Toward a General Framework for Hierarchical
Task-Network Planning (Extended Abstract)*

Kutluhan Erol! Dana Nau! James Hendler?
Department of Computer Science
and Institute for Systems Research

University of Maryland
College Park, MD 20742

Introduction

In AT planning research, planning practice (as embod-
ied in implemented planning systems) tends to run
far ahead of the theories that explain the behavior of
those planning systems. For example, the past few
years have seen much analysis of the properties of
totally- and partially-ordered planning systems using
STRIPS-style planning operators (Minton et al., 1991;
McAllester and Rosenblitt, 1991; Chapman, 1987).
However, most of the practical work on AI planning
systems for the last fifteen years has been based on
hierarchical task-network (HTN) decomposition(Sac-
erdoti, 1990; Tate, 1977; Wilkins, 1984) as opposed to
STRIPS systems, yet there has been very little simi-
lar analytical work on the properties of hierarachical
task-network (HTN) planning systems.

One of the primary obstacles impeding such work
has been the lack of a clear theoretical framework ex-
plaining what a HTN planning system is. A primary
goal of our current work is to correctly define, analyze,
and explicate features of the design of HTN planning
systems. In this report, we describe some first steps
toward that goal: We set out a formal definition of
HTN planning, present a nondeterministic HTN plan-
ning procedure Pyrn that is general enough to in-
clude most existing HTN planning procedures as spe-
cial cases, and present theorems showing that P grxn
is sound and complete.

In addition, we present theorems showing that if
Pyry is run on planning problems P; and P, that
equivalent except that P, has “more informed” meth-
ods and/or critics, then Pgpyn will perform more ef-
ficiently on P,. These results are analogous to the
informedness results for the well-known A* search pro-
cedure.

*This work was supported in part by NSF Grants NSFD
CDR-88003012 and IRI-8907890.

Tkutluhan@cs.umd.edu

fpau@cs.umd.edu

$hendler@cs.umd.edu

A General Definition of HTN Planning

In this section, we outline a formal definition of hi-
erarchical task-network (HTN) planning. We omit a
number of details here; for more detailed definitions
see (Erol et al., 1993).

HTN planning systems work with symbolic repre-
sentations of the problems they are trying to solve. By
a planning language, we mean the language £ in which
these problems are represented. Basically, £ is a first-
order language generated by finitely many constant
symbols, predicate symbols, and function symbols—
but to represent the tasks that the planner needs to
achieve, we augment £ to include a a special symbol
achieve and a finite set of task symbols, which are used
to form tasks as we will describe below.

A state is a finite set of ground atoms' in £. In-
tuitively, a state tells us which ground atoms are cur-
rently true: if o is a ground atom, then « is true in
state s if and only if o € s. For example, suppose I am
in Union Station in Washington, DC, and have enough
money to buy a train ticket to Penn Station in New
York City. I might represent this with the following
state:

s1 = {in(U), have-money() },
where U is a constant symbol representing Union Sta-
tion. A task is either of the following:

1. A task symbol followed by a list of terms. For exam-
ple, to represent the objective of taking a round trip
by train between Union Station and Penn Station,
one might use the following task:

t; = round-trip(U, P),

where U is as before, and P is a constant symbol
representing Penn Station.

2. The expression achieve[a], where « is any atom.
For example, to represent the objective of having a
train ticket from x to y, one might use the task

to = achievelhave-ticket(x, y)].

1An atom is a predicate symbol followed by a list of
terms.

As another example, the objective of having a ticket
from Union Station to Penn Station would be repre-
sented by the task

t20; = achievelhave-ticket(z, y)],
where 607 is the substitution
61 ={U/z,P/y}.
A planning operator o is either of the following:
1. A pair (Name(o), Effects(0)), where

e Name(o), the name of o, is a syntactic expres-
sion of the form o(z1,...,x,), where z1,..., 2,
are variable symbols;

o Effects(o), the effects of o, is a set {c1,...,ck},
where each ¢; is a set of literals? that contains no
variables other than z1,...,z,.

2. A substitution instance of of another planning op-
erator o. If of contains no variables, then we call it
a ground operator.

Note that we do not include preconditions in our plan-
ning operators; these will be handled in the methods
defined below.

Suppose s is a state and o is a ground operator. Then
the result of applying o to s is the state

o(s) = (s —{all negative literals in Effects(o)})
U {all positive literals in Effects(o)}.

Intuitively, o(s) is the state resulting from s if we per-
form the action represented by o.

For example, to represent the action of purchasing
a train ticket from location [to location I3, we might
use the following planning operator:
BUY-TICKET(ly, l2)
{—have-money(), have-ticket(ly,l2)}

Name:
Effects:

Clearly, the atom have-money() is too simple-minded
to represent fully the cash-flow effects of paying for
the ticket. To correctly handle resource usage requires
some extensions to the framework. We intend to deal
with these extensions in our future work.

A plan is a totally ordered set of ground operators.

Intuitively, a task network is a graph structure rep-
resenting a partially or fully developed plan. More
formally, we will define it to be a pair N = (G, C),
where?

1. G = (T,<) is a partially ordered set of tasks and
operators, where T is the set and < is the partial
ordering. Usually we will represent G' by drawing
a directed graph, and for this reason we call G' the
graph of N.

2A literal is either an atom (in which case we say the
literal is positive), or the negation of an atom (in which
case we say the literal is negative.

3Some implementations of hierarchichical task networks
also associate effects with V. We have left them out in the
current formalism, because we believe we can handle them
using constraints. We will investigate this issue more fully
in our future work.

2. C'is a set of constraints called the constraint set of
N. These constraints might involve variable bind-
ings, or they might be protected intervals, i.e., ex-
pressions of the form (ny,ns,e), where ny,ny € T
and e is a statement in £, meaning that in any exe-
cution of any plan that is a solution for N, e should
be true in all states between n; and no. A special
case of this constraint is when n; = ng. It means e
should be true at the state immediately before n;.
(To understand where these states come from, see
the definition of the solution set sol(N) below.)

Note that if P is a plan, then (P, () is a task network.
As examples, each of the following is a task network
whose constraint set is empty:

N; =

‘ round-trip(U,P) ‘

N, =

‘ achieve[have-ticket(U,P)] ‘
1
‘ ride-train(U,P) ‘ ‘ achieve[have-ticket(P,U)] ‘

N\ /
‘ ride-train(P,U) ‘

‘ achieve[at(ticket-counter)] ‘

!

‘ BUY-TICKET(2, y) ‘

N, =

‘ achieve[at(ticket-counter)] ‘
1
‘ BUY-TICKET(U,P) ‘
1
‘ ride-train(U,P) ‘ ‘ achieve[have-ticket(P,U)] ‘

N\ /
‘ ride-train(P,U) ‘

A method is an ordered pair m = (t, N), where t is a
task and NV is a task network. Informally, this means
that NN is a possible way to achieve t. For example, to
indicate that Ny and N3 are ways to achieve the tasks
t1 and to discussed earlier, we can define the following
methods:

my = (t1,N2);
my = (t2, N3).

Suppose N is a task network, ¢ is a task in N, m =
(t', N') is a method, and 6 is a substitution that unifies

t and t'. Then we say that m matches t, and we de-
fine reduce(N, t,m,) to be the task network obtained
from N6 by replacing t0 with the graph of N6, and
incorporating N@’s constraint set into N’s constraint
set. This task network is called a reduction of N. Here
are some examples of reductions:

reduce(Ny,t1,my,0) = No;
reduce(Ng,tgﬁl,mg,Ol)] = N4;

where 0; = {U/x,P/y} as defined earlier.

A critic function is a function s that maps task net-
works to sets of task networks. Informally, x represents
the actions of a critic, which finds problems in a task
network and suggests a way to fix these problems. For
example, suppose that we know that it is better to pur-
chase both train tickets at the same time. Then x(Ny4)
might include the following task network, Ns:

‘ achieve[at(ticket-counter)]

‘ BUY-TICKET(U,P) ‘ ‘ BUY-TICKET(P,U) ‘

‘ ride-train(U,P) ‘
1
‘ ride-train(P,U) ‘

Every critic function () needs to satisfy two condi-
tions: For any two task networks N7 and Ns such that
Ny € k(N3), any plan for Ny should also be a plan for
Ns, and whenever there is a plan for a task network NV,
k(N') should contain a task network for which there is
a plan.

An HTN planning domain is a 4-tuple D =
(O, M, k,s0), where O is a set of operators, M is a
set of methods, x is a critic function, sq is a state in
L called the initial state, and N is a task network N
representing some problem to be solved. The language
of D is the planning language £ generated by the con-
stant symbols, predicate symbols, and task symbols in
D.

A planning problem is a pair (D, N), where D is a
planning domain and N is a task network representing
the problem to be solved. This generalizes the usual
idea of an HTN planning problem, in which the prob-
lem to be solved would typically be represented by a
single task.

Let D = (O,M,k,sp) be a planning domain, and
N = (G,C) be a task network, where G = (T, <) is
the partially ordered set of tasks and operators, and
C' is the set of constraints. Then red(D, N) is the set
of all reductions of N. If every member of T is an
operator, then we say that N is primitive (note that
in this case, red(D, N) = §. Now, suppose that N is
primitive, and that

e T"=(01,...,05) is any total ordering of the opera-
tors of T" that is consistent with <;

e 0 is any substitution that assigns ground terms to
all variables in T';

e the sequence of states (so,$1,...,8,) satisfies C,
where s; = 00(s;—1) fori=1,...,n.

Then we say that the plan P = T'0 is a completion

of N. We use compl(N,D) to denote the set of all

completions of N.

Let D = (O, M, k,sg) be a planning domain, and
N = (G,C) be a task network, where G = (T, <) is
the partially ordered set of tasks and operators, and C'
is the set of constraints. Consider the following recur-
rence:

compl(N, D) if N is primitive;
S(D,N) = U S(D,N’) otherwise.
N’ered(D,N)

What we would like to do is to define S(D, N) to be
the set of all solutions to the planning problem (D, N).
However, the problem with this is that S is ill-defined:
depending on what x and M are, there may be a num-
ber of functions S that satisfy Eq. (1). Let S be the
set of all functions S that satisfy Eq. (1). Then we
define the set of all solutions for the planning problem
(D, N) to be the following set:

sol(D,N) = (] S(D,N). (1)
Ses

It may not be immediately clear to the reader why
this definition is correct. At the time that we sub-
mitted the original version of this paper for review,
it was not completely clear to us either, and thus we
were careful to state that this was strictly a preliminary
definition. However, we have subsequently developed
a semantics for HTN planning, which has allowed us
to prove that sol(D, N) contains precisely those plans
which we would want to consider to be solutions to
(D, N). A discussion of that result is beyond the scope
of this paper; readers are referred to (Erol et al., 1993).

Two planning problems (D,N) and (D’,N’) are
equivalent if they have the same solutions, i.e., if
sol(D,N) = sol(D’,N").

An HTN planner is a procedure P which takes as
input an HTN planning problem (D, N), and either
exits with failure or returns a plan P. P is sound if
whenever P(D, N) returns an answer, that answer is
in sol(D, N). P is complete if whenever P(D, N) exits
with failure, sol(D, N) = §).

An Abstract Procedure for HTIN
Planning

Below, we present an abstract procedure for hierarchi-
cal nonlinear planning. This procedure, which is an
instance of the function P defined earlier, is intended
to be general enough to encompass most existing hi-
erarchical nonlinear planning systems. As stated in

the theorems following the procedure, this procedure
is sound and complete, and it has informedness prop-
erties analogous to those of the well-known A* search
procedure (for further details and additional results,
see (Erol et al., 1993)).

procedure Pyryn(L, A, M, K, s0, No) :
1. Set N = No.

2. If N is primitive, then find a variable assignment and
total ordering that satisfies the constraints in Cl,
and halt with success. If such a variable assignment
and ordering cannot be found, then exit with failure.

3. Choose a non-primitive task node ¢ in N. (This is
not a backtracking point.)

4. Nondeterministically choose a method m =
(t',N') € M that matches ¢ and a substitution 6 that
unifies ¢ with ¢/, and set N := reduce(N,t,m,).

5. Nondeterministically set N := some member of
Kk(N).

6. Go to Step 2.

Theorem 1 (Soundness of Pyry) Let D be any
planning domain and Ng be any planning problem in
D. If Pyrn(D, Ny) returns an answer, then that an-
swer is a plan in sol(D, Np).

Theorem 2 (Completeness of Pyry)
Whenever Pyrn (D, N) exits with failure, sol(D,N)

18 empty.

Theorem 3 (Informedness Theorem for Critics)
Let D1 = (O, M, k1,80) and Dy = (O, M, k2, 50) be
identical except for their critic functions. Suppose that
for every task network N,

o r1(N) C ra(N);
o s50l(Dy, N') =0 for every N' € ko(N) — k1(N).

Then D; and Dy are equivalent, and the number of
steps required by Py (D1, N) < the number of steps
required by Pyry (D2, N).

Theorem 4 (Informedness Theorem for Methods)

Let Dy = (O, My, k,80) and Dy = (O, M, &, sg) be
identical except for their sets of methods. Suppose that

o My C My;

o for every task metwork N, task t
in N, and method m in My — My that matches t,
sol(Dgy,reduce(N,t,m(n))) = 0.

Then D1 and Dy are equivalent, and the number of
steps required by Py (D1, N) < the number of steps
required by Pyry (D2, N).

Conclusions

In this report, we have outlined a formal definition
of HTN planning. Based on this definition, we have
presented a nondeterministic HTN planning procedure
Pyrn that is general enough to include most existing
HTN planning procedures as special cases. We have
presented theorems showing that Pypry is sound and
complete.

In addition, we have presented theorems showing
that if Pypry is run on planning problems P, and P;
that equivalent except that P> has “more informed”
methods and/or critics, then P gpn will perform more
efficiently on P,. These results are analogous to the
informedness results for the well-known A* search pro-
cedure.

While preliminary, these results give a hint of what
can be done by developing a complete formalization
of HTN planning. In (Erol et al., 1993), we develop
our formalization further, by presenting a semantics
for HTN planning, and use this to present additional
results. We hope to use this formalism to investigate
topics such as the following;:

e completeness, soundness, and complexity of various
specific planning procedures;

e complexity and decidability of various classes of
planning problems;

e relative expressivity of the HTN formalism vs.
STRIPS-style formalisms;

e relative efficiency of various commitment strategies.

References

Chapman, David 1987. Planning for conjunctive
goals. Artificial Intelligence 32:333-379.

Erol, K.; Hendler, J.; and Nau, D. S. 1993. Semantics
for hierarchical task-network planning. Submitted for
publication.

McAllester, David and Rosenblitt, David 1991. Sys-
tematic nonlinear planning. In AAAI-91. 634-639.

Minton, S.; Bresna, J.; and Drummond, M. 1991.
Commitment strategies in planning. In Proc. IJCAI-
91.

Sacerdoti, Earl D. 1990. The nonlinear nature of
plans. In Allen, James; Hendler, James; and Tate,
Austin, editors 1990, Readings in Planning. Morgan
Kaufman. 206-214. Originally appeared in Proc.
IJCAI-75.

Tate, Austin 1977. Generating project networks. In
Proc. 5th International Joint Conf. Artificial Intelli-
gence.

Wilkins, David E. 1984. Domain-independent plan-

ning: Representation and plan generation. Artificial
Intelligence 22(3).

