CAABT 1993 SFRinG SYMFOStnau onf

AT mnd NE-HARD FloBLers

A Theoretical Study of Domain-Independent Planning*

Kutluhan Erolt

Dana Naut
kutluhan@cs.umd.edu nau@cs.umd.edu

V. S. Subrahmanian$
vs@cs.umd.edu

University of Maryland
College Park, MD 20742

Introduction

" In two previous conference papers, we examined how
the decidability (Erol et al., 1992¢) and complexity
(Erol et al., 1992b) of domain-independent planning
with STRIPS-style planning operators depends on the
nature of the operators. However, space constraints
did not allow us to include much discussion of the
meaning and significance of this work—and in addi-
- tion, we have subsequently produced several additional
results that did not appear in those papers. In this re-
port, we briefly summarize both our previous and cur-
rent results, and then concentrate on discussing their
meaning, significance, and relation to others’ work.

We discuss conditions under which planning is decid-
able and undecidable. Cur results on this topic solve
an open problem posed by Chapman (1987), and clear
up some difficuliies with his undecidability theorems.

For those cases where planning is decidable, we dis-
cuss how the time complexity varies depending on a
wide variety of conditions: (1) whether or not func-
tion symbols are allowed; (2) whether or not delete
lists are allowed; (3) whether or not negative precon-
ditions are allowed; (4) whether or not the predicates
are restricted to be propositional (i.e., 0-ary); and (5)
whether the planning operators are given as part of the
input to the planning problem, or instead are fixed in
advance.

Chapman (1987) and Dean and Boddy (1988} stud-
ied planning with conditional operators, and showed
that the problem of deciding whether a proposition is
necessarily true after a partially ordered plan (a.k.a
modal truth criterion) is NP-hard in the presence of
conditional operators. The same problem can be solved
in polynomial time when conditional operators are not
allowed, and this led researchers to believe that plan-

*This work was supported in part by Army Research
" Office Grant DAAL-03-92-G-0225, and NSF Grants NSFD
CDR-88003012, IRI-8907890, and IRI-8109755.

! Department of Computer Science.

4Department of Computer Science, and Institute for
Systems Research.

$Department of Computer Science, and Institute for Ad-
vanced Computer Studies.

ning with conditional operators is harder than plan-
ning with regular STRIPS operators. However, our
new results show that, contrary to the expectations,

conditional operators do not affect the-complexity-of——--

plan existance, nor the complexity of plan optimality
problems.

For a more extensive treatment, including all of the
mathematical details, see Erol ef al. (1992a).

Basic Definitions

If £ is a first-order language, then a state is a set of
ground atoms in £. Intuitively, a state tells us which

. ground atoms are currently true: if a ground atom A

is in state S, then A is true in state S, and if B ¢ §,
then B is false in state §. Thus, a state is simply an
Herbrand interpretation (cf. Shoenfield 1967) for the
language £, and hence each formula of first-order logic
is either satisfied or not satisfied in S according to the
usual first-order logic definition of satisfaction.

We use STRIPS-style planning operators sim-
ilar to those used by Nilsson (1980). In

particular, a plenning operaior « is a 4-tuple

(Name(ex), Pre(ar), Add{«), Del(er)), where-

1. Name(e) is a syntactic expression of the form
al(Xy,...,Xn) where each X; is a variable symbol
of £;

2. Pre(e) is a finite set of literals (i.e., atoms and
negated atoms), called the precondition list of «,
whose variables are all from the set {X,,..., X };

3. Add(a) and Del(er) are both finite sets of atoms
{possibly non-ground) whose variables are taken
from the set {X1,...,X,}. Add(a) is called the add
list of &, and Del(e) is called the delete list of a.

Observe that negated atoms are allowed in the precon-
dition list, but not in the add and delete lists.

A planning domain is a pair P = (S5, O), where Sy
is a state called the initial siate, and & is a finite set
of planning operators. The language of P is the first-
order language £ generated by the constant, function,
predicate, and variable symbols appearing in P, along
with an infinite number of additional variable symbols.

A goalis a conjunction of atoms which is existentially
closed (i.e., the variables, if any, are existentially quan-
tified). A planning problem is a triple P = (Sy, 0, G),
where (Sp, O) is a planning domain and G is a goal.

Let P = (Sp,0) be a planning domain, o be an
operator in O whose name is a(Xj,...,X,), and ¢
be a substitution that assigns ground terms to each
Xi,1 €1 < n. Suppose that the following conditions
hold for states S and S":

{A#8 : A is a positive literal in Pre(e)} C S;
{B9 : =B is a negative literal in Pre{a)} NS = §;
S = (§ ~ (Del(e)f)) U (Add(e)8).

‘Then we say that '« is #-ezecutable in state S , resulting
in state S’. This is denoted symbolically as

s g
Suppose P = (55,0} is a planning domain and G is
a goal. A plan that achieves G is a sequence Sy, ..., Sy

of states, a sequence ay, ..., ay, of planning operators,
and a sequence fy,...,8, of substitutions such that

N K n,0n
Sy g B, .. wdr o

and G is satisfied by $,, i.e. there exists .a ground
instance of G that is true in S,. The length of the
above plan is n.

We now define two decision problems:

¢ PLAN EXISTENCE is the problem, “Given a planning
problem P = (5;,(, (), is there a plan in P that
achieves G7”

® PLAN LENGTH is the problem, “Given a planning
problem P = (S;, 0, G) and an integer k encoded in
binary, is there a plan in P of length & or less that
achieves G'7”

Special-Case Definitions
Acyclicity and Boundedness.

A level mapping for a language L is a mapping £ :
AT(L} — N where AT(L) is the set of ground atoms
in language L and N is the set of natural num-
bers. A predicate level mapping for L is a mapping
f : Pred(L}) — N where Pred(L) is the set of predi-
cate symbols in language L.

Suppose P = (S, O) is 2 planning domain in which
no operator has negative preconditions or delete lists.
P is said to be atomically acyelic iff there exists a level
mapping £ such that for all ground instances, o, of
operators in P, it is the case that £(A) > £(B) for all
A € Add(e) and B € Pre(a). P is said to be predicate
acyelic iff there exists a predicate level mapping § such
that for all operators o in P, it is the case that §{p) >
#(g) for all predicates p occurring in Add(c) and all
predicates ¢ occurring in Pre(a).

A planning domain P = (S, O) is weakly recurrent
iff there exists a level mapping £ such that for every

ground instance « of an operator in O, if A € Add(a)
is such that there is no plan to achieve A from P, then
there is a B; € Pre(e) such that there is no plan to
achieve B; from P and £(A) > £(B;).

Suppose G = () (A; &...&A,) is a goal. Let
Grd(G) denote the set of all ground instances of
the quantifier-free conjunction (A; &...&A4,). G is
bounded w.r.t. a level mapping £ iff there is an integer
b such that for every ground instance (A; & ...&A,)8
in grd(G), it is the case that £(A;) < b.

Conditional Planning Operators.

Several researchers (Chapman, 1987; Dean and Boddy,
1988; Peot, 1992; Pednault, 1988) have been interested
in actions whose effects depend on the input situation.
The following formulation of conditional planning op-
erators is due to Dean and Boddy (1988). A condi-
tional operator o is a finite set {t;,1s,...,%5}, where
each ¢; is a triple of the form (Pre;, Del;, Add;). Pre;,
Del;, and Add; correspond to the precondition list,
delete list and add list associated with the ¢’th triple,
respectively. Hence each of these lists are sets of atoms.

Suppose @ is a conditional operator, # is a ground
substitution for the variables appearing in «, S is a
state, I = {i : S satisfies Pre;f}, and

S = (S - | JDelib) u |] add;e.
i€l icl
Then we say that « is f-executable in state S, resuliing
in state §'. This is denoted as 5§ =5 &',

Qur results are independent of whether we use con-
ditional operators such as the ones defined above, or
the ordinary STRIPS-style planning operators in the
“Basic Definitions” section. '

Decidability and Undecidability
Summary. _

QOur decidability and undecidability results are sum-.
marized in Table 1; for their details, see (Erol et al.,
1992a). Whether the planning operators are fixed in

. advance or given as part of the input, and whether or

not they are conditional, does not affect these results.
If we use the conventional definitions of a first-order

language and a state (i.e., the langnage contains only
finitely many constant symbols and all states are fi-
nite), then whether or not PLAN EXISTENCE is decid-
able depends largely on whether or not function sym-
bols are allowed: :

1. If the language is allowed to contain function sym-
bols (and hence infinitely many ground terms), then,
in general, PLAN EXISTENCE is undecidable, regard-
less of whether or not the operators have delete lists,
negative preconditions, or more than one precondi-
tion. ' :

2. When .certain syntactic (predicate and atomic
acyclicity) and semantic properties (weak recur-
rence) are satisfied by planning domains (even those

Table 1: Decidability of domain-independent planning. These results are independent of
whether the operators are fixed in advance, and whether conditional operators are allowed.

Allow func- Allow infinitely | Allow infinite | Allow delete lists and/or]| Telling if
tion symbols? | many constants? | initial states? | negated preconditions? a plan exists
yes yes/no yes/no yes/no/no”* semidecidable
no no no? decidable
yes yes/no semidecidable
no yes no yes semidecidable
no decidable
no no?’ yes/no ' decidable

®No operator has more than one precondition.

AWith acyclicity and boundedness restrictions as described in the “Special-Case Definitions” section.
"The other restrictions ensure that the initial state will always be finite.

containing function symbols) in which there are no
delete lists or negative preconditions, then plan ex-
istence for bounded goals is decidable.

3. If the language does not contain function symbols
(and hence has only finitely many ground terms},
then PLAN EXISTENCE is decidable, regardless of
whether or not the planning operators have negative
preconditions, delete lists, or more than one precon-
dition.

Discussion.

The basis for these results is that we have shown that
logic programming is essentially the same as planning
without delete lists. This is established by showing
how to transform a planning domain without delete

. listsinto a logic program such that for all goals G, the

goal GG is achievable from the planning domain iff the
. logical query that G represents is provable from the
~corresponding logic program. Furthermore, we have
shown that every logic program may be transformed
to an equivalent planning domain in which each oper-
ator has no negative preconditions and no delete lists.
This equivalence has allowed us o transport many re-
sults from logic programming to planning, leading to
a number of decida.bility and undecidability results.
For comparison with Chapman’s (Chapman, 1987)
results, Table 1 also includes decidability and undecid-
ability results for the cases where we allow infinitely
many constant symbols, infinite initial states, and con-
ditional operators. These results relate to Chapman’s
work as follows:

1. We have solved an open problem stated by Chap-
man in (Chapman, 1987): whether or not planning
is undecidable when the language contains infinitely
many constants but the initial state is finite. In par-
ticular, our results show that this problem is decid-
able in the case where the planning operators have
no negative preconditions and no delete lists. If the
planning operators are allowed to have negative pre-
conditions and/or delete lists, then the problem is
. undecidable.

2. Chapman’s Second Undecidability Theorem states

that “planning is undecidable even with a finite ini-
tial situation if the action representation is extended
to represent actions whose effects are a function of
their input situation” (Chapman, 1987), i.e., if the
language contains function symbols and infinitely
many constants. Qur results show that even with
a number of additional restrictions, planning is still
undecidable.

3. In Chapman’s Second Undecidability Theorem, the
phrase “actions whose effects are a function of their
input situation” has been thought by some re-
searchers (Peot, 1992; Erol et al., 1992¢) to refer to
conditional operators. However, this is an incorrect
interpretation. First, as we mentioned above, our
decidability and complexity results are unaffected
by whether or not conditional operators are allowed.
Second, a careful examination of Chapman’s proof
makes it clear that he is referring to the case where
the planning operators are allowed to contain fune-
tion symbols. Our results show that if function sym-
bols are allowed, then even if there are only finitely
many constant symbols, then PLAN EXISTENCE is
undecidable. Thus, our results subsume the Second
Undecidability Theorem.

Complexity

Summary.

Based on various syntactic criteria on what planning
operators are allowed to look like, we have developed
a comprehensive theory of the complexity of planning.
The results are summarized in Table 2; for details see
(Erol et al., 1992a). When there are no function sym-
bols and only finitely many constant symbols (so that
planning is decidable), the computational complexity
varies from constant time to EXPSPACE-complete, de-
pending on the following conditions:

¢ whether or not we allow delete lists and/or negative
preconditions,

e whether or not we restrict the predicates to be
propositional (i.e., 0-ary),

Table 2: Complexity of domain-independent planning. These results are independent of
whether conditional operators are allowed.

Language How the oper- Allow de- | Allow negated || Telling if a Telling if there’s a
restrictions ators are given | lete lists? | preconditions? || plan exists plan of length <k
datalog yes yes/no EXPSPACE-comp. NEXPTIME-comp.
(no function | given in yes NEXPTIME-comp. | NEXPTIME-comp.
symbols, the input no no EXPTIME-comp. NEXPTIME-comp.
and no” PSPACE-comnplete | PSPACE-complete
finitely yes yes/no PSPACE ' PSPACE 7 B
many fixed in yes NP 7 NP 7
constant advance no no F NP 7
symbols) no® NLOGSPACE NP
propositional yes yes/no PSPACE-complete’ | PSPACE-complete
(all given in ves NP-complete’ NP-complete
predicates the input no no p’ NP-complete
are O-ary) . no® /nof NLOGSPACE-comp. | NP-complete

fixed in advance | yes/no yes/no constant time constant time
“No operator has more than one precondition.

PEvery operator with more than one precondition is the composition of other operators.
YWith PSPACE- or NP-completeness for some sets of operators.

’Results due to Bylander (1991).

¢ whether we fix the planning operators in advance, or
give them as part of the input.

The presence or absence of conditional operators does
not affect these results.

Discussion.

Examination of Table 2 reveals several .interesting
properties: '

1.. Comparing the complexity of PLAN EXISTENCE in

the propositional case (in which all predicates are re-
stricted to be 0-ary) with the datalog case (in which
the predicates may have constants or variables as ar-
guments) reveals a regular pattern. In most cases,
the complexity in the datalog case is exactly one
level harder than the complexity in the correspond-
ing propositional case. We have EXPSPACE-complete
versus PSPACE-complete, NEXPTIME-complete versus
NP-complete, EXPTIME-complete versus polynomial.

. If delete lists are allowed, then PLAN EXISTENCE
is EXPSPACE-complete but PLAN LENGTH is only

NEXPTIME-complete. Normally, one would not ex-

pect PLAN LENGTH to be easier than PLAN EXIS-
TENCE. In this case, it happens because the length
-of a plan can sometimes be doubly exponential in
the length of the input. In PLAN LENGTH we are
given a bound k, encoded in binary, which confines
us to plans of length at most exponential in terms of
the input. Hence in the worst case of PLAN LENGTH,

finding the plan is easier than in the worst case of

'PLAN EXISTENCE.

We do not observe the same anomaly in the propo-
sitional case, because the lengths of the plans are
at most expomential in the length of the input.

Hence, giving an exponential bound on the length
of the plan does not reduce the complexity of PLAN
LENGTH. As a result, in the propositional case, both
PLAN EXISTENCE and PLAN LENGTH are PSPACE-
complete.

. When the operator set is fixed in advance, any op-

erator whose predicates are not all propositions can
be mapped into a set of operators whose predicates
are all propositions. Thus, planning with a fixed set
of datalog operators has basically the same complex-
ity as planning with propositional operators that are
given as part of the input.

. PLAN LENGTH has the same complexity regardless

of whether or not negated preconditions are allowed.
This is because what makes the problem hard is how
to handle enabling-condition interactions. Enabling-
condition interactions are discussed in more detail
in (Gupta and Nau, 1992), but the basic idea is
that a sequence of actions that achieves one subgoal
might also achieve other .subgoals or make it eas-
ler to achieve them. Although such interactions will
not affect PLAN EXISTENCE, they will affect PLAN
LENGTH, because they make it possible to produce a
shorter plan. 1t is not possible to detect and reason
about these interactions if we plan for the subgoals .
independently; instead, we have to consider all pos-
stble operator choices and orderings, making PLAN
LENGTH NP-hard.

‘5. Delete lists are more powerful than negated precon-

ditions. Thus, if the operators are allowed to have
delete lists, then whether or not they have negated
preconditions has no effect on the complexity.

Below, we summarize how and why our parameters
affect the complexity of planning:

¢ If no restrictions are put on P, any operator instance
might need to appear many times in the same plan,
forcing us to search through all the states, which are
double exponential in number. Since the size of any
state is al most exponential, PLAN EXISTENCE can
be solved in EXPSPACE.

¢ If the planning operators are restricted to have no
delete lists, then any predicate instance asserted re-
mains true throughout the plan, hence no operator

instance needs to appear in the same plan twice.

Since the number of operator instances is exponen-
tial, this reduces the complexity of PLAN EXISTENCE
to NEXPTIME.

o If the planning operators are further restricted to
have no negative preconditions, then we get the nice
property that no operator clobbers another. Thus
the order of the operators in the plan does not mat-
ter, and the complexity of PLAN EXISTENCE reduces
t0 EXPTIME. ‘

¢ Inspite of the restrictions above, PLAN LENGTH re-
mains NEXPTIME. Since we try to find a plan
of length at most k, which operator instances we
choose, and how we order thern makes a difference.

o If each planning operator is restricted to have at
-most. one precondtion, then we can do backward
search, and since each operator has at most one

.~ precondition, the number of the subgoals does not
~increase.. Thus both PLAN EXISTENCE and PLAN
“LENGTH with these restrictions can be solved in
~PSPACE.

¢ The:previous arguments also hold for propositional
planning, with the exception of the anomaly in the
unrestricted case for PLAN LENGTH, which we have
discussed before. As a result of restricting predi-
cates to be 0-ary, the number of operator instances,

the size of states reduce to polynomial from expo-

nential, hence in general, the complexity results for
propositional planning are one level lower than the
complexity results with datalog operators.

Related Work

- Planning. _
Bylander (1991; 1992) has done several studies on the
complexity of propositional planning. We have stated
some of his results in and Table 2. More recently,
he has studied the complexity of propositional plan-
ning extended to allow a limited amount of inference
in the domain theory (Bylander, 1992). His complex-
ity results for this case range from polyomial time to
PSPACE-complete.

Chapman was the first to study issues relating to
the undecidability of planning; we have discussed his
work in detail in the “Decidability and Undecidability
section. '

Backstrom and Klein (1991) found a class of plan-
ning problems called SAS-PUBS, for which planning
can be done in polynomial time. Their planning for-
malism is somewhat different from ours: they make
use of siate variebles that take values from a finite set,
and consider a planning state to be an assignment of
values to these state variables. Since they restrict each
state variable to have a domain of exactly two values,
we can consider each state variable to be a proposi-
tion; thus, in effect they are doing propositional plan-
ning. However, their operators have further restric-
tions: they restrict each operator to change at most
one state variable, and do not allow more than one op-
erator to change a state variable to a given value. Their
restrictions are so strict that they were unable to find
any domains (not even blocks world) that they could
represent in their formalization. They tried to over-
come this problem by weakening some of their restric-
tions, making the complexity of their algorithm go to
exponential time—but still could not find any reason-
able domain. It is not very easy to compare our results
with theirs, because we use a different formalism—but
we can safely state that we analyze a much broader
range of problems, and we require less severe restric-
tions to get polynomial-time resuits.

Korf (1987) has pointed out that given certain as-

" sumptions, one can reduce exponentially the time re--

quired to solve a conjoined-goal planning problem, pro-
vided that the individual goals are independent. Yang,
Nau, and Hendler (1992) have generalized this, show-
ing that one can still exponentially reduce the time
required for planning even if the goals are not inde-
pendent, provided that only certain kinds .of goal in-
teractions are allowed. Under this same set of goal
interactions, they have also developed some efficient
algorithms for merging plans to achieve multiple goals
(Yang et al., 1990; Yang et al., 1992).

Complexity results have been developed for blocks-
world planping by Gupta and Nau (1991; 1992} and
also by Chenoweth (1991). Gupta and Nau (1991,
1992) have shown that the complexity of blocks-world
planning arises not from deleted-condition interac-
tions as was previously thought, but instead from
enabling-condition interactions. Their speculations
that enabling-condition interactions are important for
planning in general seem to be corroborated by some
of our results, as discussed above.

Temporal Projection.

Another problem that is closely related to planning
is the problem of temporal projection, or what Chap-
man calls the “modal truth” of ar atom (Chapman,
1987). Given an atom a, an initial state S, and
a partially ordered set of actions P, the question is
whether a is necessarily /possibly true after execution
of P. This guestion is especially important in partial-
order planners such as NOAH (Sacerdoti, 1990), NON-
LIN (Tate, 1977), and SIPE (Wilkins, 1990). For ex-

ample, McDermott (1991) says “unfortunately, partial
orders have a big problem, that there is no way of
deciding what is true for sure before a step without
considering all possible step sequences consistent with
the current partial order,” and Pednault (1988) also
expresses similar sentiments,

One problem is what it means for o to be necessar-
ily true if not all total orderings of P are executable.
Chapman (Chapman, 1987) assumes that a is neces-
sarily true after executing P only if every total order-
ing of P is both executable and achieves a; and in
return, he comes up with a polynomial-time algorithm
for determining the necessary truth of a. However, his

algorithm doés not work correctly for establishing the ‘

possible truth of ¢ (Nau (1993) proves that problem is
NP-hard). -
Chapman also proves that with conditional planning

operators, establishing the necessary truth of a is co-

'NP-hard; and Dean and Boddy (1988) prove a sim-
- ilar result with a more general notion of conditional
planning operators (the same definition we gave in the
“Special-Case Definitions” section).! Dean and Boddy
(1988} also try to come up with approximate solutions
for the problem. They present algorithms for comput-
ing a subset of the propositions that are necessarily
true, and for computing a superset of the propositions
that are possibly true. Furthermore, the complexity of
these algorithms is polynomial if the number of triples
for each operator is bounded with a constant. How-
ever, we do not know of any results. concerning how
:close the approximations are.

Conclusion

Although our equivalence between planning and logic
.- programming only holds in certain limited cases, this
equivalence has allowed us to transport many decid-
ability and undecidability results from logic program-
ming to planning. Among other things, our results
‘solve an open problem posed by Chapman (1987), and
clear up some difficulties with his undecidability theo-
rems. It is not a trivial task to extend this equivalence,
because negation has different semantics for logic pro-
gramming and planning—but it is certainly worth in-
vestigating, and we intend to do so in the future.

For those cases where planning is decidable, we have
shown how the time complexity varies depending on a
wide variety of conditions. Among other things, our re-
sults suggest that enabling-condition interactions (first
described by Gupta and Nau (1992)) are probably just
as important for planning as the better-known deleted-
condition interactions. We have also been able to show
that conditional operators do not affect the complexity
of planning.

Most theoretical studies of planning have been con-
fined to planning with STRIPS-style operators—but

1In both cases, they state that the problem is NP-hard,
but their proofs establish co-NP-harduness instead.

most of the practical work on Al planning systems for
the last fifteen years has been based on hierarchical
task-network (HTN) decomposition (Sacerdoti, 1990;
Tate, 1977; Wilkins, 1990) as opposed to STRIPS sys-
tems. Thus, much of the current practice in Al plan-
ning lacks a clear theoretical basis. For our fuiure
work, we are beginning to develop a formalization of
HTN planning, which we hope will enable us to cor-
rectly define, explicate, and analyze the properties of
HTN planning systems (Erol et al., 1993).

Acknowledgement

We appreciate the useful comments we received from
Toem Bylander and Jim Hendler.

References

Backstrom, Christer and Klein, Inger 1991. Planning
in polynomial time: the sas-pubs class. Computa-
tional Inlelligence 7.

Bezem, M. zem. Characterizing termination of logic
programs with level mappings. In Lusk, E. and Over-
beek, R., editors zem, Proc. 1989 Nerth American
Conf. on Logic Programming. MIT Press. 69-80,

Blair, H.A. 1989. Canonical conservative extensions
of logic program completions. In Proceedings of the
4th IEEE Symposium on Logic Programming.
Bylander, Tom 1991. Complexity results for planning.
In IJCAI-91.

Bylander, Tom 1992. Complexity results for extended
planning. In Proc. First Inlernational Conference on
AI Planning Systems.

Chapman, David 1987. Planning for conjunctive
goals. Artificial Intelligence 32:333-379.

Chenoweth, Stephen V. 1991.- On the NP-hardness
of blocks world. In AAALQL: Proc. Ninth Natlional
Conf. Artificial Intelligence. 623-628.

Dean, Thomas and Boddy, Mark 1988. Reasoning
about partially ordered events. Artificial Intelligence
36:375-399. .

Erol, K.; Nau, D.; and Subrahmanian, V. S. 1992a.
Complexity, decidability and undecidability .results
for domain-independent planning. Submitted for pub-
lication.

Erol, K.; Nau, D.; and Subrahmanian, V. S. 1992b.
On the complexity of domain-independent planning.
In Proc. AAAI-92. 381-386.

Erol, K.; Nau, D.; and Subrahmanian, V. §. 1992¢c.
When is planning decidable? In Proc. First Internat.
Conf AI Planning Systems. 222-227.

Erol, X.; Nau, D. 8.; and Hendler, J. 1993. Toward a
general framework for hierarchical task-network plan-
ning. In AAAI Spring Symposium. To appear.

- Gupta, Naresh and Nau, Dana S. 1991. Complexity

results for blocks-world planning. In Proc. AAAIL91.

. Honorable mention for the best paper award.

Gupta, Naresh and Nau, Dana S. 1992. On the com-
plexity of blocks-world planning. Artificial Intelli-
gence 56(2-3):223-254,

Korf, Richard 1987. Planning as search: A quantita-
tive approach. Artificial Intelligence 33(1):65-88. .
Lifschitz, Vladimir 1990. On the semantics of strips.
In Allen, James; Hendler, James; and Tate, Austin,
editors 1990, Readings in Planning. Morgan Kauf-
man. 523-530. ,
Lloyd, J.W. 1987. Foundations of Logic Programming.
Symbolic Computation. Springer-Verlag, second, ex-
tended edition edition.

McAllester, David and Rosenblitt, David 1991. Sys-
tematic nonlinear planning. In AAAI-91. 634-639.
McDermott, Drew 1991. Regression planning. Inier-
national Journal of Intelligent Sysiems 6:357-416.
Nau, D. 1993. On the complexity of possible truth.
In AAAI Spring Symposium. To appear.

Nilsson, N. J. 1980. Principles of Artificial Intelli-
gence. Tioga, Palo Alto. :

Pednault, Edwin 1988. Synthesizing plans that con-
tain actions with context-dependent effects. Compu-
tational Intelligence 4:356-372.

Peot, M. A. 1992. Conditional nonlinear planning. In
Proc. First International Conference on Al Planning
Systems, 189-197. o

Plaisted, David 1984.. Complete problems in the first-
order. predicate calculus. Journal of Computer and
System Sciences 29:8-35.

Sacerdoti, :Earl D. 1990. The nonlinear nature of
plans. 'In:‘Allen, James; Hendler, James; and Tate,
Austin; editors 1990, Readings in Planning. Morgan
Kaufman.. 162-170. Originally appeared in Proc.
IJCAIL-75, pp. 206-214. '

Sebelik, J. and Stepanek, P. 1980. Horn clause pro-
grams for recursive functions. In Logic Programming.
Academic Press. 325-340. .
Shoenfield, J. 1967. Mathematical Logic. Academic
Press. _
Stockmeyer, L. J. and Chandra, A. K. 1978. Prov-
ably difficult combinatorial games. Technical Report
RC 6957, IBM T. J. Watson Research Ctr., Yorktown
Heights, NY.

Tate, Austin 1977. Generating project networks. In
Proc. 5th International Joini Conf. Artificial Intelli-
gence.

Vardi, Moshe 1982. The complexity of relational
query languages. In Proceedings of the Fourieenth
Annual ACM Symposium on Theory of Computing,
San Franeisco, CA. 137-1486. :
Waldinger, R. 1990. Achieving several goals simulta-
neously. In Allen, James; Hendler, James; and Tate,
Austin, editors 1990, Readings in Planning. Morgan
Kaufman. 118-139. Originally appeared in Machine
Intelligence 8, 1977. :

Warren, D. H. D. 1990. Extract from Kluzniak and
Szapowicz APIC studies in data processing, no. 24,
1974. In Allen, James; Hendler, James; and Tate,
Austin, editors 1990, Readings in Planning. Morgan
Kaufman. 140-153.

Wilkins, David E. 1990. Domain-independent plan-
ning: Representation and plan generation. In Allen,
James; Hendler, James; and Tate, Austin, editors
1990, Readings in Plenning. Morgan Kaufman. 319-
335. Originally appeared in Artificial Intelligence
22(3), April 1984. :

Yang, Q.; Nau, D. 8.; and Hendler, J. 1990. Optimiza-
tion of multiple-goal plans with limited interaction. In
Proc. DARPA Workshop on Innovative Approaches io
Planning, Scheduling and Control.

Yang, Q.; Nau, D. S.; and Hendler, J. 1992. Merg-
ing separately generated plans with restricted inter-

-actions. Computational Intelligence 8(2):648-676.

