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PRA*: Massively Parallel Heuristic Search
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In this paper we describe a variant of A* search designed to run
on the massively parallel, SIMD Connection Machine (CM-2).
The algorithm is designed to run in a limited memory by the use of
a retraction technique which allows nodes with poor heuristic
values to be removed from the open list until such time as they
may need reexpansion, more promising paths having failed. Our
algorithm, called PRA* (for Parallel Retraction A*), is designed
to maximize use of the Connection Machine’s memory and proces-
sors. In addition, the algorithm is guaranteed to return an optimal
path when an admissible heuristic is used. Results comparing
PRA* to Korf’s IDA* for the fifteen puzzle show significantly
fewer node expansions for PRA*. In addition, empirical results
show significant parallel speedups, indicative of the algorithm’s
design for high processor utilization. © 1995 Academic Press. Inc.

1. INTRODUCTION

The use of search is ubiquitous in the field of computer
science. Problems such as computing a traveling sales-
man tour, playing chess, solving the Tower of Hanoi
problem, etc., can, in principle, be solved by examining
the nodes in a large search space. A major contribution of
research in the field of artificial intelligence has been the
design of heuristic search programs—programs that take
advantage of informed guesses to guide the search. One
of the best known examples of the use of this technique is
the solution of the *“fifteen puzzle,™ a sliding blocks prob-
lem consisting of fifteen numbered, movable tiles set in a
4 X 4 frame. One cell of the frame is always empty, thus
making it possible to move an adjacent numbered tile into
the empty cell. The problem is to find a sequence (prefer-
ably optimal) of tile moves that will transpose a given
initial board position into a given goal position.

Heuristic search focuses on using information about
the problem to guide the search. In the fifteen puzzle, for
example, a well known heuristic can be used to estimatc
the maximum number of moves needed to get to a known
goal from any board. Using this estimator, search tech-
niques can be designed that will produce an optimal solu-
tion, while searching only a small portion of the search
space. Among the best known of these techniques are A*
(18] and several of its variants [I, 17-19]. Thesc algo-
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rithms use a combination of the number of moves used in
known partial solutions, addcd to the estimated distance
(the heuristic) from cach partial solution to the target, to
estimate how **promising’” each partial solution is. Paths
are searched in order of this value: the most promising
paths arc scarched first. In addition, the A* algorithm is
guaranteed to return the optimal path when the heuristic
is “‘admissable’” (that is, when the heuristic consistently
underestimates the cost of reaching the goal). Even using
heuristics, the size of the scarch space can be prohibi-
tively large for many problems. For example, the number
of search states in the fifteen puzzle is 15!/2 > 2%, Even
with heuristic guidance, A*'s search may require examin-
ing many millions, even billions, of board positions.

Given the large number of board positions that need to
be searched, this problem (and others like it) would seem
to be an excellent candidate for massive parallelism—the
problem would appear to be ‘‘embarrassingly’” parallel.
However, a major problem in producing a parallel ver-
sion of a heuristic search program is that in most applica-
tions of search, the storage requirements of most of the
well-known heuristic algorithms grow exponentially with
some measure of the size of the problem. Thus, even
using the large memories available across the many pro-
cessors of massively parallel machines, it is still not feasi-
ble to solve many interesting and useful problems. In A*
and its variants, Tor example, the entire explicitly gener-
ated search space must be stored prior to termination. To
circumvent the large storage requirement of A*-like algo-
rithms, attempts have been made to design algorithms
that can run within limited available memory and vet
produce optimal or near optimal solutions. Unfortu-
nately, most of these efforts have produced algorithms
that are not amenable to massively parallel implementa-
tion.

In this paper, we discuss an algorithm called PRA* (for
Parallel Retracting A*), which was designed to run in a
fixed-size memory and to exploit (SIMD) massive paral-
lelism. We describe? the algorithm and its implementation
on the massively parallel Connection Machine (CM-2).
We present empirical results showing that PRA* exam-
ines fewer nodes than either the best known (serial) lim-
ited memory algorithm (IDA* [9]) or a parallel implemen-

3 A preliminary description of PRA*, without most of the results
discussed in the current paper. appears in [5].
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tation (IDPS) of that algorithm. We also demonstrate that
PRA* exhibits a near-linear speedup with the addition of
extra processors.

The rest of this paper is organized as follows:

I. Section 2 presents the details of RA* (a serial algo-
rithm of which PRA* is a parallelization) and PRA*.*

2. Section 3 discusscs how the algorithm was pro-
grammed on the CM-2.

3. Scction 4 discusses other algorithms related to RA*
and PRA*, including IDA*, MREC, MA*, IDPS, and
P-IDA*S

4. Section 5 presents experimental results for PRA*. It
includes a comparison of PRA* to a parallel version of
IDA*, and paralle] speedup results for PRA*. Section 6
discusses these results and how they might apply to other
search problems.

5. Section 7 contains concluding remarks.

2. THE ALGORITHM

In this section we present the details of a memory lim-
ited algorithm, PRA*, which was designed to run on a
SIMD architecture, and in particular, on the Connection
Machine (CM-2).* PRA* is able to examine a large num-
ber of nodes in parallel, while using a ‘‘retraction”
scheme to free memory when needed. As we will show
below, PRA* returns an optimal path if the selection
heuristic is admissable.

2.1. Description of RA*

PRA* is a parallel implementation of a serial algorithm
called RA* (Retracting A*). Although this paper is about
the parallel algorithm, in order to understand PRA* it is
best to look first at RA*. Pseudocode for RA* is shown in
Fig. [. Appendix A contains the outline of a correctness
proof for RA*, The easiest way to explain RA* is in a
comparison to A*. Below we summarize the similarities
and differences between RA* and A*:

1. Like A*, RA* searches a state space that can be
represented as a graph G in which nodes represent states
in the search, and arcs represent legal transitions be-
tween them. G has a start node s and one or more goal
nodes. A solution path is a path starting at s and ending at
a goal node. Each arc has a cost, and the cost of a path is
the sum of the costs of its arcs.

For example, in the fifteen puzzle each configuration of
the titles is a node in the state space, and a node p is

* In addition. Appendix A contains no outline of a proof of correct-
ness for the RA* algorithm.

* In addition. Appendix B contains a detailed comparison of RA*
with MA*,

$ Several of the techniques in the PRA* implementation are specific
to the SIMD aspects of the CM-2. Nonetheless, the results presented in
this paper should extend to a SPMD implementation on the CM-3.
Future work is needed to demonstrate how PRA*'s implementation
might be modified Lo produce superior results on the CM-5.
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procedure RA*(s, M)
put sinto T
9(s):=0
gls) =
h(s}:= h{s}
f(8):= g{s) + h(s)
loop
u := the expandable node for which f(u) is smallest,
tesolving ties in favor of the most recently generated node
if u is a goal node then
return the path (s, .... parent(parent(u)), parent(u), x)
else for each child v of u that is not alseady a child of uin T do
if © ¢ 7" then Create-and-Install-Child(u, v}
else if g(u) + e(u,v) < g(t) then begin
f(parent({v)) := g{patent(r)) + g{parent(v))
Create-and-Install-Child(u, v}
end
if v is a tip node then f(u):= g(u) + ¢(u}
while 7 contains more than M — & nodes do begin
let v be the tip node of T for which f(v) is largest,
resolving ties in favor of the least recently generated node
Retract(v)
end
srepeat
end RA®

procedure Create-and-Install-Child( u,v)
put vinto T
parent(v) := u
A(e) := max(h(v). h(u) — (v, )
Sz} = g(v) + hr)
qv):= o0

end Create-and-Install-Child

procedure Retract(v)
¥ = parent(t)
gi%) = ming(x). h(r) + clu.v}
fluy = glu) + g(x)
remove v from T
if u is now a tip node then begin
h(x) 1= max(g(u). hu))
flv) = glu)+ h(u}
end
end Retract

FIG. 1. RA*.

connected to a node g if and only if, by sliding a single
tile, the board represented by p can be transformed into
the board represented by g. The start node is the starting
configuration of the tiles, and the goal node is the desired
configuration of the tiles. In the fifteen puzzle, each arc
has a cost of 1, so the cost of a path is the same as its
length.

2. Like A*, RA¥ expands each node 1 by generating its
children. But unlike A*, it may subsequently retract
some of the generated nodes to free space. In RA*, a
node ¢ is expandable if t has been generated but has not
been expanded, or if ¢ has been expanded but some of its
children subsequently have been retracted. In the latter
case, expanding ¢ consists of re-generating the retracted
children.

3. Like A*, RA* requires a heuristic function h{¢) that
returns a lower bound on the cost of getting from ¢ to the
goal node. The definition of “‘cost’’ is domain-dependent.
For the fifteen puzzle, the cost is the number of tile
moves from the starting position, s.

4, As is the case for A*, if RA* finds more than one
path to ¢, it retains only a least costly one, and maintains
g(#) as the cost of this path. The paths themselves are
maintained by having each node point to its immediate
predecessor in the path.

5. Unlike A*, RA* does not require that the entire
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examined scarch space be stored in memory. To cope
with search spaces that are too large to be stored in mem-
ory, RA* uses a retraction mechanism. When memory is
needed, frontier nodes of the search space are retracted,
their f-values being stored in their parents. If any of a
node’s children are retracted, that node becomes avail-
able for reexpansion, its f~valuc being set 1o the minimum
of those of its retracted children.

6. Like A*, RA* maintains an estimated cost, (1), of
the cost of getting from s to g through 7. However, in
RA¥*, the initial value for f(z) is not g(s) + h(r) but instead
max{(g(t) + h{(s), f(parent(?))). Furthermore, if RA* ever
retracts all of the children of 1, it updates f(¢) to be the
minimum of the f-values of the retracted children.

2.2. Description of PRA*

Pseudocode for the PRA* algorithm is shown in Figs. 2
and 3. Below, we describe the primary differences be-
tween RA* and PRA*.

Rather than keeping track of the generated nodes glob-
ally as A* and RA* do, PRA* distributes these nodes
over the local memory stores available to its processors.
Each processor has a bucket capable of holding some
fixed number of nodes (280 nodes per bucket in the cur-
rent implementation). As each node, ¢, is generated at its
parent node’s processor, it is installed in the search graph
by assigning it to a processor (and thus to that proces-
sor’s bucket). This is done using a hashing function H()
that returns the address of the processor to which ¢ is
assigned. The parent processor broadcasts ¢ to processor

procedure PRA*(s)
P:=NIL
U=
tell all processors to empty their buckets
Initialize{s)
loop
for all buckets {i.e. processors) containing expandable nodes begin
select an expandable node ¢ with lowest f-value,
resolving ties in favor of most recently instalied
if t is not the goal node then
for each child v of ¢ such that ¢,(t) € {RETRACTED, NOT-GENERATED} begin
Create-Child(t, v}
¢,(t) := GENERATED
Instali{v)
end
else if g(t) < U then begin
U = g(t)
P:=thepath froms ot
end
end
for every tip node ¢ such that g{¢) > U, Prune(t)
until the bucket is empty enough or it contains no tip nodes do begin
let u be the tip node with the largest f-value in the bucket,
resolving ties in favor of the least recently installed
Retract(u)
end
repeat
end PRA®

t is a goal node

procedure Injtialize( s)
parent(s) := NIL
h(a) := (s}
g($):=0
fis):=h{s)
gls) = oo
c,(5) := NOT-GENERATED, Y
Install(s)
end Initialize

FIG. 2. Pseudocode for the PRA* algorithm (Part 1).
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procedure Create-Child(t.e)
parent(v):= ¢
A{v) := max(h(v), h{t) - e(t.t))
g(v) := glt) + e(t.v)
(v} := g(v) + R(v)
¢{v) = oo

end Create-Child

Same as max( f{2). g(v) « h(v)).

procedure Install{v, stotus)
send v to processor M (v)
for every processos teceiving a v
if the bucket is full then siatus ;= OUT-OF-MEMORY
else if v is already in the bucket as ¢ then
il g{’) £ g(v) ihen sfatus ;= CREAPER-PATH-EXISTS
else begin New node offers cheaper path
Prune(r*)
replace t' with v in bucket
end
send status 1o processor #f (parent(r})
if status = OUT-OF-MEMORY then Returned to original context
Retract(v) Retract and Prune are intra-processor here.
else if status = CREAPER-PATH-EXISTS then Prune(v)
end Iostall

Collisions are possible here
Note context shift

procedure Retract(v)
send v to processor If (pasent(v))
for every processor receiving v
let v = parent(v)
g{w) := min(g{u). h(v) + elu, v))
set ¢,(u) = RETRACTED
if ¢;{4) € {RETRACTED, PRUNED}, V)
h(u} := max(g(u}, M z))
f(u) = g(u) + h(w)
remove v from bucket
end Retract

Cortext shift
Retrieve parent from bucket.

u has no other children.
Returned to original context

procedure Pruneir)
send v to processor H{patent(v))
for every processor receiving v Context shift
parent(v) is stored in current processor's buckel, and so is easily retrieved.
c{parent(r)) := PRUNED

f(parent{r}) := g(parent{v}} + g(parent{v})
end Prune

FIG. 3. Pseudocode for the PRA* algorithm (Part 2).

H(1), which then installs the node in the bucket. Provided
the hashing function is a good one, the nodes will be well
distributed across all processors, and the corresponding
processing load also will be well distributed. (The use of
hashing functions for load balancing was independently
developed by Manzini and Somalvico in [15, 16].) In fact,
for all the test problems we ran on PRA*, every proces-
sor of the CM-2 was continually active after the initial
set-up phase.

Like RA*, PRA* chooses nodes for expansion on the
basis of their f-values. But unlike RA*, PRA* expands
many nodes simultaneously. In particular, each proces-
sor selects from its bucket an expandable node having the
smallest f-value among the nodes in the bucket, and ex-
pands that node. Because cach processor expands the
node that is /ocally the best, a locally chosen goal node is
not necessarily globally the best. Consequently, the first
solution path found by PRA* may not be optimal. To
handle this situation, PRA* maintains two global values:
P is the best complete solution path found so far, and U is
the cost of this path. Any leaf node 7 for which f(1) = U is
pruned. Once a solution is found, the algorithm does not
terminate until all nodes have been pruned. (Solutions
are recorded as they are found, so that the algorithm is
free to prune the solution paths as well.)

Retraction does not occur in RA* until all memory is
exhausted. In PRA*, however, retraction occurs when-
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ever any one processor's memory is exhausted. Unfortu-
nately, because the search space is distributed across all
processors, it is possible for a bucket to become filled
with nonfrontier nodes, and thus have no candidates for
retraction. In particular, in the last few lines of the IN-
STALL procedure (sec Fig. 3,) if the bucket is full then the
node to be installed, ¢, will instead be retracted, even if it
has a better f-value than all the nodes in the bucket. In
almost all cases, this will only cause a temporary delay:
as the algorithm proceeds, a node will eventually be re-
tracted from the bucket (because the f~value of the fron-
tier will eventually become larger than that of some leaf
node in the bucket). so that the next time ¢'s parent is
expanded, ¢ will be installed. Nonetheless, in the current
implementation of PRA*, a “‘full-bucket” condition theo-
retically can lead to a deadlock state from which PRA*
will not terminate— might be permanently locked out of
the bucket. (RA*, on the other hand, is guaranteed to
terminate if a solution exists.)

The situations that could give rise to the kind of lock-
out described above are rather bizarre. For example,
lockout could arise if there is a subtree 7 such that (1) all
nonleaf nodes in T are hashed to some set of buckets
{ir, ..., i}, (2) these nodes completely fill the buckets
{i1, ..., i}, (3) the leaf nodes of T are all hashed to buckets
other than {i, ..., iz}, and (4) upon expansion of any lcaf
node ¢ of T, each child of ¢ hashes to onc of the buckets
{i1s .ovy ix}s If the hash function is a good one, the probabil-
ity of occurrences such as this are so low as to make it
impossible in any practical sense. PRA* can be modified
to check for such lockouts at the cost of extra memory or
node expansions. However, given the implausibility of
such situations occurring (particularly in the fifteen puz-
zle) the current implementation does not make such
checks.

3. IMPLEMENTATION DETAILS

The implementation of PRA* on the SIMD CM-2 was
relatively straightforward. However, several aspects of
the algorithm could be implemented in multiple ways.
While we generally did not try to optimize board expan-
sion or other fifteen-puzzle-specific code, we did attempt
to make the best utilization of the processors, and to
minimize the time spent in interprocessor communica-
tion, bucket manipulation, and the pruning of nonleaf
nodes.

3.1. Interprocessor Communication

Because¢ PRA* distributes the nodes of the search
space across all processors, the algorithm requires fre-
quent interprocessor communication. Some of these
operations result in high degree of communication con-
gestion at certain processors. This congestion can signifi-
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cantly degrade run-time performance.” The overhead of
dealing with such communication congestion was signifi-
cant in PRA*.

For example, in the first line of the Install procedure
(Fig. 3), every processor that has created a new node
(and this is usually every processor) attempts to send that
node, ¢, to its assigned processor, H{(r). Because these
broadcasts are simultaneous, many processors will re-
ceive broadcasts from several others simultaneously. In
the current implementation, however, only one of these
*colliding™ broadcast messages gets through. The cur-
rent implementation uses a “‘transfer, acknowledge, re-
try”’ technique to deal with collisions. The receiving pro-
cessor acknowledges receipt to the successful sender.
Processors receiving no such acknowledgement rebroad-
cast their message until it gets through. Thus, it can take
many actual broadcasts (the average was six to nine for
the fifteen puzzle) to effect one abstract broadcast.

To ameliorate the performance degradation resulting
from the need for these multiple broadcasts we split the
process into two phases. In the first phase, the broadcast
messages consisted of only the address of the sending
processor (16 bits). As described above, these messages
were subject to collision. As these messages arrived they
were enqueued. In the second phase, after all messages
had been received, the processors iterated through their
queues, retrieving from the original senders the full node
data structures (160 bits) of the ncwly received children.?
The retrieval process does not suffer message collisions.

The enqueing method requires more communication
operations (because of the additional operations consti-
tuting the retrieval phase), but fewer large ones. This is
important because the run-time of send operations on the
CM-2 is proportional to the size of the message. In most
circumstances the run-time saved by using the smaller
(16-bit) sends outweighed the time required for the few
additional larger (160-bit) ones. PRA* minimizes its
losses due to message collision by minimizing the size of
colliding messages.

3.2. Bucket Manipulation

Bucket nodes are sorted and indexed with two keys, f~
value and board position, to facilitate the two most com-
mon reasons for accessing the buckets. Even with the
double indexing, though, operations involving the buck-
ets are slow because the CM-2 does not provide efficient
address indirection. There is no operation to ‘*move the
data at the address stored at address X to address Y."

Address indirection can be accomplished through use
of the CM’s sideways array data structures, but these are
fairly cumbersome, and the opcrations using them are
slow. Nonetheless, they arc the best mechanism avail-

7 We have discussed this elsewhere [6].
3 The most recent release of *Lisp includes a send-with-queue opera-
tion, but we have not yet altered the implementation to use it.
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able, and PRA¥ uses sideways arrays to represent buck-
ets, and several indexing schemes (requiring a significant
amount of memory) to optimize sideways array opera-
tions. Even with optimization. thesc operations take up a
significant amount of the program’s run-time. It can be
argued that this is the price to pay for duplication detec-
tion. Nonetheless., if the CM-2 could be modified o pro-
vide quick address indirection (say, 2 to 10 times slower
than a standard move operation), we cstimate that PRA*
would run at least 10 times faster,

3.3. Messages to Pruned Nodes

Another implementation complication arose from our
treatment of pruned nonleaf nodes. Two situations can
cause nonleaf nodes to be pruned: a cheaper path may be
found to the nonleaf node, ¢, or a solution node with a
better f~value may have been found, prompting PRA* to
prune {. In either case, we decided nof to prune existing
descendants of 7; to traverse ¢'s entire subtrec, scattered
across many processors, for the purpose of pruning the
subtree is too expensive an operation. Instead, these
nodes remain in their respective buckets. They are left to
prune themselves upon detecting that their parent nodes
have been pruned. Eventually, the ‘“detached’ descen-
dants of  may have reason to send a message to their no
longer existing (pruned) parent (usually to indicate to
their parent that they have been retracted or pruned.) For
example, node ' sends a message to its parent node, ?.
The receiving processor (which had formerly held 1) de-
tects that 7 is not stored in its bucket, and returns a mes-
sage to this effect. Only then, having detected that it is a
component of a pruned subtrec, does ¢’ prune itself.

4. RELATED WORK

4.1. Serial Limited-Memory Heuristic
Search Algorithms

As shown in [3], every admissible search algorithm
must expand all surely expandable nodes before finding a
solution. Since the number of such nodes often grows
exponentially with some measure of the problem size,
either every admissible scarch algorithm must have an
cxponential amount of memory in which to store these
nodes, or ¢lse (if it operates in a limited amount of mem-
ory) it must delete nodes that have already been gener-
ated and possibly regenerate them later.

IDA* [9] was the first algorithm to solve fifteen puzzles
efficiently within limited memory. IDA* is a tree-search
algorithm, and works with graph search spaces by un-
folding them into search trees. IDA* is iterative, execut-
ing a depth-first search that is delimited by a threshold
that is increased at each iteration. In each iteration, IDA*
executes a depth-first search from the root node until a
goal node is found or all nodes with f-values within the
current threshold have been examined. If a goal node is
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not found. the threshold is incremented and the search
restarted (a new iteration) from the root node. Because
IDA* simulates the best-first search strategy of A* by
using an underestimating threshold value, it it is guaran-
teed to find an optimal solution under admissible heuris-
tics. The space complexity of IDA* is linear in the depth
of the scarch tree. However, it is known that IDA*
makes significantly more node expansions than A* in
practice. Thus, for problems where node expansion time
is significant, IDA* fares badly.

The algorithm MREC [24] is a variant of IDA*. MREC
is a recursive marking algorithm that maintains an ex-
plicit graph during the search. When it runs out of mem-
ory, it uses IDA* to increase the threshold value at its tip
nodes and continue searching. Eventually MREC finds a
solution path in the explicit graph or with the help of
IDA*. Thus, MREC can use a larger initial memory than
IDA*, but otherwise is not much different from IDA*,

MA* [2] is a significantly different algorithm for use
with limited memory—it attempts to optimize the use of
memory during search. During each expansion phase,
MA* generates only one child of each node selected for
expansion, only partially expanding that node. It main-
tains an explicit graph and runs like any standard marking
algorithm for nctworks, such as MarkA [1]. As in MarkA.,
MA* performs bottom-up cost computations. When out
of memory, it selectively prunes nodes and arcs from the
explicit graph. These pruned nodes and other partially
expanded nodes can be reexpanded at a later time. It can
be shown that through bottom-up computation and selec-
tive generations of children, MA* maintains the best-first
node selection strategy of algorithm A¥*.

In a general sense, RA* and MA* are similar algo-
rithms: both do a best-first search, deleting nodes from
memory when necessary to save space. However, there
are also a number of differences. MA*’s, need to gener-
ate children selectively and the bottom-up nature of its
marking algorithm make it difficult to envision a mas-
sively parallel form of MA* without a fully shared mem-
ory. In contrast, RA* is explicitly designed to use update
algorithms that are efficiently parallelizable. These and
other differences are described in more detail in Appen-
dix B.

4.2. SIMD Heuristic Search Algorithms

While there has been great deal of research into serial
heuristic search, and some into coarse-grained MIMD
search? [7, 10, 23], research into SIMD search algorithms
is just beginning. Other than PRA¥*, the only attempts w¢
know of to developed SIMD search algorithms have been
parallelizations of IDA* [20, 22, 11, 12].

? Coarse-grained MIMD parallelization of IDA*, with each processor
searching to a different threshold. has shown near-linear speed-ups, but
only for small numbers of processors [23]. As the number of processors
increases, speed-up declines.
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The earliest attempt at a SIMD version IDA* was done
by Powley and Korf [20]. They parallclized IDA* by al-
lowing individual processors to exccute separate depth-
first searches to different thresholds (cost bounds). The
first solution found is not guarantced to be optimal, so
search continues until a better solution is found or until a
solution is proven to be optimal. This approach requires
very little load balancing, but the speedup result obtained
by this algorithm was only 707 (4.9% of the 16K proces-
sors used).

Three more parallelizations of IDA* were developed
later: two versions of the P-IDA* algorithm [22, 21], and
the IDPS algorithm [11]. These more recent efforts have
had more success. One of the versions of P-IDA* has
achieved a 4600-fold speed-up on a 16K Connection Ma-
chine [22], and similar results have been obtained for
IDPS [11].

P-IDA* works by dividing up the search space into
subspaces, each with its own “*start’’ node (which may be
some distance away from the real start node). Initially, a
single processor is assigned to each subspace, to do an
IDA*-style rescarch of that subspace. But after each
threshold, more or fewer processors may be allocated to
each subspace in order to achieve load balancing.

IDPS differs from P-IDA* in three essential ways.
First, IDPS uses a different static load balancing strategy
to initially distribute the subspaces across the processors.
Second, IDPS uses a different dynamic load balancing
strategy which results in very high efficiency. Third,
IDPS offers two variations of node generation strategy,
allowing the algorithm to optimize its performance for
different domains.

4.3. Comparing PRA™ with the Parallelizations of IDA*

IDA* stores only the current node and the path from
that node back to the start node s; and similarly, the
parallel versions of IDA* store only the current nodes
and the paths from those nodes back to s. This technique
requires that IDA* and its parallelizations regenerate
many nodes many times over. These regenerations are
necessitated in two ways. First, whenever the threshold
is increased, the scarch tree of the previous threshold
cycle must be regenerated. Second, any node ¢ in the
search space may be accessed along many different
paths. For the fifteen puzzle, for example, most board
positions (the exceptions are those in which the “‘empty”’
tile is in a corner or on an edge) are accessible by a single
tile move from any of four adjacent board positions. Be-
cause IDA* and its parallelizations maintain no history of
which nodes have been previously examined, they must
reexamine the entire subtree of descendants of 7 each
time ¢ itself is examined.

A* avoids this redundant work by storing all nodes as
they are examined. This makes it possible for A* to de-
tect when a node is later reached via a path using a differ-
ent adjacent node. (We call this duplicate detection.) A*
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does not reexamine the duplicate’s descendant subtrec
unless it has discovered a cheaper path to the duplicate.
The central problem with A* is that the search space for
most interesting domains is far too large to be stored in
memory. PRA¥, rather than trying to solve a search prob-
lem with a minimal amount of memory, as does IDA*,
searches by optimizing its use of memory. It maximizes
its use of available memory so as store as many of the
previously examined nodes as possible, and so minimizes
the need for redundant node examinations.

Unfortunately, in terms of run-time, the cost of dupli-
cate detection in PRA* is quite high. 1t necessitates
PRA*'s use of general interprocessor communication
(among the most expensive operations on the CM-2) and
the code to search each bucket for a duplicate whenever
a new node is added. These two functions account for
about 92% of PRA*’s run-time on fifteen puzzle problems
(though some interprocessor communication would be
required for load balancing in any case.)

PRA*'s load-balancing scheme is predicated on the
need for duplicate detection. The hashing function, be-
cause it is known to every processor, guarantees that a
duplicate, regardless of at which processor it was gener-
ated, will be sent to the processor holding the original.
Using a hashing function for load balancing has disadvan-
tages. First, there is no guarantee that nodes will be dis-
tributed evenly across the processors. The distribution is
a product of the hashing function and the search space.
Sccond, the topology of the hashing distribution has
nothing to do with the topology of the search space itself.
This necessitates general interprocessor communica-
tion—as opposed to faster *‘nearest neighbor* communi-
cation—for communication between processors repre-
senting nodes adjacent in the search space.

Our main criticism of IDA* derivatives like P-IDA*
and IDPS is that though they enjoy a run-time speed-up
with increasing numbers of processors, they do not bene-
fit from the larger memory associated with larger parallel
machines, and thus they do not do any less total work.
For example, Powley et al. report [21] that P-IDA* re-
quired roughly the same number (slightly more, actually)
of node expansions to solve a problem as serial IDA*,
regardless of the number of processors. For some prob-
lems [8], IDA*’s number of node expansions (and thus its
run-time) can be as high as Q(2?7), where n is the number
of node expansions that would be done by A*. Thus,
simply adding more processors to an IDA*-like aigorithm
may not be enough to make a problem tractable. In view
of this criticism, it is of obvious interest to design a paral-
lel algorithm that will become closer to A* as more pro-
cessors and their corresponding memory are added.
PRA*, which is more like A*, exhibits this behavior.

Powley et al. [21] argue that PRA* will enjoy less and
less benefit from duplicate checking as problem size in-
creases. They claim that for large enough problems, the
benefit to be derived from the finite number of nodes that
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PRA* can store will become inconsequential. This is far
from obvious. Indeed, the opposite may be true.

It is truc that as problem size increases. PRA* is able to
store a rclatively smaller proportion of the search space,
and thus must fail to detect an increasing number of du-
plicates. On the other hand, PRA* will tend to store a
large proportion of the higher (closer to the root) nodes in
the search graph. The value of such duplicate detection
for such nodes becomes increasingly important with
larger problems because the benefits of avoiding dupli-
cates are exponential in the distance of the duplicate from
agoal. Alternatively, it may work out that the topology of
the search space is such that the duplicates tend to be
those nodes that have not yet been retracted. The inter-
action between PRA*'s retraction mechanism, and the
topology of the search space would seem to be the main
factor in the effectiveness of duplicate checking in PRA*,
We do not believe that the simple proportion of search
space size to memory size is an adequatc metric of dupli-
cate-checking effectiveness.

5. EXPERIMENTAL RESULTS

We have used the fifteen-puzzle to test the perfor-
mance of PRA*. The algorithm is invoked with a starting
board position, and outputs the moves necessary to reach
a given goal state.

The fifteen puzzle is known to have a large search
space. In [9], Korf presents the results of running IDA*
for 100 random start states. The number of nodes ex-
panded by IDA* varies from several hundred thousand to
over six billion. The P-IDA* parallelization of IDA* [22]
achieves similar results. (P-IDA* requires about 4% more
node expansions than IDA*. on average.)

To test our algorithm, we have compared the perfor-
mance of the IDPS algorithm (which is similar to P-IDA¥)
against that of PRA* using a 16K processor CM-2 with a
Sun-4 front end. In addition, we have run PRA* using
different numbers of processors to cxamine parallel
speed-ups. For the heuristic function /1 we uscd the sum
over all tiles ¢ of the Manhattan distance from ¢’s current
to its desired location.

5.1. Comparison with Parallel IDA*

It was our hypothesis that the design of PRA* would
enable it to expand significantly fewer nodes than IDPS
when solving fifteen puzzle problems. To test this hy-
pothesis, we ran PRA* and IDPS on 45 fifteen puzzie
initial and target pairs for which known IDA* perfor-
mance has been published (9). We then compared the
number of node expansions performed by IDPS with the
number of node expansions (we usc the term expansions
to represent both expansions and reexpansions) com-
puted by PRA*.

Figure 4 shows the results sorted by the number of
node expansions for IDPS (squares represent the IDPS
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FIG. 4. Comparison of number of expansions by 1DPS and PRA*.

results, circles the PRA* results). As can be seen, PRA*
made fewer node expansions than IDPS for all but the
smallest problems. For the fifteen puzzle, as in many
search problems, solution length is a reasonable indicator
of the difficulty in finding an optimal solution, although
there is a large variance. Figure 5 shows the same data as
the previous figure, sorted by the length of the optimal
solution paths. Exponential curves have been fit to both
sets of data. As can be seen, the curve fit to the PRA*
data appears to indicate that PRA* performs exponen-
tially better than IDPS (¢ for IDPS vs %7 for PRA*).
In the absence of any contrary evidence, it scems reason-
able 10 anticipate that PRA* will continue to require ex-
ponentially fewer expansions than IDPS for larger prob-
lems.

5.2. Parallel Speed-up

For the CM-2 (and other SIMD systems) computing
speed-up is difficult, because the **single processor’” case
is often uncomputable, as is the case for PRA*. To run
the algorithm on a CM-2 restricted to usc only one pro-
cessor would require a prohibitive amount of CPU time.
For some algorithms, speed-up can be calculated indi-
rectly by first calculating the algorithm’s efficiency (as
Powley et al. did for P-IDA* in [22].) Unfortunately, this
technique is possible only when the efficiency of the algo-
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FIG. 5. Comparison of PRA* and IDPS. sorted by path length

(curves of best fit are for all data points). PRA* appears to require
exponentially fewer expansions than IDPS.



18
- — - — ,_w ! U0
g 16 W 633,794 expansions } t:: 16-4-{ m 803,835 expansions }
el o
DT | 214
2 N 2 |
s 24— 512
z i 2
7 W — g 10 —
BT £ ‘ -
z [ 1 an g '
= o+ -'r._.l-l-l-l..._ =z 6 & Wz -
= ] [ | = [ ] |
24 .l‘ 2 ad -
.| 8= g, al® \
a2 & 2 =
kg ™ ‘ P .!.
1] . 0 ; . .
T M X T e e X R T R G -
i% 1Y

T T
|

o4 @ 9899 expansions [ o——if
- P ‘

14 -

Speed-up IO processor base case)

S LT oM e ox - T - T -

0 < of processors 10005 of pracessors
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rithm can be estimated directly. This appears impossible
for PRA* because the interaction between the retraction
and hashing mechanisms makes it difficult to determine
what proportion of PRA*’s “*work™" (retractions and ex-
pansions) would be germane to RA*'s.

To observe parallel speed-up, we calculated an ad-
Justed speed-up which takes the 1000-processor compu-
tation as the base case, and computes run-time speed-ups
with respect to this number. Thus, although exact com-
parisons to a serial case cannot be computed (as they
could for coarsc-grained MIMD algorithms) an approxi-
mation of a spced-up effect can be computed.

Figure 6 shows graphs of adjusted specd-up vs thou-
sands of processors for four different fifteen puzzles of
increasing difficulty (the number of expansions for the
16K processor case is displayed for each graph). As can
be seen, relative speed-up appears to be lincar with the
number of processors. For small problems, though, this
linearity can plateau at a saturation point. Such problems
do not present enough work to adequately utilize all the
available processors. The addition of more processors
does not hasten the solution of the problem. As the num-
ber of nodes to be searched increascs. the number of
processors at which this saturation occurs also increases.
As shown in Fig. 6, by 800K expansions wc arc already
seeing the saturation disappearing for the 16K processor
case. For the 1.6M expansion problem, the saturation
cffect is completely absent. This leads us to believe that
larger puzzles, which can require tens of ntillions of in-
sertions, will not exhibit this saturation effect even for
significantly larger SIMD machines. Consequently, we
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believe PRA* will scale up to larger problems and ma-
chines.

6. DISCUSSION

Heuristic scarch algorithms may be divided into two
groups: graph-search algorithms (which do duplicate de-
tection) such as A*, C [1], Graphsearch (18], MIMD Par-
allel A* [10] and PRA*, and tree-search algorithms
(which do not do duplicate detection) such as IDA*,
MREC, MA*, P-IDA*, IDPS. and MIMD Parallel IDA*
[23]. The choice of whether to usc a parallel graph-search
algorithm such as PRA* or a parallel tree-search algo-
rithm such as IDPS or P-IDA* depends on the problem
domain. Therc are two major features of the domain
which will affect the space-time tradeoffs: node ¢xpan-
sion time, and how heavily the domain is *‘latticed.™

6.1. Node Expansion Time

For domains in which expansion time dominates run-
time performance. such as some representations of the
Traveling Salesman Problem, a graph-scarch algorithm
such as PRA* is to be preferred over an iDA* derivative.
PRA*’s strength is that it tries to minimize the total num-
ber of expansions nceded to find a solution. This strength
offers the biggest returns in such a domain.

In domains where node expansion is relatively simple,
an IDA* derivative, like 1DPS, may be best. Of course,
the topology of the search space is an important factor,
too. If the search graph is heavily cross-linked or latticed,
the amount of redundant reexaminations of scarch sub-
trees in IDPS may outweigh any savings in avoiding du-
plicate checks.

6.2. Search Space Topology

For domains which are not heavily latticed, and in
which expansion time is relatively inexpensive, a tree-
search algorithm such as IDPS is probably the best
choice. There, the run-time savings duc to duplicate
checking are not as significant as they might be for more
complex domains. The fifteen puzzle is such a domain,
and thus we expected IDPS to run faster then PRA* on
this problem. Empirical studies confirmed this, with
IDPS running about 10 times as fast as PRA* for the
problem suite featured in Fig. 5.1

In heavily latticed domains the sheer amount of redun-
dancy avoided by duplicate-checking may outweigh the
time spent discovering the redundancies. In such cases,
the number of nodes expanded by algorithms such as

19 This comparison is somewhat unfair to PRA*, because our imple-
mentation of IDPS used a heavily optimized node cxpansion routine
and our implementation of PRA* did not. Our IDPS node expansion
routine ran several times as fast as our PRA* node expansion routine. If
we had recoded PRA* to use the same node expansion routine we used
in IDPS. its runtime would have been much closer to what we observed
for IDPS.
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IDA* and IDPS (which do not do duplicate-checking) can
sometimes be as high as (}(2°"). where n is the number of
nodes cxpanded by algorithms such as A* which do du-
plicatc-checking (8]. PRA*, which does as much dupli-
cate-checking as possible within its memory restrictions.
will tend toward A*’s performance characteristics. Thus,
in such cases, PRA™ may still outperform 1IDPS even if
node expansion is cheap.

7. CONCLUSIONS

In this paper we have presented PRA*, an algorithm
for heuristic search that takes advantage of the SIMD
architecture of the CM-2. The algorithm has some of the
advantages of a best-first search such as A*, while still
functioning within limited memory. To enable it to oper-
ate in limited memory, PRA* uses a process of retraction
(and possible later reexpansion) of nodes with poor f-
values.

We have shown empirically that PRA* expands signifi-
cantly fewer nodes than parallel implementations of
IDA*, In addition, PRA* is designed to maximize proces-
sor utilization on SIMD architectures, and empirical
results show that it promises to be scalable to larger and
more complex search problems.

APPENDIX A. CORRECTNESS OF RA*

Below is an outline of a proof that RA* is guaranteed to
terminate with an optimal solution, provided that the fol-
lowing conditions are satisficd:

1. The heuristic function h is admissible. i.c., i(n) =
h*(n) for every node n € G.

2. G contains at least one solution path.

3. There is a number § > 0 such that the cost of each
arc is no less than 8.

4. M = bL, where b is the maximum node branching-
factor and L is the maximum number of nodes on any
path that can be gencrated by A*.!

The first three conditions above are identical to the con-
ditions required for A* to terminate with an optimal solu-
tion. The fourth condition is necessary in order to guar-
antee that RA* has enough memory to run to completion,
as discussed in Section 4.1,

Let P be any solution path in the statc space G. We
define

pathmax(P) = max{f(n) | n is a node of P},

W Of course. neither b nor /. actually needs to be known beforehand.
As long as M happens to be less than L, RA* will work, regardless of
whether or not b and L happen to be known to the user. Note also that
most other search algorithms have analogous requirements. For exam-
ple, any implementable search algorithm can be assumed to have a
finite, bounded branchout b, for otherwise we could not store the rules
for node expansion [18, 19, p. 33].
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and

@ = min pathmax(P).
PEG

A solution path P’ is called a Q-min path if pathmax
(P') = @ and cost(?’) = min{cost(P”) | pathmax(P") =
©@}. As an immediate consequence of this definition, G is
guaranteed to have at least one Q-min path Py. Note that
if 4 is an admissible heuristic, then Q = h*(s).

Consider the point where RA* selects a node « for
expansion, and let P be the portion of Py that RA* has
generated so far. From the definition of Py, it follows that
the tip node p of Py has f(p) = Q. Thercfore, since RA*
always selects the node 1 for which f(«) is smallest, it
follows that f(«) = Q." This guarantees that if RA* termi-
nates, it returns an optimal solution.

To show that RA* terminates, we note that when a
node n is selected for expansion, a depth-first search be-
low that node continues (by the ‘*most recent node'’ se-
lection strategy) until all generated descendants of n have
Sf-values greater than some tip node of T not below n. If
any descendant of n is ever retracted, its g-value is prop-
agated upward (i.e., to ancestors), and this value is re-
flected in the h-values that are propagated downward
when nodes are regenerated. This prevents the algorithm
from oscillating (i.e., generating and retracting the same
node again and again).

APPENDIX B. COMPARISON OF RA* WITH MA*

In a general sense, RA* and MA* are similar algo-
rithms: both do a best-first search, deleting nodes from
memory when necessary to save space. However, the
details of the algorithms differ significantly. Here are
some of the primary differences:

1. RA* fully expands nodes, installing all children of n
in the explicit graph. MA*, on the other hand, installs
only one child during each expansion; the order in which
MA* generates and installs the children of a node is de-
termined by the relative heuristic values of the children.
This difference has two main consequences, as outlined
below.

Because of the different expansion techniques, MA*
can get by with a smaller amount of memory than RA*:
the minimum amount of memory required for MA* is L,
and is L for RA*, where b is the maximum node branch-
ing factor and L is the maximum number of nodes on any
path that can be generated by A*.'> However, MA*'s
smaller memory requirement comes at the expense of
additional runtime overhead for MA*: it must come back

2 For more delails about this kind of argument. the reader is referred
to [13].

1 Note that 4 and L are not parameters of RA* and thus do not need
to be fixed in advance. Rather, if the amount of memory given to RA*
happens 10 be at least bL, then RA* will perform correctly. as proved in
Appendix A.
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and generate n’s other children later in additional ecxpan-
sion steps. With larger amounts of memory, RA* will run
more and more like A*, behaving exactly like A* if there
is enough memory so that no retractions are needed. In
contrast, because MA* generatcs only one of a set of
sibling nodes at a time, it will nced to reselect and reex-
pand a node again and again to get all the children of that
node—and this will occur even if MA* has sufficient
memory to hold the entire state space.

2. RA* computes f-values according to the formula
f(n) = g(n) + h(n), just as in algorithms such as A* and
IDA*. In contrast, MA* computes f(n) by looking ahead
at n's children and calculating their # values.

MA*’s lookahead step was intended to reduce the
number of node gencrations done by MA*, but it incurs a
high overhead, and has not been shown in practice to
actually reduce the number of node generations.'* Fur-
thermore, MA*’s lookahead step sometimes causes it to
calculate incorrect f-values for goal nodes—and as a
result, MA* will sometimes return a suboptimal solution
path and/or return a solution cost value greater than the
actual cost of the solution path that it returns [14].

3. Since both MA* and RA* need to delete nodes from
memory in order to save space, their correct perfor-
mance depends on updating the heuristic values of the
ancestor nodes based on the heuristic values of the de-
leted nodes. However, MA* and RA* use different up-
dating techniques. MA* maintains an IDA*-style thresh-
old value, and whencver it generates a path P whose cost
exceeds this threshold, it does an AO*-style update of the
h values of every node of P. In contrast, RA* updates
heuristic values only when some node n is actually re-
tracted—and rather than updating the heuristic values of
all nodes in the path o #, it updates only the value of n’s
parent. MA’s updating step involves a4 number of compu-
tations along the path that are not casily parallelizable.
RA*, on the other hand, is explicitly designed to use
update algorithms which are efficiently parallelizable. In
addition, RA*’s approach eliminates unnecessary over-
head: RA* only computes those values that are actually
needed—and rather then computing repeatedly when-
ever some threshold is exceeded, it only computes them
once, at the time that they are necded.

4, Itis well known that when a search algorithm is run
on a graph (rather than a tree) with a non-monotone heu-
ristic function, it can sometimes find lesser-cost paths to
nodes that it has already expanded. In such cases, RA*
will move those nodes from its CLOSED list back to the
OPEN list, to expand them again. In contrast, MA* does
a top-down propagation of A-values which the authors
claim makes & “*effectively monotone,” so that there is
no need to bring a node from CLOSED list to its QPEN

¥ For example, in experimental tests on a set of fifteen puzzic prob-
lems, MA*(0) did slightly more node generations than IDA* (the claim
by Chakrabarty ez al. (2] that MA* does only 57% as many node genera-
tions as IDA* is incorrect). For further details, sce [14].
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list. However, there are several problems with the tech-
nique used in MA¥*. First, it involves a number of compu-
tations along the path that are not easily parallelizable.
Second, studies show that it leads to incorrect results,
and cannot be made to work correctly without incorpo-
rating some major modifications so that it brings nodes
from CLOSED to OPEN as done by RA* [14].
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