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Abstract

This article illustrates the complexities of real-world planning and how we can create AI planning
systems to address them. We describe the IMACS Project (Interactive Manufacturability Analysis and
Critiquing System) from the University of Maryland, College Park. IMACS is an automated designer's
aid to evaluate the manufacturability of machined parts and suggest design modi�cations to improve
manufacturability.

Over the course of our e�orts on IMACS the manufacturing domain continually challenged us to come
up with working solutions that would scale to realistic problems. This paper compares and contrasts
IMACS's planning techniques with those used in classical AI planning systems and describes (1) how
some of IMACS's planning techniques may be useful for AI planning in general, and (2) what challenges
need to be overcome by AI planners so that they can be successfully used in manufacturing process
planning.

Similarities between AI planning techniques and IMACS planning techniques indicate the large un-
realized potential of AI planning techniques in solving real-world manufacturing problems. On the other
hand, di�erences seem to indicate the need for domain-speci�c planning techniques. In particular, our
experience suggests that process planning for complex machined parts would not be accomplished very
well by populating a general purpose planner with domain-speci�c knowledge. Instead, we needed to
integrate the domain-speci�c knowledge into the planning algorithms themselves.

1 Introduction

How to generate manufacturing process plans automatically is a challenging research problem that has
attracted the attention of both the AI and engineering communities. To AI researchers, process planning
o�ers a real-life testbed for AI search and planning techniques. At the same time, economic advantages
associated with the automation of process planning make this problem attractive to engineers. Previous
applications of AI planning technology to manufacturing planning, however, generally have had little
impact on manufacturing practices [9, 15].

Many issues arising in manufacturing process planning are similar to issues investigated in AI planning;
others are distinctly di�erent. Some of the former may be amenable to the use of existing AI planning
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techniques|and some of the latter may lead to new principles useful in AI planning. To investigate such
issues, AI researchers will need a better understanding of manufacturing problems and concerns, so as to
get better ideas of what the interesting generalizations are, and which techniques from AI might best be
applied to realistic manufacturing problems.

IMACS is an automated designer's aid to evaluate the manufacturability of machined parts and suggest
design modi�cations to improve manufacturability while maintaining the functional intent. IMACS works
by generating and evaluating alternative operation plans. Our primary goal in developing IMACS was to
handle real-life mechanical artifacts. In retrospect, we found that techniques used in IMACS have both
striking similarities and signi�cant di�erences with those of AI planning techniques.

The similarities between AI planning techniques and IMACS's planning techniques indicate the large
unrealized potential of AI planning for solving real-world manufacturing problems. On the other hand, the
di�erences seem to indicate the need for increased use of domain-speci�c planning techniques. In particular,
our experience suggests that process planning for complex machined parts is not accomplished very well
by populating a general purpose AI planning system with domain-speci�c knowledge: in order to get
IMACS to work well, we needed to integrate the domain-speci�c knowledge into the planning algorithms
themselves.

2 The Process Planning Problem

Over the last two decades, many attempts have been made to apply computers to the task of generating
process plans|i.e., detailed descriptions of how to manufacture an artifact. Most of these attempts have
resulted either in systems that solved an overly simpli�ed version of the problem and thus were not capable
of handling real-life parts, or in systems that required vast amounts of domain-speci�c knowledge and thus
could only operate on a very limited set of parts.

The input to most process planning systems is a description of the part (attributed solid models or
CAD designs in most modern systems). Manufacturing knowledge is modeled as the set of available
manufacturing operations. To match the operations against the part shape, most previous approaches
adopted the following underlying formulation:

� Each manufacturing operation is capable of creating a certain type of primitive shape. The primitive
shapes are called features.

� Many times, more than one manufacturing operation can result in the same primitive shape. So,
there is one-to-many mapping from features to manufacturing operations.

Using this formulation, the following two-step approach is used to generate plans:

Step 1. Decompose the given part into a set of primitive shapes (a feature-based representation). In
most of the literature this step is referred to as feature extraction or recognition [14, 22]. A number
of di�erent techniques have been developed to identify features on the part. A detailed survey on
these techniques can be found in [20].

Step 2. After decomposing the part into a set of primitive shapes, map each shape into an operation or
sequence of operations that can create it [10, 11]. Since more than one operation or sequence of
operations may be capable of creating the shape, various optimization techniques can be used to
select which operation or sequence of operations to use. Finally, the parameters associated with each
operation are optimized and the detailed process plan is created.

While the above formulation is a convenient and intuitive way to specify the problem, it is fundamentally
limited: many times, it is possible to machine the same volume using many alternative collections of
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primitive shapes. In such cases, there is no unique way to decompose a given part into a unique feature-

based representation (i.e., collection of primitive shapes), and attempts to identify a single decomposition

will leave out other possible choices.

Since each choice corresponds to a di�erent collection of process plans, the usual approach of considering

only one choice and ignoring the others may generate a sub-optimal process plan or no plan at all. On

the other hand, using brute force methods to identify all possible decompositions and thereby generate all

possible process plans is computationally infeasible.

In previous approaches, geometric reasoning was not integrated with planning and was limited to

the task of feature recognition|the identi�cation of features directly from the CAD data. After that

step, feature-to-operation mapping was used to select operations for particular features. Unfortunately,
whether or not a feature will have a feasible operation associated can not be determined in isolation.

Feasibility of an operation depends on the state of the workpiece when an operation is being carried

out. For example, tooling accessibility or �xturability conditions can only be veri�ed with respect to

the intermediate workpiece geometry. In most previous approaches, such evaluation was not performed|

therefore, the plan generated by such a system was not guaranteed to be correct.

3 IMACS: Project Overview

IMACS (Interactive Manufacturability Analysis and Critiquing System) is a computer system for analyz-

ing the manufacturability of machined parts, in order to help designers produce designs that are easier to

manufacture. Because of pressing demands to reduce lead time for product development, it is becoming

increasingly important to analyze the manufacturability of proposed products during the design stage. By

analyzing the manufacturability of machined parts once the geometry and tolerances have been speci�ed,

IMACS will help in creating designs that not only satisfy the functional requirements but are also easy to

manufacture.

3.1 A Collaborative Interdisciplinary Team

The team of researchers that developed IMACS was a highly interdisciplinary one that included both

engineers and computer scientists,1 with a very broad background covering AI search and planning, man-

ufacturing, mechanical design, algorithms, and solid and geometric modeling. The group members shared

o�ces|this led to true interdisciplinary training at the most fundamental level: engineers learned how

computer scientists think and vice-versa. By operating in a truly collaborative environment, we developed

a shared vocabulary and learned to appreciate and understand the views and constraints brought by the
various disciplines.

We approached the process planning problem by taking techniques for AI planning, process modeling,

and solid modeling, and bringing them together in a uni�ed framework. Since our goal was to build a

sound and practical solution to the process planning problem, we did not want to simplify the problem in

favor of achieving mathematical elegance|nor did we want to restrict ourselves to a single technique or

approach in cases where a combination of approaches might work better. However, to keep the problem

tractable (and within reach of a limited development sta�), we decided to focus on drilling and milling

operations performed on a vertical machining center.

3.2 Overview of the IMACS Approach

As shown in Figure 1, IMACS evaluates the manufacturability of a proposed design by generating and

evaluating operation plans. The fundamental components of this system include:

1Over the course of the project, IMACS included contributions from two faculty in Computer Science, two faculty in

Mechanical Engineering, 3 engineering graduate students, 4 computer science graduate students, and 2 undergraduates, as

well as the input of many other colleagues.
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Figure 1: Basic approach used in IMACS.

� A module for recognition of machining features from a CAD model;

� A module for generating and evaluating operation plans from the features returned by the

feature-recognition module;

� A module for suggesting combinations of design modi�cations to the designer to improve

manufacturability while maintaining the functional intent.

Figure 2 shows the user interfaces for the major IMACS components.

IMACS can identify manufacturing di�culties interactively, as the designer creates a design, by gener-

ating and evaluating alternative operation plans. In this way, it checks whether an operation plan exists

that can create the design, what the best operation plan is, and what kinds of machining problems might

occur. Since many such manufacturability problems can only be detected at the planning level, where

existing rule-based commercial systems often have di�culty.

3.3 Novel Aspects of IMACS

The formalism behind IMACS is based on the notion that multiple feature-based representations of the part

exist and must be considered. Our approach overcomes the limitations of earlier work in three signi�cant

ways:

� Accurate Process Modeling Using Machining Features.

Traditionally, form features have been used to represent the relationship between shape primitives

and manufacturing operations. Most existing feature de�nitions for the machining domain use geo-

metric entities such as a collection of faces or a parameterized volume to represent this relationship.

These de�nitions lack several key pieces of information related to the parameters of the machining

operation, such as its accessibility, cutting tool, dimensional constraints, and so forth.

We used machining features to represent the geometric capabilities of processes. Our features not

only have the shape information but also allow us to capture a wide variety of process constraints

imposed by the workpiece shape. Examples of these constraints include accessibility and maximum

tool diameter. Our features allow us to prune those choices which might lead to infeasible plans. For
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(a) (b)

(c) (d)

Figure 2: The IMACS interface (a), feature recognition module (b), and manufacturability analysis system

(c-d). (d) shows a time estimation for the machining of the highlighted surfaces.

example, if some portion of a workpiece resembles an end-milled slot but the slot is not accessible for
machining, then it is of little value to recognize this portion of the workpiece as a end-milled slot.

� Closed Loop Feature Recognition.

In general, there may be several alternative interpretations of the design as di�erent collections

of machinable features, each corresponding to a di�erent way to machine the part. Determining

which of these alternatives is most preferable requires considering the part's dimensions, tolerances,

and surface �nishes, along with the availability and capabilities of machine tools and tooling, and

�xturability constraints. In most previous approaches, feature recognition was done separately from

process planning. Whenever alternative interpretations are present, in absence of any machining

knowledge, these systems make an arbitrary choice among various possible alternatives.

In many cases, there might be very large number of interpretations, making it infeasible to generate

all possible interpretations. In such cases, planning information can be used to prune unpromising

alternatives. Thus, in order to improve computational e�ciency, the feature recognition, plan gener-

ation, and plan evaluation steps should be integrated. We use a closed loop approach, incorporating

plan evaluation into the feature recognition loop. This closed loop architecture allows us to e�ciently
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recognize a select number of feature-based representations likely to produce good process plans. The
approach takes advantage of already evaluated feature-based representations in generating new ones.

� Simulation-Based Planning.

Manufacturing knowledge had previously been expressed in terms of the parameters of the manu-
facturing operation. Decisions made without accounting for the workpiece shape require veri�cation
steps. Intermediate part shapes also play a large role in determining the feasibility of plans. Un-
fortunately, developing closed form formulas that account for arbitrary part shapes is not possible;
therefore, we need to perform a detailed simulation of machining operations to verify their feasibility.
For example, a number of conditions such as �xturability, accessibility, achievability of tolerances,
etc., need to be veri�ed through simulation.

Most previous approaches that did not perform simulation and planning decisions were based on rigid
knowledge-bases. Such systems fail to account for the e�ect of the intermediate work-piece shapes
on feasibility of machining operations.

IMACS uses a simulation-based planning technique in which it veri�es various applicability conditions
for machining operations [8]. IMACS's simulation works at multiple levels of abstraction and allows
it to reason with incomplete (partial) workpiece shapes.

4 IMACS: A Technical Description

4.1 Terminology and Nomenclature

A machined part, P , is the �nal component created by executing a set of machining operations on a piece
of stock, S. For example, Figure 3 shows a socket P0 and the stock S0 from which P0 is to be produced.
Note that the goal to be achieved (i.e., the part to be produced) is represented not as a set of predicates
(as is often done in AI planners), but instead as a CAD model (which IMACS represents using ACIS, a
solid modeling system from Spatial Technologies Inc.).

An operation plan is a sequence of machining operations capable of creating the part P from the
stock S. Since it would be physically impossible to produce P 's exact geometry, designers give design

tolerance speci�cations (e.g., see Figure 4) to specify how much variation from the nominal geometry
is allowable in any physical realization of P . A plan is considered capable of achieving the goal if it can
create an approximation of P that satis�es the design tolerances.

A workpiece is the intermediate object produced by starting with S and performing zero or more
machining operations. Currently, the machining operations considered in IMACS include end milling, side
milling, face milling and drilling operations, on a three-axis vertical machining center. Each machining op-
eration creates a machining feature. Di�erent researchers use di�erent de�nitions of machining features;
as shown in Figure 5, we consider a machining feature to include knowledge about the type of machining
operation, the material removal volume (the volume of space in which material can be removed), and the
accessibility volume (the volume of space needed for access to the part).

4.2 Feature Recognition

Although much past work on integrating design with manufacturing planning has involved feature-based

design techniques in which users speci�ed designs directly as sets of form features [3], most researchers
have become convinced that a single set of features cannot satisfy the requirements of both design and
process planning|instead, some form of feature extraction or feature recognition is needed.

For IMACS, we had to develop new algorithms to extract machining features directly from the CAD
model [17, 18]. Previous work on feature recognition and extraction fell roughly into two categories: (1)
specialized geometric algorithms for �nding volumetric decompositions of a part to be used for sequencing

6



Figure 3: The socket P0 and the stock S0.
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Figure 4: Dimensions and tolerances for the socket P0
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Figure 5: Example of a machining operation.
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of machining operations, and (2) pattern analysis techniques that attempt to identify characteristic con�g-
urations representing features by examining the data structure for the boundary representation of the part
at hand. The majority of this earlier work addressed recognition of neutral form features|domain-
independent shape features not tightly associated with speci�c manufacturing and machining knowledge.

We formalized a method for trace-based feature recognition, building on earlier ideas of [22]. A
trace comprises geometry and topology, design features, tolerances, and other forms of design knowledge
associated with the CAD model. In this way, traces can be viewed as the information in the solid model of
a part that is produced by an instance of a feature. Our two signi�cant contributions in this area were the
use of process-speci�c machining features (and not just form features) and the tight integration of feature
extraction with the needs of process planning.

We note that there can be many|sometimes in�nitely many|di�erent machining features capable of
creating various portions of a given part. Of these, we de�ne a primary feature to be a feature that
contains as much of the stock as possible without intersecting with the part, and as little space as possible
outside the stock. Figure 6 shows examples of primary and non-primary features.

In every operation plan that IMACS will ever want to consider, each machining operation will create
either a primary feature or a truncation of a primary feature|and the number of primary features for a
part is always �nite (in fact, polynomial). Thus, IMACS's �rst step is to �nd the set F of all primary
features for P and S. For example, for the socket P0 the set F contains 22 primary features, a few of which
are shown in Figure 7.

In AI terms, machining operations are elementary actions and machining features are tasks. F is the
set of all tasks that might ever be relevant for achieving the goal (i.e., creating the part). Unlike most AI
planners, IMACS �nds this set in advance before it begins to generate plans via feature recognition|as
we discuss later, this technique may be useful in a number of AI planning problems.

4.3 Generating Incomplete Plans

Figure 7 shows that the features in F may overlap in complicated ways, and not all of them are needed
to create the part (for example, we do not need to machine both s1 and s2). A feature-based model

(FBM) is any irredundant subset of features F � F such that subtracting those features from S produces
P . For example, Figure 8 shows an FBM, FBM1, for the socket P0.

In AI planning terminology, an FBM is an incomplete plan: if we can machine the features in it,
this will create the part. Since each FBM is a subset of F , FBMs can be generated using set-covering
techniques, but there can be exponentially many FBMs. As an example, for the socket P0, F contains 22
primary features from which one can create 512 FBMs. In general, we usually will not want to generate
all of these FBMs, because only a few of them will lead to good operation plans. Thus IMACS does a
depth-�rst branch-and-bound search to generate and test FBMs one at a time, pruning unpromising FBMs
as described in Section 4.7. For example, IMACS generates only 16 of the 512 FBMs for the socket P0.

In many of the early generative process planning systems [2] the input was a symbolic representation
of P as a set of machining features analogous to a single FBM, with no way to recognize or handle many
of the geometric interactions among the features. This prevented such systems from generating realistic
process plans for complex parts in which geometric interactions can make it quite di�cult to decide what
sets of features and machining operations to use, which operations to do when and in which setups, and
how to hold the workpiece during each setup.

In one way or another, most recent work on generative process planning (both by manufacturing
researchers and AI researchers) has tried to address these di�culties (e.g., [13, 22, 4, 1]).

4.4 Resolving Goal Interactions

An FBM represents a totally unordered plan. To resolve goal interactions, IMACS adds ordering constraints
according to the following steps:
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not primary:
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Figure 6: Non-primary and primary drilling features.

s1 s2 s9

s10 h1 h2

Figure 7: A few of the 22 primary features for the socket P0. s1, s2, s9, and s10 are end-milling features;

h1 and h2 are drilling features.
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Figure 8: Feature-based model FBM1 for the socket P0.
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Figure 9: Detailed view of the operation plan generation and evaluation loop in IMACS.

1. Identify ordering constraints. Due to complex geometric interactions (accessibility etc.), some
features must precede others. For example, in Figure 10, the hole h1 must be machined before the
slot s9 in order to achieve reasonable machining tolerances and avoid tool breakage.

2. Linearize. Next IMACS generates all total orderings consistent with the precedences. If no such
total ordering can be found, IMACS considers the FBM F to be unmachinable and discards it. Unlike
the typical approaches used in AI planners, there would be no point in adding additional operators:
they would just create redundant features, and if there is a feasible way to machine the part it will
be found among the other FBMs.

3. Modify goals. Suppose features f and g overlap, and f precedes g in some total ordering. Then
when we machine f , we are also machining part of g. We don't want to machine that same portion
of g again later in the sequence, because we would merely be machining air. Thus, IMACS truncates
g to remove the portion covered by f . As an example, several of the features shown in Figure 10(a)
were produced by truncating the corresponding features in FBM1.

4. Unlinearize. Once the truncated features have been produced, several of the resulting FBMs may
have identical features but di�erent precedence constraints. In such cases the precedence constraints
that di�er can be removed, translating the total orders into partial orders. For example, Figure 10(b)
shows the partial order for the FBM of Figure 10(a).

4.5 Additional Steps

To obtain an operation plan from the partially ordered FBM, IMACS uses these additional steps:

� Incorporate �nishing operations. For faces with tight surface �nishes or tolerances, IMACS adds
�nishing operations, with precedence constraints to make them be completed after the corresponding
roughing operations. Currently one �nishing operation per face is allowed.

� Determine setups. On a three-axis vertical machining center, features cannot be machined in the
same setup unless they have the same approach direction. This knowledge, along with the partial
ordering constraints, can be used to determine which features can be machined in the same setup,
as shown in Figure 10(b). Although the speci�c computations are di�erent, the problem is a special
case of what is known to AI researchers as the plan-merging problem [6, 1].

� Determine process details. To select cutting parameters such as those shown in Figure 10(c),
IMACS uses the recommendations of the Machinability Data Center's handbook. The maximum rec-
ommended cutting parameters are used, rather than attempting to select optimal cutting parameters;
thus IMACS's estimates involve considerable approximation.
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(c) process details

Feature Feature Tool diam Feed rate Number Pass length
name type (mm) (mm/min) of passes (mm)

s4 end-milling 50 166 2 225
s8 end-milling 50 166 2 225
s2 end-milling 50 166 2 225
s6 end-milling 50 166 2 225
h7 drilling 20 244 1 106
h9 drilling 20 244 1 106
h11 drilling 30 203 1 39
h12 drilling 30 203 1 39
h1 drilling 75 108 1 172.5
h3 drilling 20 244 1 56
h5 drilling 20 244 1 56
s9 end-milling 50 166 1 250
s10 end-milling 40 207 3 240

Figure 10: An operation plan derived from FBM1. This plan is the optimal one for making P0. Note that
each feature is either a primary feature from FBM1 or a truncation of a primary feature from FBM1.

As shown in Figure 11, these steps correspond to a task decomposition somewhat analogous to that used
in Hierarchical Task Network (HTN) Planning [19, 21, 23, 25, 12].

Since each FBM can lead to several di�erent operation plans, IMACS does the above steps inside a
depth-�rst branch-and-bound search, evaluating the plans as described in Section 4.6 in order to �nd the
optimal operation plan. Figure 10 shows the operation plan IMACS �nds for the socket P0.

4.6 Operation Plan Evaluation

Once IMACS has found an operation plan, it evaluates whether the plan can achieve the design toler-
ances. To verify whether a given operation plan will satisfy the design tolerances, IMACS must estimate
what tolerances the operations can achieve. Typical approaches for computer-aided tolerance charting are
computationally very intensive, and only consider limited types of tolerances. Therefore, IMACS simply
evaluates the manufacturability aspects of a wide variety of tolerances without getting into optimization
aspects. As an example, the operation plan shown in Figure 10 satis�es the tolerances shown in Figure 4,
and thus is an acceptable way to make P0 from S0.

If the plan can achieve the design tolerances, then IMACS estimates the plan's manufacturing time.
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Figure 11: Task decomposition in IMACS.

Operation Time (min) Operation Time (min)

drill h1 2.3 mill s2 5.0
drill h3 0.3 mill s4 5.0
drill h5 0.3 mill s6 5.0
drill h7 0.6 mill s8 5.0
drill h9 0.6 mill s9 4.0
drill h11 0.3 mill s10 4.2
drill h12 0.3 3 setups 6.0

Total Time: 39 minutes

Table 1: Estimated production time for the operation plan shown in Figure 10.

The total time of a machining operation consists of the cutting time (when the tool is actually engaged in
machining), plus the non-cutting time (tool-change time, setup time, etc.). Methods have been developed
for estimating the �xed and variable costs of machining operations; our formulas for estimating these costs
are based on standard handbooks related to machining economics, such as [24]. As an example, Table 1
shows the estimated production time for the operation plan of Figure 10.

4.7 E�ciency Considerations

IMACS uses a depth-�rst branch-and-bound search to generate and evaluate FBMs and plans one FBM at
a time. By evaluating them as they are being generated and keeping track of the best one it has seen so far,
IMACS can discard FBMs and plans that look unpromising, even before they have been fully generated.
For example, from the 22 primary features shown in Figure 7 one can form 512 FBMs for the socket P0,
but IMACS generates only 16 of these FBMs. The search of the space for the socket example is shown in
Table 2.

Below are some of IMACS's pruning criteria, which can be thought of as similar to notion of critics in
HTN planning:

� IMACS will discard an FBM if it contains features whose dimensions and tolerances appear unreason-
able. Examples would include a hole-drilling operation having a length-to-diameter ratio that is too
large; a recess-boring operation having a ratio of outer diameter to inner diameter that is too large;
and two concentric hole-drilling operations with tight concentricity tolerance and opposite approach
directions.

� IMACS will discard an FBM if it appears that there will be problems with work-holding during some
of the machining operations. Currently, IMACS's work-holding analysis is based on the assumption
that a 
at-jaw vise is the only available �xturing device [4].

� IMACS will compute a quick lower bound on the machining time required for an FBM or plan, and
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will discard the FBM or plan if this lower bound is above the time required by the best plan seen so

far.

Generating and Evaluating FBMS...
found a FBM: [ s9 h12 s10 h11 s3 s5 h9 h4 s7 h2 h6 h7 s1 ]

PLAN Evaluation->*setup problems* unpromising PRUNED
found a FBM: [ s9 h12 s10 h11 s3 s5 h9 h4 s7 h1 h6 h7 s1 ]

PLAN Evaluation->*setup problems* unpromising PRUNED
found a FBM: [ s9 h12 s10 h11 s3 s5 h9 h3 s7 h2 h5 h7 s1 ]

PLAN Evaluation->*setup problems* unpromising PRUNED
found a FBM: [ s9 h12 s10 h11 s3 s5 h9 h3 s7 h1 h5 h7 s1 ]

PLAN Evaluation->*setup problems* unpromising PRUNED
found a FBM: [ s9 h12 s10 h11 s3 s5 h10 h4 s7 h2 h6 h8 s1 ]

FBM check ->*toler. incomp.* among h8 and h11 PRUNED

found a FBM: [ s9 h12 s10 h11 s3 s5 h10 h4 s7 h1 h6 h8 s1 ]
FBM check ->*toler. incomp.* among h8 and h11 PRUNED

found a FBM: [ s9 h12 s10 h11 s3 s5 h10 h3 s7 h2 h5 h8 s1 ]
FBM check ->*toler. incomp.* among h8 and h11 PRUNED

found a FBM: [ s9 h12 s10 h11 s3 s5 h10 h3 s7 h1 h5 h8 s1 ]
FBM check ->*toler. incomp.* among h8 and h11 PRUNED

found a FBM: [ s9 h12 s10 h11 s4 s6 h9 h3 s8 h1 h5 h7 s2 ]
PLAN Evaluation->*updating current-best plan*

found a FBM: [ s9 h12 s10 h11 s4 s6 h9 h3 s8 h2 h5 h7 s2 ]
PLAN Evaluation-> unpromising PRUNED

found a FBM: [ s9 h12 s10 h11 s4 s6 h9 h4 s8 h2 h6 h7 s2 ]
PLAN Evaluation-> unpromising PRUNED

found a FBM: [ s9 h12 s10 h11 s4 s6 h9 h4 s8 h1 h6 h7 s2 ]
PLAN Evaluation-> unpromising PRUNED

found a FBM: [ s9 h12 s10 h11 s4 s6 h10 h3 s8 h1 h5 h8 s2 ]
FBM check ->*toler. incomp.* among h8 and h11 PRUNED

found a FBM: [ s9 h12 s10 h11 s4 s6 h10 h3 s8 h2 h5 h8 s2 ]

FBM check ->*toler. incomp.* among h8 and h11 PRUNED
found a FBM: [ s9 h12 s10 h11 s4 s6 h10 h4 s8 h2 h6 h8 s2 ]

FBM check ->*toler. incomp.* among h8 and h11 PRUNED
found a FBM: [ s9 h12 s10 h11 s4 s6 h10 h4 s8 h1 h6 h8 s2 ]

FBM check ->*toler. incomp.* among h8 and h11 PRUNED
Best FBM: [ s9 h12 s10 h11 s4 s6 h9 h3 s8 h1 h5 h7 s2 ]
Total number of evaluated FBMs: 8

Table 2: The search of the space of operation plans for the socket in Figure 3.

4.8 Generating Suggestions for Redesign

Given an interpretation of the design as a collection of machinable features, IMACS can generate alternative

machining features by making geometric changes to the original features. These features are added into

the feature set of the original part to create an extended feature set. The designer may provide restrictions

on the design indicating the type and extent of modi�cations allowed on certain faces and volumes. All

redesign suggestions generated by our approach honor those restrictions provided by the designer.

By taking combinations of features from the extended feature set generated above, we can generate

modi�ed versions of the original design that still satisfy the designer's intent, such as the design shown in

Figure 12. Figure 12 (a) shows the design of a bracket, and Figures 12 (b) and (c) show variations on (a)

that reduce manufacturing cost.
By considering precedence constraints and approach directions for the machining operations as well as

simple �xturability constraints, we can estimate the setup time that will be required for each design. Any

modi�ed design whose setup time is less than that of the original design can be presented to the designer

as a possible way to modify the original design.

5 IMACS Compared to Classical AI Planning

An abstract version of the process planning problem appears to be a special case AI planning problem.
Consider the following formulation:

� the manufacturing workpiece is a state in the planning search space;

� each manufacturing operation is a planning operator which transforms a given state to some other

state.
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(a): a bracket

(b): a modi�ed version
of the bracket with the
modi�cations circled.

(c): a second modi�ed version
of the bracket with the
modi�cations circled.

Figure 12: An example part and two versions redesigned to minimize setup cost.

Using this formulation, one can assume that the stock material is the initial state and the desired
part is the goal state. The process planning problem can now be de�ned as the problem of �nding a
sequence of operations which transform the initial state to the goal state. So in an abstract sense, IMACS
planning techniques are very similar to that of classical AI planning. However, there are several important
di�erences between the techniques used in IMACS and those used in classical AI planning systems. For
example, Figure 1 reveals two immediate di�erences between IMACS and many AI planning systems:

1. Unlike most AI planners, IMACS generates more than one plan and evaluates the merit of each plan
it generates, to �nd an optimal plan. To measure plan merit, IMACS uses an estimate of the plan's
manufacturing time, as described in Section 4.6. However, it is feasible to incorporate estimates of
production cost as well.

2. We have developed algorithms for IMACS to suggest changes in the design to improve its manufac-
turability while still ful�lling the designer's intent [4], as illustrated in Figure 12. In AI terms, this
means that IMACS can automatically suggest changes to the goal to make it easier to achieve.

In retrospect, however, we see in IMACS numerous manifestations of fundamental AI problems. Some
of the techniques we developed in the manufacturing domain may prove valuable in analyzing more general
AI planning problems.

5.1 State-Space Search in IMACS

IMACS computes a set of possible state transitions in advance by recognizing features. The technique of
�nding all primary features before beginning to generate plans can be generalized as follows:

� Enumerate the set of all tasks that might ever be relevant. Call this set F .
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� Loop:

� Generate an incomplete plan F as a subset of F

� If the plan F has a goal interaction that can't be resolved via machining operation precedence
constraints, discard it. (If a promising plan exists, it will be generated in another loop iteration.)

� Flesh out the plan (using task decomposition, critics, plan merging, etc.)

This technique should be useful whenever it is feasible to enumerate in advance the set F of all relevant
tasks. More speci�cally, suppose that we can construct F in polynomial time, and that each task in F
will need to be achieved at most once. Then every plan we will care to consider is a subset F � F , and
we can generate these plans nondeterministically in polynomial time. If each goal interaction involves at
most a constant number of tasks, then we can determine in polynomial time whether there are ordering
constraints su�cient to make F a successful plan.

This idea helps to explain a puzzling theoretical problem. In the worst case, planning with STRIPS-style
operators is PSPACE-complete [5], but the best known example of STRIPS-style planning is blocks-world
planning, which is only NP-complete [7]. This discrepancy can be explained by noting that in a blocks-
world problem containing n blocks there are only at most 2n possible relevant tasks: for each block b, we
might want to move b to the table, and if the goal state contains on(b; c) for some c, then we will want to
move b to c.

5.2 The Frame Problem in Process Planning

The Frame Problem, as it is known in classical AI planning, is the problem of specifying which conditions
in a state description should change (and which should not change) after applying a given operator [16].

Manufacturing planning is a highly interconnected domain where small choices can have signi�cant,
and often unpredictable e�ects. Traditional process planning systems avoided these intricacies by modeling
the world in a STRIPS-style with purely geometric form features2 and process rules|for example, the
occurrence of a hole feature in the solid model of a part implies that one or more drilling operations will
go into the process plan.

The problem arises that simple STRIPS-style rules do not capture the complexity of manufacturing
process planning. To address this, we employed features based on machining process models. Interactions
among the features can then be more e�ciently handled at both geometric and operation-planning levels.

6 Future Research Challenges

6.1 Computational Challenges

Traditional AI planning and search problems (such as blocks-world planning, 15-puzzle, chess playing
etc.) involve extensive symbolic computation. For example, the search tree for games of even moderate
complexity (such as chess) might contain many millions of nodes, each with its own representation of
the internal state of the world (a board, location of pieces, etc.). Expanding a given state in the search
to examine others involves the application of symbolic operators (moving pieces) and the application of
heuristics (comparing the relative quality of nodes) to determine which path to follow through the search
space. For manufacturing planning domains, the search space can be orders of magnitude larger and good
operators hard to �nd.

In the discrete domains of classical AI, computational activity concerns purely symbolic actions, com-
puted with integer representations3 modeling the state of the world and the transitions in it: comparing
two states in a search can often be performed as a short �xed-length sequence of comparison operations on
these integers; applying operators to generate new states is accomplished by a series of discrete arithmetic

2A form feature is a general shape template characterizing local geometric con�gurations on the model of the �nal part.
3Note that these integer representations include strings and text, which are represented in ASCII as sequences of integers.
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operations; evaluating heuristic functions is also primarily an integer processing task, although the values

calculated might be 
oating point numbers.

Automated (or semi-automated) manufacturing-operation planning involves both symbolic computa-

tion and extensive geometric reasoning. Geometric reasoning operations range from simple queries to a solid

modeler (e.g., what is the location of this point?) to complex calculations requiring extensive processing

(e.g., list all planar surfaces with normal vectors parallel to v.).

Simple application of classical AI strategies to these domains creates several serious rami�cations. Be-

cause of these issues, AI techniques have proven di�cult to scale to complex, real-world, parts|those

having thousands of geometric and topological entities and possibly hundreds of interacting feature in-

stances.

Size of the search space. In process planning for complex mechanical parts, the search spaces can be

quite large, with even the most basic manufacturing domains being on the order of complexity of games
such as chess. Planning the selection of tooling, tool holders, and manufacturing operations creates a huge

set of possibilities, and sequencing the operations can introduce combinatorially many possible orderings.

This problem is compounded by the fact that the amount of memory needed to represent each state in

the state space can be quite large. In process planning problems, a state would normally be represented by

a solid model with symbolic attributes attached to the geometry. For non-trivial product models, explicitly

storing even a few of these states requires tremendous amounts of memory: solid models for designs of

realistic mechanical parts and assemblies can run into gigabyte size (and worse)|resulting in search spaces

requiring terabytes of memory.

To address this, one requires a dual representation for planning states. In IMACS, a feature-based rep-

resentation (which is relatively compact) is used to store states. During planning, an attributed boundary

representation (larger) is used.

Floating point calculations. Floating point calculations are used extensively in geometric reasoning

applications. Consider the relatively commonplace operation of testing equality. For purely symbolic
systems, comparing integers or strings is a matter of some �xed number of calls to the CPU|e.g., comparing

two strings of length n requires O(n) operations.

For geometry-centric domains, the data elements are far more complex. Even the most basic task, such

as comparing whether or not two points in 3-dimensional space are equal, can be computationally di�cult.

Geometric entities are represented with 
oating point numbers (typically of double precision) and, because


oating point computation is notoriously unstable and inconsistent, comparisons require use of epsilon

values. Comparing two lists of points still requires an O(n) algorithm, but one with a constant factor

perhaps an order of magnitude larger than the algorithm integer comparison. Comparing more complex

geometric entities, such as faces and solid bodies, requires algorithms that are even more elaborate.

Speed. Speed is a serious issue for process planning systems. After one has accounted for all of the

inconsistencies introduced by 
oating point numbers, most geometric queries are executed through calls to

geometric routines in a solid modeling kernel. Such computation is much more time consuming than the

integer-driven symbolic computation performed in more traditional AI planning systems. This computa-

tional complexity results in a node generation time which is two to three orders of magnitude larger.

6.2 System Requirements Challenges

Most automated process planning systems are used in environments that are di�erent from traditional

planning problems and this imposes a number of unique requirements on the builders of process planning
systems.

16



Techniques for selecting plans. In most situations, a human process engineer has to be the �nal judge

of the quality of the plan generated by an automated planning system. This raises a very interesting research

issue in case of complex planning problems: how to design an objective function that can distinguish among

very good plans. For example, if two holes were to be drilled on a block, it is very di�cult to decide which

hole should be drilled �rst based on the machining time alone.

It is often the case, however, that because of other factors (such as proximity of one of the holes to

the side wall of the block) a human planner might have a strong bias towards one of the two choices.

Human planners often use many ill-de�ned notions such as probability of successfully completing the plan,

minimizing risks of resource failure, etc., in making their selections. The experience of the human planner

is very hard to capture in a quantitative model for use in a computerized system. There are two ways of
augmenting AI planning systems that will help address these problems:

1. Use of multiple objective functions. An initial set of quantitative, cost-based objective functions

can be used to discard undesirable plans. Another set of objective functions is needed to perform

comparisons among good plans. Such objective functions can be used to rate plans based on prob-

ability of success, risk to manufacturing resources etc. Moreover, additional customizable objective

functions should be available that can be modi�ed to enforce user preferences.

2. User guided search. Users must participate at some level in the search process. For example, a

user should be able specify some strategic decisions such as \prefer face milling over end milling" for

a given part. When a system cannot distinguish among two good alternatives, it should allow the

user to break the tie.

Improved planning strategies. One main di�erence between the process planning problem and other

general AI planning problems is node processing time (i.e., the CPU time needed to generate a new state

from a given state). Each state in the process planning problem includes one or more geometric models

and computing new states requires signi�cant amounts of geometric computation. This makes process

planning problems computationally intensive, implying that planning for a complex part requires that we

incorporate domain-speci�c knowledge to ensure that we are not generating unpromising nodes which will

later be discarded.

Some of the techniques which can be used in a variety of manufacturing domains (most especially
machining) are described below:

� Utilizing geometric symmetry. Geometric symmetries in the part can be used to reduce the

number of nodes that need to be processed. For example, symmetric portions of the part should be

created by similar operations.

� Utilizing geometric patterns. Many parts have patterns of geometric features (e.g., a rectangular
array of holes). Such patterns can be treated as a single manufacturing operation and signi�cant

numbers of nodes can be eliminated from the search space.

� Applying a cluster of operators. This allows generation of a state which is more than one

operator away from the given state without explicitly generating intermediate states. For example,

consider a hole that needs to be drilled using three di�erent drilling operations. In this situation, it

is better to treat these three holes as a single cluster of operators without ever needing to generate

two intermediate states explicitly.

Integrating interactions with world. Most classical AI planning systems operate under a closed

world assumption: it is implicitly assumed that these systems will be used solve planning problems in a

stand-alone mode and will have little need to interact with rest of the world. In the development of such
systems, the emphasis has been on how to implement the best possible algorithm for solving the particular

planning problem.
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Figure 13: The �nal machined socket.

Process planning is a bridge between computer-aided design (CAD) and production planning. In the

modern manufacturing workplace, input for a process planning system is received from a CAD system

and the output of a planning system is used by production planning and scheduling systems to generate

production plans. Each of these systems must interact with the process planning system|for example,

CAD activity can bene�t from feedback on how to improve the proposed design. For this purpose, it may

be desirable for the planning system to explore non-optimal plans because they may provide good clues

for how to modify and improve the design. Hence, process planning systems need to support \what-if"

situations.

During production planning, the status of various manufacturing resources can often introduce dynamic
constraints that need to be met for a process to �t well within the factory schedule. For example, a process

planning system might generate a plan which uses some resource A before using some resource B, but from

the point of view of production planning, it might be better if these two operations were interchanged.

The ability to re-plan based on such considerations is needed for process planning systems to work well in

real-life situations.

7 Conclusions

Our past interaction with AI researchers and manufacturing researchers seem to indicate the following:

� Since AI planning researchers are usually more interested in general conceptual problems than

domain-dependent details, the AI approach to manufacturing planning typically has been to create

an abstract problem representation that omits unimportant details, and look for ways to solve the

abstract problem. From the viewpoint of the manufacturing engineer, these \unimportant details"

often are very important parts of the problem to be solved|and this can lead manufacturing engineers

to view AI planning techniques as impractical.

� Manufacturing process planning researchers typically want to solve a particular manufacturing

problem, and present their research results within the context of this problem, without discussing

how the approach might generalize to other planning domains. For AI researchers, this makes it
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di�cult to see what the underlying conceptual problems are, or whether the approach embodies a
general idea that can be applied to other problems. This can lead AI planning researchers to view
manufacturing planning as a domain full of ad-hoc, domain-speci�c programs rather than general
principles and approaches.

Our goal in IMACS project has been to capitalize on the strengths of both domains and create a
planner that is based on sound principles and yet can handle realistic parts. IMACS shows that it is
possible to address manufacturing process planning both realistically and in a principled manner. During
the course of this work we developed a new approach based on the existence of the multiple feature-based
representations for mechanical artifacts, such as the UMD Socket pictured in Figure 13. The techniques
developed in our research overcome the limitations of previous systems in the following ways:

1. Accurate Process Modeling Using Machining Features to represent the capability of the
manufacturing processes. Our features not only have shape information but also allow us to capture
a wide variety of process constraints imposed by the workpiece shape.

2. Closed Loop Feature Recognition to e�ectively integrate planning knowledge with geometric
reasoning, thus incorporating plan evaluation in the feature recognition loop. IMACS's closed loop
architecture allows us to recognize the select feature-based representations that are most appropriate
for process planning.

3. Simulation-Based Planning to verify machining operations. IMACS's simulation works at multi-
ple levels and reasons with approximate workpiece shapes.

We hope that the results presented in this paper will help AI researchers discover ways to e�ectively
apply AI techniques to manufacturing process planning in a realistic manner, and possibly to discover
issues arising in manufacturing that may be applicable to AI planning in general.
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