Artificial Intelligence 56 (1992) 223-254 223
Elsevier

On the complexity
of blocks-world planning

Naresh Gupta

Computer Science Department, Unversity of Maryland, College Park, MD 20742, USA,
and LNK Corporation, College Park, MD, USA

Dana S. Nau

Computer Science Department and Systems Research Center, Unwersity of Maryland,
College Park, MD 20742, USA, and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD, USA

Received July 1991
Revised March 1992

Abstract

Gupta, N and DS Nau, On the complexity of blocks-world planning, Artificial Intells-
gence 56 (1992) 223-254

In this paper, we show that in the best-known version of the blocks world (and several
related versions), planning 1s difficult, in the sense that finding an optimal plan 1s
NP-hard However, the NP-hardness 1s not due to deleted-condition interactions, but
mstead due to a situation which we call a deadlock For problems that do not contain
deadlocks, there 1s a simple hill-chmbing strategy that can easily find an optimal plan,
regardless of whether or not the problem contains any deleted-condition interactions

The above result 1s rather surprising, since one of the primary roles of the blocks world
in the planning literature has been to provide examples of deleted-condition interactions
such as creative destruction and Sussman’s anomaly However, we can explain why
deadlocks are hard to handle in terms of a domain-independent goal interaction which
we call an enabling-condition 1nteraction, 1n which an action invoked to achieve one
goal has a side-effect of making 1t easier to achieve other goals If different actions have
different useful side-effects, then 1t can be difficult to determine which set of actions
will produce the best plan

Correspondence to D S Nau, Computer Science Department and Systems Research Center,
Umniversity of Maryland, College Park, MD 20742, USA Fax (301) 405-6707 E-mail
nau@cs umd edu

0004-3702/92/$ 05 00 © 1992 — Elsevier Science Publishers BV All rights reserved

224 N Gupta DS Nau

u Coh
i —
bl b
1 —
Inal state / = {clear(u) Goal tormula

onfa,b) on{b T) cear(c),on(¢c 7)} G = {on(h)}
Fig | A simple EBW problem
1. Introduction

Blocks-world planning has been widely investigated by planning research-
ers, primanly because 1t appears to capture several of the relevant difficulties
posed to planning systems It has been especially useful in investigations of
goal and subgoal interactions in planning—particularly deleted-condition in-
teractions such as creative destruction and Sussman’s anomaly [4.15.16.18~
21]. 1in which a side-effect of establishing one goal or subgoal 1s to deny
another goal or subgoal

The following version of the blocks world, which we call the Elementary
Blocks World (EBW), 1s especially well known Our description 1s based on
those 1n [15,21]

The objects 1n the problem domain nclude a finite number of
cubical blocks. and a table large enough to hold all of them Each
block 1s on a single other object (either another block or the
table) For each block b, either b 1s clear or else there 1s a unique
block a sitting on b There 1s one kind of action move a single
clear block, either from another block onto the table, or from an
object onto another clear block As a result of moving » from ¢
onto d, b 1s sitting on d 1nstead of ¢, ¢ 1s clear (unless 1t 1s the
table). and ¢ 1s not clear (unless 1t 1s the table)

A problem in this domain 1s specified by giving two sets ot
ground atoms,' one specifying an nitial state of the world, and
the other specifying necessary and sufficient conditions for a state
to be a goal state (for example, see Fig 1) A solution to this
problem 1s a plan (1¢. a sequence of “move™ actions) capable
of transforming the initial state into a state satisfying the goal
conditions

In this paper, we present the following results about EBW and related
problem domains

ISince EBW contains no function svmbols, for our purposes a ground atom 1s a predicate
whose arguments are all constants denoting blocks or the table

(1)

(2)

(3)

(4)

On the complexity of blocks-world planning 225

Planning in EBW In EBW, finding a non-optimal plan 1s quite easy,
and finding an optimal plan 1s NP-hard (but no worse) Surprisingly,
the NP-hardness 1s not due to deleted-condition interactions, but to
a different kind of goal interaction which we call a “deadlock” For
EBW problems that do not contain deadlocks, there 1s a simple hill-
climbing strategy that 1s guaranteed to find an optimal plan in time
O(n?) where n 1s the problem size, regardless of whether or not the
problem contains deleted-condition interactions Classical examples
of deleted-condition interactions, such as Sussman’s anomaly and
creative destruction, do not contain deadlocks—and thus they are
easily handled by this planner

Completely specified goal states Planning in EBW has been thought
to be simpler 1n the special case where the goal state 1s completely
specified, but there has been disagreement on how much simpler For
example, 1n informal conversations with several prominent planning
researchers, we posed the problem of how to find shortest-length plans
in this special case Some thought it obvious that the problem was
easy, and others thought 1t obvious that the problem was difficult

It turns out that this special case 1s basically equivalent to the
general case There 1s an algorithm which, given any EBW problem,
will produce in time O(n3) a completely specified goal state such
that any optimal plan for reaching this goal state 1s also an optimal
plan for the original problem Thus, the results we stated above for
EBW still hold even 1if the goal state 1s completely specified
Other versions of the blocks world Other versions of the blocks world
have also appeared in the AI literature For example, Winograd’s
original version of the blocks world contained blocks of different
sizes and colors, and also contained pyramids [23]

If we generalize EBW to contain objects of varying sizes, including
blocks, pyramuds, and frustums (and prohibit objects from being
placed on smaller objects), then all of the above results still hold If
we limit the total number of blocks that may sit on the table, then
different planning algorithms are required, but finding a non-optimal
plan 1s still easy, and finding an optimal plan 1s still NP-hard but
no worse. If 1n addition to limiting the table size we allow different
blocks to have different sizes, then 1t 1s no longer posstble to find
optimal plans nondeterministically in polynomial time, because there
are some planning problems 1n which the shortest plan has exponential
length.

Enabling-condition interactions The difficulty of handling deadlocks
can be described 1n terms of a domain-independent goal interaction
which we call an “enabling-condition interaction”, in which an action
invoked to achieve one goal has a side-effect of making 1t easier to

226 N Gupta DS Nau

achieve other goals Enabling-condition interactions can also be used
to explain some of the difficuities that occur 1n planning problems in-
vestigated by other researchers [5.13] In general, 1f different actions
have different useful side-effects then 1t can be difficult to determine
which set of actions will produce the best plan

This paper 1s organized as follows Section 2 contains basic definitions
Section 3 describes some planning algorithms for EBW, and shows that
planning in EBW 1s NP-hard Section 4 explains why the NP-hardness is due
to deadlocks rather than deleted-condition interactions Section 5 describes
what happens if we generalize EBW to allow limited table size and/or objects
of varying sizes Section 6 summarizes our results, and Section 7 discusses
related work Section 8 discusses the significance of our results, describes
enabling-condition interactions and suggests topics for future research The
proofs are contamned in the appendices

2. Basic definitions

21 Formulas, states, stacks, and positions

An atom 1s a term of the form “on(¥.v)” (meaning that \ i1s on 1) o1
“clear(1)” (meaning that x 1s clear), where v and 1 are cither constants
(1e, specific blocks or the table) or variables If x and y are constants
then the atom 1s a ground atom The constant 7 denotes the table

A formula 1s any set F of ground atoms A formula F 1s consistent 1f
there 1s at least one configuration of blocks that satisfies the meanings of
the atoms i F A formula F 1s consistent with a formula G of FUG 15
consistent

A formula F 1s a state if 1t specifies the exact configuration of some set
of blocks (1e., what blocks are clear. what blocks are on the table, and
what blocks are on what other blocks) An immediate consequence of this
defimtion 1s that every state 1s consistent

An EBW’ problem 1s an ordered pair B = (I, () where [1s a state called
the 1minal state, and G 1s a formula called the goal formula B 1s solvable 1f
there exists at least one plan for B

Let F be any consistent formula A stach in F 1s a formula

E = {on(by,b1),0on(b. by), on(b,_.bp)} C F

such that each b, 1s a block except for b,, which may be either a block or
the table Informally, we will write E as “b; on h> on by on on h,” The
top and bottom of E are b, and b,, respectively E 1s a maximal stack if 1t
1s not a subset of any other stack in F If F 1s a state and b 1s a block in
F then b's position 1n F 1s the largest stack mm F whose top 15 b 1e. the

On the complexity of blocks-world planning 227

Table 1
Initial block positions in the EBW problem of Fig 1
Block Block’s po- Position 1s a Position 1s consistent with
sition 1n [maximal stack the goal G = {on(b,c)}
a {on(a,b),on(b,7)} Yes No on(b, T) contradicts on(bd, c)
b {on(b,T)} No No on(d,7T) contradicts on(b,c)
¢ {on(c,T)} Yes Yes {on(b,c),on(c,7T)} 1s consistent

stack 1n F whose top 1s b and whose bottom 1s the table b’s position 1s a
maximal stack 1f and only 1f b 1s clear

From the above definitions, 1t follows that in any EBW problem, the
position of a block a 1s consistent with the goal formula G only if the
positions of all blocks underneath a are also consistent with G For example,
consider the EBW problem shown 1in Fig 1. As shown 1n Table 1, since b’s
position 1n I 1s inconsistent with G, @’s position in I 1s also inconsistent
with G

2 2 Actions, plans, and deadlocks

We use move(x,), z) to denote the action of moving x from y to z. A
plan 15 a finite sequence of such actions If P 1s a plan, then |P| 1s the
number of actions 1n P, and P(S') 1s the state produced by starting at .S and
applying the actions 1n P one at a time (if not all of them are applicable,
then P(S) 1s not defined) A plan for an EBW problem B = (I,G) 15 a
plan P such that P(I) 1s consistent with G It 1s an optimal plan for B if
every plan Q for B has |Q| > |P|

The set of blocks {b,b6s, . ,b,} 15 deadlocked 1n the state S if there 1s a
set of blocks {d;,d>,. ,d,} such that the following three conditions hold
(see Fig 2)

(1) In S, b,1s above d, for1 = 1,2, ,p

(2) In G, b, 1s above d,,; for 1 = 1,2, ,p—1, and b, 1s above d|

(3) In S, none of b;,b;, ,b, are 1n their final positions (if p > 1, then
the other two conditions entail this condition)

b || b2 | (boma|| 8o | B || B0 | [Bpea| By

d ||| ||| (di ||| |dpoi|| ds

The current state S The goal G

Fig 2 An illustration of the definition of deadlock, 1n the case where p > 1

228 N ovuptd DS Nay

P, —
oo ol d | d 1

IV RV Call e 1o
| ' I
j} ¢ ¢ ot ' {J b ¢ o

a1sm d’'s way and 1s g s way so La d} s deadlocked

a 15 1n its own way, so {u} 15 deadlocked

Initial state
I = {clear(a) on(a b) on(h)
on(c 7) clear(d) on(d ¢) on(e, I}

Goal formula
G = {on(u,¢) on(e h) ontd (1}

Fig 3 A problem in which two sets of blocks are deadlocked {u d} and {.!

For example, in Fig 3, in the nitial state / there are two deadlocked sets
of blocks

(1) InI a1sabove ¢ and d 1s above ¢ In (G, u 1s above ¢ and d 15 above
¢ Thus {a,d} 1s deadlocked 1n /

(2) a 1s above b 1n both I and G, and a 1s not in 1ts final position n /
Thus {a} 1s deadlocked in /

Suppose some set of blocks D 1s deadlocked in the state S If 4 1s an
action applicable to S, then A resolves D 1if D 1s not deadlocked in the state
produced by applying 4 to S If any of the blocks in D 1s clear in S then
moving 1t to the table will always resolve the deadlock-—and 1t may resolve
more than one deadlock simultaneously For example, in Fig 3. the action
move(a, b.T) will resolve both the deadlocked sets {a.d} and {a}

3. Planning 1n EBW

3 1 Planning algorithms

From the meanings of the “on™ and “clear” atoms in EBW, 1t follows that
a formula F 1s consistent if and only if the following conditions hold for
every block » mentioned 1n F b 1s not above 1tself, the table 1s not on b b
1s on at most one object, at most one object 1s on b, and nothing 1s on b 1f b
1s clear One can verify whether or not these conditions are satisfied 1in time
O(n) as follows, where » 1s the number of atoms in F Consider the graph

On the complexity of blocks-world planning 229

H (F) whose nodes are the blocks, and having an arc from block b to block
¢ 1f and only 1f on(d,c) € F Such a graph 1s called a Hasse diagram (e g,
see [17]), and 1t can be constructed 1n time O(n) using a modification
of a topological sorting algorithm such as the ones given 1 [6,14] F 1s
consistent 1f and only if F contains no atoms of the form “on(7,x)”, and
H(F) consists of one or more disjoint acyclic paths, with each clear block
at the beginning of a different path

Let B = (I,G) be any EBW problem Let m and n, respectively, be the
number of blocks and atoms i1n /UG Since every atom contains at least one
block, m < n. Since I 1s a state 1t 1s consistent, so 1t contains at most two
atoms for each block If G 1s consistent, then G will also contain at most
two atoms for each block, so » € 4m and thus O(m) = O(n)

One can check whether or not B 1s solvable 1n time O(nlog n), by checking
whether or not G 1s consistent, and whether or not G mentions any blocks
not mentioned 1in / If G 1s inconsistent or mentions a block not mentioned
m I, then clearly B 1s not solvable But if G 1s consistent and only mentions
blocks mentioned 1n I, then each of the paths in H(G) represents one of the
maximal stacks in G One can produce a plan for B by moving all blocks
to the table, and then using H(G) to gumide us 1n building these maximal
stacks from the bottom up The length of this plan 1s at most 2m, and 1t
takes time O(n) to produce 1t

In time O(n3) one can find a plan of length no more than twice the
length of the optimal plan To see this, consider Algorithm Solve-EBW
shown below This 1s basically a ssmple hill-chmbing algorithm any time a
block can be moved directly to a position consistent with the goal condition,
1t does so

Algorithm Solve-EBW(I, G)

Step 1 If G contains any blocks not 1n I, then (I, G) 1s not solvable, so
exit with failure.

Step 2. Construct the graph H(G), and use 1t to check whether or not G
1s consistent If G 1s inconsistent, then (/,G) 1s not solvable, so exit with
failure

Step 3 S—1

Step 4 If S 1s consistent with G, then exit with success

Step 5 If S contains clear blocks b and ¢ such that ’s position 1s not
consistent with G, G contains on(b,¢), and ¢’s position 1s consistent with
G, then move b to ¢ and go to Step 4

Step 6 If S contains a clear block b such that b’s position 1s not consistent
with G and there 1s no ¢ such that G contains on(b,c), then the position
on(b,T) 1s consistent with G, so move b to the table and go to Step 4.

Step 7 At this point, every clear block whose position 1s not consistent
with G 1s 1n a deadlocked set Arbitrarily move one of these blocks to the

230 N Gupta DS Nuu

table, and then go to Step 4

In Appendix A we prove that the plan Q produced by Solve-EBW satisfies
the property |Q] < 2(m — ¢) where m 1s the total number of blocks 1n B
and g 1s the number of blocks whose positions 1n [are consistent with G
Since every plan for B must have length at least m — g. this means that
the length of Q 1s no more than twice the optimal length Each of the steps
n Solve-EBW takes ime at most O(»n?) to execute Since Solve-EBW exits
after O(/m) = O(n) steps, this means 1t runs 1n time O{n?)

All of the moves made by Solve-EBW preserve plan optimality except for
the moves made 1n Step 7 Algorithm Solve-EBW-Optimally shown below 1s
1dentical to Solve-EBW, except that Step 7 is modified to make all possible
choices nondetermunistically Thus, as proved in Appendix A Solve-EBW-
Optimally 1s guaranteed to find an optimal plan—and the length of this
plan 1s 1 — g + r, where + 1s the mimmimum number of times that Step 7 1s
executed 1n any of the execution traces of Solve-EBW-Optimally

Algorithm Solve-EBW-Optimally(/. G)

Step 1 If G contains any blocks not 1n 7, then (/. G) 15 not solvable. so
exit with fatlure

Step 2 Construct the graph H(G), and use 1t to check whether or not ¢
1s consistent If G 1s inconsistent, then (I G) 1s not solvable so exit with
failure

Step 3 §S—1

Step 4 1f S 1s consistent with ¢, then exit with success

Step 5 1f S contams clear blocks » and ¢ such that #’s position 1s not
consistent with G, G contains on(b,¢), and ¢'s position 18 consistent with
G then move b to ¢ and go to Step 4

Step 6 1f S contains a clear block b such that »’s position 1s not consistent
with G and there 1s no ¢ such that G contains on(b.¢), then the position
on(b, T) 1s consistent with G. so move b to the table and go to Step 4

Step 7 At this point, every clear block whose position 1s not consistent
with G 1s 1n a deadlocked set Nondeterministically move one of these blocks
to the table, and then go to Step 4

3 2 NP-completeness

For use 1in proving NP-completeness results about EBW, we follow the
standard procedure for converting optimization problems into yes/no deci-
sion problems We define EBW PLAN to be the following decision problem

Given an EBW problem (I, G) and an integer L > O, 1s there a
plan for this problem of length L or less”

On the complexity of blocks-world planning 231

To show that EBW PLAN 1s NP-hard, we need to show that an NP-
complete problem reduces to EBW PLAN For this purpose we use the
FEEDBACK ARC SET problem, which can be stated as follows

Given a digraph (V, E) and a positive integer k, 1s there a set of
edges F such that |F| < k and the digraph (V, E — F) 1s acyclic?

This problem 1s known to be NP-complete [10, p 192]

In Appendix B, we show that EBW PLAN 1s NP-complete, by showing that
FEEDBACK ARC SET reduces to EBW PLAN and that EBW PLAN can be
solved nondeterministically 1n polynomial time using Solve-EBW-Optimally.
From thus, 1t follows that finding optimal plans in EBW 1s NP-hard The
fact that Solve-EBW-Optimally will find optimal plans nondeterministically
1n polynomial time suggests that finding optimal plans in EBW 1s no worse
than NP-hard—and in Appendix B we prove that this 1s true

3 3 Completely specified goal states

Primitive Blocks World (PBW) 1s the special case of EBW 1n which the
goal formula specifies a single state PBW PLAN 1s the following decision
problem

Given a PBW problem (I,G) and an integer L > 0, 1s there a
plan for this problem of length L or less?

Although PBW has been thought to be a simpler problem domain than
EBW, 1t turns out that planning in PBW 1s basically equivalent to planning
in EBW In particular, gitven any solvable EBW problem, one can easily
add additional conditions to the goal formula G to produce a completely
specified goal state 7, 1in such a way that any optimal plan for the modified
problem 1s also an optimal plan for the original problem

Before describing how to do this in the general case, we first llustrate
the 1dea using Sussman’s anomaly, 2 which 1s shown 1n Fig. 4. The desired
goal state G’ must contain on(a, b) and on(b,c), and 1t cannot mention any
other blocks since no other blocks are mentioned in I In &', ¢ 1s below the
other two blocks, so ¢ must be on the table Furthermore, a 1s above the
other two blocks, so a must be clear Thus, G’ must be the state

{on(a,b),on(b,c),on(c,T),clear(a)}

For the general case, let B = (I,G) be any solvable EBW problem, and
let F be the formula consisting of the following “on” atoms

e every “on” atom 1n G,

2This EBW problem was proposed by Allen Brown {20, p 127], and popularized by Sussman
[19]

232 N Gupta DS Nau

{

|

[

Imtial state

I = {clear(¢) onf(c «) on(u T)
clear(h) on(bh T}

Goal formula
G = fon(a h) on(h)}

Fig 4 Sussmans anomaly

e every atom on(h.c) in [such that b’s position 1n / 1s consistent with
G,

e an atom on(b,7T) for every block b such that nothing 1s below » in G
and b’s position 1 [15 inconsistent with G

Then ("’ 1s the state consisting of F plus an atom clear(h) for every block
b at the top of a maximal stack in F

Since G C (', every plan for B’ = (/.(’) 15 also a plan for B As shown
in Appendix C G’ 1s the final state produced by Solve-EBW(/.G) and by
every execution trace of Solve-EBW-Optimally (/. G) From this 1t follows
that every optimal plan for B’ 1s also an optimal plan for B

What this means 1s that planning in EBW and planning in PBW are
basically equivalent If you have a planner that will find optimal plans
for PBW problems. and if you want to find an optimal plan for an EBW
problem B, then you can do this by computing B’ as described above, and
using your planner on B’ Thus all of our results about EBW apply equally
well to PBW finding non-optimal plans 1s easy. finding optimal plans 1s NP-
hard. resolving deleted-condition interactions 1s easy, resolving deadlocks 1s
difficult, etc In fact the theorems and proofs in Appendices A and B apply
to PBW with no modifications except for replacing “EBW™ by “PBW™

4. Why EBW planning is hard

In this section, we show that the difficulty of planning in EBW 1s not
due to deleted-condition interactions, but instead due to the difficuity of
determining the best way to resolve multiple deadlocks We also discuss the
difference between deadlocks and deleted-condition interactions

41 The difficulty of 1esolving multiple deadlocks

To see that deadlocks make planning difficult in EBW, consider our
proof that EBW PLAN 1s NP-hard This proof (see Appendix B) mvolves

On the complexity of blocks-world planning 233

Table 2
Successive states generated by Solve-EBW on Sussman’s
anomaly
State Block Position Conststent
with G

¢ a aonT No

b bonT No

a b ¢ conaonT No

a aonT No

a b c b bonT No

14 conT Yes

b a aonT No

b bonconT Yes

a ¢ ¢ con7T Yes

b a aonbonconT Yes
b bonconT Yes
¢ ¢ conT Yes

reducing FEEDBACK ARC SET to EBW PLAN For each digraph (V, E),
our reduction produces an EBW problem B, such that finding a set of k
blocks that resolves all deadlocks 1n B corresponds to finding a feedback arc
set of size k 1n (V, E) But the difficulty of finding a small feedback arc set
makes the FEEDBACK ARC SET problem NP-hard Thus, the difficuity of
finding a small set of blocks that resolves all deadlocks makes EBW PLAN
NP-hard.

To see that deadlocks are the only thing that makes planning difficult in
EBW, note that in Solve-EBW-Optimally, the only time nondeterminism 1s
required 1s to resolve a deadlock For EBW problems that contains no dead-
locks, Solve-EBW-Optimally will never enter Step 7, which 1s the only step
where nondetermunism occurs Thus, for such problems, the deterministic
algorithm Solve-EBW will always find an optimal plan 1in time O(n3)

To 1illustrate this, below we consider two EBW problems one without
deadlocks, and one with deadlocks

Example 1. Consider Sussman’s anomaly (shown in Fig 4) g and b are
not 1n deadlocked sets, because there are no blocks below them 1n I, and
¢ 15 not 1n a deadlocked set, because there 1s no block below 1t .n G Thus
Sussman’s anomaly contains no deadlocks, so Solve-EBW can solve 1t easily,

234 N oGupta DS Nau

The mitial state / The goal state ¢

Fig 5 In this problem, difterent ways ot resolving the deadlocks produce plans of ditferent
lengths

as we now show

Table 2 shows the successive states and positions generated by Solve-
EBW on Sussman’s anomaly Imtially, none of the blocks are in positions
consistent with G, and neither ¢ nor b can be moved to positions consistent
with G ¢ can be moved to a position consistent with G by moving 1t to the
table, so Solve-EBW does this in Step 6 Once this 1s done the positions of
a and b are still inconsistent with G, but b’s position can be made consistent
with G by moving 1t to ¢, and Solve-EBW does this in Step 5 At this point,
@’s position 1s inconsistent with G but can bc made consistent with G by
moving it to b, and Solve-EBW does this 1n Step 5 Now the current state
1s consistent with G, so Solve-EBW exits with success 1n Step 4

Example 2. Consider the EBW problem shown in Fig 5 This problem
contains six deadlocked sets {a}, {d}. {g}. {4.s}. {d. }. and {g,)} In the
nitial state, every clear block 1s 1n one of these deadlocked sets Moving
a, d, or g to the table resolves two deadlocks and moving ; to the table
resolves three deadlocks Thus moving ; to the table might appear to be
the most attractive choice—but 1t will not result in an optimal plan

Every plan for this problem that mnvolves moving block ; to the table
contains at least 16 actions However, there are plans for this problem that
do not move j to the table and contain only 15 actions For example, below
are two plans produced by two of the nondeterministic execution traces of
Solve-EBW-Optimally one in which ; 1s moved to the table and one in
which 1t 1s not

(1) move(,k.T), move(a b T), move(b.c,T). move(h,l.b)
move(a.T.k), move(d.c.T), move(e f.T) move(/ m ¢)
move(d,7.!). move(g,h.T), move(h.1,T), move(m.T. h)
move(g.T,m), move(f,7,1), move(c.7.f). move(y,T.,c)

(2) move(a.b,T), move(b.,T), move(d ¢ T). movele.[.T)
move(g,h, T), move(h.1.T), move(/.7.1), move(c.T.[)

On the complexity of blocks-world planning 235

move(J, k,c), move(k,l,b), move(a,T,k), move(l,m,e),
move(d,T,!), move(m,T,h), move(g,T,m)

The reason why moving to the table 1s not part of any optimal plan 1s that
although moving ; to the table resolves three deadlocks ({a,}, {d,}, and
{g,7}), 1t leaves three other deadlocks unresolved ({a}, {d}, and {g}), and
the only possible way to resolve these deadlocks 1s to move a, d, and g to
the table But moving a, d, and g to the table resolves all of the deadlocks
mvolving J, leaving no need to move ; to the table

4.2 Deadlocks versus deleted conditions

It 1s important to understand that deadlocks are different from deleted-
condition interactions In a deleted-condition interaction, the side-effect of
achieving one condition 1s to delete some other condition that will be needed
later In contrast, in a deadlock situation there are several goal conditions
left to be achieved, none of which can be directly achieved Of the actions
available to achieve subgoals for these goals, some will achieve several
subgoals at once, and the question 1s which of these actions to use

Below, we 1llustrate the difference between deadlocks and deleted-condi-
tion 1interactions, by describing two planning problems one that contains
deleted-condition interactions but no deadlocks, and one that contains a
deadlock but no deleted-condition interactions

Example 3. Sussman’s anomaly (see Fig 4) 1s well-known as an example of
a planning problem 1n which deleted-condition interactions occur regardless
of the order in which one tries to achieve the goals
(1) Suppose one tries to achieve on(a, b) first and on(bd,c) second The
way to achieve on(a,b) 1s to move ¢ to the table and a to » But
once this has been done, one must undo on(a, #) 1n order to achieve
on(b,c)
(2) Suppose one tries to achieve on(b,c) first and on{(a, b) second The
way to achieve on(b,c) 1s to move b to ¢ But once this has been
done, one must undo on(b,¢) 1n order to achieve on(a, b)
However, as shown 1n Example 1, Sussman’s anomaly contains no deadlocks

Example 4. Consider the planning problem shown in Fig 6 In the imtial
state, a 1s above ¢ and b 1s above d, and 1n the goal state, a 15 above d
and b 1s above ¢, so {a,b} 1s a deadlocked set However, 1n this problem,

nerther goal ordering produces deleted-condition 1nteractions
(1) Suppose one tries to achieve on(a,d) first and on(b,c) second The
way to achieve on(a,d) 1s to move b to the table and then move a to

RRIY N oGupta DS Nuu

u b h ﬂ
S

N d ! b e d !

I 1 S J

Initial state Goal tormula
I ={clear(u) onfu,c) ontc T) clear(h) = {onth,c} ontd)}
on(h d) ontd Iy}

Fig 6 A problem that contains a deadlock but no delcted-condition interactions

d Once this has been done. the way to achieve on(h.c) 1s 10 move
b to ¢ and this does not delete on(u.d)

(2) Suppose one tries to achieve on(h,¢) first and on(u d) second The
way to achieve on(b, ¢) 1s to move a to the table and then move 5 to
¢ Once this has been done the way to achieve on(u.d) 1s to move
a to d, and this does not delete on(b)

5. Generalizations of EBW

Although EBW 1s the best-known version of the blocks world, 1t 1s not
the only one For example, Winograd's original version of the blocks world
[23] included complications such as pyramids and blocks of different sizes
Below, we consider three such generalizations of EBW

(1) VBW, 1n which there can be blocks pyramids, and frustums ot
pyramids, all of which may vary n size, and no object a can sit on
an object whose top face 1s smaller than «’s bottom face

(2) LBW, 1n which the table can hold only a imited number of blocks

(3) VLBW, which has the features of both VBW and LBW

Our results for these planning problems can be summarized as follows

(1) Planning in VBW 1s so similar to planning in EBW that all of our
results about planning in EBW apply equally well to VBW

(2) LBW requires different planning algorithms than the ones we pre-
sented earhier for EBW. but 1ts time complexity 1s not very different
from EBW's Finding a non-optimal plan 1s easy, finding an opti-
mal plan 1s NP-hard but no worse, and optimal plans can be found
nondeterministically in polynomial time

(3) Planning in VLBW 1s more difficult In particular there are VLBW
problems for which the shortest plan has exponential length

The details appear below

On the complexity of blocks-world planning 237

5 1 Blocks world with varying block sizes

Varying Block-Size Blocks World (VBW) 1s like EBW, except that for
each block b there 1s a positive integer k; denoting the size of b’s bottom
face, and a nonnegative integer %, < k, denoting the size of b’s top face
(b 1s a pyramud 1f 4, = 0, and 1t 1s a frustum of a pyramuid if A, < k;) 3
Just as in EBW, each block b either 1s clear or else has a unmique block a
sitting on 1t—but a can sit on b only 1if b’s top face 1s at least as large as a’s
bottom face 4 Thus, move(b,c,d) has the same preconditions as 1n EBW,
plus the requirement that either d = 7 or else k, < Ay

VBW PLAN 1s the following decision problem

Given a VBW problem (/,G,K) (where K 1s a list giving the
s1zes of each block’s top and bottom faces) and an integer L > 0,
1s there a plan for this problem of length L or less?

In VBW, a formula F 1s consistent 1f and only 1f the following conditions
are satisfied

(1) F contains no atoms of the form “on(7,x)”

(2) The Hasse diagram H(F) consists of one or more disjoint acyclic
paths, with each clear block at the beginning of a different path

(3) k; < hy, for all blocks a and b such that F contains on(a,b)

The first two conditions are 1dentical to those required 1n EBW, and 1t 1s
easy to check the third condition Thus, just as in EBW, one can check the
consistency of a VBW formula 1n ttme O(n)

Using the above definition of consistency, all of the results we stated earlier
for EBW hold for VBW as well, with only minor modifications needed 1n
the proofs (we leave these modifications as exercises to the reader) A list
of these results appears later, 1n Section 6

It 1s easy to see that the same results also apply to other generalizations
of EBW that are not as general as VBW For example, for each b we could
require hp = kp, 1n which case the blocks may vary in size but pyramids
and frustums are not allowed. Or for each b we could require k; = 1 and
hy € {0,1}, mn which pyramids are allowed, frustums are not allowed, and
all blocks must be the same size In such cases, the same results still hold

3Since b’s top and bottom faces are both square, 1t 15 immaterial whether hp and k; denote
area, perimeter, or the length of an edge bounding the face

4Another possible generahization would be to allow more than one block to sit on b simulta-
neously In that case, whether other blocks could be placed on b would depend on where a 1s
located on b, making the problem much more complicated

N Gupta DS Naw

S 2 Blocks world with Limuted tuble capacity

Limuted Table-Capactty Blocks World (LBW) 1s like EBW except that
there can be at most # number of blocks sitting directly on the table Thus
move(h ¢, d) has the same preconditions as in EBW. plus the requirement
that it ¢ = 7 then the current state S must contain less than /4 atoms of
the form “on(y, 7Y™

Given an LBW problem B = (/.G /) (where /1 1s the size ot the table)
checking whether or not B 1s solvable 1s somewhat more complicated than
for EBW and VBW problems, but 1t can still be done in low-order polynonual
time Below we explain how to test whether B 1s solvable. and how to find
a (not necessarily optimal) plan for B 1if 1t 1s solvable

(n

If # = 2, then B 1s solvable 1f and only 1f contains at most two
maximal stacks G mentions no block not mentioned 1n / and / can
be tiansformed to a statc consistent with G by moving blocks from
one of these stacks to the other It this can be done, then 1t vields a
plan of length at most sn and this 1s an optimal plan
If i = 3 then B s solvable if and only 1if {F (/) 1s a solvable EBW
problem and neither / nor 5 contains moie than / atoms of the form
“on{\,7)" If these conditions aie satistied, then by examining the
Hasse diagram H (G) 1t 1s easy to find a state (' consistent with G
such that ' contains at most # maximal stacks Any plan for (7, (')
15 also a plan for (7, () Let M, Vs Y/, be the maximal stacks in
G' where i’ < h We can produce a plan for (7 (’) in the following
manner
¢ Move all blocks to two temporary stachs 7; and 7. This will take
less than m moves
o Construct the stacks V/; M> \l, ... by moving blocks back
and torth between 7, and 7> to exposc blocks that can be moved
directly to their final positions The number of moves this will
1equire 1s less than

M4 (- 1) + + A+ 1)=mm+1)—Ath + 1)

where A 1s the total number of blocks in /,, _; and V),

o Move all remaining blocks 1n 7 to the top of 1/, and all remaining
blocks in T, to the top of M, creating temporary stacks /| and
1] on top of M, and M,, respectively This will take less than A
moves

e Construct M, and A/, by moving blocks back and forth between
7| and T3 to expose blocks that can be moved directly to their final
positions The number of moves this will tequire 1s less than

A+ (h-—-1)+ + 1 =AhAth+ 1)

On the complexity of blocks-world planming 239

The length of the above plan 1s less than m(m + 1) + 2m

The above technique can be modified to produce a plan of length
O(mlogm) = O(nlogn) by sorting the blocks in 7} and 7, into an appro-
priate order before starting to construct the stacks M, The details of this
modification are left to the reader

LBW PLAN 1s the following decision problem

Given an LBW problem (I,G, %) and an integer L > 0, 1s there
a plan for this problem of length L or less?

Since EBW 1s a special case of LBW, 1t 1s clear that LBW PLAN 1s
NP-hard But optimal plans for LBW problems can be found nondetermin-
1stically 1n polynomial time Thus, LBW PLAN 1s NP-complete, and 1t can
be shown that LBW 1s no worse than NP-hard These results are proved in
Appendix D

Since EBW 1s a special case of LBW, 1t 1s clear that deadlocks are difficult
to solve in LBW However, we did not investigate whether or not deleted-
condition interactions are hard to solve in LBW This 1s still an open
question

53 Blocks world with varying block sizes and limited table capacity

Varying Block-Size, Limited Table-Capacity Blocks World (VLBW) 1s like
EBW, except that 1t incorporates the features of both VBW and LBW for
each block b, the top and bottom faces have sizes 4, and k;, respectively, and
the table has a capacity 7. Thus, move(b, c,d) has the same preconditions
as in EBW, plus the requirement that either k, < Ay, or else d = 7 and the
current state S contains less than A7 atoms of the form “on(x,7)”

VLBW PLAN 1s the following decision problem

Given a VLBW problem (/,G,K) (where K 1s a list giving the
table capacity and the sizes of each block’s top and bottom faces)
and an integer L > 0, 1s there a plan for this problem of length
L or less?

VLBW PLAN includes VBW PLAN as the special case in which A7 > the
total number of blocks Thus since VBW PLAN 1s NP-hard, so 1s VLBW
PLAN

In EBW, VBW, and LBW, the problem of finding an optimal plan is
NP-hard, but 1t can be solved nondeterministically 1n polynomial time In
contrast, there are some VBW problems for which nondeterminism will not
enable us to produce a plan in polynomial time, because the shortest plan
has exponential length We prove this in Appendix E by showing how to
reduce the Towers of Hano1 problem to VLBW 1n polynomial time, 1n a
manner that preserves plan length

240

N Gupta DS Nuau

The above consideration suggests that VLBW PLAN 1s not in NP, but does
not demonstrate 1t conclusively Even though one cannot produce an optimal
plan nondeterministically in polynomial time, 1t stull might be possible to
determine the length of that plan nondeterministically in polynomial time
This can be done 1n certain special cases, such as the Towers of Hano:
problem [1] and certain generalizations of 11 {11] but we have not explored
whether or not 1t can be done in general Thus, we do not know whether o1
not VLBW PLAN i1s in NP

6. Summary of results

In the previous sections, we have shown the following

(1)

(3)

(5)

Given an Elementary Blocks World (EBW) probiem, one can tell in
time O(nlogn) whether or not 1t 1s solvable If it 1s solvable then
one can produce 1n time O(n) a plan that moves no block more than
twice, and 1n time O(#') a plan whose length 15 no more than twice
optimal

Given an EBW problem and a positive integer L the problem of
answering whether there 1s a plan of length L or less 1s NP-complete
Thus, the problem of finding an optimal plan 1s NP-hard However, 1t
1s no worse than NP-hard. and there 1s a nondeterministic algorithm
that can solve 1t 1n time O(n®)

If an EBW problem contains no deadlocked sets, then one can find an
optimal plan deterministically in time O(»n?) Thus, the NP-hardness
of finding an optimal plan 1s due to deadlocks

Deadlocks are different from deleted-condition interactions In partic-
ular there are some problems that contain deadlocks but no deleted-
condition interactions, and other problems that contain deleted-
condition interactions but no deadlocks

Gnven an EBW problem. 1n time O(#n?) one can formulate additional
conditions to add to the goal formula, to produce a completely spec-
ified goal state such that any optimal plan for achieving this state ts
also an optimal plan for the original problem Thus. all of the above
results also apply to PBW (the special case of EBW 1n which the goal
state 1s completely specified)

All of the above results also apply to VBW (a generalization of EBW
in which there can be pyramuds, frustums of pyramids, and blocks
of different sizes) Furthermore, they also apply to other versions of
the blocks world intermediate between EBW and VBW (for exampie
if we restrict VBW 1o disallow frustums, or to allow pyramids but
require all blocks to have the same size)

On the complexity of blocks-world planning 241

(7) LBW (a generalization of EBW 1n which the table capacity 1s limited)
requires different planning algorithms than the ones we developed
for EBW, but 1ts time complexity 1s not very different In low-order
polynomial time, one can tell whether or not an LBW problem 1s
solvable, and produce a plan of length O(nlogn) 1f the problem
1s solvable. Given an LBW problem and a positive integer L, the
problem of answering whether there 1s a plan of length L or less 1s
NP-complete, so the problem of finding an optimal plan 1s NP-hard.
However, the problem 1s no worse than NP-hard, and there 1s a
nondeterministic algorithm that can solve 1t 1n polynomial time

(8) In VLBW (a generalization of EBW which incorporates the features
of both VBW and LBW), planning 1s more difficult Given a VLBW
problem and a positive integer L, the problem of answering whether
there 1s a plan of length L or less 1s NP-hard There 1s no non-
deterministic polynomial-time algorithm to find optimal plans for
VLBW problems, because there are some VLBW problems in which
the shortest plan has exponential length

7. Related work

The first results on the computational complexity of blocks-world planning
appeared at AAAI-91 These included our NP-completeness proof for PBW
PLAN [12], and Chenoweth’s NP-hardness proof for a problem we will
call MPBW PLAN [5] Since PBW 1s a special case of MPBW, our result
subsumed Chenoweth’s—but his proof and examples were different from
ours, and they are worth discussing here because they provide additional
sight 1nto the nature of blocks-world planning.

Multiple-Copy Primitive Blocks World (MPBW) 1s like PBW except that
more than one block can have the same name. MPBW PLAN 1s the following
decision problem

Given an MPBW problem (/,G) and an integer L > 0, 1s there
a plan for this problem of length L or less?

One of Chenoweth’s examples [5, Fig 2] 1s an example of a particular
kind of deleted-condition interaction which 1s sometimes called “creative
destruction” [4] In this example, some of the goal conditions are satisfied
in the 1nitial state, and one can produce a non-optimal plan that preserves
these conditions, but 1n order to produce the optimal plan one must undo
them

This example 1s interesting because 1t suggests that n MPBW, unlike
PBW, deleted-condition interactions might be hard to solve However, this
1s still an open question, because Chenoweth’s proof that MPBW PLAN

242 N Gupta DS Nau

18 NP-hard does not depend on deleted-condition interactions Instead, 1t
depends on a problem somewhat stmilar to the problem of resolving multiple
deadlocks

Chenoweth’s proof of NP-hardness is by reduction from 3SAT Given
a 3SAT problem with m clauses and » variables he generates an MPBW
problem in which L = 3n 4+ 5m + | Foreach: (1 =1 1), there are
two blocks named u,, at the tops of two large stacks For each : one of the
two u,’s must be moved to the top of a block named ¢,. and the question
1s which #, to move If we move the wrong one then later in the plan we
will have to move one or more blocks temporarily to the table rather than
moving them directly to their final positions, whence the resulting plan will
be longer than L

The above problem 1s similar 1o the problem of resolving multiple dead-
locks in PBW In both problems, if we make the wrong choice, then too
many blocks must be moved temporarily to the table rather than directly to
therr final positions Howevelr. the two problems are not 1dentical If no two
blocks have the same name, then for a wrong choice to force us to move
extra blocks to the table, we must have blocks which mutually block each
others’ progress—and this led to our definition of deadlock But 1f more
than one block can have the same name, then one can find other ways for
a wrong choice to force us to move extra blocks to the table—and that 1s
what Chenoweth did

8. Discussion and conclusions

In this paper. we have discussed a well-known planning domain which we
call the Elementary Blocks World (EBW) We have shown that in EBW and
in several other related planning domains, the problem of finding shortest-
length plans 1s NP-hard (but no worse), even 1f the goal state ts completely
specified These results are interesting for two reasons

(1) For the special case of EBW 1n which the goal state 1s completely
specified, different planning researchers have had conflicting intu-
itions about the difficulty of finding shortest-length plans—and our
results answer the question

(2) Planning 1n EBW 1s difficult for an unexpected reason One of the
primary roles of EBW 1n planning research was in the discovery
and mvestigation of deleted-condition interactions such as creative
destruction and Sussman's anomaly [4,15.16,18-21], in which the
plan for achieving one goal or subgoal deletes another goal or subgoal
However, our results show that in EBW and several related planning

On the complexity of blocks-world planning 243

Initial state

I = {clear(b), on{b,T),
clear(d),on(d, T),
clear(a),on(a,c),on(c, T)}

Goal formula
G = {on(a,b),on(c,d)}

Fig 7 In this problem, moving « to b enables us to move ¢ to d

domains, such interactions can easily be handled by a simple hill-
climbing strategy. The complexity of planning in these domains 1s
mstead due to the difficulty of resolving multiple deadlocks

To clanfy the sigmificance of deadlocks, we now formulate a domain-
independent explanation of them

8 1 Enabling-condition interactions

Let us define an enabling-condition interaction to be a situation in which
some action invoked to achieve one goal G also makes 1t easier to achieve
another goal G, For example, 1n Fig. 7, the action move(a, ¢, b) achieves the
goal on(a,b), but 1t also has the side-effect of clearing ¢, making 1t easier
to achieve the goal on(c,d) As another example, consider the following
situation (based on [22])

John lives two miles from a bakery and two miles from a dairy
The two stores are one mile apart John has two goals to buy
bread and to buy milk

If John goes to the bakery to buy bread, then this puts him closer to the
dairy, making 1t easier for him to buy milk Hayes-Roth and Hayes-Roth’s
transcript of someone “thinking aloud” while planning a hypothetical day’s
errands 1llustrates how people look for such interactions when formulating
plans [13, p 254]:

In section 6, the subject asks, “What 1s going to be the closest
one”” This question indicates a strategic decision to plan to
perform the closest errand next 1n the procedural sequence

If a problem contains more than one enabling-condition interaction, then
1t can be difficult to determine which set of actions will produce the best
plan. For example, if actions 4 and B both achieve goal G, and 4 also aids
in achieving goal G,, then we mught prefer action 4 to action B—but if B
also aids 1n achieving goal G, then 1t may no longer be clear which of 4 and
B we should prefer The difficulty of resolving such tradeoffs 1s illustrated

244 Y otrupta DS Nau

in some of the repeated revisions that Hayes-Roth and Hayes-Roth s subject
makes to his plan [13, pp 246-247]

In this paper we have seen two cases of multiple enabling-condition
interactions, and in both cases, these interactions make 1t NP-hard to find
an optimal plan

(1) Chenoweth’s planning problem [5] which we discussed 1 Section 7
This problem occurs 1n a version of the blocks world 1 which more
than one block can have the same name In 1t, there are two different
blocks named u,, and we can achieve the goal on{u,,¢,) by moving
either one of them to ¢, As side-effects these two possible moves
make different sets of goals easier to achieve later on—and thus 1t is
not clear which of the two moves we should prefer This same kind
of difficulty occurs for multiple values of /., making 1t NP-hard to
find an optimal plan

(2) Resolving multiple deadlocks For example suppose the set of blocks
D, = {a.b} 1s deadlocked Then before we can move a and h to
their final positions, we must resolve the deadlock by moving either
a or h out of the way Now suppose that 4 1s also 1n some othei
deadlocked set D-. and / 1s also in some other deadlocked set Ds
Then moving a out of the way will also resolve D>, and moving / out
of the way will also resolve D; Thus these two possible moves will
have side-effects of making different sets of goals easier to achieve
later on, so 1t 1s unclear which of of the two moves we should preter
As we discussed 1n Section 4 1, 1n the general case of this problem 1t
1s NP-hard to find an optimal plan

82 Future work

Our results suggest several questions for future research—for example
whether or not there are any other important kinds of goal and subgoal
interactions, and how easily various kinds of interactions might be handled
in various planning domains Recent studies of the complexity of planning
have shown that even with very restricted planming operators, domain-
independent planning 18 an extremely difficult task [3.7-9] But 1f one
could characterize what makes various interactions easy or hard to handle
across various classes of planning domains, this might make 1t possible to
produce planners that, although not completely domain-independent. are
efficient across significant classes of planning domains For example. 1n
situations where the only possible 1nteractions are certain restricted kinds of
enabling-condition and deleted-condition mteractions. the work described
in [24,25] provides some efficient algorithms for merging plans to achieve
multiple goals

On the complexity of blocks-world planning 245
Appendix A. Theorems and proofs for Section 3.1

Theorem A.1. Let B = (I, G) be any solvable EBW problem, and P be any
plan for B Then there 1s a plan Q for B such that |Q| < |P| and Q has the
following properties
(1) For every block b whose position 1n I 1s consistent with G, b is never
moved in Q
(2) Q moves no block more than twice
(3) For every block b that 1s moved more than once, the first move is to
the table
(4) For every block b that 1s moved to a location d £ T, on(b,d) € G
(5) Let b be any block that 1s moved more than once Then n the state
immediately preceding the first time b i1s moved, no block whose
position 1s 1nconsistent with G can be moved to a position consistent
with G

Proof. Suppose there 1s a block » whose positton 1n [1s consistent with G
such that P moves b Below, we prove by induction that there 1s a shorter
plan P, for B By applying this argument repeatedly, 1t follows that there 1s
a plan P, that satisfies property (1) The induction proof 1s as follows

Base case I contains on(b,7) Then by removing from P all actions that
move b, we still have a plan for G

Induction step Suppose X contains on(b, ¢) for some block ¢, and suppose
our proof holds for all blocks below & c¢’s position 1n S must be consistent
with G, so from the induction assumption, there must be a plan P’ for G
with |P’| < |P|, such that ¢ 1s not moved In P’, first remove all actions that
move b, and then replace all occurrences of ¢ by occurrences of 7 Then
the resulting plan P” 1s a plan for G

Suppose that some b 1s moved more than twice in P, and let move (b, u,v)
and move(b, x,), respectively, be the first and last actions 1n P, that move
b If we replace them by move(b, u,7) and move(b,7,y), respectively, and
remove all other actions that move b, then the resulting plan P; 1s a plan
satisfying property (1) such that |P3| < |P,|. By applying this argument
repeatedly, we can produce a plan P, satisfying properties (1) and (2)

Let b be any block that 1s moved more than once in P, Then from
property (2), b 1s moved exactly twice, so let the two actions that move b
be A; = move(b,u,v) and 4, = move(b,v,w) There are two cases

Case 1 w = T Then a plan Ps shorter than P, can be produced by
removing A4; and replacing 4, with move (b, u,T)

Case 2 w # T Then replacing 4, by move(b,u,7) and A4, by
move (b, T,w) will produce another plan Ps for B having length no greater

246 N o frupta DS Nan

than that of P

By applying the above argument repeatedly. 1t follows that there 1s a plan
Py satisfying properties (1), (2), and (3)

In P, for every action 4 = move(b,c.d) such that d # 7. this 1s the last
time that b 1s moved in P Therefore unless on(b,d) € G, replacing this
action with move(b.¢ 7) will produce another plan P; for B having length
equal to that of P’ By applying this argument repeatedly 1t follows that
there 1s a plan Py satisfying properties (1)-(3) and (4)

Let » be any block in Pg that 1s moved more than once, 1; = move(h ¢ T)
be the first action that moves b and S be the state immediately prior to this
action Suppose that in S, there 15 a block ¢ whose position 1s 1nconsistent
with G but which can be moved to a position consistent with & Then
later in Py there must be an action 4. = move{e f,g) that moves ¢ to a
position consistent with ¢ There are two cases

Case 1 g = T Since 1t 1s possible to move ¢ 1in S 1t 1s certainly possible
to move 1t to the table, and this cannot possibly interfere with any of the
remaining actions in Py other than the action 4> itself Thus. removing 4>
from Py and remserting 1t just before 4; will produce another plan P, for B
having length equal to that of /%

Case 2 ¢ # T Then from property (4) on(¢.g) € G But if our
supposition 1s true that in S ¢ can be moved to a position consistent with
G. then 1t must be that g's position in S 1s consistent with G It follows
from property (1) that in the portion of Py that comes after S. neither g
nor any of the blocks below 1t is moved Therefore, moving ¢ from f to
g before the action move(b.c T) cannot possibly interfere with any of the
remaining actions in Py other than the action A, 1tself Therefore, removing
the action 4> from P; and remnserting it just before 4, will produce another
plan Py for B having length equal to that of Py

By applying the above argument repeatedly, 1t follows that there 15 a plan
Q satisfying properties (1)-(5) In none of the above steps did we increase
the number of actions 1n the plan, so it follows that |Q| < |P| [

Corollary A.2. Any plan Q sausfying propertics (1)-(5) also has
m—qgq < |Q| € 2(m-yq)

where m is the total number of blocks and q 1s the number of blocks in I
whose positions are consistent with G

Proof. Every block whose position 1n 7 1s inconsistent with G must be moved
at least once There are m — ¢ such blocks, so |Q] = m ~ g But ¢ moves

On the complexity of blocks-world planning 247

no block whose position 1n [1s consistent with G, and the other blocks it
moves at most twice Therefore, |Q| < 2(m—g) [O

Corollary A.3. B has an optimal plan satisfying properties (1)-(3)

Proof. Let P be any optimal plan for B From Theorem A 1, |Q| < |P|, so
Q@ 1s also optimal [J

Corollary A.4. All plans produced for B by Solve-EBW and Solve-EBW-
Optimally sausfy properties (1)-(5)

Proof. This follows immediately from an examination of the algorithms’
steps [

Corollary A.S. Solve-EBW-Optimally will find an optimal plan for B

Proof. Solve-EBW-Optimally generates every plan for B satisfying proper-
ties (1)-(5) Thus from Corollary A 3, Solve-EBW-Optimally will find an
optimal plan O

Corollary A.6. The length of an optimal plan for B is m — q + r, where r 1s
the minimum number of times that Step 7 is executed 1n any of the execution
traces of Solve-EBW-Optimally

Proof. Immediate from Corollary A5 O

Appendix B. Theorems and proofs for Section 3.2

Lemma B.1. EBW PLAN is in NP

Proof. The following nondeterministic algorithm solves EBW PLAN 1n poly-
nomial time

Algorithm Solve-EBW-PLAN(Z, G, L). If Solve-EBW-Optimally(7, G) finds
a plan P such that |P| < L, then return True Otherwise return False [J

Definition B.2. If (¥, E) 1s a digraph, then without loss of generality we may
assume that V" 1s the set of integers {1,2, .,p} for some p If (V,E, k) 1s
an nstance of FEEDBACK ARC SET, then we define M (V, E, k) to be the
following instance (I, G, L) of EBW PLAN, where L = 2p% + 2p + k, I and
G are as defined below

248 N Gupta DS Nau

102 2()2}
|

101 | 20] 1

lOOJw 200

ll(JTi 200

i 5
IA_. L | -1 all othet
e 1

112 : 212 102 201 blocks are

l ’1 hl i 2 >
The digraph 13 L 13 Il 112 on the table
I = {1 2} and
E = {(1 2) (2 1)} The mual state / The goal state ¢

Fig B1 A digraph (J F) and the EBW problem (/7 () produced by M (1 1 A

e For each v € I, I contains a stack of 2p + 3 blocks. whose names
(from the top of the stack to the bottom) are [¢.O.p]. [¢.O p - 1]
. [v.0,0], [v.1.0] Clesb ploand {o.Lp + 1] (for example, see
Fig B 1) Thus, I consists of p stacks of 2p + 3 blocks each for a total
of 2p° + 3p blocks
e Forevery edge (A.v)n E (7 contamns the atomon(|[x O,y][. [v.I 1])
For every other block # mentioned 1n /. G contains on(b,7) For
every block b mentioned 1n / such that there 1s no block ¢ such that
on(b,c¢) € G, G contamns clear(b) Thus. G specifies a state consisting
of |E] stacks of two blocks each, and 2p* + 3p — |E| blocks sitting on
the table by themselves

M (17 E. k) can easily be computed 1n polynomial time

For the rest of this section, we let (I E.A) be any instance of FEEDBACK
ARC SET. and (/.G. L) = M(1 E. k) Note that in I, the only blocks that
are 1n therr final posions are [I L.p + 1] [2 Lp + 1], [p L.p+ 1]
Thus, there are 2p® + 2p blocks that are not in their final positions

Lemma B.3 For each simple cvcle in (1, E) theire is a coriesponding dead-
locked set in (1,G) and vice versa

Proof. Suppose (1, E) contains a simple cycle (¢, LUp,) Then the
edges (1 va), (va.03) . {vp. 0) are in £, so 1n G, we have [01,0 1]
on [v-.1,0y]. [, 0., v3] on [i3. L ea], Land [vp O vy]on {v. L ey] But
i I, we have [v; O.0.] above [y L e,] [12.0 3] above [ra.1 vy]

and [v, O, 0] above [v,. 1. 0,11 Thus the set

{lo; O 2l {t2.0 3], [0p.0. 001}

On the complexity of blocks-world planning 249

1s deadlocked

Conversely, suppose a set of blocks D 1s deadlocked Then 1n G, each block
b € D must be on some other block ¢ But from the definition of (Z,G),
this means there are v and w such that b = {v,0,w] and ¢ = [w,L,v]
Thus, there are z,,2z,, ,zp, such that

D = {[2170922]3 [2230’23]3 a[zp,O,ZI]}

and G contains the following stacks [z;,0, z;] on [z3,],z¢], [23,0, z3] on
[z3,1,22], , [25,0,z,] on [z,],z,] From the definmition of (7, G), this
means that (zy,2z,, ,Zz,21) 1s a simple cycle n (V,E) O

As an example of Lemma B.3, note that in Fig B I, the simple cycle
(1,2,1) mn (V, E) corresponds to the deadlocked set of blocks

{I1,0,2],[2,0,1]}
m (I,G)

Lemma B.4. (I,G) has a plan of length L or less iff (V,E) has a feedback
arc set of size k or less

Proof. (=) Suppose (/,G) has a plan of length L or less Then from
Corollary A 3, there 1s an optimal plan P of length L or less that satisfies
the properties of Theorem A 1 Let T be the set of all blocks that are moved
more than once 1n P, and U be the set of all blocks that are moved exactly
once Then, from Theorem A 1, each block 1n 7 1s moved exactly twice
(once to the table and once to 1ts final position), so |P| = 2|T| + |U| But
since 2p? + 2p blocks are not 1n therr final positions, |T| + |U| = 2p? + 2p
Therefore,

IT| = |P|— (2p* +2p) S L - (2p* + 2p) =k

For each deadlocked set D, P resolves the deadlock by moving some
block b € D to the table From the definition of deadlock, s final po-
sition must be on top of some other block, so b € T From the proof of
Lemma B3, b = [v,0,w] for some edge (v,w) € E Thus, T contains
blocks [v;,0,w;], ,[v,,0,w,] such that every deadlocked set D contains
at least one of these blocks From the proof of Lemma B 3, 1t follows that
every cycle in (V, E) contains one of the edges (v, w,), , (v,w;), so
(V,E) has a feedback arc set of size y < |T] < k
(<) Suppose (V, E) has a feedback arc set

F = {('U],wl), >('Uq,wq)}

250 N Gupta DS Nuu

such that ¢ < A In the operation of Solve-EBW-Optmally(/ G Step 6
will never be executed, because G specifies the position of every block
Thus, since / contains 2p~ + 2p blocks that are not 1 therr final positions,
Step 5 of Solve-EBW-Optimally will be executed 2p~ + 2p times Each time
Solve-EBW-Optimally enters Step 7 the set of all blocks # that are at the
top of their stacks and are not n their final positions form one or more
deadlocked sets From Lemma B 3. each such deadlocked set D corresponds
to a simple cycle in (1. £), so at least one block [, O, u,] € D corresponds
to an edge (v,.w,) € F But moving [¢,, O, | 10 the table will resoive the
deadlock Thus there 1s an execution trace for Solve-EBW-Opumally (/. (7)
in which all deadlocks are resolved by moving to the table blocks in the set
{1, O ey]o [y O,y]}, whence Step 7 15 executed at most ¢ times
Thus, one of the execution traces for Solve-EBW-Optimally finds a plan P
of length

IPl<2p +2p+qg<2p>+2p+h =L 0
Theorem B.5. EBW PLAN 1s NP-complete

Proof. Lemma B 4 shows that ./ reduces FEEDBACK ARC SET to EBW
PLAN Since M runs in polynomial time, this means that EBW PLAN 1s
NP-hard But Lemma B 1 shows that EBW PLAN 1s in NP Thus EBW
PLAN 1s NP-complete [

Theorem B.6. Finding optimal plans for EBW pioblems 1s NP-hard. but no
wot se

Proof. If one can find an optimal plan for an EBW problem, then for any
L one can immediately tell whether there 1s a plan of length L or less Thus
from Theorem B 5. finding an optimal plan 1s NP-hard

To prove that finding optimal plans in EBW 1s no worse than NP-hard
we show that 1t 1s Turing-reducible to EBW PLAN > Suppose we have an
oracle which, given an instance (/.G, L) of EBW PLAN, tells whether the
answer is ves or no Then given any EBW problem B = (/). we can
find the length L of the optumal plan for B by repeatedly guessing a value
for L and asking the oracle to solve (/ G.L) Once we know L we can
identify the first action in an optimal plan by repeatedly guessing a first
action 4 and asking the oracle to solve (I’,G,L — 1), where [’ 15 the state
produced by applying 4 to / Once we have identified the first move, we
can 1dentify the subsequent moves 1n a similar manner This wall involve at
most polynomuially many calls to the oracle [J

"For more details on how to do this kind of proof we refer the reader to [10 pp 115-117]

On the complexity of blocks-world planning 251
Appendix C. Theorems and proofs for Section 3.3

Theorem C.1. Let (I, G) be any solvable EBW problem Then every execution
trace of Solve-EBW-Optimally(1,G) produces the same final state

G = GUG,UG3U Gy,
where

G, = {on(d,c) | on(b,c) € G},
G, = {on(b,c) € I| b’s position n I 1s consistent with G},

Gy = {on(b,T) | b’s position in I 1s inconsistent with G
and for all y, on(b,y) ¢ G},

G4 = {clear(b) | b is the top of a maximal stack in G, U G, U G3}

Proof. Let G’ be a final state produced by any of the execution traces of
Solve-EBW-Optimally (I, G) For each block b, G’ contains exactly one atom
of the form “on(b,y)” There are three possibilities for this atom-

(1) If on(b,c) € G, then y = c, for otherwise G’ 1s inconsistent with G

(2) If &’s 1n1t1al position 1s consistent with G, then Solve-EBW-Optimally
never moves b, so y 1s the block b was on 1n /

(3) If b’s 1nitial position 1s inconsistent with G but G contains no atom
of the form “on(b, x)”, then Solve-EBW-Optimally moves b to the
table 1n Step 5 and never moves b again, so y = 7.

From the above, 1t follows that the set of all “on” atoms 1n G’ 15 G;UG,UG;
The clear blocks 1n G’ are precisely those blocks that are at the tops of
maximal stacks in G’, so the set of all “clear” atoms mn ¢’ 1s G; Thus,
G =GUGUGUGs O

Corollary C.2. Solve-EBW (I, G) produces G' in time O(n3), and G' 15 con-
sistent with G

Proof. The execution trace of Solve-EBW (I, G) 1s identical to one of the
execution traces of Solve-EBW-Optimally(/, G), and Solve-EBW runs in
time O(n®) Thus Solve-EBW (I, G) produces G’ in time O(n3) Thus G’ 1s
consistent with G, because Solve-EBW (7, G) does not exit until 1ts current
state 1s consistent with G [

Corollary C.3. PBW PLAN s NP-complete

Proof. From Corollary C 2, 1t follows that Solve-EBW can be used to reduce
any mnstance (I,G,L) of EBW PLAN to an instance (I,G',L) of PBW

252 N Gupta DS Nuu

PLAN 1n polynomial time Thus PBW PLAN 1s NP-hard Since every PBW
problem 1s an EBW problem, it follows from Lemma B | that PBW PLAN
1sim NP [

Theorem C.4. Finding optimal plans for PBW problems 1s NP-haid, but no
WOt se

Proof. The proof of this theorem 1s basically the same as the proof of
Theorem B 6 The details are left to the reader [

Appendix D. Theorems and proofs for Section 52

Theorem D.1. LBW PLAN 1s NP-complete

Proof. Given any EBW problem (/,G) one can easily produce an equivalent
LBW problem (I, G, k) by letting k be the total number of blocks in / Thus
since EBW PLAN 1s NP-hard, so 1s LBW PLAN

To see that LBW PLAN 1s in NP, consider the following nondeterministic
algorithm

Algorithm Solve-LBW-Optimally(/. G, k).

Step 1 §S—1

Step 2 If S 1s consistent with G, then exit with success

Step 3 If Step 4 has been executed more than /m* + 3m times, then exit
with failure

Step 4 Nondeterministically select any clear block b whose position 1s
not consistent with G, and nondeterministically choose where to move 1t
Then go to Step 2

For any LBW problem (.G, A), Solve-LBW-Optimally will find an opt-
mal plan P nondeterministically in polynomual time One can tell whether
or not there 1s a plan of length L or less by checking whether or not
IPl<L 0O

Theorem D.2. Finding optimal plans for LBW problems 1s NP-hard but no
wotse

Proof. The proof of this theorem 1s basically the same as the proof of
Theorem B 6 The details are left to the reader O

On the complexity of blocks-world planning 253
Appendix E. Theorems and proofs for Section 5.3

The Towers of Hano1 problem can be described as follows there are p
disks d,d,, . ,dp, and three locations py, p», p3. Initially, all the disks are
at location p;, with d; on d, on on d, The goal 1s to get all the disks to
p3; by moving them one at a time, with the restriction that one cannot put a
disk d, onto a disk d, unless 1 < ; It 1s well known (for example, see [1])
that the shortest plan for solving this problem has length 27 — 1

Theorem E.1. In polynomial time, the Towers of Hanoi problem can be
reduced to VLBW 1n a manner that preserves plan length

Proof. Suppose we are given an instance H of the Towers of Hano1 problem
in which there are disks dy,d,, ,d, We will map this into the VLBW
problem B defined below

B contains blocks by, b;, b, corresponding to H’s disks, and three more
blocks ¢, ¢z, c3 to represent the locations py, p,, p3, respectively To insure
that a block b, can be put onto a block b, 1f and only 1f 1 < 7, we need to
make kp, < iy 1f and only 1f 1 < ; We satisfy these requirements by setting
hy, = kp, =1for1=1,2, ,p,andsettingh,, =k, =p+1for:1 =123
To insure that there can never be more than three maximal stacks, we let the
table capacity be A7 = 3 The 1nitial state contains three maximal stacks

byonbyon onb,_onb,onc,
C2,
3

The final state also contains three maximal stacks

C1,
€2,
b, on b, on on b,_; on b, on c3

Given H, one can produce B 1n polynomial time Clearly, each plan for
H corresponds move-for-move to a plan for B, with the optimal plan for H
corresponding to the optimal plan for B [

Acknowledgement

We wish to thank James Hendler for his many helpful comments and
discussions with us This work was supported 1n part by NSF grants NSFD
CDR-88-03012 and IRI-8907890

254

N Gupta DS MNau

References

{1
(2]
(31
(4]

(0]
(11]
[12]

[13]

[14]

[15]
(16}

[17]

[18]

AV Aho JE Hopcroft and J D Ullman The Design und 1nulvsis of Compures
1lgorithms (Addison-Wesley, Reading, MA, 1976)

J Allen J Hendler and A Tate, eds Readings in Planming (Morgan Kaufmann San
Mateo, CA 1990)

T Bylander Complexitv resuits tor planning 1n Proceedings IJCHI-9] Svdney NSW
(1991}

E Charniak and D McDermott [niroduction 1o {rtificial Intelligence « Addison-Wesley
Reading MA, 1985)

SV Chenoweth On the NP-hardness of blocks world 1n Proceedings 4 141-91 Anahemm
CA (1991) 623-628

TH Cormen, C E Leiserson and RL Rnest Tntroduction to tgortthms (MIT
Press/McGraw-Hill Cambridge MA 1990)

K Erol DS Nauand VS Subrahmanian Complexity decidability and undecidabilits
results for domain-independent planning, SRC TR 91-96 (1991)

KErol DS Nau and VS Subrahmanian On the complexity of domain-independent
planning, 1n Proceedings 41441-92 San Jose CA (1992)

K Erol DS Nauand VS Subrahmanian, When 1s planning decidable” in Proceedings
Furst International Conference 41 Planning Systems (1992)

MR Garey and DS Johnson, Computers and Intractabilin {1 Guide to the 1heony ot
NP-Completeness (Freeman New York, 1979)

R L Graham, DE Knuth and O Patashnik Concrete VMathematics | Foundation for
Computer Science (Addison-Wesley, Reading MA 1989)

N Gupta and D S Nau, Complexity results for blocks-world planning, in Proccedings
14471-91, Anaheim, CA (1991) Honorable mention for the Best Paper Award

B Hayes-Roth and F Hayes-Roth A cognitive method of planning, i J Allen J
Hendler and A Tate eds Readings in Planning (Morgan Kaufmann, San Mateo CA
1990) 245-262, Ongmally in Cogn Sci 3 (4) (1979)

D E Knuth The At of Computer Programpnung 1ol 1 (Addison-Weslev Reading M A
1968)

NJ Nisson Princples of lrtficial Intelligence (Tioga, Palo Alto (A 1980)

P Norvig, Paradigms of diuficial Intelligence Programmung Case Studies in (ommon
Lisp (Morgan Kaufmann, San Mateo CA, 1992)

FP Preparata and RT Yeh [Introduction 1o Discrete Structures {Addison-Wesley

Reading M4, 1973)

E D Sacerdoti The nonlinear nature of plans 1n J Allen J Hendler and A Tate eds

Readings 1n Plannming (Morgan Kaufmann San Mateo CA 1990) 206-214 Ongmally
i Proceedings IJC 1I-75 Tbhist Georgia (1975)

G J Sussman 1 Computational Model of Skil lcquisiion (American Elsevier New
York 1975)

RJ Waldinger Achieving several goals simultaneously 1n J Allen J Hendler and A
Tate eds Readings in Planning (Morgan Kaufmann, San Mateo CA 1990) 118-139
Onginally in EW Elcock and D Mitchie eds VMachine Intelligence 8 (Ellis Horwood
Chicester, England 1977)

D HD Warren Extract from Kluzniak and Szapowicz APIC studies in data processing
no 24 1974 n J Allen, J Hendler and A Tate eds Readings in Planning (Morgan
Kaufmann, San Mateo, CA, 1990) 140-153

R Wilensky, Planning and Understanding (Addison-Wesley Reading MA, 1983)

T Winograd Understanding Natural Language (Academic Press, New York 1972)

Q Yang DS Nau and J Hendler, Optimization of multiple-goal plans with hmited
interaction, 1n Proceedings DA4RP1 Workshop on Innovatinne Approuches 1o Planning
Scheduling and Control (1990)

Q Yang DS Nau and J Hendler, Merging separately generated plans with restricted
interactions Comput Intell 9(1) (1993) to appear

