressed in the programare not recursive. For example, the program containing clausesp  qq  pinvolves a cycle. This program is not acyclic.It is also easy to see that predicate acyclicity implies atomic acyclicity { to see this, notethat if ] is a witness to the predicate acyclicity of P , then we can de�ne a level mapping `as follows: `(p(~t)) = ](p):It is straightforward to verify that ` is a witness to the atomic-acyclicity of P .Furthermore, observe that predicate-acyclicity can be checked in linear-time. To see this,observe that given a logic program P , we can draw a graph on the predicate symbols in Pas follows: there is an arc from p to q i� there is a clause in P having an atom of the formp(~t) in its head, and an atom of the form q(~s) in its body. This graph can be constructedin linear time by reading in clauses in P one by one. P is acyclic i� the resulting graph isacyclic. The result follows as checking for cycles in a graph can be solved in linear time.We now show how the de�nitions of predicate acyclicity and atomic acyclicity can be ex-tended to apply to positive, deletion-free planning domains.De�nition 3.5 Suppose P = (S0;O) is a positive, deletion-free planning domain. P is saidto be atomically acyclic i� there exists a level mapping ` such that for all ground instances,�, of operators in P, it is the case that `(A) > `(B) for all A 2 Add(�) and B 2 Pre(�).De�nition 3.6 Suppose P = (S0;O) is a positive, deletion-free planning domain. P issaid to be predicate acyclic i� there exists a predicate level mapping ] such that for alloperators � in P, it is the case that ](p) > ](q) for all predicates p occurring in Add(�) andall predicates q occurring in Pre(�).As in the case of logic programs, if a planning domain is predicate acyclic then it is alsoatomically acyclic. Furthermore, the following two results shows a close connection betweenacyclicity of logic programs and planning domains.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 13Proposition 3.1 Suppose P = (S0;O) is a positive, deletion-free planning domain. Then:1. If P is atomically acyclic, then the logic program translation, LP(P), of P, is atomi-cally acyclic.2. If P is predicate acyclic, then LP(P) is predicate acyclic.The above proposition is true because the level mapping that witnesses the predi-cate/atomic acyclicity of P also witnesses the predicate/atomic acyclicity of LP(P). Thesame reasoning may be applied to prove the next result.Proposition 3.2 Suppose P is a de�nite logic program. Then:1. If P is atomically acyclic, then PD(P ) is atomically acyclic.2. If P is predicate acyclic, then PD(P ) is predicate acyclic.3.3.2 Weakly Recurrent Planning DomainsThe above two results show that our transformations, LP, and PD, from logic programs toplanning domains (and vice-versa) preserve atomic and predicate acyclicity. Bezem [3] hasshown that a class of logic programs called weakly recurrent programs possess appealingdecidability properties. All predicate and atomically acyclic programs are weakly recurrent(though the converse may not be true). Below, we will present Bezem's de�nition of weaklyrecurrent logic programs, and then show how to de�ne an analogous notion for planningdomains which allows these decidability properties to be applied to planning.De�nition 3.7 (Bezem [3]) A de�nite logic program is weakly recurrent i� there exists alevel mapping ` such that for every clause in P having a ground instance of the form:A  B1& : : :&Bnsuch that if P 6j= A (i.e. A is not a logical consequence of P ), there exists an 1 � i � n suchthat P 6j= Bi and `A) > `(Bi).Intuitively, a weak recurrence says that non-provability of A can be established by verifyingthe non-provability of some strictly lower-level atoms B.Theorem 3.6 (Bezem [3]) If P is a weakly recurrent de�nite logic program, then the setof ground atoms provable from P is recursive (i.e. decidable).Furthermore, every recursive set of ground atoms of language L can be expressed as the setof ground atoms provable from some weakly recurrent logic program P .Note that the second part of the above theorem does not say that every program whoseset of ground atomic consequences is recursive is weakly-recurrent. There are non-recurrentprograms with a recursive set of ground atomic consequences. We now show how the notionof weakly recurrent logic programs can be used to de�ne a similar notion for planningdomains.De�nition 3.8 A planning domain P = (S0;O) is weakly recurrent i� there exists a levelmapping ` such that for every ground instance, �, of an operator in O, it is the case that:



3 DECIDABILITY AND UNDECIDABILITY RESULTS 14If A 2 Add(�) is such that there is no plan to achieve A from P, then there is aBi 2 Pre(�) such that there is no plan to achieve Bi from P and `(A) > `(Bi).The property of weak recurrence is preserved by the transformations PD and LP.Proposition 3.3 (1) If P = (S0;O) is a weakly recurrent, positive, deletion-free planningdomain, then LP(P) is a weakly recurrent logic program.(2) Conversely, if P is a weakly recurrent de�nite logic program, then PD(P ) is a weaklyrecurrent planning domain.Part (1) of Proposition 3.3 follows immediately because the level mapping that witnessesthe weakly-recurrent property of P also witnesses the weakly-recurrent property of LP(P).Part (2) follows similarly.De�nition 3.9 Suppose G = (9)(A1& : : :&An) is a goal. Let Grd(G) denote the set of allground instances of the quanti�er-free conjunction (A1& : : :&An). G is said to be boundedw.r.t. a level mapping ` i� there exists an integer b such that for every ground instance(A1& : : :&An)� in grd(G), it is the case that`(Ai) < b:Note, in particular, that when our language L is function-free, all goals are bounded w.r.t.any level mapping.Example 3.2 Consider the language L containing one unary predicate symbol p one unaryfunction symbol s, and one constant symbol a. Let ` be the level mapping which assigns 0 top(a), 1 to p(s(a)), 2 to p(s(s(a))), and i to p(si(a)). Then the goal (9X)p(X) is not boundedw.r.t. level mapping `. On the other hand, if we consider the level mapping `0 that assigns 0to p(a); p(s(s(a)); : : : ; p(s2i(a)); : : : ; and 1 to p(s(a)); p(s(s(s(a)))); : : : ; p(s2i+1(a)); : : : ; then(9X)p(X) is bounded w.r.t. level mapping `0.Theorem 3.7 (Decidability for Weakly Recurrent Planning Domains) If P = (S0;O)is restricted to be weakly recurrent (via witness `), positive, and deletion-free, and G is re-stricted to be bounded w.r.t. `, then plan existence is decidable.As Predicate Acyclic =) Atomically Acyclic =)Weakly Recurrent;the following results are immediate.Corollary 3.5 If P is a (predicate, resp. atomically) acyclic planning domain, and G isa bounded goal (w.r.t. the level mapping that establishes P's acyclicity), then the problem:\Is G achievable from P ?" is decidable.Furthermore, for all predicate acyclic (via ]) planning domains, every goalG is bounded|take the bound b to be1 + max f](p) j p is a predicate symbol in language LgHence:Corollary 3.6 If P is a predicate acyclic planning domain, and G is any goal, then theproblem: \Is G achievable from P ?" is decidable.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 153.4 Extended Planning DomainsEarlier, we de�ned the language L to contain only �nitely many constant symbols, andstates in L to contain only �nitely many ground atoms. In this section, we consider whathappens when one or both of these assumptions is violated. We also consider what happensif the planning operators are extended to allow conditional e�ects.3.4.1 In�nite Initial States; In�nitely Many ConstantsCorollary 3.1 showed that plan existence is semi-decidable even if P is positive anddeletion-free. One might think that allowing in�nite initial states would increase the di�-culty of plan existence even further, but the following theorem shows that it does not.Theorem 3.8 If P = (S0;O) is restricted to be positive and deletion-free, but the initialstate S0 is allowed to be an in�nite, decidable set of ground atoms, plan existence is(strictly) semi-decidable.The following theorem states that if the initial state is allowed to be in�nite and thenumber of constant symbols in the language is allowed to be in�nite, then any planningdomain whose language contains function symbols can be reduced to an equivalent planningdomain whose language contains no function symbols.Theorem 3.9 Let P = (S0;O) be any planning domain whose language L contains functionsymbols, and whose initial state S0 may possibly be in�nite. Then there is a planning domainP0 = (S 00;O0) having the following properties: P0's language L0 contains in�nitely manyconstants but no function symbols, the initial state S00 may be in�nite, and for every goal Gin P, there is a goal G0 in P0 such that there is a plan for G in P i� there is a plan for G0in P0.In the above theorem, the basic idea is to encode each term f(t1; : : : ; tn) of L as aconstant symbol kf(t1;:::;tn) in L0. To do this, we must also add an \equivalence condition",i.e., an atom saying that applying f to t1; : : : ; tn yields kf(t1;:::;tn). This atom must appearin the preconditions of every planning operator that contains the term f(t1; : : : ; tn), andthus it must also appear in every state. Furthermore, if any of the terms t1; : : : ; tn containsfunction symbols, then it must be encoded in the same way.Since the above encoding adds no deletions and no negative preconditions to the oper-ators, the following corollary follows immediately:Corollary 3.7 If P is positive and/or deletion-free, then P0 is too.From Corollary 3.3, if the language contains function symbols then planning is undecid-able, even if the planning domain is restricted to be positive and deletion-free. Thus, fromthe above results, the following corollary follows immediately:Corollary 3.8 If we restrict P = (S0;O) to be positive, deletion-free, and function-free, butallow S0 to be in�nite and allow P's language to contain in�nitely many constant symbols,then plan existence is semi-decidable.Corollary 3.8 subsumes Theorem 3.8, in the following sense. Although the theorem restrictsthe set of constant symbols to be �nite, it allows function symbols. Any function-free



3 DECIDABILITY AND UNDECIDABILITY RESULTS 16planning domain that contains in�nitely many constant symbols c1; c2; : : : can easily bemapped into an equivalent planning domain that contains one constant symbol c and oneunary function symbol f , by mapping c1 7! c, c2 7! f(c), and so forth. Thus, Corollary 3.8shows that even with further restrictions than described in Theorem 3.8, planning is stillundecidable.One might think that if the planning language is allowed to contain in�nitely manyconstants, this should be su�cient to make plan existence undecidable even if the initialstate is restricted to be �nite. However, decidability depends on whether all of these con-stants are relevant for planning. If the initial state is �nite, then all but a �nite number ofground atoms will be false in the initial state. An operator can introduce a new constant toa plan only if that constant does not appear in any of the operator's positive preconditions.Thus, when we restrict the domain to be positive and deletion-free, the only way we canintroduce a new constant is by using an operator with no preconditions. However, in thiscase there is no reason why we should not use a basic constant (i.e., a constant that appearsin the initial state or in an operator de�nition) to do the same job. Hence the problem isdecidable. On the other hand, if we allow negated preconditions, the previous argumentdoes not hold. We can introduce new constants by using operators with negated precon-ditions, and we cannot replace these constants with basic constants. Hence the problembecomes undecidable.The above argument leads to the following theorems:Theorem 3.10 If P's language L is allowed to contain in�nitely many constants, thenplan existence is semi-decidable even if P = (S0;O) is restricted to be deletion-free andfunction-free (and S0 is �nite).8The statements of Theorem 3.10 and Corollary 3.8 are quite similar. In both of them,we have extended the language to allow in�nitely many constant symbols, and have re-stricted the operators to be deletion-free and function-free. Under these conditions, planexistence is undecidable if we either� allow the initial state to be in�nite (Corollary 3.8), or� allow non-positive operators (Theorem 3.10).Under this same set of conditions, the following theorem says that if we restrict the initialstate to be �nite and the operators to be positive, then plan existence is decidable.Theorem 3.11 If the language is allowed to contain in�nitely many constants but P =(S0;O) is restricted to be positive, deletion-free, and function-free (and S0 is �nite), thenplan existence is decidable.3.4.2 Conditional OperatorsSeveral researchers [8, 10, 31, 30] have been interested in actions whose e�ects are contextdependent, that is, dependent on the input situation. Thus, we found it necessary toexamine the complexity of planning with such operators. We will be using Dean's [10]formulation of these operators, which is a more general version of what Chapman [8] uses.8Tom Bylander (personal communication) has proved a more restricted version of this theorem, in whichhe requires that the planning operators be allowed to contain delete lists. In proving our more generaltheorem, we have bene�ted from his proof technique.



3 DECIDABILITY AND UNDECIDABILITY RESULTS 17De�nition 3.10 A conditional operator � is a �nite set ft1; t2; : : : ; tng, where each ti is atriple of the form hPrei;Deli;Addii. Prei, Deli, and Addi correspond to the preconditionlist, delete list and add list associated with the i'th triple, respectively. Hence each of theselists are sets of atoms.De�nition 3.11 Let � be a conditional operator, � be a ground substitution for the vari-ables appearing in �, S be a state, andS 0 = (S � [i2IDeli�) [ [i2IAddi�;where I = fi : S satis�es Prei�g:Then we say that � is �-executable in state S, resulting in state S0. This is denoted asS �;�=) S0:The de�nitions of positive and deletion-free can be trivially extended to include condi-tional operators.Obviously, planning with regular operators is a special case of planning with condi-tional operators, where each conditional operator is restricted to contain exactly one triplehPre;Del;Addi. Thus planning with conditional operators is at least as hard as planningwith regular operators, so all of our undecidability results still hold if conditional operatorsare allowed.The next point to be investigated is whether allowing conditioal operators a�ects ourdecidability results (Theorems 3.3, 3.5, 3.7, and 3.11). Below, we show that it does not:� Theorems 3.3 and 3.5 restrict the planning domain to be function-free. Thus we haveonly a �nite number of ground terms, so the number of states is �nite. Hence, wecan search all the states reachable from the initial state to see whether one of themsatis�es the goal in �nite time, so the problem remains decidable. Thus Theorems 3.3and 3.5 are una�ected if conditional operators are allowed.� Theorems 3.7 and 3.11 restrict the planning domain to be positive and deletion-free. Ifa positive, deletion-free planning domain contains conditional operators, the followingtransformation creates an equivalent positive and deletion-free planning domain thathas no conditional operators. This shows that allowing conditional operators does nota�ect Theorems 3.7 and 3.11.Let P = (S0;O) be a planning domain in which the operator de�nition is extendedto allow conditional operators. Let � = ft1; : : : ; tng be any one of these conditionaloperators, where for each i, ti = hPrei;Deli;Addii.We can de�ne an equivalent set of STRIPS-style operators, none of which has con-ditional e�ects. For every subset I � f1; : : : ; ng, �I is the following STRIPS-styleoperator:Name: �I(VI)Pre: Si2I PreiDel: Si2I DeliAdd: Si2I Addi



4 COMPARISON WITH CHAPMAN'S UNDECIDABILITY RESULTS 18where VI consists of all variables appearing in Pre(�I), Del(�I), and Add(�I).Suppose we are given a planning domain P that contains the conditional operator� = ft1; : : : ; tng, and let P0 be the planning domain in which � is replaced by theset of unconditional operators f�Ig de�ned above. Then P and P0 are equivalentplanning domains, in the sense that S �;�=) S0 in P if and only if there is an operator�I in P0 that is �-executable in S, and S �i;�=) S0.The above arguments prove the following:Proposition 3.4 (Irrelevance of Conditional Operators for Decidability) Whetheror not the de�nition of a planning domain is extended to allow conditional planning opera-tors makes no di�erence in any of our decidability and undecidability results.4 Comparison with Chapman's Undecidability ResultsTo date, the best-known results on decidability and undecidability in planning systemsare those of Chapman [8]. However, there is a certain amount of confusion about whatChapman's undecidability results actually say, because some of his assumptions becomeclear only after a careful reading of the paper. To clarify the meaning of Chapman'sundecidability results, we now compare and contrast his results with ours.4.1 First Undecidability TheoremChapman's �rst undecidability theorem ([8, pp. 370{371]) says that all Turing machineswith their inputs may be encoded as planning problems in the TWEAK representation, andhence planning is undecidable. To prove this theorem, Chapman makes use of the followingassumptions:1. the planning language is function-free;2. \an in�nite [but recursive] set of constants ti are used to represent the tape squares"[8, p. 371];3. the initial state is in�nite (but recursive). In particular, \there must be countablymany successor propositions to encode the topology of the tape (and also countablymany contents propositions to make all but �nitely many squares blank)" [8, p. 371].Our Corollary 3.8 subsumes this result, by showing that with the same set of assump-tions, plan existence is undecidable even if all of the planning operators are positive anddeletion-free.In his discussion of the First Undecidability Theorem [8, p. 344], Chapman says:This result is weaker than it may appear : : : the proof uses an in�nite (thoughrecursive) initial state to model the connectivity of the tape. It may be that ifproblems are restricted to have �nite initial states, planning is decidable. (Thisis not obviously true though. There are in�nitely many constants, and an actioncan in e�ect \gensym" one by referring to a variable in its post-conditions thatis not mentioned in its preconditions.)



5 COMPLEXITY RESULTS 19Our Theorems 3.10 and 3.11 solve the open problem posed in the above quote. In particular,suppose that Chapman's �rst two assumptions are satis�ed (i.e., the language is function-free, and there are in�nitely many constant symbols), but the initial state is �nite. Then:� plan existence is undecidable, even if all operators are deletion-free;� if the operators are both deletion-free and positive, then plan existence is decidable.4.2 Second Undecidability TheoremThe statement of Chapman's second undecidability theorem is that \planning is undecidableeven with a �nite initial state if the action representation is extended to represent actionswhose e�ects are a function of their input situations" [8, p. 373].The meaning of the phrase \e�ects are a function of their input situations" has causedsome confusion. Several researchers, including ourselves [11] and Mark Peot (in his confer-ence presentation of [31]), thought that Chapman meant a special case of the conditionaloperators de�ned in Section 3.4.2. However, our Proposition 3.4 shows that whether or notsuch operators are allowed makes no di�erence in the decidability of plan existence|andan examination the proof of Chapman's theorem makes it clear he is referring to a di�erentkind of operator.In Chapman's proof of the theorem, he makes use of operators that increment anddecrement two counters. Since there is no upper bound on the value of those counters, tode�ne such operators formally would require the use of function symbols. Thus, his phrase\e�ects are a function of their input situations" apparently refers to operators that containfunction symbols. Our Corollary 3.1 shows that if function symbols are allowed, then even ifthere are only �nitely many constant symbols, then plan existence is undecidable. Thus,Corollary 3.1 subsumes the Second Undecidability Theorem.5 Complexity ResultsAs shown in Theorem 3.5, planning is decidable if our language contains �nitely manyconstant symbols, and no function symbols. We now study the complexity of planningdomains that satisfy these conditions. We discuss how delete lists, negated preconditions,propositional operators, and �xing the set of operators a�ects the complexity of planning.5.1 Preliminaries for the Complexity Results5.1.1 What is considered as Input?Since the complexity of a problem is evaluated with respect to the length of the input,it is important to understand precisely what the input is. According to the de�nitionsof plan existence and plan length the problem input consists of a planning problemP = (S0;O; G), where� S0 is the initial state (a set of ground atoms);� O is the set of available planning operators;� G is the goal (an existentially closed set of atoms).



5 COMPLEXITY RESULTS 20The planning language is the language L generated by the predicate symbols, functionsymbols, and constant symbols that appear in this input.Unless we state otherwise, all complexity terms (polynomial, exponential, etc.), shouldbe understood in terms of the length of the input, which we will denote by jjPjj. InSection 5.3, we consider what happens if the set of operators is �xed, and thus excludedfrom the input|but we state this condition explicitly in each result that uses it.5.1.2 Eliminating Negated PreconditionsIn Theorem 3.4, we proved that delete lists and negated preconditions could be \compiledaway," but this translation cannot be done in polynomial time. We show below that ifwe are willing to allow delete lists, then we can remove negations from preconditions ofoperators in polynomial time. Thus, if delete lists are allowed, then negated preconditionsdo not a�ect the complexity of planning.Theorem 5.1 (Eliminating Negated Preconditions) In polynomial time, given anyplanning domain P = (S0;O) we can produce a positive planning domain P0 = (S 00;O0)having the following properties:1. For every goal G, a plan exists for G in P if and only if a plan exists for G in P0.2. For every goal G and non-negative integer l, there exists a plan of length l for G in Pif and only if there exists a plan of length l+2kv for G in P0, where k is the maximumarity among the predicates of P and v = dlg ce, where c is the number of constants inP (i.e., v is the number of bits necessary to encode the constants in binary).To prove the above theorem, the basic idea is this:9 for each predicate P in P, weintroduce another complementary predicate P 0 such that whenever P is true, P 0 is false.The operators in O can easily be modi�ed to achieve this. The problem is that for everyatom that is false in P's initial state S0, we need to assert the corresponding complementaryatom in P0. Since there might be an exponential number of such atoms, we cannot justplace them in S 00. Instead, we assert all these atoms using operators, using a \counter"predicate to keep track of how many of them have been asserted. When all of these atomshave been asserted, we delete the ones corresponding to those appearing in S0, assert theatoms of P that are in S0, and set start() so that we can start imitating the behavior of theoriginal planning problem.Note that P0 will not be deletion-free, even if P is.5.2 Planning When the Operator Set is Part of the InputIn this section, we consider the complexity of planning in the \domain-independent" case,in which the operators are part of the input and thus di�erent problem instances may havedi�erent operator sets.5.2.1 Propositional OperatorsThe following theorems deal with the special case in which all predicates are propositions(i.e., 0-ary). In this case, the number of ground atoms in L is polynomial in jjPjj, since9We again remind the reader that complete proofs appear in the appendix.



5 COMPLEXITY RESULTS 21each atom must appear somewhere in the input. Since a state may be any set of groundatoms, there is an exponential number of states. Since there are no variables, the numberof operator instances is jOj, which of course is polynomial in jjPjj.Theorem 5.2 (Bylander [5])1. If we restrict P to be propositional, then plan existence is pspace-complete.2. If we restrict P to be propositional and positive, then plan existence is pspace-complete.3. If we restrict P to be propositional and deletion-free, then plan existence is np-complete.4. If we restrict P to be propositional, positive, and deletion-free, then plan existenceis in P .5. If we restrict P to be propositional, positive, and side-e�ect-free, then plan existenceis in P .Synopsis of proof. Here are the basic intuitions behind the above theorem; for the detailssee [5]. In general, we might need to use the same operator instance more than once. Forexample, consider the propositional planning problem in which the initial state is S0 = ;,the goal is G = fp; q; rg, and the operators areName: A Name: BPre: ; Pre: fpgDel: ; Del: fqgAdd: fp; qg Add: frgIn order to achieve r, we need to use operator B. To satisfy the precondition p, we need touse operator A. However, since operator B deletes q, we need to use operator A a secondtime, to reassert q. Thus the plan is (A;B;A).To handle such situations, we might have to search through all the states, using someoperators more than once, doing an exponential amount of work|but since the size of eachstate is at most polynomial, we can do this search in pspace.10If P is deletion-free, then once a proposition is asserted, it remains asserted throughoutthe plan. Thus, no operator needs to be used more than once, and the length of the plansare constrained to be polynomial. We still need to decide how to choose the operators andhow to order them in the plan, and thus the problem is np-complete.If P is both positive and deletion-free, then no operator can clobber any goal nor anyother operator, and any operator that is executable remains so throughout the plan. Thus,we no longer care which operators we choose, or how they are ordered. Instead, we can ar-bitrarily choose operators and apply them until either the goal is achieved, or no executableoperator that has not yet been used remains. This takes polynomial time.If P is positive, deletion-free, and context-free, then we can do a backwards searchfor each proposition in the goal set. At each iteration, we nondeterministically choose anoperator that achieves the subgoal, and we make its precondition the new subgoal. We10Although it has not been proved, pspace is believed to be equal to exptime.



5 COMPLEXITY RESULTS 22repeat this until the subgoal is in the initial state, or no such operator to choose exists. Ifwe can �nd a plan for each of the propositions in the goal, then these plans can be combinedto make a plan for the goal. Since P is deletion free and positive, no operator can delete anyof the preconditions of the other operators. We can do the backwards chaining because eachoperator has at most one precondition, and thus the number of subgoals do not increase. Allthese require logspace, and since we need to make non-deterministic choices, the problem isnlogspace-complete. Thus, we have the following result, which is proved in the appendix.Theorem 5.3 If we restrict P to be propositional, positive, context-free, and deletion-free,then plan existence is nlogspace-complete.The following theorems and corollaries state our results on the complexity of planlength. Note that in several cases where plan existence is in P (items 3 and 4 ofTheorem 5.2, and Theorem 5.3), the corresponding plan length problem (Corollaries 5.2and opty-1-cor, and Theorem 5.4, respectively) is NP-complete. The reason for this is asfollows. For plan existence, the restrictions allowed us to plan for each subgoal separately,using backwards chaining. We cannot do this for plan length, because of enabling-condition interactions. Enabling-condition interactions are discussed in more detail in [20],but the basic idea is that a sequence of actions that achieves one subgoal might also achieveother subgoals or make it easier to achieve them. Although such interactions will not a�ectplan existence, they will a�ect plan length, because they make it possible to producea shorter plan. It is not possible to detect and reason about these interactions if we planfor the subgoals independently; instead, we have to consider all possible operator choicesand orderings, making plan length np-hard.Theorem 5.4 If we restrict P to be propositional, positive, context-free and deletion-free,then plan length is np-complete.Corollary 5.1 If we restrict P to be propositional, positive and deletion-free, then planlength is np-complete.Corollary 5.2 If we restrict P to be propositional and deletion-free, plan length is np-complete.If we allow non-empty delete lists, then we are no longer con�ned to plans of polynomiallength, and thus the complexity of plan length increases, as stated in the followingtheorem.Theorem 5.5 plan length is pspace-complete if we restrict P to be propositional. It isstill pspace-complete if we restrict P to be propositional and positive.5.2.2 Propositional Operators with Operator CompositionBoth Theorem 5.3 and Clause 5 of Theorem 5.2 require restrictions on the number of clausesin the preconditions and/or postconditions of the planning operators. These restrictions caneasily be weakened by allowing the operators to be composed, as described below.De�nition 5.1 An operator � is composable with another operator � if the positive pre-conditions of � and del(�) are disjoint, and the negative preconditions of � and add(�) aredisjoint.



5 COMPLEXITY RESULTS 23De�nition 5.2 If � and � are composable, then the composition of � with � isPre: Pre(�) [ (P1 � Add(�)) [ (P2 � del(�))Add: Add(�) [ (Add(�)� Del(�))Del: Del(�) [ (Del(�)�Add(�))where P1 and P2, respectively, are the positive and negative preconditions of �.Theorem 5.6 (Composition Theorem) Let P = (S0;O) be a planning domain, and O0be a set of operators such that each operator in O0 is the composition of operators in O.Then for any goal G, there is a plan to achieve G in P i� there is a plan to achieve G inP0, where P0 = (S0;O [O0).This theorem allows us to extend the scope of several of the complexity theorems.Corollary 5.3 Suppose we restrict P = (S0;O; G) to be such that O = O1 [ O2, whereO1 is propositional, deletion-free, positive and context-free, and every operator in O2 is thecomposition of operators in O1. Then plan existence is nlogspace-complete.Proof. Immediate from Theorem 5.6 and Theorem 5.3.Corollary 5.4 Suppose we restrict P = (S0;O; G) to be such that O = O1 [O2, where O1is propositional, positive, and side-e�ect-free, and every operator in O2 is the compositionof operators in O1. Then plan existence is in p.Proof. Immediate from Theorem 5.6 and Theorem 5.2.Example 5.1 (Blocks World) Bylander [5] reformulates the blocks world so that eachoperator is restricted to positive preconditions and one postcondition. Instead of the usual\on" and \clear" predicates, he uses proposition o�ij to denote that block i is not on blockj. For each pair of blocks i and j, he has two operators: one that moves block i from thetop of block j to the table, and one that moves block i from the table to the top of blockj. These operators are de�ned as follows:Name: totableijPre: fo�1;i; o�2;i; : : : ; o�n;i; o�1;j ; o�2;j ; : : : ; o�i�1;j ; o�i+1;j ; : : : ; o�n;jgDel: ;Add: fo�i;jgName: toblockijPre: fo�1;i; o�2;i; : : : ; o�n;i; o�1;j ; o�2;j ; : : : ; o�n;j ; o�i;1; o�i;2; : : : ; o�i;ngDel: fo�i;jgAdd: ;In Bylander's formulation of blocks world, P is positive and side-e�ect-free. Thus as aconsequence of Clause 5 of Theorem 5.2, in Bylander's formulation of blocks world planexistence can be solved in polynomial time.In Bylander's formulation of the blocks world, it is not possible for blocks to be moveddirectly from one stack to another. This has two consequences, as described below.The �rst consequence is that in Bylander's formulation of blocks world, plan lengthcan be solved in polynomial time. To show this, below we describe how to compute how



5 COMPLEXITY RESULTS 24many times each block b must be moved in the optimal plan. Thus, to see whether or notthere is a plan of length k or less, all that is needed is to compare k withXb how many times b must be moved.Let S be the current state, and b be any block. If the stack of blocks from b down to thetable is consistent with the goal conditions (whether or not this is so can be determined inpolynomial time [20]), then b need not be moved. Otherwise, there are three possibilities:1. If b is on the table in S and the goal conditions require that b be on some other blockc, then in the shortest plan, b must be moved exactly once: from the table to c.2. If b is on some block c in S and the goal conditions require that b be on the table,then in the shortest plan, b must be moved exactly once: from c to the table.3. If b on some block c in S and the goal conditions require that b be on some block d(which may be the same as c), then in the shortest plan, b must be moved exactlytwice: from c to the table, and from the table to d.The second consequence is that translating an ordinary blocks-world problem into By-lander's formulation will not always preserve the length of the optimal plan. The reason forthis is that in the ordinary formulation of blocks world, the optimal plan will often involvemoving blocks directly from one stack to another without �rst moving them to the table,and this cannot be done in Bylander's formulation. It appears that Bylander's formulationcannot be extended to allow this kind of move another without violating the restriction thateach has only positive preconditions and one postcondition.The above problem can easily be overcome by augmenting Bylander's formulation toinclude all possible compositions of pairs of his operators. Theorem 5.2 does not apply tothis formulation, but Corollary 5.4 does apply, and gives the same result as before: planexistence can be solved in polynomial time.Since this extension to Bylander's formulation allows stack-to-stack moves, there is aone-to-one correspondence between plans in this formulation and the more usual formula-tions of the blocks world, such as those given in [7, 21, 28, 37, 40, 19, 20]. Thus, from resultsproved in [20], it follows that in this extension of Bylander's formulation, plan length isnp-complete.5.2.3 Datalog OperatorsBelow, we no longer restrict the predicates to be propositions. As a result, planning is muchmore complex than in the previous case.In datalog planning, the number of ground terms we have is pca, where p is the numberof predicates, c is the number of constants, and a is the arity of predicates. This valueis exponential in terms of the size of the input. Each state is a subset of ground terms,and hence the number of states is double exponential. In the unrestricted case, we need tosearch through this space, requiring a doubly exponential amount of work. Since the sizeof a state is at most exponential, we can make a nondeterministic forward search startingwith the initial state, and solve the problem in expspace.11 This is stated formally below.11Although it has not been proved, it is believed that expspace equals double exponential time.



5 COMPLEXITY RESULTS 25Theorem 5.7 plan existence is expspace-complete. It is still expspace-complete ifwe restrict P to be positive.When we restrict P to be deletion-free, we still need to search through the same spaceas before. However, now we have a monotonicity property. Since all delete-lists are empty,what ever is asserted at a step in a plan remains true after that point. Hence no operatorinstance needs to appear in a plan more than once, as the latter appearances would nothave any a�ect. The number of operator instances is exponential, and all we need to dois to non-deterministically guess a sequence of operator instances, and verify it. Thus theproblem is nexptime-complete, as stated below.Theorem 5.8 If we restrict P to be deletion-free, then plan existence is nexptime-complete.When we restrict P to be both positive and deletion-free, then just as above, eachoperator instance needs to appear in a plan at most once. In addition, the ordering of theoperators in a plan does not matter as long as their preconditions are satis�ed. The reasonfor this is as follows: since P is deletion-free, whatever is asserted remains asserted; andsince P is positive, all the operators have only positive preconditions; and thus any operatorthat is executable at some point in the plan remains executable at subsequent points in theplan. As a result, we can keep executing operator instances, until we reach the goal, or allthe executable operator instances have been used. Since this takes exponential time, wehave the following result.Theorem 5.9 If we restrict P to be positive and deletion-free, then plan existence isexptime-complete.Now, in addition to the above restrictions, suppose we require each planning operator tohave at most one precondition, which must be positive. Then we can do backward chaining,starting with the set of goals, and at each step on-deterministically choosing an operatorinstance, removing the subgoals it adds, and inserting the precondition of the operator asa new subgoal. Each new operator achieves at least one subgoal and introduces at mostone new subgoal, so the size of the set of unachieved goals is monotonically non-increasing.Furthermore, since P is positive and deletion-free, no operator will clobber a previouslyachieved subgoal, so we do not need to keep track of subgoals that have already beenachieved. Thus, we can solve plan existence in pspace. More formally, we have thefollowing result.Theorem 5.10 If we restrict P to be context-free, positive, and deletion-free, then planexistence is pspace-complete.We now examine the complexity of plan length.Theorem 5.11 If we restrict P to be deletion-free, positive, and context-free, then planlength is pspace-complete.Here is a brief explanation of the above result. Since P is deletion-free, no operator needto appear more than once in a plan. Thus, we can show that plan existence is a specialcase of plan length, with k = the number of operator instances. plan existence wasproved to be pspace-hard (Theorem 5.10), hence hardness follows. For proving membership,remember that the algorithm we provided for the existence problem was nondeterministic.Whenever this is the case, we can always introduce a counter to keep track of number ofoperators in the plan, and fail when it exceeds k.



5 COMPLEXITY RESULTS 26Theorem 5.12 plan length is nexptime-complete in each of the following cases:1. P is deletion-free and positive;2. P is deletion-free;3. P is positive;4. no restrictions (except, of course, that P is function-free).The reason for the above result is as follows. For membership, notice that the lengthof the plan is bound by k, which is part of the input. Since k is encoded in binary, itwill con�ne us to plans of at most exponential length. Thus we can solve the problem innexptime. For the hardness result, we only need to discuss case 1, which is a special caseof the other cases. Remember that plan existence is exptime-complete in this case,because of the property that the ordering of operators does not matter as long as all thepreconditions are satis�ed. This property allowed us to do a forward search, arbitrarilychoosing the next operator. However, in the case of plan length, we can not choose theoperators arbitrarily: we need to choose them so that the plan length does not exceed k.This makes the problem harder.When we have an overall look at the results in this section, we note that if deletelists are allowed, then plan existence is expspace-complete but plan length is onlynexptime-complete. Normally, one would not expect plan length to be easier than planexistence, and if we look at Table 2, this is true in all cases except this one. The reasonfor this anomaly is that the length of a plan can sometimes be doubly exponential in thelength of the input. In plan length we are given a bound k, encoded in binary, whichcon�nes us to plans of length at most exponential in terms of the input. Hence in the worstcase of plan length, �nding the plan is easier than in the worst case of plan existence.We do not observe the same anomaly in the propositional cases described in Section 5.2.1,because in those cases the lengths of the plans are at most exponential in the length ofthe input, so giving an exponential bound on the length of the plan does not reduce thecomplexity of plan length. As a result, in the propositional case, both plan existenceand plan length are pspace-complete.5.3 Planning When the Operator Set is FixedThe results in Section 5.2 were for the case in which the set of operators is part of the input.However, in many well known planning problems, the set of operators is �xed in advance.For example, in the blocks world (see Example 5.1), we have only four operators: stack,unstack, pickup and putdown.In this section we will present complexity results on planning problems in which the setof operators is �xed, and only the initial state and goal are allowed to vary. The problemswe will consider will be of the form: \given the initial state S0 and the goal G, is there a planthat achieves G?" We assume every predicate symbol appearing in G and S0 appears inat least one of the planning operators. This restriction is reasonable because the operatorscan neither add nor delete atoms constructed from any other predicate symbols.5.3.1 Propositional OperatorsPropositional planning with a �xed set of operators is very restrictive. The number of possi-ble plans is constant. We include the following two results just for the sake of completeness.



5 COMPLEXITY RESULTS 27Theorem 5.13 plan existence can be solved in constant time if we restrict P = (S0;O; G)to be propositional and O to be a �xed set.Corollary 5.5 plan length can be solved in constant time if we restrict P = (S0;O; G)to be propositional and O to be a �xed set.5.3.2 Datalog OperatorsThe number of ground instances of predicates is pca, where p is the number of predicates, cis the number of constants, and a is the arity of the predicates. When the set of operators is�xed, a will be a constant value, hence we will have a polynomial number of ground instancesof predicates. These can be mapped into propositions in polynomial time, providing areduction from datalog planning with a �xed set of operators to propositional planningwith a varying set of operators. Note that this reduction will also preserve the length ofthe plans. Thus datalog planning with a �xed set of operators has the same complexity aspropositional planning with varying sets of operators, as stated in the following theorem.Theorem 5.141. If we restrict P to be �xed, deletion-free, context-free and positive, then plan exis-tence is in nlogspace and plan length is in np.2. If we restrict P to be �xed, deletion-free, and positive, then plan existence is in pand plan length is in np.3. If we restrict P to be �xed and deletion-free, then plan existence and plan lengthare in np.4. If we restrict P to be �xed, then plan existence and plan length are in pspace.The above theorem puts a bound on how hard planning can be with a �xed set ofoperators. Naturally, the exact complexity of the problem depends on which particular�xed set of operators we are dealing with. The following theorems state that we can �nd�xed sets of operators such that their corresponding planning problems are complete forthe complexity classes mentioned in the previous theorem.Theorem 5.15 There exists a �xed positive deletion-free set of operators O for which planlength is np-hard.Theorem 5.16 There exist �xed deletion-free sets of operators O for which plan exis-tence and plan length are np-hard.Theorem 5.17 There exists a �xed set of positive operators O for which plan existenceand plan length are pspace-hard.Note that all three of the previous theorems prove hardness for some �xed sets ofoperators. For some other sets of operators, the problem might be much easier, evenconstant time. (e.g. think of an empty set of operators)



6 RELATED WORK 285.3.3 Conditional OperatorsIn Proposition 3.4, we showed that if the planning operators are extended to allow condi-tional e�ects, this does not a�ect our decidability and undecidability results. The followingtheorem makes the same statement about our complexity results. As with Proposition 3.4,this theorem is stated in a rather unconventional way, in order to avoid duplicating thestatements of the �fteen theorems mentioned in it.Theorem 5.18 (Complexity of planning with conditional operators) Theorems 5.3 through 5.5,5.7 through 5.17, and their corollaries still hold when O is allowed to contain conditionaloperators.The fact that conditional operators do not a�ect the complexity should not be surprising.In a single-agent static world with complete information, one does not need conditionalactions. Conditional operators are useful only when we have incomplete information aboutthe initial state of the world, or the a�ects of the operators, so that we can try to comeup with a plan that would work in any situation that is consistent with the informationavailable. Otherwise, we can replace the conditional operators with a number of ordinarySTRIPS-style operators, as described in Section 3.4.2, to obtain an equivalent planningdomain. Although this reduction is su�cient for proving that conditional operators donot a�ect our decidability and undecidability results (Proposition 3.4), it is not su�cientto prove Theorem 5.18, because there are an exponential number of combinations, andthus the reduction is not polynomial. However, with minor modi�cations, the proofs ofTheorems 5.2 through 5.17 will do the job.6 Related Work6.1 PlanningBylander has done several studies on the complexity of propositional planning [5, 6]. Wehave stated some of his results in Theorem 5.2 and Table 2. More recently, he has studiedthe complexity of propositional planning extended to allow a limited amount of inferencein the domain theory [6]. His complexity results for this case range from polyomial time topspace-complete.Chapman was the �rst to study issues relating to the undecidability of planning; wehave discussed his work in detail in Section 4.Backstrom and Klein found a class of planning problems called SAS-PUBS, for whichplanning can be done in polynomial time [2]. Their planning formalism is somewhat di�erentfrom ours: they make use of state variables that take values from a �nite set, and consider aplanning state to be an assignment of values to these state variables. Since they restrict eachstate variable to have a domain of exactly two values, we can consider each state variableto be a proposition; thus, in e�ect they are doing propositional planning. However, theiroperators have further restrictions: they restrict each operator to change at most one statevariable, and do not allow more than one operator to change a state variable to a givenvalue. Their restrictions are so strict that they were unable to �nd any domains (not evenblocks world) that they could represent in their formalization. They tried to overcome thisproblem by weakening some of their restrictions, making the complexity of their algorithmgo to exponential time|but still could not �nd any reasonable domain. It is not veryeasy to compare our results with theirs, because we use a di�erent formalism|but we can



7 CONCLUSION 29safely state that we analyze a much broader range of problems, and we require less severerestrictions to get polynomial-time results.Korf [22] has pointed out that given certain assumptions, one can reduce exponentiallythe time required to solve a conjoined-goal planning problem, provided that the individualgoals are independent. Yang, Nau, and Hendler [42] have generalized this result by showingthat one can still exponentially reduce the time required for planning even if the goals arenot independent, provided that only certain kinds of goal interactions are allowed. Underthis same set of goal interactions, they have also developed some e�cient algorithms formerging plans to achieve multiple goals [41, 42].Complexity results have been developed for blocks-world planning by Gupta and Nau[19, 20] and also by Chenoweth [9]. Gupta and Nau [19, 20] have shown that the complexityof blocks-world planning arises not from deleted-condition interactions as was previouslythought, but instead from enabling-condition interactions. Their speculations that enabling-condition interactions are important for planning in general seem to be corroborated by someof our results, as discussed in Section 7.2 below.6.2 Temporal ProjectionAnother problem that is closely related to planning is the problem of temporal projection,or what Chapman calls the \modal truth" of an atom [8]. Given an atom a, an initial stateS0, and a partially ordered set of actions P , the question is whether a is necessarily/possiblytrue after execution of P . This question is especially important in partial-order plannerssuch as NOAH [13], NONLIN [14], and SIPE [15]. For example, McDermott [25] says\unfortunately, partial orders have a big problem, that there is no way of deciding what istrue for sure before a step without considering all possible step sequences consistent withthe current partial order," and Pednault [30] also expresses similar sentiments.One problem is what it means for a to be necessarily true if some of the total orderingsof P are unexecutable. Chapman [8] assumes that a is necessarily true after executing Ponly if every total ordering of P is both executable and achieves a; and in return, he comesup with a polynomial-time algorithm for determining the necessary truth of a. However,his algorithm does not work correctly for establishing the possible truth of a (in a papercurrently in progress, we prove that problem is NP-hard).Chapman also proves that with conditional planning operators, establishing the nec-essary truth of a is co-NP-hard; and Dean and Boddy [10] prove a similar result with amore general notion of conditional planning operators (the same de�nition we use in Section3.4.2).12 Dean and Boddy [10] also try to come up with approximate solutions for the prob-lem. They present algorithms for computing a subset of the propositions that are necessarilytrue, and for computing a superset of the propositions that are possibly true. Furthermore,the complexity of these algorithms is polynomial if the number of triples for each operatoris bounded with a constant. However, we do not know of any results concerning how closethe approximations are.7 ConclusionIn this paper, we have studied the decidability and complexity of planning with STRIPS-style planning operators (i.e., operators comprised of preconditions, add lists, and delete12In both cases, they state that the problem is NP-hard, but their proofs establish co-NP-hardness instead.



7 CONCLUSION 30lists). Our results show that planning is a hard problem even under severe restrictions onthe nature of planning domains. We have been able to classify sets of problems in terms ofsyntactic domain parameters, establish the decidability and computational complexity ofeach of these classes, and gain insight into why and how these classes of problems are sohard.7.1 Decidability and UndecidabilityWe have proved equivalence theorems relating de�nite logic programs to planning withpositive, deletion-free operators. This equivalence allows us to transport many results fromlogic programming to planning, leading to a number of decidability and undecidabilityresults, as summarized in Table 1. If we use the conventional de�nitions of a �rst-orderlanguage and a state (i.e., the language contains only �nitely many constant symbols andall states are �nite), then whether or not plan existence is decidable depends largely onwhether or not function symbols are allowed:� If the language is allowed to contain function symbols (and hence in�nitely manyground terms), then, in general, plan existence is undecidable, regardless of whetheror not the planning domain is positive, deletion-free, and context-free. However, ifthe planning domains are restricted to be weakly recurrent, and only bounded goalsare considered, then plan existence is decidable even in the presence of functionsymbols.� If the language does not contain function symbols (and hence has only �nitely manyground terms), then plan existence is decidable, regardless of whether or not theplanning domain is positive, deletion-free, and context-free.For comparison with Chapman's [8] results, Table 1 also includes decidability and un-decidability results for the cases where we allow in�nitely many constant symbols, in�niteinitial states, and operators with conditional e�ects. These results relate to Chapman'swork as follows:1. They solve an open problem posed in [8], regarding the decidability of planning ifin�nitely many constants are allowed. Unless P is restricted to be positive or deletion-free, the problem is undecidable.2. It clari�es one of the results in [8]. In particular, whether or not the de�nition ofa planning domain is extended to allow conditional planning operators makes nodi�erence in any of our decidability and undecidability results.When certain syntactic (predicate and atomic acyclicity) and semantic properties (weak-recurrence) are satis�ed by positive, deletion-free planning domains (even those containingfunction symbols), we have proved, in addition, that plan existence for bounded goals isdecidable.7.2 ComplexityBased on various syntactic criteria on what planning operators are allowed to look like,we have developed a comprehensive theory of the complexity of planning; the results aresummarized in Table 2. Examination of this table reveals several interesting properties:



7 CONCLUSION 311. Comparing the complexity of plan existence in the propositional case (in which allpredicates are restricted to be 0-ary) with the datalog case (in which the predicatesmay have constants or variables as arguments) reveals a regular pattern. In mostcases, the complexity in the datalog case is exactly one level harder than the com-plexity in the corresponding propositional case. We have expspace-complete versuspspace-complete, nexptime-complete versus np-complete, exptime-complete versuspolynomial.2. If delete lists are allowed, then plan existence is expspace-complete but planlength is only nexptime-complete. Normally, one would not expect plan lengthto be easier than plan existence. In this case, it happens because the length of aplan can sometimes be doubly exponential in the length of the input. In plan lengthwe are given a bound k, encoded in binary, which con�nes us to plans of length atmost exponential in terms of the input. Hence in the worst case of plan length,�nding the plan is easier than in the worst case of plan existence.We do not observe the same anomaly in the propositional case, because the lengthsof the plans are at most exponential in the length of the input. Hence, giving anexponential bound on the length of the plan does not reduce the complexity of planlength. As a result, in the propositional case, both plan existence and planlength are pspace-complete.3. When the operator set is �xed in advance, any operator whose predicates are not allpropositions can be mapped into a set of operators whose predicates are all propo-sitions. Thus, planning with a �xed set of datalog operators has basically the samecomplexity as planning with propositional operators that are given as part of theinput.4. plan length has the same complexity regardless of whether or not negated precon-ditions are allowed. This is because what makes the problem hard is how to handleenabling-condition interactions, i.e., how to choose operators that achieve several sub-goals in order to minimize the overall length of the plan [20], and this task remainsequally hard regardless of whether negated preconditions are allowed.5. Delete lists are more powerful than negated preconditions. Thus, if the operators areallowed to have delete lists, then whether or not they have negated preconditions hasno e�ect on the complexity.Below, we summarize how and why our parameters a�ect the complexity of planning:� If no restrictions are put on P, any operator instance might need to appear manytimes in the same plan, forcing us to search through all the states, which are doubleexponential in number. Since the size of any state is at most exponential, planexistence can be solved in expspace.� When P is restricted to be deletion-free, any predicate instance asserted remainstrue throughout the plan, hence no operator instance needs to appear in the sameplan twice. Since the number of operator instances is exponential, this reduces thecomplexity of plan existence to nexptime.� When P is further restricted to be positive, we get the nice property that no operatorclobbers another. Thus the order of the operators in the plan does not matter, andthe complexity of plan existence reduces to exptime.



7 CONCLUSION 32� Inspite of the restrictions above, plan length remains nexptime. Since we try to�nd a plan of length at most k, which operator instances we choose, and how we orderthem makes a di�erence.� When P is also restricted to be context-free, we can do backward search, and sinceeach operator has at most one precondition, the number of the subgoals does notincrease. Thus both plan existence and plan length with these restrictions canbe solved in pspace.� The previous arguments also hold for propositional planning, with the exception of theanomaly in the unrestricted case for plan length, which we have discussed before.As a result of restricting predicates to be 0-ary, the number of operator instances, thesize of states reduce to polynomial from exponential, hence in general, the complexityresults for propositional planning are one level lower than the complexity results withdatalog operators.7.3 Future WorkAlthough our equivalence between planning and logic programming only holds in certainlimited cases, this equivalence has allowed us to transport many results from logic program-ming to planning. It is not a trivial task to extend this equivalence, because negation hasdi�erent semantics for logic programming and planning|but it is certainly worth investi-gating, and we intend to do so in the future.Although much research has been done on more general operator representations suchas those used in hierarchical nonlinear planning, most theoretical studies of planning havebeen con�ned to planning with strips-like operators. As a result, much of the current workin planning is without much theoretical basis. For example, in his paper on regressionplanning [25], McDermott states that: : : there are two main choices in the space of re�nement planners: (1) a heuris-tic, nonlinear, progressive planner, and (2) a rigorous, linear, regressive planner.In the conclusion of his paper, McDermott continues:For the time being, practical work on planning will continue to focus on nonlinearplanning, because all planning algorithms are exponential.: : :But theoretical work in the �eld should go on, if for no other reason than thatit might inspire us to come up with a theory of nonlinear planning in realisticdomains, which is so far entirely lacking. : : :The next task we intend to undertake is to develop a formalization of hierarchical nonlinearplanning, and to investigate how di�cult hierarchical nonlinear planning is, and how todevelop more e�cient algorithms.AcknowledgementWe appreciate the useful comments about this paper that we received from Tom Bylanderand from the referees.
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A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 36Before proving the following theorem, we need to introduce an operator, called TP , asso-ciated with any logic program P . The operator, which is well-known in logic programming,maps states (i.e. Herbrand interpretations) to states. Intuitively, given an interpretation I ,TP (I) is the (smallest) interpretation obtained as follows: if there is a clause in P havinga ground instance C with A in the head, and whose body is satis�ed by interpretation I ,then A 2 TP (I). In particular, I may not necessarily be a subset of TP (I)[24].De�nition A.1 Given a logic program P that contains no negative atoms in the body ofany clause, TP is an operator associated with P that maps sets of ground atoms to setsof ground atoms as follows: TP (I) = fA : A is a ground atom and there is a clause in Phaving a ground instance of the form A B1 & : : :&Bn such that fB1; : : : ; Bng � Ig.When we start deducing ground atoms from a program, nothing is initially known to betrue. Applying the TP operator once, we know that all ground instances of facts are true.Repeating this process one step further, we can conclude all the facts as well as all theground atoms that can be deduced by applying one rule. The following de�nition speci�eshow TP may be iterated upwards in this way starting from the empty set of atoms:TP " 0 = ;TP " (n+ 1) = TP (TP " n)TP " ! = [n<! TP " nIt turns out that TP " ! is the least �xed point of TP for those programs P that containno negations in clause bodies.Theorem 3.1 (Equivalence Theorem I) Suppose P = (S0;O) is a positive, deletion-free planning domain and G is a goal. Then there is a plan to achieve G from P i�LP(P) j= G.Proof. Let G = (9)(A1 & : : :& As).()) : Suppose LP(P) j= G. Then there is a ground instance, G� of G such that LP(P) j=G� and an integer n < ! such that TLP(P) " n j= G�, i.e. fA1�; : : : ; As�g � TLP(P) " n.We proceed by induction on n.Base Case (n = 1). In this case, for each 1 � i � s, there is a clause in LP(P) hav-ing a ground instance of the form Ai�  :Consider an arbitrary Ai, 1 � i � s. The unit clauseAi�  :could have been placed in grd(LP(P)) for one of two reasons:Case 1: Ai� is in S0 orCase 2: There is a planning operator � such that Pre(�) = ; and Add(�) contains an atomA0i such that Ai� is a ground instance of A0i (via an mgu �i, say).



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 37Thus, the set X = fA1�; : : : ; As�g can be partitioned into two parts: The set X1consisting of those atoms satisfying case 1 above, and the set X2 of those atoms that donot satisfy Case 1 above (and hence must satisfy case 2 above).Suppose X2 = fA�(1)�; : : : ; A�(r)�g where 0 � r � s. ThenS0 ��(1);��(1)=) S1 � � �Sr�1 ��(r);��(r)=) Sris a planning sequence such that A1� & : : :& As� is true in Sr. To see this, observe thatevery Ai� 2 X1 is true in S0 and hence must be true in Sr by Lemma A.1. Likewise, everyA�(j) 2 X2 is true in S�(j) � Sr by Lemma A.1.Inductive Case (n + 1). Suppose TLP(P) " (n + 1) j= G�. Then for each 1 � i � s,there is a clause Ci 2 grd(LP(P)) of the formAi�  Bi1 & : : :&Bihisuch that Bi1& : : :&Bihi is true in TLP(P) " n. By the induction hypothesis, for all 1 � i � s,there is a planning sequence, <i that achieves the goal (Bi1& : : :&Bihi). Clause Ci is obtainedfrom a planning operator �i by applying a ground substitution �i to a clause in LP(�).Hence, <i �i;�i=) Siwould be a planning sequence that achieves Ai� (where Si is the state that results by�i-executing �i in the last state of <i). Call the above planning sequence }i.Clearly, each }i achieves goal Ai�. The only remaining problem is to put together theplanning sequence }i in such a way that we achieve the conjunctive goal (A1�& : : :&As�).We do this as follows.We �rst show how to put }1 and }2 together to get a plan that achieves (A1� &A2�).Suppose }1 is the sequenceS0 �v(1);�v(1)=) S11 �v(2);�v(2)=) � � � �v(k1);�v(k1)=) S1k1and }2 is the sequence S0 �w(1);�w(1)=) S21 �w(2);�w(2)=) � � � �w(k2);�w(kw )=) S2k2 :The following is a valid planning sequence that achieves (A1� & A2�).S0 �v(1);�v(1)=) S11�w(1);�w(1)=) S11 [ S21�v(2);�v(2)=) S11 [ S21 [ S12�w(2);�w(2)=) S11 [ S21 [ S12 [ S22� � ��v(k1);�v(k1)=) 0@ k1[j=1S1j1A [ 0@k2�1[z=1 S2z1A�w(k2);�w(k2)=) 0@ k1[j=1S1j1A [ 0@ k2[z=1S2z1A :



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 38The above sequence achieves the goal (A1� &A2�). To see this, observe the following:1. Each of the �v(i)'s is �v(i)-executable in the state S1i�1 and hence, by Lemma A.1, itis also �v(i)-executable in the state Sij=1 S1j [ Si�1h=1 S2h. The same reasoning appliesto the �w(j)'s.To see how the states generated in the above planning sequence are constructed, wenow explain how we construct the state (S11 [ S21) after �w(1)-execution of �w1 instate S11 . In the above sequence, �v(1)-execution of �v(1) in state S0 leads to state S11(according to }1). Furthermore, as �v(1) is positive and deletion-free, we know thatS0 � S11 . As all operators in P are positive and deletion-free, any operator that is�-executable in state S0 is also �-executable in any state S0 such that S � S0. As �w1is �w(1)-executable in state S0 and as S0 � S11 , we know that �w1 is �w(1)-executablein state S11 as well, resulting in state (S11 [ Add(�w1)). But from }2, we know thatAdd(�w1) � (S21 � S0). Hence, (S11 [ Add(�w1)) � (S11 [ (S21 � S0)). As S0 � S11 ,(S11 [ Add(�w1)) � (S11 [ S21).It can similarly be shown that (S11 [ S21) � (S11 [ Add(�w1)). Suppose not. Then theremust be an A 2 S21 such that A =2 (S11 [ Add(�w1)). As A 2 S21 = S0 [ Add(�w1),there are two cases. If A 2 S0, then A 2 S11 because S0 � S11 . This contradicts outassumption that A =2 (S11 [ Add(�w1)). If A 2 Add(�w1), then we likewise obtaina contradiction. Hence, the state obtained by �w(1)-execution of �w1 in state S11 is(S11 [ S21).2. As A1� 2 S1k1 and as A2� 2 S2k2 , it follows that fA1�;A2�g � �Sk1j=1 S1j �[ �Sk2z=1 S2z�.To achieve the goal (A1� & A2� & A3�), we simply repeat the same process by com-bining together the above sequence with }3. On iterating this process till we have �nishedprocessing }s, we would have a plan that achieves (A1� & : : :& As�).(() : Suppose on the other hand, that there is a plan } that achievesG = (9)(A1& : : :&As)from P. The } must be of the form:S0 �1;�1=) S1 � � � �r�1;�r�1=) Sr:We proceed by induction on r.Base Case (r = 0). In this case, G is true in S0 itself. As each clause in S0 is in LP(P), Gis true in TP " 1 and hence is entailed by P .Inductive Case (r = t + 1). Suppose our plan is of the formS0 �1;�1=) S1 � � � �t;�t=) St �t+1;�t+1=) Sr:By the induction hypothesis, each atom A 2 St is entailed by LP(P) and hence St �TLP(P) " !.As all operators in O have empty delete lists, St+1 = St [ Add(�t+1)�t+1. For eachatom H in the add list of �t+1, there is a clause in LP(P) of the form(8)(H  &K2Pre(�t+1)K):



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 39The atoms in the ground conjunction &K2Pre(�t+1)K�t+1 is a subset of St and hence ofTLP(P) " !. As this conjunction is �nite, there is an integer z such that the atoms in theground conjunction &K2Pre(�t+1)K�t+1 is a subset of TLP(P) " z. It follows, by de�nitionof TP , that for all H 2 Add(�t+1), H�t+1 2 TLP(P) " (z + 1) � TLP(P) " !. Hence, everyatom in St+1 is entailed by LP(P) and consequently, G is a logical consequence of LP(P).Theorem 3.2 (Equivalence Theorem II) Suppose P is a de�nite logic program andG is any goal. Then: P j= G i� there is a plan to achieve G from PD(P ) = (S(P );O(P )).Proof. ()) Suppose P j= G. Then there is a ground instance G0 of G, and a minimalinteger n > 0 such that G0 is true in TP " n (see De�nition A.1 and the paragraph im-mediately following it for an explanation of this notation). Let G0 = (A1& : : :&Am). Weproceed by induction on n.Base Case (n = 1). In this case, for each 1 � i � m, there is a clause in P having aground instance of the form: Ai  :Then fA1; : : : ; Amg � S(P ), and hence, G0 (and hence G) is true in the initial state of theplanning domain PD(P ).Inductive Case (n = k + 1): Suppose G0 is true in TP " (k + 1). Then, for each 1 � i � m,there is clause Ci in P having a ground instance, Ci�i, of the formAi  Bi1& : : :&Biwisuch that fBi1; : : : ; Biwig � TP " k. Thus, the goalG00 = m̂i=1 wî`=1B ìis true in TP " k. Note that G00 is a ground goal. By the induction hypothesis, there is aplan, P0, to achieve G00. Let W0 be the the state obtained from the initial state S(P ) byexecuting the operations in P0. Then it is straightforward to see thatS(P ) P0=) W0 opC1 ;�1=) W1 opC2 ;�2=) W2 : : :Wm�1 opCm ;�m=) Wmis a plan that achieves G0. (Note that as each operator opCi , 1 � i � m, is deletion-free,Wi+1 = Wi [ Add(opCi)�i). Furthermore, as each operator, opCi is executable in W0, it fol-lows that it is also executable inWi for all 1 � i � m.) Furthermore, as Add(opCi)�i = fAig,it follows that fA1; : : : ; Amg � Wm. The above plan achieves G.(() Suppose there is a plan to achieve G from PD(P ). Then there is a ground instanceG0 = (A1& : : :&Am) of G that is achievable by this plan. LetS0 �1;�1=) S1 �1;�1=) S2 � � � �n;�n=) Sn (2)



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 40be such a plan, where S0 = S(P ). We proceed by induction on n, the length of the plan.Base Case (n = 0). In this case, G0 = (A1& : : :&Am), is true in S0 = S(P ), i.e. each Ai,1 � i � m, is true in S(P ). But then, each Ai, 1 � i � m, is a ground instance of a fact inP . Clearly, P j= Ai for all 1 � i � m, and hence, P j= G0 and hence P j= G.Inductive Case (n = k + 1). As each operator in O(P ) contains only one element inits add list, there are exactly two possibilities: either the atom added by �n-execution of theoperator �n is some Ai, 1 � i � m, or it is not. In the latter case, as Sn satis�es G0, andas the last step in the plan does not cause any of the Ai's to be added, G0 must be true inSn�1. Hence, by the induction hypothesis, we can assume that P j= G0, and hence, P j= G.In the other case, there is an integer 1 � i � m such that Ai is the atom added by �n-executing �n. Furthermore,G� = A1& : : :&Ai�1&Ai+1& : : :&Amis true in Sn. Hence, by the induction hypothesis, as there is a plan of length (n � 1) toachieve G�, it follows that P j= G�. Furthermore, as �n is �n-executable in state Sn�1, itfollows that the goal G�� = ^B2Pre(�n)B�nis true in Sn�1. Let C be the clause in P such that opC = �n. Then the clause C�n is ofthe form: Ai  VB2Pre(�n)B�n:AsVB2Pre(�n)B�n is true in Sn, by the induction hypothesis, it follows that P j= VB2Pre(�n)B�n.As C 2 P , P j= C, and hence P j= C�n; thus, P j= Ai. We already know that P j= G�;the conjunction of G� and Ai is equivalent to G0. Consequently, P j= G0. As G0 is a groundinstance of G, it follows that P j= G.A.2 Undecidability and Decidability ResultsCorollary 3.1 (Semi-Decidability Results)1. fG : G is an existential goal such that there is a plan to achieve G from P = (S0;O)gis a recursively enumerable subset of the set of all goals.2. Given any recursively enumerable collection X of ground letion-free, then plan ex-istence is strictly semi-decidable.Proof. Immediate consequence of Theorem 3.1 and a result of Blair which shows that anyrecursively enumerable set of ground atoms can be represented as the set of ground atomsprovable from a logic program [4].Corollary 3.2 The problem \given a positive deletion-free planning domain P = (S0;O),is the set of goals achievable from P decidable?" is �02-complete.



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 41Proof. Immediate consequence of Theorem 3.1 and a result of Blair [4] which shows thatthe class of determinate logic programs ([4]) is �02-complete.Corollary 3.3 If we restrict P to be positive, deletion-free, and context-free, then planexistence is still strictly semi-decidable.Proof. Immediate consequence of Theorem 3.1 and a result of Sebelik and Stepanek [34]that shows that all recursively enumerable sets of ground atoms can be captured as the setof ground atomic consequences of a logic program whose rules contain at most one atom inthe body.Theorem 3.3 If we restrict P to be deletion-free and function-free, then plan existenceis decidable.Proof. As P contains no function symbols, and as our language has only �nitely manyconstant and predicate symbols, the set of ground atoms in our language is �nite, and henceso is the power set of this set (i.e. the set of states is �nite). Furthermore, the numberof ground instances of operators in our planning domain is also �nite. Associate with theplanning domain P = (S0;O), a �nite graph. For each state s, there is a vertex labeled sin the graph. There is an edge from the vertex labeled s to the vertex labeled s0 i� thereis an operator in O having a ground instance such that s satis�es the preconditions of theground instance, and s0 is the state obtained by applying the ground operator in state s.The graph is �nite, and clearly, there is a plan to achieve a given goal G i� there is a pathfrom S0 to a state S1 in which G is true. This problem is clearly decidable.Theorem 3.4 (Eliminating Delete Lists and Negated Preconditions) Suppose Pis a function-free planning domain. Then there is a positive deletion-free planning domainP0 = (S 00;O0) such that for each goalG � (9)(A1 & : : :&An)there is a goal G0 � (9)(A01 & : : :& A0n & poss(S))where \poss" is a new unary predicate symbol and for all 1 � i � n, if Ai � p(t1; : : : ; tn),then A0i � p(t1; : : : ; tn; S) where S is a variable symbol. Furthermore, G is achievable fromP i� G0 is achievable from P0.Proof. As L is function free, the set of ground atoms is �nite (say k in number). Hencethere are only 2k states expressible in language L. Extend L to a new language L0 by addingthe following new symbols:1. new constant symbols s1; : : : ; s2k ;2. a new unary predicate symbol \poss."Intuitively, think of each new constant symbol si as representing a state, denoted REP(si),of language L. Thus, REP(si) is a collection (�nite) of ground atoms of L. Clearly, REP isa bijection between fs1; : : : ; s2kg and the set of states of L. We assume that the constantsymbol sinit, 1 � init � 2k, denotes the initial state S0 of P. Construct S 00 as follows:



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 421. poss(sinit) 2 S 00.2. For all 1 � i � 2k, if A = p(t1; : : : ; tn) 2 REP(si), then ~A = p(t1; : : : ; tn; si) 2 S00.3. Nothing else is in S 00.Note that S 00 as de�ned above, only contains ground atoms in the expanded language L0.Now construct operators as follows: Suppose � 2 O, Si; Sj are states of L and � is aground substitution for the variables in Name(�) such thatSi �;�=) Sj :Then the following operator is in O0:Pre: fposs(si)gAdd: fposs(sj)gDel: ;(Here, si and sj are the constant symbols corresponding to states Si; Sj respectively). Thus,O0 is constructed by considering all possible combinations of � 2 O, states Si; Sj and groundsubstitutions for the variables in each �. As L is function-free (and hence contains only�nitely many ground terms), O0 is �nite and contains no delete lists. It is easy to see, fromthe construction, that G is achievable form P i� G0 is achievable from P0.Theorem 3.5 (Decidability of Function-Free Planning) If we restrict P to befunction-free, then plan existence is decidable.Proof. Immediate consequence of Theorems 3.4 and 3.3.A.3 Restricted Planning DomainsTheorem 3.7 (Decidability for Weakly Recurrent Planning Domains) If P =(S0;O) is restricted to be weakly recurrent (via witness `), positive, and deletion-free, andG is restricted to be bounded w.r.t. `, then plan existence is decidable.Proof. Here's an algorithm for this purpose. Let G = (9)(A1& : : :&An). Let pnew be anew propositional symbol not present in P. Introduce a new operator, �new as follows:Pre: fA1; : : : ; AngAdd: fpnewgDel: ;:Let P0 = (S0;O [ f�newg). It is easy to see that P0 achieves the ground goal pnew i� Pachieves goal G. P0 can clearly be e�ectively constructed from P. Let ` be the level mappingwhich witness the weakly-recurrent property of P and let b be the integer via which G isbounded by `. Extend ` so that `(pnew) = b + 1. ` extended in this manner witnesses theweakly-recurrent property of P0.Convert P0 to LP(P0). By theorem 3.1, there is a plan to achieve pnew from P0 i� LP(P0) j=pnew . By Proposition 3.3, LP(P0) is weakly recurrent. Hence, by Theorem 3.6, there is aterminating procedure that, given a logic program Q and any bounded goal G0 as input,will determine whether Q j= G0. Apply this terminating procedure with inputs LP(P0) andG0 = pnew . If the procedure terminates with yes, then goal G is achievable from P, whereasif it terminates with a no, G is not achievable.



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 43A.4 Extended Planning DomainsTheorem 3.8 If P = (S0;O) is restricted to be positive and deletion-free, but the initialstate S0 is allowed to be an in�nite, decidable set of ground atoms, plan existence isstrictly semi-decidable.Proof. It is easy to see that each TLP(P) " n is decidable. Thus, TLP(P) " ! is semi-decidable as A 2 TLP(P) " ! i� (9n < !)A 2 TLP(P) " n. As there exists a plan thatachieves goal G from P i� there exists an n < ! such that G is true in TLP(P) " n, it followsthat the problem at hand is semi-decidable.Theorem 3.9 Any planning domain P = (S0;O) whose language L contains functionsymbols can be reduced to an equivalent planning domain P0 = (S 00;O0) whose languageL0 contains in�nitely many constants but no function symbols, provided that we allow theinitial state S 00 to be in�nite. P0 is equivalent to P in the sense that for every goal G in P,there is a goal G0 in P0 such that there is a plan for G in P i� there is a plan for G0 in P0.Proof. The reduction is as follows:� L0 contains all of the constant symbols, variable symbols, and predicate symbols foundin L. For each term t in L that is not a constant or variable symbol, L0 contains a newconstant symbol ct. For each n-ary function symbol f in L, L0 contains a new n + 1-arypredicate symbol ef .� Let t be any term, atom, or negated atom in L. Then t's translation T (t) and equivalenceconditions E(t) are de�ned as follows:1. If s is a predicate symbol, constant symbol, or variable symbol, then T (s) = s, andE(s) = ;.2. Suppose t is a term of the form f(t1; : : : ; tn). ThenT (t) = kt;E(t) = fef (kt; T (t1); T (t2); : : : ; T (tn))g [E(t1) [ : : :[ E(tn):3. Suppose t = p(t1; : : : ; tn), where p is a predicate symbol, and t1; t2; : : : ; tn are terms.Then T (t) = p(kt1; kt2; : : : ; ktn);E(t) = E(t1) [ : : :[ E(tn):4. The only other possibility is that t = :p(t1; : : : ; tn), where p is a predicate symbol,and t1; t2; : : : ; tn are terms. In this case,T (t) = :p(kt1 ; kt2; : : : ; ktn);E(t) = E(t1) [ : : :[E(tn):Below are two examples:



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 441. If a is the atom p(f(x; d); g(b); z; c) thenT (a) = p(kf(x;d); kg(b); y; c);E(a) = fef (x; d; kf(x;d)); eg(b; kg(b))g:2. If a is the atom a = :p(g(f(x); y); h(c); z), thenT (a) = :p(kg(f(x);y); kh(c); y);E(a) = feg(kf(x); y; kg(f(x);y)); ef(x; kf(x)); eh(c; kh(c)):� In P0, the initial state S00 contains the translations and equivalence conditions for allatoms in S0, plus the equivalence conditions for all terms in L.� To translate planning operators, we remove function symbols, and include the corre-sponding equivalence conditions as preconditions. More speci�cally, let O be any planningoperator in O. Then the translation O0 of O is as follows:1. If Name(O) = O(x1; : : : ; xn), then Name(O0) = O0(x1; : : : ; xn).2. Pre(O0) contains the translations and equivalence conditions of all atoms in Pre(O),plus the equivalence conditions for all atoms in Add(O) and Del(O).3. Add(O') contains the translations of all atoms in Add(O).4. Del(O') contains the translations of all atoms in Del(O).� Using the above, it is easy to show thatS0 �1;�1=) S1 �2;�2=) S2 � � � �n;�n=) Snis a plan in P that achieves some goal G, i�S 00 �01;�1=) S01 �02;�2=) S02 � � � �0n;�n=) S 0nis a plan in P0 that achieves fT (a) : a 2 Gg.Theorem 3.10 If P's language L is allowed to contain in�nitely many constants, thenplan existence is semi-decidable even if P = (S0;O) is restricted to be deletion-free andfunction-free (and S0 is �nite).Proof. Here, we show that given any deterministic TMM , we can encode it as a deletion-free planning problem with in�nitely many constants.The TM is denoted by M = (K;�;�;#; �; q0; F ). K = fq0; : : : ; qmg is a �nite set ofstates. F � K is the set of so called �nal states. � is the �nite set of allowable tape symbols.� � � is the set of allowable input symbols. # is the blank tape symbol. q0 2 K is thestart state. � is the next move function.Suppose we are given a TMM , and an input string x = (x0; x1; : : : ; xn) such that xi 2 �for each i. We can map this into the following planning problem :



A PROOFS OF DECIDABILITY AND UNDECIDABILITY RESULTS 45Constant symbols: We have an in�nite number of constant symbols. Some of them aredesignated to denote the states of the Turing machine, the tape symbols, the tapecells, the steps of the Turing machine.Predicates:done() is a propositional predicate denoting that the goal is achieved.state(t; s) is used to denote that the machine is in state s at step t.contains(t; j; x) is used to denote that at step t, the tape cell j contains the symbol x.head(t; j) is used to denote that at step t, the head is at cell j.cell(j) is used to denote that j is a tape cell.right(j; k) is used to denote that cell k is to the right of cell j.same(j; k) is used to denote that j and k refer to the same cell.used(j) is a predicate used to create new cells.oldstep(j) is used to keep track of steps.next(t; t0) is used to denote that t0 is the step that follows t.Initial State:state(0; s0), head(0; 0),contains(0; 0; x0),: : : , contains(0; n; xn)right(0; 1),: : : ,right(n� 1; n),cell(0),: : : , cell(n),same(0; 0),: : : , same(n; n),used(0),: : : , used(n � 1), oldstep(0)Operators: For each q 2 F , we have the operatorPre: fstate(V; q)gDel: ;Add: fdone()gWhenever �(q; a) = (q0; b; Right), we have the following two operators.Pre: fstate(T; q); head(T; J); contains(T; J; a); right(J; J 0);:oldstep(T 0)gDel: ;Add: fstate(T 0; q0); head(T 0; J 0); contains(T 0; J; a0); next(T; T 0); oldstep(T 0)gPre: fcontains(T; J;X);head(T; J 0);:same(J; J 0); next(T; T 0)gDel: ;Add: fcontains(T 0; J;X)gWhenever �(q; a) = (q0; b; Left), we have two other operators that are obtained byreplacing right(J; J 0) with right(J 0; J) in the two operators above.Here is the operator used to create new tape cells:Pre: fcell(V );:used(V );:cell(V 0)gDel: ;Add: fused(V ); cell(V 0); right(V; V 0); contains(0; V 0;#); same(V 0; V 0)gThe planner simulates the Turing machine, move for move. There exists a plan for done()i� the Turing machine halts. Hence planning in a deletion-free domain with in�nitely manyconstants but a �nal initial state is undecidable.



B PROOFS OF COMPLEXITY RESULTS 46De�nition A.2 A constant that appears in the initial state or in an operator de�nition iscalled a basic constant. All other constants are called non-basic constants.Lemma A.2 Let P = (S0;O) be a function-free, deletion-free, positive planning domainsuch that the planning language L contains in�nitely many constants (but S0, as usual, is�nite). For every goal G, there is a plan in P that achieves G i� there is a plan in P with�nitely many constants that achieves G. Furthermore, this �nite set of constants containsonly those constants found in the initial state or the operator de�nitions, if any (otherwise,it contains a single constant).Proof. ((). This direction is trivial.()). Assume there exists a plan that uses possibly non-basic constants. Pick up arbi-trarily, one of the basic constants, if there exists any. Otherwise, pick any one constant.Let us call the constant we picked as a.In the plan, replace all non-basic constants with a. We get a valid plan that achievesthe goal. Here is why.Recall that Pis positive and deletion free. Hence, anything asserted remains asserted,and all preconditions are positive. Consider a precondition of any operator or any goal.Since the original plan is valid, either there is a previous operator that asserts it, or itis true in the initial state. If there is a previous operator that asserts it, then the sameoperator in the modi�ed plan will assert the modi�ed precondition/goal. If it is true in theinitial state, then it did not contain any non-basic variables, hence, it was not a�ected bythe replacement. It should be satis�ed in the modi�ed plan, too.Theorem 3.11 If the language is allowed to contain in�nitely many constants but P =(S0;O) is restricted to be positive, deletion-free, and function-free (and S0 is �nite), thenplan existence is decidable.Proof. Direct consequence of Lemma A.2 and Theorem 3.5.B Proofs of Complexity ResultsB.1 Binary CountersSeveral of the proofs in this paper depend on using function-free ground atoms to representbinary n-bit counters, and function-free planning operators to increment and decrementthese counters. Below, we show how this can be done.To represent a counter that can be incremented, we would like to have an atom c(i)whose intuitive meaning is that the counter's value is i, and an operator \incr" that deletesc(i) and replaces it by c(i+1), respectively. The problem is that without function symbols,we cannot directly represent the integer i nor the arithmetic operation on it. However, sincewe have the restriction 0 � i � 2n � 1 for some n, then we can achieve the same e�ect byencoding i in binary asi = i1 � 2n�1 + i2 � 2n�2 + : : :+ in�1 � 21 + in;where each ik is either 0 or 1. Instead of the unary predicate c(i), we can use an n-arypredicate c(i1; i2; : : : ; in); and to increment the counter we can use the following operators:



B PROOFS OF COMPLEXITY RESULTS 47Name: incr1(i1; i2; : : : ; in�1)Pre: fc(i1; i2; : : : ; in�1; 0)gDel: fc(i1; i2; : : : ; in�1; 0)gAdd: fc(i1; i2; : : : ; in�1; 1)gName: incr2(i1; i2; : : : ; in�2)Pre: fc(i1; i2; : : : ; in�2; 0; 1)gDel: fc(i1; i2; : : : ; in�2; 0; 1)gAdd: fc(i1; i2; : : : ; in�2; 1; 0)g...Name: incrn()Pre: fc(0; 1; 1; : : : ; 1)gDel: fc(0; 1; 1; : : : ; 1)gAdd: fc(1; 0; 0; : : : ; 0)gFor each i < 2n� 1, exactly one of the incrj will be applicable to c(i1; i2; : : : ; in), and it willincrement i by one. If we also wish to decrement the counter, then similarly we can de�nea set of operators fdecrk : k = 1; : : : ; ng as follows:Name: decrk(i1; i2; : : : ; in�k+1)Pre: fc(i1; i2; : : : ; in�k+1; 1; 0; : : : ; 0)gDel: fc(i1; i2; : : : ; in�k+1; 1; 0; : : : ; 0)gAdd: fc(i1; i2; : : : ; in�k+1; 0; 1; : : : ; 1)gFor each i > 0, exactly one of the decrk will be applicable to c(i1; i2; : : : ; in), and it willdecrement i by one.Suppose we want to have two n-bit counters having values 0 � i � 2n and 0 � j � 2n,and an operator that increments i and decrements j simultaneously. If we represent thecounters by n-ary predicates c(i1; i2; : : : ; in) and d(j1; j2; : : : ; jn), then we can simultane-ously increment i and decrement j using a set of operators fshifthk : h = 1; 2; : : : ; n; k =1; 2; : : : ; ng de�ned as follows:Name: shifthk(i1; i2; : : : ; in�h+1; j1; j2; : : : ; jn�k+1)Pre: fc(i1; i2; : : : ; in�h+1; 0; 1; 1; : : : ; 1); d(j1; j2; : : : ; jn�k+1; 1; 0; 0; : : : ; 0)gDel: fc(i1; i2; : : : ; in�h+1; 0; 1; 1; : : : ; 1); d(j1; j2; : : : ; jn�k+1; 1; 0; 0; : : : ; 0)gAdd: fc(i1; i2; : : : ; in�h+1; 1; 0; 0; : : : ; 0); d(j1; j2; : : : ; jn�k+1; 0; 1; 1; : : : ; 1)g:For each i and j, exactly one of the shifthk will be applicable, and it will simultaneouslyincrement i and decrement j.For notational convenience, instead of explicitly de�ning a set of operators such as the setfincrh : h = 1; : : : ; ng de�ned above, we sometimes will informally de�ne a single \abstractoperator" such asName: incr(i)Pre: fc(i)gDel: fc(i)gAdd: fc(i+ 1)gwhere i is the sequence i1; i2; : : : ; in that forms the binary encoding of i. Whenever wedo this, it should be clear from context how a set of actual operators could be de�ned tomanipulate c(i1; i2; : : : ; in).



B PROOFS OF COMPLEXITY RESULTS 48B.2 Eliminating Negated PreconditionsTheorem 5.1 (Eliminating Negated Preconditions) In polynomial time, given anyplanning domain P = (S0;O) we can produce a positive planning domain P0 = (S00;O0)having the following properties:1. For every goal G, a plan exists for G in P if and only if a plan exists for G in P0.2. For every goal G and non-negative integer l, there exists a plan of length l for G in Pif and only if there exists a plan of length l+2kv for G in P0, where k is the maximumarity among the predicates of P and v = dlg ce, where c is the number of constants inP (i.e., v is the number of bits necessary to encode the constants in binary).Proof. Here is the transformation:Predicates: P 0 = P [ fp0jp 2 Pg [ fcounter; startgIntuitively, p0 is the complementary predicate for p. That is, whenever the groundatom p(: : :) is true, p0(: : :) is false. Without loss of generality, we assume all predicatesin P have the same arity. This can be achieved by adding dummy arguments to someof the predicates; we modify G and S0 so that these dummy arguments have �xedvalues. Furthermore, we use f0,1g as our set of constants; this can easily be achievedby encoding each constant as a binary string of ones and zeroes, and increasing thenumber of arguments to the predicates by v.counter(: : :) kv-ary.start() is 0-ary (i.e., it is a proposition).Initial state: fcounter(0)gfp0(0) : p 2 PgGoal state: GOperators: For each operatorO 2 O, we have the following operatorO0 2 O0 that imitatesit: Pre: S1 [ S2 [ fstart()gDel: Del(O) [ fp0jp 2 Add(O)gAdd: Add(O) [ fp0jp 2 Del(O)gwhere S1 is the set of all nonnegated atoms in Pre(O), and S2 is the set of comple-mentary predicates corresponding to the negated atoms in Pre(O).The idea is to replace the negative literals in the precondition list with complementarypredicates. Whenever we add a predicate instance, we delete its complementary predi-cate instance, and whenever we delete a predicate instance, we add its complementarypredicate instance.We have the following two operators to reach the state corresponding to the initialstate of the original planning problem. Increments and decrements (such as mappingi to i+ 1 or i� 1) should be handled as described in Section B.1.Pre: fcounter(i)gDel: fcounter(i)gAdd: fcounter(i+ 1)g [ fp0(i+ 1) : p 2 Pg



B PROOFS OF COMPLEXITY RESULTS 49Pre: fcounter(2kv � 1)gDel: fcounter(2kv � 1)g [ fp0(j) : p(j) 2 S0gAdd: fp(j) : p(j) 2 S0g [ fstart()gIn the �rst 2kv steps of any plan in P0, start() would be false. These steps are usedto assert the instances of complementary predicates. Then, we start imitating the originalplanning problem move to move. Hence if there exists a plan of length l in the originalplanning problem, there exists a plan of length l + 2kv in this planning problem. Thetransformation is obviously polynomial.B.3 Planning When the Operator Set is Part of the InputTheorem 5.3 If we restrict P to be propositional, positive, context-free, and deletion-free,then plan existence is nlogspace-complete.Proof. Below, we show that the problem is in nlogspace and that it is nlogspace-hard.Membership. Here is an nlogspace algorithm that decides this problem:1. For each proposition p in G do:(a) g := p(b) if g is in the initial state, continue with the next proposition in G.(c) Nondeterministically choose an operator with g in the addlist. If no such operatorexists, halt and reject.(d) g := the precondition of the operator if it exists, TRUE otherwise.(e) Go to Step 1(b).2. Halt and accept.The algorithm is based on two facts: Since P is restricted to be positive and deletion-free,the subgoals do not interact. Hence we can look for a plan for each of them separately. Sec-ondly, P is restricted to be context-free, that is each operator has at most one precondition.As a result, in step (b), we do not need to consider multiple preconditions.The algorithm accepts i� there exists a plan that achieves the goal. Only space requiredis for g, and for keeping track of the iteration in the for loop. Hence the problem is innlogspace.Hardness. In order to complete the proof, we give a logspace reduction from o�-linelogspace-bounded nondeterministic TM acceptance problem to the propositional planningproblem with the previous restrictions.An o�-line logspace-bounded TM is de�ned as an n-tuple M = (: : :). Basically, it is aTuring machine with one read-only input tape, one write only output tape, and a read/writework tape. The head of the output tape can not move left. Given input x in the input tape,it uses at most dlg jxje cells on the work tape. A con�guration of the TM can be representedwith the positions of the three heads, the current state, and the contents of the work tape.



B PROOFS OF COMPLEXITY RESULTS 50We do not need to include the contents of the output tape since we can not read it anyway,and we do not need the contents of the input tape explicitly as it never changes.Given an o�-line logspace-bounded nondeterministic TM, and input x, the number ofpossible con�gurations is polynomial in terms of the input. Hence, a con�guration ofM canbe encoded in logarithmic space. We introduce a proposition for each of these con�gurations.We enumerate all these con�gurations and for each of them we output operators such thatprecondition list contains the proposition corresponding to the con�guration, and the addlistcontains a proposition corresponding to a con�guration reachable from the con�gurationin the precondition via some move. In addition to these, we create an operator for eachhalting con�guration such that the precondition contains the proposition corresponding toit, and the addlist contains a special proposition called done, which will also be the goal.Note that these can be done in nlogspace.The TM will accept x i� there exists a plan that achieves done, starting from propositionS0, which corresponds to the initial con�guration of the TM.Theorem 5.4 If we restrict P to be propositional, positive, context-free and deletion-free,then plan length is np-complete.Proof. Since we do not have any delete lists, any operator need to appear in a plan atmost once. Number of operators is bounded by the length of the input. Hence we cannondeterministically guess a sequence of operators and verify that the sequence is a plan oflength at most k, in polynomial time. Therefore, the problem is in np.The Set Cover problem, de�ned de�ned below, is known to be np-complete [16].Given a set S, a set C which is a collection of subsets of S, and a positive integerk encoded in binary, is there a subset C0 � C of size at most k, such that eachelement of S appears in some set in C0?To prove that our planning problem is np-hard, we de�ne the following polynomial-timereduction from the Set Cover problem:Propositions: For each element a of S, we have a proposition pa.Operators: For each subset fa1; a2; : : : ; amg 2 C, we have the following operator:Pre: ;Add: fpa1; pa2; : : : ; pamgDel: ;Initial state: ;Goal state: fpaja 2 SgS has a set cover of size at most k, i� there exists a plan of size at most k. Thereduction is obviously polynomial. Note that all the operators are context-free,deletion-freeand positive.Theorem 5.5 plan length is pspace-complete if we restrict P to be propositional. Itis still pspace-complete if we restrict P to be propositional and positive.



B PROOFS OF COMPLEXITY RESULTS 51Proof.Membership. Since P is restricted to be propositional, the size of any planning statewill not exceed number of propositions. Hence any state can be represented in polynomialspace.The following algorithm solves the problem in npspace. Starting with the initial state,we nondeterministically choose an operator, apply it to get the next state, and decrementk. We repeat this until we �nd a plan in which case we accept, or until k = 0, in whichcase we reject. Since pspace equals npspace, the problem is in pspace.Hardness. The existence version of this problem has been shown to be pspace-complete.(Theorem 5.2) We can reduce it to our problem, just by setting k = 2n, where n is thenumber of propositions. Notice that k will be encoded in n bits. If there exists a plan, therealso exists a plan of length no more than k, because the number of states in the planningproblem is exponential in terms of number of propositions. This completes the proof thatour problem is pspace-complete.Theorem 5.6 (Composition Theorem) Let P = (S0;O) be a planning domain, andO0 be a set of operators such that each operator in O0 is the composition of operators in O.Then for any goal G, there is a plan to achieve G in P i� there is a plan to achieve G inP0, where P0 = (S0;O [O0).Proof. Since operators in O0 are compositions of operators in O, any plan that containsoperators from O0 can be expressed without these operators, just by replacing each occur-rence of operators from O0, by the sequence of operators in O, whose composition givesthese operators.Thus, there exists a plan to achieve G in P i� there exists a plan to achieve G in P0.Theorem 5.7 plan existence is expspace-complete. It is still expspace-complete ifwe restrict P to be positive.Proof. Below, we show that the problem is in expspace and that it is expspace-hard.Membership. The number of ground instances of predicates involved is exponential interms of the input length. Hence the size of any state can not be more than exponential.Starting from the initial state, we nondeterministically choose an operator and apply it.We do this repeatedly until we reach the goal, solving the planning problem in nexpspace.nexpspace is equal to expspace, hence our problem is in expspace.Hardness. To complete the proof, we de�ne a polynomial reduction from the expspace-bounded TM problem, which is de�ned as follows:Given a TM M that uses at most an exponential number of tape cells in termsof the length of its input, and an input string x, does M accept the string x?A Turing machine M is normally denoted by M = (K;�;�; �; q0; F ). K = fq0; : : : ; qmg isa �nite set of states. F � K is the set of �nal states. � is the �nite set of allowable tape



B PROOFS OF COMPLEXITY RESULTS 52symbols. � � � is the set of allowable input symbols. q0 2 K is the start state. �, the nextmove function, is a mapping from K � � to K � �� fLeft;RightgSuppose we are givenM , and an input string x = (x0; x2; : : : ; xn�1) such that xi 2 � foreach i. To map this into a planning problem, the basic idea is to represent the machine'scurrent state, the location of the head on the tape, and the contents of the tape by a set ofatoms.The transformation is as follows:Predicates: contains(i; c) means that c is in the i'th tape cell, where i = i1; i2; : : : ; in isthe binary representation of i. We can write c on cell i by deleting contains(i; d) andadding contains(i; c), where d is the symbol previously contained in cell i.state(q) means that the current state of the TM is q.h(i) means that the current head position is i. We can move the head to the right orleft by deleting h(i), and adding h(i+ 1) or h(i� 1).counter(i) is a counter for use in initializing the tape with blanks.start() denotes that initialization of the tape has been �nished.Constant symbols: � [K [ f0; 1gOperators: Each operator below that contains increment or decrement operations (suchas mapping i to i+ 1 or i � 1) should be expanded into n operators as described inSection B.1.Whenever �(q; c) equals (s; c0;Left), we create the following operator:Name: Ls;c0q;c (i)Pre: fh(i); state(q); contains(i; c); start()gDel: fh(i); state(q); contains(i; c)gAdd: fh(i� 1); state(s); contains(i; c0)gWhenever �(q; c) equals (s; c0;Right), we create the following operator:Name: Rs;c0q;c (i)Pre: fh(i); state(q); contains(i; c); start()gDel: fh(i); state(q); contains(i; c)gAdd: fh(i+ 1); state(s); contains(i; c0)gWe have the following operator that initializes the tape with blank symbols:Name: I(i)Pre: fcounter(i);:start()gDel: ;Add: fcounter(i+ 1); contains(i;#)gThe following operator ends the initialization phase.Pre: fcounter(2n � 1);:start()gDel: ;Add: fcontains(2n � 1;#); start()gFinally, for each q 2 F we have the operator



B PROOFS OF COMPLEXITY RESULTS 53Name: Fq()Pre: fstate(q)gDel: ;Add: fdone()gInitial state: fcounter(n); state(q0); h(0)g [ fcontains(i; xi) : i = 0; : : : ; n� 1gGoal condition: done().The transformation is polynomial both in time and space. It directly mimics the behav-ior of the TM. This ends the proof that planning with delete lists is expspace complete.Theorem 5.8 If we restrict P to be deletion-free, then plan existence is nexptime-complete.Proof. Below, we show that the problem is nexptime and that it is nexptime-hard.Membership. Since we do not have delete lists, the instances of predicates true in a stategrow monotonically during the plan, hence no instance of an operator needs to be used morethan once. Besides we have only an exponential number of operator instances in terms ofthe length of the input. We can nondeterministically guess a sequence of operator instances(of length at most exponential) and check whether it is a plan that satis�es our goal. Hencethe problem is in nexptime.Hardness. Next, we show that given any nondeterministic TM M that halts in at mostexponential steps in terms of its input, we can encode it in polynomial time as a deletion-freeplanning problem.The TM is denoted by M = (K;�;�;#; �; q0; F ). K = fq0; : : : ; qmg is a �nite set ofstates. F � K is the set of so called �nal states. � is the �nite set of allowable tape symbols.� � � is the set of allowable input symbols. # is the blank tape symbol. q0 2 K is thestart state. � � (K � �)� (K � (��#))� fLeft;Rightg. � is the next move relation.Suppose we are given a nondeterministic TM M that runs in exponential time, and aninput string x = (x0; x1; : : : ; xn�1) such that xi 2 � for each i. Note that M runs for atmost 2n steps. We can map this into the following planning problem :Constant symbols: � [K [ f0; 1gPredicates: done() is a propositional predicate denoting that the goal is achieved.counter1(: : :) and counter2(: : :) are n-ary predicates used as binary counters. Recallthat n is the length of the input string x.start(: : :) is an n-ary predicate used to denote that the i'th step of the TM is beingsimulated.same(: : :) is a (2n)-ary predicate used to denote that the �rst n bits and the secondn bits encode the same numbers.state(: : :) is a (n + 1)-ary predicate. The �rst n bits encode the step, the last placeholds the current state at that step.



B PROOFS OF COMPLEXITY RESULTS 54h(: : :) is a (2n)-ary predicate, the �rst n bits encode the step, and the second n bitsencode the head position at that step.contains(: : :) is a (2n+1)-ary predicate, the �rst n bits encode the step, the second nbits encode the cell number, and the last place holds the contents of the cell at thatstep.Operators: Each operator below that contains increment or decrement operations (suchas mapping i to i+ 1 or i� 1) should be expanded into n operators as described inSection B.1.For each q 2 F , we have the operatorName: �nal(V )Pre: fstate(V; q)gDel: ;Add: fdone()gThe following operator asserts the \same" predicates.Name: S(i)Pre: fcounter2(i)gDel: ;Add: fcounter2(i+ 1); same(i+ 1; i+ 1)gThe following operator writes blank symbols at the end of the input string. Noticewe need to go up to cell 2n � 1 only, because M runs in nexptime, and it can notaccess the remaining cells.Name: W (i)Pre: fcounter1(i)gDel: ;Add: fcounter1(i+ 1); contains(0; i+ 1;#)gThe following operator creates the initial con�guration of M after the blank symbolshave been written, and the \same" predicates have been asserted:Pre: fcounter1(2n � 1); counter2(2n � 1)gDel: ;Add: fstate(0; q0); head(0; 0); contains(0; 0; x0); : : : ; contains(0; n� 1; xn�1)gWhenever �(q; a) contains (q0; b; t) where t is left or right, we have the following twooperators.The �rst operator makes the nondeterministic choice and changes the content of thecurrent cell, the state, and the head positionName: N q0;a0q;a (i; j)Pre: fstate(i; q); h(i; j); contains(i; j; a);:start(i)gDel: ;Add: fstate(i+ 1; q0); head(i+ 1; j + d); contains(i+ 1; j; b); start(i)gd is +1 if t is right, and it is -1 if t is left.The second operator copies the remaining cells in step i to step i+ 1.



B PROOFS OF COMPLEXITY RESULTS 55Name: C(i; j; V1; V2)Pre: fcontains(i; V1; V2); h(i; j);:same(j; V1); start(i)gDel: ;Add: fcontains(i+ 1; V1; V2)gNotice that all the cells are not necessarily copied before continuing with the nextstep. However, as soon as the head position is at one of the not copied cells, alloperators are disabled, except those that copy the cells. Hence this does not causeany problem.Initial state: fcounter1(n� 1); counter2(0); same(0; 0)gGoal condition: done().The operators in the planning problem directly mimic the behavior ofM . Furthermore,the transformation can be produced in polynomial time. Thus, planning with no deletelists, but negation is nexptime-complete.Theorem 5.9 If we restrict P to be positive and deletion-free, then plan existence isexptime-complete.Proof.Membership. Since the planning domain does not have delete lists and negated precon-ditions, any operator whose precondition list is satis�ed remains so throughout the plan.Furthermore, no operator instance needs to appear in a plan more than once. Starting withthe initial state, we can iteratively choose an unused operator instance whose preconditionlist is satis�ed, and append it to our plan. We do this until either the current state satis�esthe goal in which case we accept and halt, or no such operator remains in which case wehalt and reject. The number of instances for an operator is cm, where c is the number ofconstants in the domain, andm is the number of variables appearing in the operator. Hencethere are only an exponential number of operator instances in terms of the input length,and the algorithm halts in exponential time. Thus, the problem is in exptime.Hardness. An ATM is normally denoted byM = (K;�;�;#; �; q0; U). K = fk1; : : : ; kmgis a �nite set of states. U � K is the set of so called universal states. Other statesare called existential states. � is the �nite set of allowable tape symbols. � � � is theset of allowable input symbols. # is the blank tape symbol. q0 2 K is the start state.� � (K � �)� (K � (� �#))� fL;R; Sg. � is the next move relation, where L;R; S mean\left", \right", and \stationary", respectively. A con�guration of ATM consists of thecontents of the non-blank portion of the tape, the current state, and the head position,denoted by the triple (s; q; j). A con�guration is an accepting con�guration if one of thefollowing holds:� The state of the con�guration is a universal state with no possible moves.� The state of the con�guration is an existential state, and there exists a move in � thatleads the con�guration to an accepting con�guration.



B PROOFS OF COMPLEXITY RESULTS 56� The state of the con�guration is a universal state and all moves lead to an acceptingcon�guration.This is a recursive de�nition, and the �rst bullet provides the base case.A Linearly Bounded ATM (LBATM) is one which is restricted to use at most n + 1tape cells, where n is the length of the input. lbatm acceptance is the problem of tellingwhether, given a LBATM M and string s 2 ��, (s; q0; 1) is an accepting con�guration.lbatm acceptance has been proven to be exponential time complete.We make a polynomial reduction from lbatm acceptance to our problem to showthat it is exptime-hard. Suppose we are given an LBATM M , and an input string x =(x1; x2; : : : ; xn�1) such that xi 2 � for each i. We can map this into the following planningproblem P (M;x):Constant symbols: � [ K [ fp1; p2; : : : ; png, where the pi's are any n distinct symbolsused to represent the position of the head.Variable symbols: fv1; v2; : : : ; vn+2gPredicates: accept(v1; : : : ; vn+2). The �rst n arguments are used to store the contents ofthe tape, and the next two arguments are used to store the state and head position.Operators: Let q be any state and A be any tape symbol.If �(q; A) contains (q0; A0; L) and q is an existential state, then there are operatorsfLq;Ai : i = 2; : : : ; ng as follows:Name: Lq;Ai (v1; : : : ; vi�1; vi+1; : : : ; vn)Pre: faccept(v1; : : : ; vi�1; A0; vi+1; : : : ; vn; q0; pi�1)gDel: ;Add: faccept(v1; : : : ; vi�1; A; vi+1; : : : ; vn; q; pi)gIf �(q; A) contains (q0; A0; R) and q is an existential state, then there are operatorsfRq;Ai : i = 1; : : : ; n� 1g as follows:Name: Rq;Ai (v1; : : : ; vi�1; vi+1; : : : ; vn)Pre: faccept(v1; : : : ; vi�1; A0; vi+1; : : : ; vn; q0; pi+1)gDel: ;Add: faccept(v1; : : : ; vi�1; A; vi+1; : : : ; vn; q; pi)gIf �(q; A) contains (q0; A0; S) and q is an existential state, then there are operatorsfSq;Ai : i = 1; : : : ; ng as follows:Name: Sq;Ai (v1; : : : ; vi�1; vi+1; : : : ; vn)Pre: faccept(v1; : : : ; vi�1; A0; vi+1; : : : ; vn; q0; pi)gDel: ;Add: faccept(v1; : : : ; vi�1; A; vi+1; : : : ; vn; q; pi)gIf q is a universal state, then there are operators fU q;Ai : i = 1; : : : ; ng as follows:Name: U q;Ai (v1; : : : ; vi�1; vi+1; : : : ; vn)Pre: fPreL [ PreR [ PreSgDel: ;Add: faccept(v1; : : : ; vi�1; A; vi+1; : : : ; vn; q; pi)g



B PROOFS OF COMPLEXITY RESULTS 57wherePreL = faccept(v1; : : : ; vi�1; A0; vi+1; : : : ; vn; q0; pi�1)j(q0; A0; L) 2 �(q; A)gPreR = faccept(v1; : : : ; vi�1; A0; vi+1; : : : ; vn; q0; pi+1)j(q0; A0; R) 2 �(q; A)gPreS = faccept(v1; : : : ; vi�1; A0; vi+1; : : : ; vn; q0; pi)j(q0; A0; S) 2 �(q; A)gNote that PreL is empty if i = 1, and PreR is empty if i = n. Furthermore, the pre-condition list for this operator will be empty when � does not contain any transitionsfor the state q. This is in accordance with the de�nition of an accepting con�guration.Initial state: The initial state is empty.Goal condition: accept(x1; x2; : : : ; xn�1;#; q0; p1):The operators in the planning problem directly mimic the de�nition of an acceptingcon�guration. Thus M accepts x if and only if there is a plan that achievesaccept(x1; x2; : : : ; xn�1;#; q0; p1):Furthermore, P (M;x) can be produced in low-order polynomial time. Thus, planning withno delete lists, no negation and no function symbols is exptime-hard.Theorem 5.10 If we restrict P to be context-free, positive, and deletion-free, then planexistence is pspace-complete.Proof. Below, we show that the problem is pspace-hard and that it is in pspace.Hardness. This is established by showing that the acceptability problem for linearlybounded automatons (LBAs), which is known to be pspace-complete (Garey and Johnson[16]) reduces to the problem in polynomial time.An LBA is normally denoted by M = (K;�;�; �; q0; F ). K = fq0; : : : ; qmg is a �niteset of states. F � K is the set of �nal states. � is the �nite set of allowable tape symbols.� � � is the set of allowable input symbols. q0 2 K is the start state. �, the next movefunction, is a mapping from K � � to subsets of K � �� fLeft;Rightg. An LBA uses onlyn tape cells, where n is the length of the input string.Suppose we are given an LBA M , and an input string x = (x1; x2; : : : ; xn) such thatxi 2 � for each i. We can map this into the following planning problem :Constant symbols: � [ K [ fp1; p2; : : : ; png, where the pi's are any n distinct symbolsused to represent the position of the head.Variable symbols: fV1; V2; : : : ; Vn+2gPredicates: con�guration(V1; : : : ; Vn+2), done(). The �rst n positions in con�guration()are used to store the contents of the tape, and the next two positions are used to storethe state and head position.Operators:Whenever �(q; a) contains (q0; a0;Left), we create the following operator for eachpi; i 6= 1:



B PROOFS OF COMPLEXITY RESULTS 58Pre: fcon�guration(V1; : : : ; Vi�1; a; Vi+1; : : : ; Vn; q; pi)gDel: ;Add: fcon�guration(V1; : : : ; Vi�1; a0; Vi+1; : : : ; Vn; q0; pi�1)gWhenever �(q; a) contains (q0; a0;Right), we create the following operator for eachpi; i 6= n:Pre: fcon�guration(V1; : : : ; Vi�1; a; Vi+1; : : : ; Vn; q; pi)gDel: ;Add: fcon�guration(V1; : : : ; Vi�1; a0; Vi+1; : : : ; Vn; q0; pi+1)gFor each state q 2 F we create the following rule:Pre: fcon�guration(V1; : : : ; Vn; q; Vn+2)gDel: ;Add: fdone()gInitial state: con�guration(x1; : : : ; xn; q0; p1)Goal: done()The operators directly mimic the possible actions of M on x. Thus M accepts x if andonly if there is a plan for done. The transformation is obviously polynomial. Hence, theproblem at hand is pspace-hard.Membership. We present an algorithm below that demonstrates membership of ourproblem in npspace. As npspace = pspace, this establishes that the problem is in pspace.Intuitively, Q is the set of subgoals that have not been achieved yet.1. Q := G� S0.2. If Q = ; , then halt and accept.3. Nondeterministically choose an operator instance � such thatQ\Add(�) 6= ;.4. Q := (Q� Add(�))[ (Pre(�)� S0):5. Go to Step 2.Note that size of Q never grows, as each operator has at most one precondition, henceit can be represented in pspace.If there is a plan for the goal, then there will be a sequence of choices that would end upachieving all the subgoals, hence the algorithm would halt and accept; If there is no planfor the goal, no sequence of choices would end up achieving all the subgoals , and input willbe rejected.Since pspace = npspace, we are done.Theorem 5.11 If we restrict P to be deletion-free, positive, and context-free, then planlength is pspace-complete.Proof. Below, we show that the problem is pspace and that it is pspace-hard.



B PROOFS OF COMPLEXITY RESULTS 59Membership. We had proved the existence version of this problem to be in npspace.All we need to do is to modify the previous algorithm so that we also verify the lengthof the plan found to be at most k. Since pspace = npspace, this proves membership inpspace. Here is the algorithm:1. Q := G� S0; counter := k2. If Q = ; , then halt and accept.3. Nondeterministically choose an operator instance � such thatQ\Add(�) 6= ;.4. Decrement counter. Halt and reject if counter=0.5. Q := (Q� Add(�))[ (Pre(�)� S0):6. Go to step 2.Hardness. We had proved the plan existence version of this problem to be pspace-hard.(Theorem 5.10) Since we do not have delete lists, the length of any plan need not exceednumber of operator instances. We can reduce the existence version to this problem bysetting k to this value.Theorem 5.12 plan length is nexptime-complete in each of the following cases:1. P is deletion-free and positive;2. P is deletion-free;3. P is positive;4. no restrictions (except, of course, that P is function-free).Proof.Membership. Since k is part of the input, and it is encoded in binary, k can be at mostexponential in terms of length of the input. We can nondeterministically guess a sequenceof instances of the operators, and in exponential time, we can verify that it is a plan oflength at most k that achieves the goal. Hence the problems are in nexptime.Hardness. Next, we show that Case 1, which is a special case of Cases 2, 3, and 4, isnexptime-hard. Given a nondeterministic Turing machine M , that runs in exponentialtime, and an input string x = x0; : : : ; xn�1, we reduce it to the optimum planning problemwithout delete lists and negated preconditionsWithout loss of generality we assume when the TM enters a halting state, �() will besuch that it will stay in the same state, write the same symbol it reads, and the headposition will remain stationary.We create the following planning problem:Predicates: greater(i; j) is a 2n-ary predicate to assert that i is greater than j. It is usedto assert instances of the \di�" predicate.di�(i; j) is a 2n-ary predicate used to assert that i and j are di�erent numbers.choicecounter(: : : ) is an n-ary predicate used when making the nondeterministic choices.



B PROOFS OF COMPLEXITY RESULTS 60choice(i; p) is an n+1-ary predicate. The �rst n places encode the step in binary, then+ 1th place holds the nondeterministic choice for this step.�lltape(: : : ) is an n-ary predicate used as a counter while initializing the blank portionof the tape.counter(i; j) is a 2n-ary predicate denoting that the j'th tape cell at step i is beingprocessed.contains(i; j; c) is a 2n+1-ary predicate denoting that at i'th step tape cell j containsc.state(i; q) is a n+ 1-ary predicate holding the current state at step i.h(i; j) is a 2n-ary predicate denoting that at step i, the head is at position j.laststate(q) is a unary predicate denoting the state after the last (2n) step.done() is a propositional symbol denoting that the TM accepted the input string.Initial state: fdi�(0; 1); di�(1; 0); greater(1; 0)g [ fcontains(0; i; xi) : i < ngGoal: done()Operators: Each operator below that contains increment or decrement operations (suchas mapping i to i+ 1 or i� 1) should be expanded as described in Section B.1.The following operators assert instances of the \di�" predicate.Name: D(i; j)Pre: fgreater(i; j)gAdd: fgreater(i+ 1; j); di�(i+ 1; j); di�(j; i+ 1)gDel: ;Name: G(j)Pre: fgreater(2n � 1; j)gAdd: fgreater(j + 2; j + 1); di�(j + 2; j + 1); di�(j + 1; j + 2)gDel: ;Pre: fgreater(2n � 1; 2n � 2)gAdd: fchoicecounter(0)gDel: ;The following operator makes the nondeterministic choices of the TM for every step:Name: C(i; V )Pre: fchoicecounter(i)gAdd: fchoicecounter(i+ 1); choice(i; V )gDel: ;Name: Cl(V )Pre: fchoicecounter(2n � 1)gAdd: fchoice(2n � 1; V ); �lltape(n)gDel: ;The following operators initialize the blank portion of the tape:



B PROOFS OF COMPLEXITY RESULTS 61Name: F (i)Pre: f�lltape(i)gAdd: f�lltape(i+ 1); contains(0; i;#)gDel: ;Pre: f�lltape(2n � 1)gAdd: fcounter(0; 0); contains(0; 2n � 1;#)gDel: ;The following two operators copy the contents of the tape at step i to step i+ 1:Name: Copy(i; j;K; V )Pre: fcounter(i; j); h(i;K); di�(j;K); contains(i; j; V )gAdd: fcounter(i; j + 1); contains(i+ 1; j; V )gDel: ;Name: Copyl(i; k; V )Pre: fcounter(i; 2n � 1); h(i; k); di�(i; k); contains(i; 2n � 1; V )gAdd: fcontains(i+ 1; 2n � 1; V ); counter(i+ 1; 0)gDel: ;The following imitates the moves of the Turing machine, by writing the appropriatesymbol on the current cell, changing the state, and moving the head. Whenever(q0; c0; t) is the p'th element in �(q; c) we have the operators:Name: M q0;c0;tq;c;p (i; j)Pre: fcounter(i; j); h(i; j); state(i; q); contains(i; j; c); choice(i; p)gAdd: fcounter(i; j + 1); state(i+ 1; q0); contains(i+ 1; j; c0)h(i+ 1; j + d)gd is 1 if t is right, -1 if t is left, and 0 otherwise.Name: Mlq0q;c;p(i; j)Pre: fcounter(2n � 1; 0); h(2n � 1; j); state(2n � 1; q);contains(2n � 1; j; c); choice(i; p)gAdd: flaststate(q0)gFor each q 2 F we have the following operator:Name: Fq()Pre: flaststate(q)gAdd: fdone()gThe planning system works in phases. In the �rst phase, instances of the \di�" predicateare asserted. In the end of this phase the next phase which makes the nondeterministicchoices is enabled. In the end of this , the next phase, which initializes the blank portion ofthe tape is enabled. When the tape is �lled with blanks, we enable the next phase, whichactually mimics the behavior of the TM. We make use of the predicate counter(i; j) in thisphase. Suppose, we are at step i and we are examining cell j. if head is not in position j atthat step, we simply copy the contents of this cell to the next step. If head is at positionj at that step, we make the move according to the nondeterministic choice that we have



B PROOFS OF COMPLEXITY RESULTS 62made before, and set the new state, head position, contents of cell j for the next step. Thenwe consider the cell j + 1. When we reach the end of the tape (cell 2n � 1), we turn backto cell 0 and proceed with the next step. In the very last step (step 2n) we do not need todo all this. We just determine what the next state would be. Then if this state is a �nalstate, we assert \done()."Note that each operator enables the next one, hence there is no plan that would followa di�erent order. The only remaining problem is ensuring that the operator that makesthe nondeterministic choices does not �re more than once for the same step. We do this byputting a bound on the length of the plan so that if we make more than one nondeterministicchoice at some step, the remaining number of steps will not be enough to complete the plan.We spend (2n � 1)2n�1 steps in asserting instances of the \di�" predicate, 2n steps inmaking the nondeterministic choices, 2n �n steps for initializing the tape, (2n� 1)2n stepsfor simulating the moves, 1 step for the last move, and 1 step for asserting done(), givingk = 3� 22n�1 + 2n�1 � n + 2 in total.The Turing machine accepts x i� there exists a plan of length k that achieves done. Thereduction is obviously polynomial.B.4 Planning When the Operator Set is FixedTheorem 5.13 plan existence can be solved in constant time if we restrict P =(S0;O; G) to be propositional and O to be a �xed set.Proof. Both the number of operators, and the number of propositions we need to considerare constant, which implies that the number of possible plans and their lengths are boundedby a constant. Thus we can solve the planning problem in constant time.Corollary 5.5 plan length can be solved in constant time if we restrict P = (S0;O; G)to be propositional and O to be a �xed set.Proof. Since the number of possible plans is constant, we can check all of them in constanttime.Theorem 5.141. If we restrict P to be �xed, deletion-free, context-free and positive, then plan exis-tence is in nlogspace and plan length is in np.2. If we restrict P to be �xed, deletion-free, and positive, then plan existence is in pand plan length is in np.3. If we restrict P to be �xed and deletion-free, then plan existence and plan lengthare in np.4. If we restrict P to be �xed, then plan existence and plan length are in pspace.Proof. When the set of operators is �xed, we can enumerate all ground instances inpolynomial time, reducing the problem to propositional planning. Hence the theorem followsfrom propositional planning results.



B PROOFS OF COMPLEXITY RESULTS 63Theorem 5.15 There exists a �xed positive deletion-free set of operators O for whichplan length is np-hard.Proof. Here are the operators:Pre: fcounter(X); next(X; Y )gAdd: fcounter(Y ); true(X)gDel: ;Pre: fcounter(X); next(X; Y )gAdd: fcounter(Y ); false(X)gDel: ;Pre: fcounter(last); poslit(X;C); true(X)gAdd: fdone(C)gDel: ;Pre: fcounter(last); neglit(X;C); false(X)gAdd: fdone(C)gDel: ;We can reduce the satis�ability problem, which is known to be np-complete, to this problemas follows.Given a boolean expression E in CNF form containing variables fx1; : : : ; xng, we outputthe following:k = n + the number of clauses in EG = fdone(c) : c is a clause of EgS0 = fposlit(x; c) : x is an atom of cg [ fneglit(x; c) : x is a negative literal of cg[fnext(xi; xi+1) : i = 1; : : : ; n� 1g [ fnext(n; last)gThe \counter" predicate is used to ensure that the operators that assign truth values tovariables of the boolean expression, are enabled sequentially. Together with the boundon the plan length, this ensures that each variable is assigned a unique truth value. E issatis�able i� there exists a plan of length k. The reduction is clearly polynomial.Theorem 5.16 There exist �xed deletion-free sets of operators O for which plan exis-tence and plan length are np-hard.Proof. np-hardness for plan length follows from Theorem 5.15. Here are the operatorsfor which plan existence is np-hard:Pre: f:true(X)gAdd: ffalse(X)gDel: ;Pre: f:false(X)gAdd: ftrue(X)gDel: ;



B PROOFS OF COMPLEXITY RESULTS 64Pre: fposlit(X;C); true(X)gAdd: fdone(C)gDel: ;Pre: fneglit(X;C); false(X)gAdd: fdone(C)gDel: ;Intuitively, false(X) and true(X) stands for X is asserted true and false respectively.poslit(X,C) and neglit(X,C) stands for the assertions that X is a positive literal of clauseC, and X is a negative literal of clause C, respectively.We reduce the satis�ability problem (which is known to be np-complete) to this problem.Given a boolean expression in CNF form, we create the initial state asS0 = fposlit(x; c) : x is an atom of cg [ fneglit(x; c) : x is a negative literal of cgG = fdone(c) : c is a clausegThe expression is satis�able i� there exists a plan to assert done(c) for each clause c.The reduction is clearly polynomial.Theorem 5.17 There exists a �xed set of positive operators O for which plan existenceand plan length are pspace-hard.Proof. Here is the set of operators:Name: R(I; J; V;Q;S; Y )Pre: fhead(I); next(I; J); contains(I; V ); state(Q); delta(Q; V; S; Y;Right)gAdd: fhead(J); contains(I; Y ); state(S)gDel: fhead(I); contains(I; V ); state(Q)gName: L(I; J; V;Q;S; Y )Pre: fhead(I); next(J; I); contains(I; V ); state(Q); delta(Q; V; S; Y;Left)gAdd: fhead(J); contains(I; Y ); state(S)gDel: fhead(I); contains(I; V ); state(Q)gName: D(Q)Pre: fstate(Q); �nal(Q)gAdd: fdone()gDel: ;We can reduce the linearly bounded automata (LBA) acceptance to this problem asfollows. Given a TM M that is linearly bounded, and an input string x = x1; : : : ; xn wecreate the initial state and the goalS0 = fnext(pi; pi+1) : i = 1; : : : ; n� 1g [ fcontains(pi; xi) : i = 1; : : : ; ng[fdelta(Q; V; S; Y;Left) : (S; Y;Left) 2 �(Q; V )g[fdelta(Q; V; S; Y;Right) : (S; Y;Right) 2 �(Q; V )g[f�nal(Q) : Q 2 Fg [ fstate(q0); head(p1)gG = fdone()g



B PROOFS OF COMPLEXITY RESULTS 65The operators mimic the moves of the LBA, one for one. The LBA accepts x i� there is aplan that achieves done(). The reduction is obviously polynomial. Thus plan existencewith this set of operators is pspace-hard.The same set of operators works for plan length well. Since the number of distinctLBA con�gurations is exponential in terms of the input string length, LBA halts withinthat many moves. Since the planning operators mimic the LBA move for move, all we needto do is set k = the number of con�gurations. Then plan existence is just a special caseof it.Theorem 5.18 (Complexity of planning with conditional operators) Theorems 5.3through 5.5, 5.7 through 5.17, and their corollaries still hold when O is allowed to containconditional operators.Proof.Varying set of operators. Hardness follows directly because planning with regular op-erators is a special case of planning with conditional operators, where each operator isrestricted to contain exactly one triple. For membership, we will outline the modi�ca-tions needed for each case. The modi�cations for both propositional planning and datalogplanning will be the same, so we will not state them twice.plan existence:� Deletion-free, positive, context-free. The same algorithm given for membership willwork, except when we choose an operator, we should nondeterministically choose asubset of the triples such that each triple chosen achieves at least one distinct subgoal,and use the add list and preconditions of all these triples.� Deletion-free, positive. The membership proof is based on the fact that no operatorneeds to be applied more then once (because it is deletion-free), and the order of theoperators does not matter (because they are positive). When we have conditionaloperators, the only di�erence is that each operator needs to be used at most n times,where n is the number of triples it contains. This di�erence does not a�ect the proofat all.� Deletion-free. As mentioned above, we do not need to use any operator more timesthan the number of triples it contains. Hence the lengths of the plans are still atthe same level (exponential for datalog, polynomial for propositional case) as before.Thus, the same proof as before works.� Unrestricted. The algorithm given for this proof was based on a non-deterministicforward search. Since state size is not a�ected by conditional operators, the samealgorithm still works. The only di�erence is, when we have chosen the operator,and computing the next state, we need to use the e�ects of all the triples whoseprecondition lists are satis�ed in the current state.plan length:� Datalog operators. The same nexptime proof will work, since k still con�nes us toplans of exponential length.



B PROOFS OF COMPLEXITY RESULTS 66� Context-free,positive, deletion-free. The same algorithm used for plan existence willwork, if we introduce a counter, initialize it to k, and decrement it at each iteration.We add a new step that checks the counter, and fails when it hits 0.� Propositional planning (unrestricted). Same modi�cation as the previous one.� Propositional, deletion-free. since P is deletion-free, each operator instance need tobe used no more than the number of triples it contains. Thus the plans need notbe longer than polynomial, and nondeterministically, we can choose a sequence ofoperator instances and verify that it is a plan that achieves the goal, and that it is atmost of length k.Fixed set of operators. Propositional planning with a �xed set of operators is obviouslystill constant time. As before, the results for datalog planning follow from the results aboutpropositional planning with a varying set of operators.


