PRA*: A memory-limited heuristic search
procedure for the Connection Machine

Matthew Evett

James Hendler

Ambujashka Mahanti

Dana Nau
Institute of Advanced Computer Studies

University of Maryland

Abstract

In this paper we describe a variant of A* search
designed to run on the massively parallel, SIMD
Connection Machine. The algerithm is designed to
run in a limited memory by use of a retraction tech-
nigue which allows nodes with poor heuristic values
to be removed from the open list, until such time as
they may need. reexpansion if more promising paths

- fail. OQur algorithm, called PRA* (for Parallel Re-
traction A¥), is designed to take maximum advan-
tage of the SIMD design of the Connection Machine.
In addition, the algorithm is guaranteed to return an
optimal path when an admissable heuristic is used.
Results comparing PRA* to Korf’s IDA* [3] for the
fifteen-puzzle show significantly less node expansions
for PRA¥.

1 Introduction

A major problem in producing a SIMD parallel version of
a heuristic search program is that in most applications of
search, the storage requirements of most of the well known
heuristic search algerithms grow exponentially with some
measure of the size of the problem. Thus, it becomes in-
feasible to solve many interesting and useful problems even
using the large memories available across the many proces-
sors on a massively parallel machine. In the algorithm A™ [3],
for example, which forms the basis for many recent search

algorithms, and several of its variants {1, 4, 5, 6], the entire

explicitly generated search space needs to be stored prior to
termination. To circumvent the large storage requirement of
A*.like algorithms, attempts have been made to design algo-
rithms which can run with limited available memory and yet
which run satisfactorily producing optimal or near optirnal
solutions. :

The algorithm IDA* {3] is the first known algorithm
which solved the fifteen puzzle problem efficiently with lim-
ited memory. IDA* converts a search graph to a search tree.
In every iteration, IDA¥ starts the search from the root node
with an iteratively increasing threshold, making a depth first
search until a goal node is found or the current threshold is
exceeded. Since IDA* simulates the best first search strategy
of A* by using an underestimating threshold value, it guar-

antees finding an optimal solution under admissible heuris-
tics. The space complexity of IDA*.is linear in the depth of

- the search tree. However, it is known in practice that IDA*

takes more execution time than A* for many applications, in
particular where node expansions take significant time. This

_is because IDA* will often expand more nodes than A*,

The algorithm MREC [7] is a variant of IDA*, MREC is
a recursive marking algorithm, which maintains an explicit
graph during the search. When it runs out of memiory, it
uses IDA™ to increase the threshold value at its tip nodes
and continue searching. Eventually MREC finds a solution
path in the explicit graph or with the help of IDA*,

The algorithm MA* (2] is another algorithm which runs
with limited memory. During node expansions, MA* gen-
erates immediate successors selectively one at a time. K
also maintains an explicit graph and runs like any standard
marking algorithm for networks, such as MarkA [1]. As in
MarkA, MA* performs bottom-up cost computations. When
it runs out of memory, it prunes some nodes and arcs from
the explicit graph. It allows reexpansion of partially ex-
panded nodes. It can be seen that through bottom-up com-
putation and selective successor generations it maintains the
best first node selection strategy of algorithm A*. However,
because it generates a single node at a time, MA* reselecis
and reexpands a node again and again to get all immediate
successors of a node—and this can occur even when there is
enough available memory.

Bach of the above approaches achieves the goal of lim--

iting memory—but in general each of these approaches can
expand the same nodes many times. How to design a limited-
memory search algorithm which produces an optimal solu-

. tion (with an admissable heuristic) without expanding the

same nodes too many times is a significant problem.

In this paper we present an algorithm, called RA* and
its parallel version, PRA*. RA* can be viewed as similar
to algorithm A* except that it does pruning (retraction) of
nodes because of memory limitation. Thus RA* retains the
best-first strategy of A*, but runs with limited memory like
IDA*. Unlike IDA*, in each iteration RA* does not expand
nodes starting from the root node all over again. Instead,
it maintains a partial explicit graph of poteniial (generated)

nodes. When RA¥ runs out of memory, it prunes some un-
promising nodes of the explicit graph and backs up the best
f-value of the prured children at their immediate parents.
Thus an already expanded node may be fully or partially re-
tracted. In subsequent iterations, a partially expanded node
becomes eligible for reexpansion, and other children of that
node may be regenerated. It may be observed that RA*
uses the { value or back up value at each node to forward
the search path. Unlike MA¥ it uses a simple data structure
at each node, and it does not do the search ab initio at each
iteration. Thus, this algorithm makes effective usage of the
available memory. For simplicity, it is assumed that the size
of the available memory is constant. However, without loss
of any generality our algorithms can be easily modified to
run with variable size memory.

As well as running with a fixed size memory, the RA*
algorithm has been designed to run efficiently on a SIMD
parallel processor, in particular the massively Connection
Machine {CM). The CM contains up to 64,000 simple pro-
cessors which can run in parallel. Fach of these processors
contains a separate memory. In the parallel implementation
(called PRA™® for Parallel RA*) one node to be expanded
is passed to each processor. These nodes are expanded in
parallel, and the nodes which are generated are sent to ap-
propriate processors {based on a hash function, see section
4) for storage. This allows duplicates to be removed (which

. cannot occur in IDA*) and for certain types of pruning o be
used. After each broadcast, those processors which Lave full
memories have nodes retracted (in parallel) to free up space
for the next phase.

In Section 2 of this paper we present the RA* algorithrn,
and in Section 3 we derive some bounds on the number of
times it expands each node. Section 4 describes PRA¥, the
SIMD parallel version of RA*, and Section 5 contains con-
cluding remarks.

2 RA¥* algorithm

Figure 1 describes a procedure called RA* (Retracting A*).
In a subsequent section we will define PRA* (Parallel Re-
tracting A*} as a parallel SIMD implementation of RA*.-

G 15 the search graph, U is an upper bound used for
pruning, and K is an arbitrary constant. ¢, u, and v are
nodes, and the cost of an arc from £ to u is ¢(t,u). g(t) is
the cost of the best path yei found from the root node, r
to ¢, and p(f) is the immediate parent of ¢ along this path.
As with the A* algorithin, A is the heuristic function and
F(t) = g(t) + k(). We assume that k satisfies the monotone
restriction used in A*,

Retracting a node consists of removing a generated node
from G to save space, with the possibility of generating it
again later. A node t is ezpundable if { has been generated
but has not been expanded, or if ¢ has been expanded but
some. of its children have been retracted. In the latter case,
expanding ¢ consists of re-generating the retracted children.

For each generated node ¢ we maintain a “backed-up”

value e(t} as follows. When ¢ is generated, e(t) is set to

[

max(f(t),e(p(t))), Upon retraction of any of £'s children,
(1) is set to min{e(u)|u is a retracted child of ¢} (it can be
proved by induction that this value is always greater than or
equal to the initial value of e(t)).

In general, the goal of a node selection strategy is to
explore first those nodes that satisfy some criterion (e.g.,
deepest nodes or cheapest nodes). In RA*, this invoives
choosing not only which nodes to expand, but which nodes
to retract. Usually, the nodes most desirable for expansion
are the least desirable for retraction, and vice versa. As
examples, below we deseribe two node expansion/retraction
strategies for RA*: depth-first and best-first.

The depth-first expansion rule for RA* selects for expan-
sion the most recently generated node, breaking ties (i.e.,
sibling nodes that were generated at the same time) in favor
of the node v that minimizes e(v). The depth-first retraction
rule for RA* selects for retraction the least recently gener-
ated node, breaking ties in favor of the node v that maximizes
e(v).

The best-first expansion rule for RA* selects for expan-
sion the node » that minimizes ¢(v), breaking ties in favor of
the most recently generated node. The best-first retraction
rule selects for retraction the node v that maximizes e(v),
breaking ties in favor of the least recently generated node.

3 Analysis

Suppose that in addition to the usual admissibility criteria
for the A* algorithm, we also have K > d+ b, where d is the
length of the optimum solution path, and & is the number
of children of the second-to-last node on this path. Then
it is straightforward to prove that both the depth-first and
best-first implementations of RA* are admissible; i.e., they
are guaranteed eventually to return the optimum solution i
a solution exists.

Below we analyze the performance of the best-first imple-
mentation of RA* under the above admissibility conditions.
To simplify the analysis, we assume that f(u) is always an
integer. ’

For each integer i > 0, let

Gi = {ulf(p(u)) <4}

For each i, both A* and the best-first version of RA* wil
generate every node in G; before generating any node in
Giyr — Gy the difference is that RA* may retract some of
the nodes in G; in order to generate others. We define the
¢’th phase of the algorithm to be the steps executed between
the time all nodes in G;_; have been generated and the time
all nodes in G; have been generated.

The number of nodes generated by A* during its i'th
phase is |G; — G;_,|; and at the end of the i'th phase, every
expandable node » will have f(u) > i. As long as |Gi| < K,
the same js true for RA¥. Once ¢ becomes large enough
that |Gi| > K, RA* will start retracting nodes, to maintain
exactly K nodes in . Tn this case, at the end of the ¢’th
phase, one or more expandable nodes u may have flu) < i,

procedure RA*(r)

install the root node in

Ui=o0
loop

select an expandable node in G

for every selected node ¢ do
if £ is not a goal node then expand(t, U/}
else if ¢(¢) < U then begin

U = g(t)

if f(v) > U for every expandable node v € G then
return the path from r to ¢

end
repeat
end

procedure expand(?, I7)

for each child v of ¢ not in @ do
if % has already been installed as a child of some other node then
if making u a child of ¢ would decrease f{u) then
remove y and its descendants, and install w as a child of ¢
else if f(u) < U then begin

install © in &

retract some nodes if necessary, so that (7 contains no more than X nodes

end
end

Figure 1: RA* Procedure.

but the way e(u) is computed guarantees that all will have
e(u) > 1.

At the beginning of the #’th phase, every expandable
node ¢ has () = i. During the ’th phase, a node ¢ be-
comes expandable either by being generated, in which case
the monotonicity of A guarantees that e(t) > Z; or by hav-
ing one or more children retracted, in which case e(t) =
min{e(u)|u is a retracted child of £} > i. Thus throughout
the ¢’th phase, every expandable node ¢ has e(t) = i. Thei'th
phase is finished when every expandable node # has e(t) > 4.

Let u be any node that is expandable during the i"th in-

teration. If u is chosen for expansion, its descendants will

then be the preferred candidates for expansion unless they

have e-values greater than i. Thus, after u has been ex. -

panded, all nodes chosen for expansion will be descendants

of , until such time as every expandable descendant v of % -
has e(v) > 4. Any time a descendant v of u is retracted, the |
retraction will set e(p(v)) > ¢, so that p(v) wili not again be :

chosen for expansion during the #’th phase. In particular, u

will not again be chosen for expansion during the i’th phase, -

The above means that each node u is expanded at most
once during the ¢’th phase. Thus, the total number of nodes
generated during the #’th phase is no greater than |G; ~ K.
In many search problems, |G;] grows exponentially with i
and in such cases,

[G: — K| = O(|Gi — Gi),

so that the asymptotic complexity of RA* is the same as
that of A*, .

As an example, consider the 15-puzzle with A = 0, so
that for every node u f(u) = g(u) = the depth of w. Every
node has at most four children, of which one is its parent, so
|Gi| <= O(3"). Thus, for both RA* and A*, the number of
nodes generated in the ’th phase is O(3%).

4 SIMD Implementation

As well as running with a fixed memory size, the RA™ al-
gorithm has been implemented to run efficiently on a SIMD
parallel processor, in particular the massively Connection
Machine (CM). The CM contains up to 64,000 simple pro-
cessors which can run in parallel. Fach of these processors
contains a separate memory. In the parallel implementation,
the memory of each processor in the CM is divided into two
parts: One part, the aciive node which is used to represent
one node to be expanded, and another, much larger, part
which is used to contain a buckef in a large hash table, For
each node ¢ in the explicit search graph, the bucket (proces-
sor) that will contain t is determined using a hash function.

At each phase of the outer loop in the RA* algorithm,
instead of expanding a single node, each processor chooses
its best candidate, and these n nodes are chosen for expan-
sion. Each node to be expanded is placed in the active node
portion of its processor. These nodes are then expanded,
and the nodes which are generated are sent to buckets in
the appropriate processors based on the hash function (this
allows a local computation at each node to be performed so
as to eliminate duplicates). At each phase, all buckets which
are filled have nodes retracted to free up space for the next
phase. As each buckei chooses its own best node, and as
any globally best node (i.e. lowest f-value over all currently
open nodes) must be in some bucket, the globally optimal
node will be chosen for expansion. (Where the same bucket
contains several nodes with the same value as the globally
best node, these nodes may be chosen for expansion first,
however, as the heuristic is monotone, these nodes will even-
tually increasein f-value, and the global node will be chosen
later for expansion.) Thus, in the presence of a monotonic
heuristic PRA* will find the optimal path. As every proces-
sor in the machine is used both for a node expansion at each
phase, and to represent a bucket in the hash table, maxi-
murn processor utilization results. Once the search space is
large enough to start filling buckets, CM utilization remains
close to 100 percent for expansion, broadasting, and dupli-
cate removal. Retraction is also performed in all fult buckets
simultaneously, so in the presence of a good hashing func-
tion, once the search space is large, a large proportion of the
processors all retract simultaneously.

4.1 Empirical Results

The fifteen puzzle has been used to test the performance of
PRA*. The algorithm is invoked with a starting board posi-
tion, and cutputs the moves necessary to reach a given goal
state. This puzzle is known to have a large search space; In
[3] a table is presented which shows the results of running
IDA* for one hundred randomly starting states. The num-
ber of nodes expanded by IDA* varies from several hundred
thousand, to over six billion. The number of nodes generated
by A* itself for these puzzles is currently unknown, as keep-
ing such a large open or closed list is prohibitively expensive
on serial machines.

To test this algorithm, we have compared the perfor-

mance of IDA* (as reported in [3] and PRA* using 8000
processors on a CM-2 (see Table 1}). To show that PRA*
can function under different memory limitations it is run for
each problem using first limiting each processor to contain
only 100 elements in its “bucket” {thus forcing retraction
on smaller problems) — column 2, and then using represent-
ing 400 boards per processor (the maximum available in the
current implementation) - column 3'. As can be seen, the
number of nodes expanded by PRA* is significantly less than
that used by IDA* even where a significant amount of retrac-
tion was required,

For the first three puzzles run, when these results were
obtained by using the full memory of the 8,000 processors
(400 nodes per bucket) the results are quite similar to ex-
pected A* values given the nature of the 15-puzzle and the
slow growth of the Manhattan Distance heuristic used (see
[3] for more details). Thus, the empirical results show that
PRA* can be expected to compare quite favorably with A*
for these puzzles?.

The run-time for these puzzles ranged from approxi-
mately 20 minutes for the smallest to about four hours for
the largest. While these numbers obviously compare quite
favorably with typical serial LISP implementations of A*like
algorithms, they are unacceptably slow for the Cennection
Machine, An analysis of our performance has shown that
the implementation of PRA* used currently, suffers from a

- number of design flaws which greatly slow its performance.

The most important of these flaws is the manner in which
the nodes are stored in the buckets. To select a node from
a bucket, or to determine if any node already existed in a
bucket it is necessary to scan the entire bucket. As this paper
is being written, we are currently completing the implemen-
tation of a new version of PRA* which structures the bucket
contents in such a way that enly a very small portion (not
more than 6 or 7 nodes, and usually only 1 or 2) needs to
be scanned to retrieve an element. Current experimentation
leads us to predict a performance speed-up of approximately
1003.

!The 4th board shown was not run in the 100 processor version due
to execution tire limitations on the available Connection Machine.

2The third puzzle shown is the largest of the puzzles presented in
[3] which the 8000 processor CM-2 could handle with no retraction.

ur

DA* PRA* PRA*

100/ proc. 400/proc
expansions expansions (retractions) - expansions(retractions)
546,344 293,891 (264) 203,888
3,292 976 351,403 (6459) 351,414
17,984,051 1,447,434 (1,795,563) 1,077,685
183,526,883 — 11,857,876 (14,646,556)

Table 1: Results for PRA* vs. IDA*

5 Conclusions

We have shown in this paper that an algorithm for heuris-
tic search can be designed which takes advantage of SIMD
architectures on the CM. The algorithm has the advantages
of a breadth-first search, such as A*, while still functioning
with a limited memory size (as in IDA*), by using a process
of retraction (and possible later reexpansion) of nodes with
poor f-values. The algorithm is proven to be comparable
in complexity with that of A* and has been shown empiri-
cally to expand significantly less nodes than IDA*, in fact,
comparing favorably with A*. In addition, the algorithm is
designed to make maximum processor utilization in SIMD,
and thus promises to be scalable to larger and more complex
search problems.

Acknowledgements

This work was supported in part by an NSF Presiden-
tial Young Investigator award for Dr. Nau with matching
funds from Texas Instruments and General Motors Research
Laboratories, NSF Equipment grant CDA-8811952 for Dr.
Nau, NSF Grant NSFD CDR-88003012 to the University of
Maryland Systems Research Center, NSF grant IRI-8907890
for Dr. Nau and Dr. Hendler, and ONR grant N00014-88-
K-0360 for Dr. Hendler. Dr. Nau and Dr. Hendler are
also associated with the UM Systems Research Center. Dr.
Mahanti is currently on leave from the Indian Institute of
Management, Calcutta, India.

References

[t1] Bagchi, A. and Mahanti, A. Three approaches to heuris-
tic search in networks JACM 32, (1985)

{2] Chakrabarti, P, Ghose, S, Acharya, A. and De Sarkar,
S. Heuristic Sreach in restricted memory Al Journal, 41

(1989)

i3] Kori, R. Depth First Iterative Deepening AT Journal,
27 (1985)

[4] Nau, D., Kumar, V., and Kanal, L. General Branch and
Bound and its relation to * and AQ*, Al Journal, 31
(1987).

[5] Nilsson, N. Principles of Artificial Intelligence, Tioga,
CA (1980).

(6] Pearl, J. Heuristics, Addison-Wesley, MA (1984).

[T} Sen, A. and Bagchi, A. Fast Recursive Formulations for
Best-First Search Thai Allow Controlled Use of Memory
Proceedings IJCAI-89 (1989). '

