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Abstract. When performing a planning or design. task in many domains it is
often difficult to specify in advance what the precise goals are. It is therefore
useful to have a system in which the planning process is performed interactively,
with the solution approaching the users’ intent incrementally through iterations
of the planning process. A planning system intended to function in this way must
be able to take goal specifications interactively rather than all at once at the
beginning of the planning process. The planning process then becomes one of
satisfying new goals as they are given by the user, modifying as little as possible
the results of previous planning work. Incremental planning is an approach to
interactive planning problems that allows a system to create a plan incrementally,
modifying a previous plan to satisfy new or more precise goal specifications. In
this paper we present an incremental planning system called the general constraint
system (GCS) that is based on the conceptual programming environment (CP)
developed at New Mexico State University and we show an example of the use
of the system for a simple civil engineering design problem. :
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1. Introduction o
The conceptual programming (CP) environment (Hartley 1986, Pfeiffer 1986,
Hartley and Coombs 1990) is a complete knowledge representation environment
based on John Sowa’s conceptual structures (Sowa 1984, 1990) that is designed
for use in both static and dynamic problem solving systems. In this paper we
present a dynamic, incremental planning system called the general constraint
system (GCS) that uses the CP environment as its representational basis. Of
particular importance to GCS is the feasibility-runtime domain overlays to the
basic conceptual graph theory. This level gives GCS the ability to propagate
changes through a graph that represents a design or an incremental plan.

In many design situations, although a. designer may have an intuitive idea of
what should be achieved, it may not be clear in advance how to specity formally
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what those intentions are. In domains ranging from engineering design to computer
programming, one often starts out with a rather vague and abstract set of ideas,
and refines them as one goes along. It may not always be entirely clear, even to
the designer, what all of the goals are until the entire design is complete.
Therefore, it is useful in many domains to have an interactive system for design,
in which a solution to the design problem is found through an interactive process
of creating solutions and modifying them in order to clarify and specify the
designer’s intent. The system must be able to create solutions both interactively
and incrementally.

The process of creating a finished design can be thought of as an incremental
planning problem, in which an existing plan is incrementally modified to satisfy
new or changing goals. The designer specifies goals to the design system, and the
design system constructs a design representation that satisfies those goals. To
produce the next iteration of the design, the designer specifies new goals, and
the design system modifies the existing design to satisfy those new goals. However,
there is one significant difference between this notion of incremental planning
and incremental planning in the traditional sense. Since the goals stated by the
designer do not necessarily correspond to his ultimate intent, in order to produce
the next iteration of the design it may be necessary to modify the existing design
in ways that violate the goals that led to the existing design. The designer cares
less about what particular goals and steps produced the current design than what
the current design is, and how it differs from his intentions.

The existing design can be thought of as a ‘final state’ produced by the execution
of some plan created to achieve the goals of that design. However, for the purpose
of producing the next design iteration, what those goals and that plan are, are
not important, because we do not know how or whether they corresponded to
the designer’s intent. What does matter is that in an attempt to make clearer his
intent, the designer is now stating some new goals—and in an attempt to achieve
his intent, we need to modify the design in a minimal manner to achieve these
new goals.

Most approaches to incremental design are based on derivational analogy
{Mostow 1989, Mostow and Barley 1987, Steinberg 1987, Wile 1983). This process
is one of modifying the process rather than the product of design by replaying a
design plan used to solve a previous problem and modifying the plan when
necessary (Carbonell 1986, Mostow 1985). It is important to note that these
approaches concentrate on the plan that gives rise to a design rather than the
design itself. Most classical planning systems (see Tate ef al. 1990) and incremental
planning systems (Elkan 1990, Hayes-Roth ez al. 1979, Kambhampati and Hendler
1992 also concentrate on the plans rather than the world states that result from
these plans.

In contrast to the classical planning paradigm in which the focus is on the
sequence of operators that make up a plan, in GCS the focus is instead on the
world state that represents the current design. We call this world state a model.
‘The approach to incremental planning in GCS is one of modifying a model in a
minimal way to satisfy a new goal specification. Since the representation system
in GCS is based on conceptual graphs, the modifications to the model are given
in terms of graph operations. Specifically, the planning operators in GCS are
spdcifications of the graphical changes to a model graph. We can thus use syntactic
measures in terms of graph structures to measure minimality.
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As mentioned in Mostow (1989), concentrating on the designs themselves rather
than the design plans is problematic in that a single change in the problem may
require a multitute of patches and mess up the structure of the design. In GCS
the propagation of change in a model is controlled by a system of constraints
associated with a model. These constraints are part of the feasibility-runtime level
of the CP representational system. The use of CP with consiraints allows GCS
to represent the changes to models throughout an interactive planning process.
Using a representation based on conceptual graphs also allows us to use well
defined methods for joining graphs and for determining relevance of operators
(Eshner and Pieiffer 1990).

2. Incremental planning

Following Kambhampati and Hendler (1992), we define the plan modification
problem as follows: given a planning problem P~ (specified by a partial description
of an initial state and a goal state), and an existing plan R°, along with the
planning problem P° it was produced to solve, the objective of the system is to
produce a new plan R” or P* by minimally modifying RY. Intuitively, the aim is
to modify an existing plan for a similar problem in a minimal way so that it solves
the current problem. We define incremental planning as a subcase of the plan
modification problem in which the given existing plan R° was produced to solve
the current planning problem. The objective of the system is thus to modify an
existing plan for the current planning problem such that it satisfies a new set of
goals. This definition of incremental planning differs slightly from that used in
some previous planning systems (Elkan 1990, Hayes-Roth ef al. 1979) where
incremental planning is used to describe a process of plan refinement.

An incremental planning system must have mechanisms for controlling modifi-
cations to plans and for approximating the extent of modifications. It is also
important to have a notion of consistency or correctness in a plan as it is modified.
In addition to logical inconsistencies there might also be domain-specific
inconsistencies that result from a single modification. An incremental planning
system must be able to catch these inconsistencies and correct them or disallow
the modification.

Kambhampati and Hendler (1990) developed a plan modification system called
PRIAR that addresses these issues for plans generated by a hierarchical nonlinear
planner. In PRIAR, the first step in the plan modification process is to retrieve
an existing plan and to map the objects in that plan onto objects in the current
problem. Incremental planning is a subcase of this problem in which the system
does not have to choose a retrieval candidate, since the plan to be modified is
that which is already being used for the current problem. Further, the mapping
problem is minimized since changes are generally performed on already defined
objects.

The approach taken in PRIAR relies heavily on the assumption that the given
plans were constructed by a hierarchical nonlinear planner (for a good discussion
of classical planning that includes hierarchical and nonlinear planning, see Tate
et al. 1990). Briefly, the hierarchical development of a plan in a hierarchical
planner is captured by its hierarchical task network (HTN). Each task in the HTN
has effects and conditions. A validation is a link between one task’s effect and
another’s condition. This link corresponds to a protection interval that is
maintained during planning. PRTAR keeps a finite set of these validations in
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what 1s called a validation structure. This structure can be viewed as an internal
dependency representation of hierarchically generated plans. Plan modification
in PRIAR is seen as a process of repairing the inconsistencies in the validation
structure of an existing plan when that plan is interpreted in a new problem
situation.

3. Incremental planning using conceptual graphs

As an alternative to using validation structures, we present an approach to
incremental planning that centers on using conceptual graphs. The approach relies
heavily on addition of quantitative constraints to the basic theory of conceptual
graphs, and 5o our primary focus here is on these constraints. We have incorporated
the notion of constraint overlays from CP into the representation environment
used in GCS. This representation environment, called PRE (plan representation
environment), is a general purpose environment that allows a planning system to
use the power and flexibility of conceptual graphs and constraints. In this section
we give a brief overview of PRE and show how it is used in GCS. For a complete
discussion of the additions to the basic conceptual graph theory found in CP, see
Pleiffer and Hartley, pp 167-182; Eshner and Hartley (1988b), Eshner (1989),
Pfeiffer and Hartley (1989). For an argument for the use of conceptual graphs as
the representational framework for planning see Eshner and Hartley (1988a).

3.1. The plan representation environment )

The plan representation environment (PRE) (Eshner 1989) is a representational
environment based on the CP environment. There are two additions to the CP
environment: the first is an extension to the quantitative constraint overlays that
allows for different types of constraints to be determined by the syntactic definition
in a graph, and the second is an ability to store and manipulate multiple plans
or designs.

There are two levels in the PRE system. The base level is the declarative level
at which we represent facts and schemata as single graphs. Facts correspond in
traditional planners to predicates that make up world states. Schemata correspond
to definitions of objects in the world and actions that operate on them. Each
action is described by a schema that shows the relationships between itself and
objects in the world. Figure 1 shows the base schema for a beam in a building.

The second level in PRE is the constraint level in which functions are attached
to schemas much like procedural attachment in a frame system. Each schema has
associated with it a set (possibly empty) of constraint overlays. Functions in the
constraint overlays are either procedures or constraints. Procedures are those
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functions in which there is clearly defined inputs to the function and a single
output. Constraints are those functions in which all parameters are both input
and output and the single parameter that is not provided is computed and
returned. Procedures are used to fill in values of uninstantiated concepts when
adding new bits of graph to a model. Constraints are used to show the relationships
among objects in a system. For example, in a building design a joint connects a
beam and a column. There is a constraint on those objects such that the location
of the joint is the same as the location of one of the ends of the beam and
column. All of the constraints in a design specification are represented by
constraints.

Operators in PRE describe the changes to a model in terms of what bits of
graph are taken out and what bits are added, much like the add and delete lists
in classical planning systems. The most simple operators only change the value
of a concept node, the most complex take out a subgraph in the model and
replace it with a new graph. Figure 2 shows an operator that moves a building
joint that connects beams and columns from one position to another. -

Along with each operator are various constraint overlays. Constraints in the
operators are always part of a graph that is being added to a model and are not
evaluated but rather joined into the model along with the rest of the graph to be
added. Procedures are used to instantiate new concept nodes being added to the
graph and are executed as the operator is being applied to the model. As an
example, Figure 3 shows 2 more complicated operator with both a procedure and
a constraint that will be added to a model. The operator lengthens an existing
beam. The procedure is one that fills in the length attribute of a beam given the
position of the two ends of the beam. The constraint is a constraint on the
maximum length of a beam.

Since all graphs can have associated constraint overlays, these overlays provide
a method to attach constraints to objects and collections of objects that make up
world states. As a reasoning system builds models of the world, a constraint
network is automatically generated that shows how the different objects in the
world are constrained to interact. Also, as the model changes, operators that
change the model will add and delete constraints to and from this constraint
network. Perhaps miost importantly, as any concept in the model that is also part
of the constraint network is changed, that change is reflected in the constraint
network and the change is propagated through the constraint network to other
parts of the model. This is the mechanism by which a single change to the model
that is introduced by an operator can be propagated.

move-joint

Figure 2. An operator for moving a building joint.
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Figure 3. An operator for lengthening a building beam.

3.2. Modifications and relevance

Our approach to incremental planning is one of minimizing the amount of change
in a world model that occurs through propagation in the constraint network as
operators are applied to the model. These operators are preciscly those actions
that are considered relevant to solving the current geal that has been given to
the system. The key to this approach is finding the set of relevant operators and
choosing the operators that result in the minimum amount of change to the
model.

There are two ways in which a search for relevant operators is triggered. The
first is if there is a goal that is not satisfied, i.e. there is a portion of the model
that does not match a desired goal, then the system must choose from among all
possible operators a subset of operators that are relevant to the current goal(s)
and model. This is done by isolating the portion of the graph that does not match
and performing a graph cover of that graph portion by the set of operators. This
operation will return a set of relevant operators (for a more complete discussion
of the graph cover operation sce Eshner 1990). The second way in which a search
is triggered is when a constraint is violated. Given a constraint that has been
violated, all the concepts associated with the constraint that have not already
been changed are used to isolate a portion of the model on which to focus. This
focus is a portion of the model that is to be covered by a set of operators as
discussed previously.

Given a set of relevant operators that are applicable to a model, the goal of
the system is to choose the subset .of those operators that will minimize the
number of changes to the model while still satisfying the goals. There are
potentially many alternative combinations of operators that will be able to achieve
this criteria. This implies that the system must search through a space of
combinations of operators to find a subset that is minimal in the number of
changes to the model while still satisfying the goals of the system. The heuristic
used for the search is the change in the number of constraints in the model due
to the application of an operator. This is because the change in the number of
constraints is a good estimate of the amount of potential change in a model that
can result from the application of an operator to the model.

4. A example _
The domain in which GCS is currently being applied is taken from the field of
civil engineering structural design. More specifically, we assume a designer is
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interactively specifying a building design while the system propagates all changes
through the model and attempts to stabilize the model given all current constraints
in the constraint network.

To illustrate the incremental design process used in GCS, consider the simple
one-story one-bay steel structure shown in Figure 4. Tt has two identical columns
(C1 and C2) that are 20 feet high. Initially, the single beam at FLOOR 1 is 20
feet long. Joint elements (J3 and }4) are used to connect/transfer forces among
local structural (beam, column and truss) elements. Joints J1 and J2 transmit
column actions to the structural foundation.

The model graph for this structure is shown below in Figure 5. Along with the
graph is an example constraint, of which there are total of nine in the graph with
only one shown here. In the example we have two columns, a beam and four
joints. Each beam and column has two ends A and B that are attached to the
joints. Each joint has a constraint on its position in refation to the beams and
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Figare 4. A simple building design.

[ come]
D oD B G @D Gy G

Coni > <D
Cate> Gitr>
) @D
Cattr D Cattr
pos:{@20,@20) | pes:t@40,@20%
column:C1 - column:C2

Cpart)




92 D. Eshner et al.

columns it is connecting (the positions must be the same). There are also tags on
some portions of the model that indicate the portion is not to be altered. In this
example there is a tag on joint:J3 that indicates it is not to be moved. All
constraints are currently satisfied. The system thus has a model (plan) for a
building that is stable. We now introduce a new goal to the system that will start
the incremental planning process. The new goal is to have joint:J4 at a new
position of (60,0), moved 20 feet to the right.

The first step of the system is to match the goal to the model. The system
searches the model for the subgraph that corresponds to the goal and isolates the
concepts in the goal that are either not present in the model or are different.
The concepts that are either missing or different become the focus for changing
the model. The next step of the system is to search for operators that will
potentially eliminate the focus by adding missing concepts or changing different
concepts. Depending on the amount of information in the focus, there may be a
very large number of potentially useful operators. In order to reduce the number
of operators that can potentially climinate the focus, it is important to include
more information in the search than the focus alone. To this end the system
searches backward through the directed edges of the graph as far as possible in
order to place the focus in a confext. Thus the context is simply the initial focus
with surrounding concepts included.
. In this example, the focus is originally the set {position} (the concept position

alone) with the context being the set {joint:J4, connect}. Intuitively, the backward
search in the example iakes the attribute (position), finds the concept it modifies
(joint:J4) and continues searching backwards in the model to find the concept
(connect) that is related to the second concept (joint:J4). At this point the search
stops since there are no more links to follow. The system then searches for
operators that can eliminate the focus. In this case, the most relevant operator
is the move-joint operator shown in Figure 2. This operator simply moves the
position of a joint, in this case jeint:J4. By applying this operator to the model
we get a new position for joint:J4. The constraint for the joint is now violated
since the position of end:B of column:C2 (40,0) is not equal to the position of
the joint (60,0). .

When a constraint is violated, all the concepts associated with the constraint
that have not already been changed are used to create a focus. In this case, the
focus is the set {location} with the context being the set {end:C2a, column:C2,
connect}. The operator search returns move-column as the only relevant operator
to this context. The application of this operator results in new positions for
both ends of column:C2 (end:C2a=(0,60) and end:C2b=(20,6(0)). A connected
constraint for joint:J2 is now violated since the position of joint:j2 (20,40) is not
equal to the position of end:C2a of column:C2 (20,60). The same process is
repeated with the focus being {pos, joint:J2, connect} which is used to find the
move-joint operator as the most relevant. This operator is applied resulting in a
new position (20,60) for joint:J2. This violates a different connected constraint
for joint:J2 since the beam position (20,40) is now different from the position of
the joint (60,20}.

At this point the focus is {loc, end:B1b, beam:B1} which is used to find relevant
operatqrs. The operator search returns a set of operators {move-beam, lengthen-
beam} that are all equally relevant. The search heuristic currently used is one
that minimizes the change in the amount of graph structure altered. The heuristic
is used to create a total ordering (if two operators are equivalent with respect to
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the heuristic the ordering is arbitrary) of the set of operators returned as relevant.
In this case move-beam is a simple operator that changes the graph only very
slightly (changing the value of a concept) while the lengthen-beam operator
modifies the graph structure slightly and so move-beam is chosen first. This
operator is used to create a branch in the search tree. The model that results
from the application of move-beam has a new position for both ends of the beam.
This violates the connected constraint for joint:J3, triggering an operator search
that returns move-joint. At this point the tag on joint:J3 that indicates it is not
to be moved causes the search to be assigned a prohibitively high cost. This path
in the search is therefore suspended.

The system now takes the second possible operator, lengthen-beam, to satisfy
the connected constraint for joint:J2. This begins another path in the search tree
as the operator is applied to the model in which the constraint is violated. After
the application of the operator, the beam has a length of 40 with end:Bla having
its original position (20,20) and end:B1b having the same location as joint:J2 {20,
60). This violates a constraint on each beam that states that a beams length must
be less than or equal to 25 feet. This initiates another operator search with focus
{length, beam:B1} that returns split-beam.

Split-beam operator is a more complex operator that changes the structure of
the model! and adds more constraints, thus it has a relatively high cost assigned
by the search heuristic. This operator splits the beam near the middle and adds
a brace. After the application of this operator, all constraints are satisfied and
the model is once again stable. The structure that is created as a solution is shown
in Figure 6.

It is important to note that at every step in the search process the most simple
and direct solution is chosen, although this stage is highly dependent upon the
search heuristic. We are currently seeking the solution that modifies the model
as little as possible, as stated in the problem description.

5. Conclusion

The ability to interactively specify goals enables users to incrementally specify
their intent in a design. A planning system that can modify solutions incrementally
to match thé users’ changing intentions allows the system to be used in domains
in which it is difficult to specify the goals of the user in advance. The system
~ presented in this paper takes goals from a user interactively and changes the
current model to satisfy these goals. The changes to the model are controlled
through propagation in a constraint network, thus keeping the model consistent.
The system currently uses a notion of minimal change to insure that the current
change affects as few of the users previous intentions as possible. In this way the
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Figure 6. The updated building design.
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system allows a designer to incrementally modify a design such that it achieves
their intent. The use of a representation system based on a combination of the
conceptual programming environment developed at New Mexico State University
and the plan representation environment developed at both NMSU and the
University of Maryland allows GCS to specify operations and heuristics in graph
theoretic terms. The system therefore has a precise, formal base on which to
build the operations that enable incremental planning.
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