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Abstract

We present a principled way of extending a classical AI planning formalism with systems
of state constraints, which relate – sometimes determine – the values of variables in each
state traversed by the plan. This extension occupies an attractive middle ground between
expressivity and complexity. It enables modelling a new range of problems, as well as
formulating more efficient models of classical planning problems. An example of the former
is planning-based control of networked physical systems – power networks, for example –
in which a local, discrete control action can have global effects on continuous quantities,
such as altering flows across the entire network. At the same time, our extension remains
decidable as long as the satisfiability of sets of state constraints is decidable, including in the
presence of numeric state variables, and we demonstrate that effective techniques for cost-
optimal planning known in the classical setting – in particular, relaxation-based admissible
heuristics – can be adapted to the extended formalism. In this paper, we apply our approach
to constraints in the form of linear or non-linear equations over numeric state variables,
but the approach is independent of the type of state constraints, as long as there exists a
procedure that decides their consistency. The planner and the constraint solver interact
through a well-defined, narrow interface, in which the solver requires no specialisation to
the planning context. Furthermore, we present an admissible search algorithm – a variant
of A? – that is able to make use of additional information provided by the search heuristic,
in the form of preferred actions. Although preferred actions have been widely used in
satisficing planning, we are not aware of any previous use of them in optimal planning.
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1. Motivation

Proactive, informed control of infrastructure networks, such as power grids, transport sys-
tems or water networks, can optimise resource usage and increase reliability, with potentially
significant economic and environmental benefits. Model-based AI technologies such as auto-
mated planning and diagnosis can play a key role in achieving this (Aylett, Soutter, Petley,
& Chung, 1998; Thiébaux & Cordier, 2001; Piacentini, Alimisis, Fox, & Long, 2015).

However, modelling such interconnected physical systems requires an expressivity that
classical planning formalisms do not provide. A key capability is expressing and reasoning
with the global numeric constraints that govern network flows. A single (discrete) control
action can, as a side effect, change the flow in all system components, and do so in a way
that depends on the state of most components. For instance, closing a line switch in a
power system can affect power flows in all the network lines, as well as the voltage and
phase angle at all network buses, in a way that depends on the state of all other switches.

Although there is significant work on extending classical planning to hybrid discrete–
continuous models, the most basic being the addition of numeric state variables (e.g.,
Koehler, 1998; Wolfman & Weld, 1999), the global scope of network flow constraints make
them impractical to formalise as direct action preconditions and effects. Deciding if an
action is applicable and determining its effects on the global state of the system requires
solving a system of constraints potentially spanning the whole network. For instance, in
AC power networks, we need to solve a system of non-linear equations linking real and
reactive power flows to bus voltages to determine whether closing a switch would lead any
line capacities to be exceeded.

Extending planning formalisms in a different direction, derived predicates and axioms
(Thiébaux, Hoffmann, & Nebel, 2005; Hoffmann & Edelkamp, 2005) enable the compact
encoding of a large class of state constraints, notably those involving the transitive closure of
a relation, such as reachability. However, these are limited to expressing logical global rela-
tions derived from discrete atomic facts; there is, in prior work, no numerical counterpart to
derived predicates. Moreover, support for derived predicates in current domain-independent
planners remains sparse.1

We have proposed a mechanism for extending planning to formalisms with complex state
constraints, and applied it to the specific cases of global numeric constraints2 (Ivankovic,
Haslum, Thiébaux, Shivashankar, & Nau, 2014) and PDDL axioms (Ivankovic & Haslum,
2015). The extended formalism remains classical in that we consider deterministic, fully
known models and sequential plans, but allows for a richer class of planning models. In this
paper, we present a variety of constraint-aware problem relaxations, from which we derive
admissible heuristics, for the general extended formalism, i.e., in a way that is independent
of the type of state constraints used. The relaxations are based on the well-known monotonic
planning relaxation and on abstraction. We exemplify the general principle with problems
that have numeric state constraints. We consider both linear and non-linear constraints, and

1. When we embarked on this investigation, there was, as far as we know, no work on optimal planning
with derived predicates. We have since developed such a planner, based on the theory presented here
(Ivankovic & Haslum, 2015).

2. We use the term “global” here to emphasise that the system of constraints may relate every part of a
state. Some constraints are also invariant, meaning they must hold in every state, but this is not the
case for all uses of state constraints in our extended formalism.
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use a custom solver for the latter. We also present a new analysis of the expressivity of the
extension. We show that independently of the type of constraints, problems in the extended
formalism can be reduced to classical planning problems. However, we also show that
extending classical planning with any sufficiently expressive constraint type is equivalent to
allowing arbitrary formulas as action preconditions, which are known to require either an
exponential increase in problem size or super-linear increase in plan length to compile away
(Nebel, 2000).

Central to our approach is a partitioning of the planning model into a primary model
– which is essentially classical – and a secondary model, in which the state constraints are
captured. Such a division is made also in PDDL with axioms (Thiébaux et al., 2005) and
in some other extended planning formalisms (Dornhege, Eyerich, Keller, Trüg, Brenner,
& Nebel, 2009; Piacentini et al., 2015). Throughout the process of search and heuristic
evaluation, the two models interact only through a well-defined, narrow interface. This
means that responsibility for reasoning about the secondary model can be given over to a
solver, suited to the task, with very weak requirements on the interface this solver must
provide. In particular, and in difference to other recent proposals for integrating external
reasoning components into planning (Dornhege et al., 2009; Gregory, Long, Fox, & Beck,
2012; Piacentini et al., 2015), computing relaxed plans and the associated heuristics does
not require this solver to implement any form of relaxed reasoning about the constraints or
their interaction with the primary model.

Motivated by the situation in which we have an accurate but expensive-to-compute
admissible heuristic, we also proposed a new search strategy for cost-optimal planning,
which makes use of preferred actions (Ivankovic et al., 2014). Preferred actions are an
additional piece of information obtained as a by-product of the heuristic computation, and
have been used extensively in non-optimal planning. Here, we present empirical evidence
supporting our characterisation of the circumstances in which this strategy avoids generating
many successor states and substantially reduces computation time.

Our motivation for focusing on optimal planning is primarily methodological: Advances
in the optimal planning setting are simpler to evaluate, since the only dependent variable
is efficiency. Developing admissible heuristics allows us to focus on the principles of the un-
derlying relaxations and how to incorporate the state constraints of the extended formalism
into them. Deriving non-admissible heuristics for satisficing planning from the relaxations
following the same patterns as in classical planning is a straightforward exercise; we leave
their evaluation to future work.

2. Extending a Classical Planning Formalism with State Constraints

In this section, we present our approach to extending classical planning with state con-
straints, in a way that is largely independent of the type of these constraints. However, for
the examples and experiment benchmark problems in this paper, we will only use problems
in which the state constraints are logical combinations of (linear or non-linear) equalities
and inequalities over numeric variables. Section 3 presents detailed examples of how prob-
lems can be modelled in our framework. We address questions regarding the expressivity
of the extended formalism in Section 4.
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The two key concepts of classical planning world models are state variables and actions.
In classical planning representations, such as propositional STRIPS or SAS+, states are
assignments to a finite set of variables, each of which has a finite domain of values. Action
preconditions (and the problem goal) are logical formulas over these variables, and each
action’s effect is to assign new values to some subset of variables; values of variables not
reassigned persist. Our approach to incorporating state constraints is not dependent on the
specific details of the classical planning formalism. For the purposes of presentation we will
assume a formalism like SAS+.

Central to our approach is a partitioning of the state variables into two disjoint sets,
called the primary and the secondary state variables, respectively. These sets of variables
have different semantics: Primary state variables behave like classical planning state vari-
ables, in that they are assigned by actions’ effects and persist from one state to the next
when not reassigned. The values of secondary variables, on the other hand, are determined
indirectly, by asserting the state constraints that they have to satisfy. These state con-
straints can involve both primary and secondary variables, and thus are the mechanism by
which the two parts of the model interact. The constraints do not necessarily have a unique
solution; thus, the secondary variables can also be characterised as “free” variables, which
the planner can choose any value for in each state independently, as long as the chosen
assignment satisfies the constraints. Because of this, we define a state as an assignment s
of values to the primary state variables only:

Definition 1. Let VP be the set of primary state variables, and for each variable v ∈ VP ,
let D(v) be the domain of v, i.e., its set of possible values. A state, s, is a mapping from
VP such that s(v) ∈ D(v) for all v ∈ VP . For a formula ϕ over the primary variables, we
also write s(ϕ) for the value of ϕ in s.

Moreover, the constraints do not necessarily have any solution for every valuation of the
primary state variables; thus, they act as implicit preconditions, forbidding the plan from
visiting certain states. PDDL 2.2’s axioms (Thiébaux et al., 2005), as well as recent pro-
posals for extending planning models via semantic attachement (Dornhege et al., 2009;
Piacentini et al., 2015) also make a division between primary state variables that are es-
sentially classical and secondary state variables that are derived from those; however, they
require that the secondary variables are a deterministic function of the primary state3 and
thus do not admit either free variables or implicit preconditions as our formalism does.

A state (indeed, any partial assignment s to the primary state variables VP ) can also
be specified by a set of constraints, {v = s(v) | v ∈ VP }, or, equivalently, a conjunctive
formula,

∧
v∈VP v = s(v). We denote this constraint set by CP (s). In other words, CP (s)

is a function that maps each state to a set of constraints satisfiable by that state only. We
will make use of this to define satisfaction of state constraints below.

State constraints can appear in action preconditions, in the goal, and in a designated
set Cinv of invariant constraints. The invariant constraints must be satisfied in every state
visited by the plan. Thus, we say that a state is valid iff it is possible to satisfy the invariant
constraints given the state’s assignment to the primary variables.

3. This is how Dornhege et al. (2009) describe their integration of semantic attachements. See Section 8
for a longer discussion.
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Definition 2. A state s is valid if and only if CP (s) ∪ Cinv is satisfiable.

Invariant constraints can serve two purposes: they define (sometimes uniquely, sometimes
not) the values of secondary variables, contingent on the values of primary variables, and
they impose constraints on the primary variables (sometimes indirectly by constraining
the secondary variables) as required by the domain. For example, in power systems, the
invariant constraints include both the equations that determine power flows, and operational
constraints such as staying within line and generator capacity limits. There can be multiple
power flow solutions for the same network configuration (cf. Section 3.2). Note that PDDL
2.2’s axioms only serve the first of these two functions: stratification of the axioms ensures
that in every state (that is, assignment of the primary variables, cf. Definition 1) there
is an assignment of the derived predicates satisfying the axioms (Thiébaux et al., 2005);
furthermore, this assignment is unique. Thus, axioms do not partition states into valid and
invalid.

Action preconditions and the goal condition can be over both primary and secondary
variables. We will express them using partitioned conditions, defined below. In principle,
these conditions could be defined simply as formulas in the language of state constraints,
which are also defined over both sets of variables. However, for algorithmic reasons, which
will become apparent in Section 5, it is advantageous to distinguish the part that is a
“simple” condition on the primary variables only.

Definition 3. Let VP and VS be the set of primary and secondary state variables, respec-
tively.

A simple condition is a conjunction of variable–value equalities or inequalities, without
repeated variables.

A partitioned condition is a pair (ϕP , ϕS), where ϕP is a simple condition over the
primary variables VP and ϕS a set of constraints over VP ∪ VS. The condition (ϕP , ϕS)
holds in state s iff

(i) s(ϕP ) = true and

(ii) CP (s) ∪ ϕS ∪ Cinv is satisfiable.

By analogy with the partitioning of the state variables, we refer to the two parts of the
partitioned action preconditions and goal as the primary and secondary preconditions and
goal, respectively. Note, however, that the secondary condition can refer to both sets
of variables, and that there is no inherent restriction on the form it takes. In fact, the
formalism, as defined so far, even allows the secondary condition to be an arbitrary logical
formula over primary variables only. (In the following subsection, we will introduce a
specific, and somewhat restricted, form of secondary constraints; however, we will show in
Section 4 that also this restricted form allows for polynomially encoding arbitrary formulas
over the primary variables.) Several classical planning formalisms, including STRIPS, PSN,
and SAS+, restrict action preconditions and goals to be simple conditions, or even more
limited forms (Bäckström & Nebel, 1995; Helmert, 2009).

State constraints in the set ϕS ∪ Cinv are formulas over variables in VP and VS . Recall
that CP (s) is a set of constraints that restrict the values of variables in VP to exactly the
values they have in state s. Hence, taking the union of CP (s) and ϕS ∪ Cinv is equivalent
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to substituting the value s(v) for each primary variable v in ϕS ∪ Cinv and checking the
satisfiability of the resulting formula. (The reason why item (ii) of Definition 3 is written
the way it is is that this formulation extends naturally to relaxed states, in which state
variables can have a disjunction of values. We define problem relaxations in Section 5.) An
example illustrating Definition 3 can be found in Section 3.1 (page 381). It follows from
Definition 3 that a partitioned condition can only hold in a valid state. In fact, a state s is
valid if and only if the partitioned condition (true, ∅) holds in s, because this is equivalent
to requiring that CP (s) ∪ Cinv is satisfiable.

As usual, an action a is applicable in state s iff its precondition, pre(a) = (preP (a),
preS(a)) holds in s, according to Definition 3 above. An action’s effects, eff(a), is a partial
assignment of the primary variables, i.e., a set of atomic effects v := e, where v ∈ VP and e
is an element in the domain of v. As usual, applying action a in state s results in a state s′

such that s′(v) = e if v := e ∈ eff(a) and s′(v) = s(v) if v is not mentioned in the effects of
a. We write s′ = apply(a, s) for the state that results from applying action a in state s.

Note that we do not consider actions with conditional effects, or effects in which the value
assigned to a variable is a function of the state that the action is applied in. Incorporating
these does not present any conceptual difficulty, but several practical ones. Conditional
effects can be defined by associating an effect condition, cond(v := e), with each atomic effect
of an action, where cond(v := e) is a partitioned condition, and, as usual, the effect v := e
occurs iff cond(v := e) holds in the state where the action is applied. This, however, fails
to consider consistency between secondary effect conditions. For example, the partitioned
conditions ϕ = (true, {x < 0}) and ψ = (true, {x ≥ 0}) may both hold, according to
Definition 3, if neither x < 0 nor x ≥ 0 is contradicted by the invariant constraints, but
they cannot hold simultaneously. Recall that in our model, the planner is free to choose
the values of secondary variables, subject to constraints. Hence, applying an action with
conditional effects would require the planner to select a subset of effects to fire, such that
the union of all selected effects’ conditions and the negation of all non-selected effects’
conditions is jointly satisfiable (together with CP (a)∪Cinv). Since we have not implemented
any support for conditional effects, we leave them out of the remainder of the paper.

2.1 Switched Constraints

Thus far, we have made no assumption about the syntactic form that constraints take, or
even the domain of the secondary variables. We now introduce a particular form of state
constraints.

The primary state variables are classical finite-domain variables, same as in the SAS+
formalism (Bäckström & Nebel, 1995), while the secondary variables are not so restricted.
In this paper, we apply our framework to numeric (real- or rational-valued) secondary
variables and constraints that are logical combinations of (linear or non-linear) equations or
inequalities. However, secondary variables can be of any type, as long as we have a solver
capable of reasoning about the consistency of constraints over variables of that type. As
mentioned in the introduction, the derived predicates in PDDL version 2.2 (Thiébaux et al.,
2005) may be viewed as an instance of this framework, where the secondary variables are
propositional and the constraints are the axioms of a logic program. Secondary variables
may even be complex objects, such as, for instance, sets (cf., e.g., Gregory et al., 2012). In
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fact, nothing prevents us from having several, disjoint, sets of secondary state variables, of
different types, with different types of constraints applied over each set.

This means that state constraints must combine both conditions on discrete finite-
domain (primary) variables, and relations over variables of arbitrary types. Switched con-
straints (Ivankovic et al., 2014) are a syntactically restricted form of constraints which
simplifies reasoning over this combination.

Definition 4. Let VP and VS be the set of primary and secondary state variables, respec-
tively. A switched constraint is a logical implication, ϕ → γ, where ϕ is a simple formula
(i.e., a conjunction of variable–value equalities or inequalities without repeated variables)
over variables in VP , and γ is a constraint over some subset of VS.

Examples of switched constraints can be found in the domain formulations in Section 3.
There are, of course, many other syntactic forms that could be used to write constraints
over the combined primary and secondary variables. The usefulness of switched constraints
is that they allow us to separate reasoning about the primary condition and the satisfiability
of the secondary condition. Thus, the latter can be given over to a solver that does not
need to be capable of dealing with logical conditions over discrete variables.

Definition 5. A switched constraint ϕ → γ is active in state s iff s(ϕ) = true. Given a
set of switched constraints C, the active set of C in state s is

active(C, s) = {γ | ϕ→ γ ∈ C, s(ϕ) = true}.

Proposition 6. Let VP and VS be sets of primary and secondary state variables, respec-
tively. Let C be a set of switched constraints, and s a state. Then there is an assignment
to VP ∪ VS satisfying CP (s) ∪ C if and only if there is an assignment to VS satisfying
active(C, s).

Proof. “if”: Let σ be an assignment to VS satisfying active(C, s). Extend σ to an assignment
σ′ to VP ∪ VS by setting σ′(v) = s(v) for all v ∈ VP . Clearly σ′ satisfies CP (s). Let ϕ→ γ
be a switched constraint in C. If s(ϕ) = true then γ ∈ active(C, s) so σ′ satisfies γ (by
assumption) and therefore σ′ satisfies ϕ → γ. If s(ϕ) = false then ϕ is false also under σ′

(by construction) so σ′ satisfies ϕ→ γ.
“only if”: If there is an assignment to VP ∪VS satisfying CP (s)∪C, then by Definition 5

this assignment satisfies active(C, s), and its restriction to Vs does as well since active(C, s)
only involves secondary variables.

Corollary 7. A partitioned condition (ϕP , ϕS) holds in state s if and only if s(ϕP ) = true
and active(ϕS ∪ Cinv, s) is satisfiable.

Note that the active set contains only the consequent (right-hand side) of the implications
whose triggering conditions are true. This means that switched constraints allow us to
decide if a partitioned condition holds in a state by evaluating primary conditions and
testing the satisfiability of a set of secondary conditions only. In some cases, the latter can
be done in polynomial time. For the example and benchmark problems in this paper we
instantiate our framework with numeric (real- or rational-valued) secondary variables and
state constraints that are switched constraints in which the right-hand side is an equality
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g(x1, . . . , xn) = 0 or inequality g(x1, . . . , xn) ≥ 0, where g(x1, . . . , xn) is a function over the
numeric variables. When this function is linear, we say these are linear switched constraints.
In this case, all it takes to decide consistency is a linear equations solver.

2.2 The Planning Problem

We now have all the elements needed to define what a planning problem, and a solution
plan, are in the extended formalism. Again, this definition is independent of the form of
state constraints, and of the type of secondary variables.

Definition 8. A planning problem P consists of:

• A set VP of primary variables. Each variable v ∈ VP has an associated finite domain
D(v) of values.

• A set VS of secondary variables.

• A set A of actions, each action a defined by:

− a partitioned precondition pre(a) = (preP (a), preS(a)), and

− an effect eff(a), which is a set of assignments of values to primary state variables.

• A set Cinv of invariant constraints.

• An initial state s0, assigning values to all variables in VP , such that s0 is valid.

• A partitioned goal condition G = (GP , GS).

An action sequence π = 〈a1, . . . , an〉 induces a corresponding state sequence 〈s0, s1, . . . , sn〉,
where si = apply(ai, si−1) is the result of applying action ai in state si−1. π is a plan iff
each state si in the sequence is valid, each action ai is applicable in si−1, and G holds in
sn.

In this paper, we only consider the additive, state-independent action cost objective func-
tion. That is, each action a ∈ A has an associated non-negative constant cost, cost(a), and
the cost of a plan π is the sum of the costs of its actions. An optimal plan for a planning
problem P is a plan for P whose cost is minimum among all plans for P . Previously, we
explored also actions with state-dependent costs, meaning the cost of an action may be a
non-constant function of the state that the action is applied in (Ivankovic et al., 2014). How-
ever, this makes the cost-optimal planning problem significantly harder, and our approach
to handling state-dependent action costs was not very effective. Hence, we leave that ex-
tension out of this paper. Geißer et al. (2015, 2016) have since presented better approaches
to creating both non-admissible and admissible heuristics for classical planning with state-
dependent action costs. It is not clear whether their approach generalises from the classical
case to our extended formalism. We leave this question for future investigation.

3. Domain Examples

Having defined an extended planning formalism, it is natural to ask whether this formalism
is more expressive than classical planning. We address this question in Section 4. But first,
we illustrate the power and limitations of the formalism by presenting four examples of
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A

a1 = 1
p1 = 1
h1 = 1/6

B

a2 = 2
p2 = 2
h2 = 1/6

a3 = 3
p3 = 0
h3 = 7/6 A

B

(a) (b)

a1 = 1
p1 = 0
h1 = 7/6

a2 = 2
p2 = 0
h2 = 7/6

A
B

a3 = 3
p3 = 3
h3 = 1/6

(c)

Figure 1: An example of the Hydraulic Blocks World domain. (a) A valid (initial) state:
The weight of block A is 1 and the weight of block B, which sits on a twice as
large area, is 2, causing pistons 1 and 2 to balance at the same height while the
empty piston 3 rises higher. The total volume of fluid is v̄ = 4. (b) An invalid
state: Placing B on A in cylinder 1, the combined weight causes the piston to
fall through the bottom of the cylinder. (c) A valid goal state: Placing the total
weight of A and B on the larger piston 3 makes it possible to counterbalance the
weight with smaller fluid columns in the other cylinders.

domain models with numeric state constraints. As a notational convention throughout the
paper, constants are distinguished from variables by an overline bar (c̄ vs v).

3.1 Hydraulic Blocks World

Our first domain is intended mostly as a didactical example, illustrating how the primary
and secondary parts of the model interact, and in particular how state constraints can
restrict the set of valid plans. Consider a variant of Blocks World with a fixed number m of
towers and n blocks: Each tower k sits on a piston inside a vertical cylinder with area ak,
rising from a sealed reservoir of hydraulic fluid, as illustrated in Figure 1(a). Each block i
has a weight wi. The height of each piston is determined by the total weight of the blocks in
each cylinder and their areas, observing the law that the pressure that each column exerts
on the reservoir must be equal and that the total volume of fluid remains constant. The goal
is, as usual, to arrange some of the blocks into a given configuration. The main constraint,
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in addition to the normal rules of the Blocks World domain, is that no piston may ever go
above the top or below the bottom of its cylinder.

Actions are the usual pickup, putdown, unstack and stack, augmented to indicate what
cylinder the block is moved to or from. For example, unstack(i, j, k) takes block i off block
j in cylinder k. The primary state variables are posi, ini, cleari, and holding, where i is a
block. Variable posi represents the position of block i, and its domain consists of the set of
pistons, other blocks, and the constant in-hand. Variable ini represents the cylinder block
i is in, with domain {1, . . . ,m} ∪ {none}. The Boolean variable cleari represents whether
block i is clear. Finally, the variable holding represents the block held, if any, and its domain
consists of the set of blocks and none.

The preconditions and effects of actions on the primary variables are as expected. For
example, unstack(i,j,k) requires posi = j, ini = k, cleari = true and holding = none, and
causes posi = in-hand, holding = i, ini = none, cleari = false and clearj = true. Actions have
no secondary preconditions.

The key secondary variable is the height hk of the fluid column in each cylinder k, and
the main safety constraint is that this variable remains above 0 and below the height l̄k of
the cylinder:

0 ≤ hk ≤ l̄k (hbw.a)

for k = 1, . . . ,m. (Note that this is actually a switched constraint, whose triggering con-
dition is true. We omit the trigger for such constraints to simplify notation.) The total
weight of the tower of blocks in cylinder k is represented by a secondary variable pk. To
compute pk, we use secondary variables pi,k, i = 0, . . . , n, k = 1, . . . ,m, representing the
contribution that block i makes to the total weight in cylinder k. pi,k is either 0, if block i
is not in cylinder k, or the weight of the block, wi, if it is. This is enforced by the following
switched constraints:

ini 6= k → pi,k = 0 (hbw.b.i)

ini = k → pi,k = w̄i (hbw.b.ii)

pk =

n∑
i=1

pi,k (hbw.b.iii)

0 ≤ pi,k ≤ w̄i i = 1, . . . , n, k = 1, . . . ,m (hbw.b.iv)

Constraint (hbw.b.iv) is redundant, since it is implied by (hbw.b.i–hbw.b.ii). However, as
we will see in the next section, adding redundant constraints to the secondary model can
improve the inference power of relaxations. Now hk can be determined via the following
system of equations, which state that (hbw.c) the total amount of fluid v̄ in the cylinders is
constant, (hbw.d) the force fk at the bottom of cylinder k is proportional to the weight pk
of the tower of blocks plus the weight of the fluid column in the cylinder (the fluid density
ρ̄ times the fluid’s volume, where āk is the cylinder’s cross-sectional area) (hbw.d), and
(hbw.e) the pressure (force per unit area) at the bottom of a cylinder is the same for each
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cylinder:

m∑
k=1

ākhk = v̄ k = 1, . . . ,m (hbw.c)

fk = pk + ρ̄ākhk k = 1, . . . ,m (hbw.d)

fk
āk

=
fk+1

āk+1
k = 1, . . . ,m− 1 (hbw.e)

A complete description of the sample problem shown in Figure 1(a) is given in Figure 2.

The initial state is as shown in Figure 1(a). The set of active invariant constraints
(right-hand sides only) in the initial state are pA,1 = 1, pA,2 = 0, pA,3 = 0, pB,1 = 0,
pB,2 = 2, pB,3 = 0, and constraints (hbw.a), (hbw.b.iii–hbw.e) whose triggering conditions
are constantly true. This set is satisfiable – a solution is shown in Figure 1(a) – so the
initial state is valid.

The goal is to place block B on block A. Considering only the primary (classical) part
of the model, this can be achieved by picking up B and stacking it on A. However, the
resulting state – illustrated in Figure 1(b) – is not valid, because the combined weight of A
and B placed on the small area in cylinder 1 exerts too much pressure; to counterbalance
it, the columns in cylinders 2 and 3 would need more fluid than the total volume, v̄ = 4.
The active constraints with non-constant triggers are pA,1 = 1, pA,2 = 0, pA,3 = 0, pB,1 = 2,
pB,2 = 0, pB,3 = 0, which yields p1 = 3, p2 = 0, p3 = 0 (from hbw.b.iii) which with (hbw.d–
hbw.e) yields (3 + 1h1)/1 = (0 + 2h2)/2 = (0 + 3h3)/3, which together with (hbw.c) is only
satisfiable when h1 < 0, contradicting (hbw.a).

A valid goal state is shown in Figure 1(c). Here, the weight of the tower is placed in
cylinder 3, which has a larger area ā3 = 3, making it possible to counterbalance the weight
with lower columns in cylinders 1 and 2. This state is reachable by moving A from piston
1 to piston 3, then moving B onto A. All intermediate states in this plan are valid.

3.2 Switching Problems in Power Networks

Our second domain exemplifies the kind of useful problem that our approach enables plan-
ning to address. The problem we consider is to reconfigure a power network, by opening or
closing line switches. This can be for several purposes: an example known in the planning
literature is power supply restoration (PSR), where the goal is to isolate known faulty parts
and resupply disconnected loads. For another example, we may want to isolate a particular
line or generator, that is being phased out for servicing, while maintaining supply to all
loads at every intermediate state of the plan. Line switching is also used to reconfigure a
network to minimise line losses or balance load. The PSR problem appeared as a benchmark
of the 2004 International Planning Competition (Hoffmann, Edelkamp, Thiébaux, Englert,
dos S. Liporace, & Trüg, 2006). In contrast to the IPC benchmark, our formalism allows us
to model numeric nonlinear power flows as well as capacity and voltage constraints, which
is an essential requirement to make the model realistic.

The network is a graph 〈B,L〉 whose nodes are buses i ∈ B and edges (i, j) ∈ L, i < j
are power lines equipped with switches that, when open, disable the edge. A subset of buses
(G) are generators, which supply the network with power. A bus is fed iff there is a path
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State variables: Domain
(primary) posi {A,B, 1, 2, 3, in-hand} for i ∈ {A,B}
(primary) ini {1, 2, 3, none} for i ∈ {A,B}
(primary) cleari {true, false} for i ∈ {A,B, 1, 2, 3}
(primary) holding {A,B, none}
(secondary) pi,k R for i ∈ {A,B}, k ∈ {1, 2, 3}
(secondary) pk, hk, fk R for k ∈ {1, 2, 3}

Actions:

pickup(i, k) for i ∈ {A,B}, k ∈ {1, 2, 3}
pre: (posi = k ∧ ini = k ∧ cleari = true ∧ holding = none, ∅)
eff: posi := in-hand, ini := none, cleari := false, cleark := true, holding = i

putdown(i, k) for i ∈ {A,B}, k ∈ {1, 2, 3}
pre: (posi = in-hand ∧ ini = none ∧ cleark = true ∧ holding = i, ∅)
eff: posi := k, ini := k, cleari := true, cleark := false, holding := none

unstack(i, j, k) for i, j ∈ {A,B}, i 6= j, k ∈ {1, 2, 3}
pre: (posi = j ∧ ini = k ∧ cleari = true ∧ holding = none, ∅)
eff: posi := in-hand, ini := none, cleari := false, clearj := true, holding := i

stack(i, j, k) for i, j ∈ {A,B}, i 6= j, k ∈ {1, 2, 3}
pre: (posi = in-hand ∧ ini = none ∧ inj = k ∧ clearj = true ∧ holding = i, ∅)
eff: posi := j, ini := k, cleari := true, clearj := false, holding := none

Invariant constraints:
0 ≤ h1 ≤ 2 0 ≤ h2 ≤ 2 0 ≤ h3 ≤ 2 (a)

inA 6= 1→ pA,1 = 0 inA 6= 2→ pA,2 = 0 inA 6= 3→ pA,3 = 0 (b.i)
inB 6= 1→ pB,1 = 0 inB 6= 2→ pB,2 = 0 inB 6= 3→ pB,3 = 0
inA = 1→ pA,1 = 1 inA = 2→ pA,2 = 1 inA = 3→ pA,3 = 1 (b.ii)
inB = 1→ pB,1 = 2 inB = 2→ pB,2 = 2 inB = 3→ pB,3 = 2

p1 = pA,1 + pB,1 p2 = pA,2 + pB,2 p3 = pA,3 + pB,3 (b.ii)
0 ≤ pA,1 ≤ 1 0 ≤ pA,2 ≤ 1 0 ≤ pA,3 ≤ 1 (b.iv)
0 ≤ pB,1 ≤ 2 0 ≤ pB,2 ≤ 2 0 ≤ pB,3 ≤ 2
1h1 + 2h2 + 3h3 = 4 (c)
f1 = p1 + 1h1 f2 = p2 + 2h2 f3 = p3 + 3h3 (d)
f1/1 = f2/2 = f3/3 (e)

Initial state: posA = 1, posB = 2, inA = 1, inB = 2, clearA = true, clearB = true,
clear1 = false, clear2 = false, clear3 = true, holding = none

Goal: (posB = A, ∅)

Figure 2: Formal description of the Hydraulic Blocksworld problem shown in Figure 1. Note
that in this domain, the secondary part of all actions’ preconditions and the goal
is empty. Parameters are wA = 1, wB = 2, a1 = 1, a2 = 2, a3 = 3, l1 = 2, l2 = 2,
l3 = 2, v = 4 and ρ = 1.
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(of lines with closed switches) to it from a generator bus. In this case, its entire load must
be supplied. Being fed is modelled by a secondary variable fi ∈ {0, 1} for each bus i ∈ B.

We model an alternating current (AC) network. This allows for a more realistic model,
but at the price of having non-linear equations governing the power flow. The simpler direct
current (DC) approximation yields a linear set of equations. In the AC model, electrical
quantities (power, voltage, etc) are complex, so we have to distinguish a real and imaginary
component of each variable. The imaginary component of power is known as reactive power.
Each bus supports constant real and reactive loads p̄Li and q̄Li, respectively. Each bus has
a variable voltage whose real and imaginary components are vRi and vIi. The square of the
voltage magnitude, v2

Ri+v2
Ii, at each bus is constrained to remain in an, often quite narrow,

interval around a nominal value. Each generator bus i ∈ G supplies a variable amount
of real and reactive power, pGi and qGi, to the network. The generators have capacity
constraints that limit maximum real and reactive power output. In the PSR problem, we
also distinguish a subset F of faulty buses.

Each line (i, j) is characterised by a constant admittance, whose real and imaginary
components are the conductance ḡij and susceptance b̄ij , respectively. The real and reactive
power flows on each line need to be modelled in both directions, leading to 4 variables: pFij
and qFij for the real and reactive power flows from i to j, and pT ij and qTij for the flows
in the reverse direction. This is because, due to line losses, pFij 6= −pT ij and qFij 6= −qT ij .
Lines have thermal limits that constrain the apparent power flow in both directions; this
means that both p2

Fij + q2
Fij and p2

T ij + q2
T ij are bounded above.

The only primary variables are the line switch positions yij . Opening/closing a switch
toggles yij between false (open) and true (closed). The planner also controls each generator’s
power output. Rather than using explicit actions, we model this using the freedom our
formalism gives the planner to assign the underconstrained secondary variables pGi and
qGi, which represent the active and reactive power produced at generator bus i ∈ G. There
can be multiple solutions to the active state constraints.

There are three main types of invariant constraints (Thiébaux, Coffrin, Hijazi, & Slaney,
2013). The first define the line power flows, as a function of the voltages and admittances.
Of course open lines have no flow, hence the following switched constraints for all (i, j) ∈ L:

yij = true → pFij = ḡij(v
2
Ri + v2

Ii)− ḡij(vRivRj + vIivIj)− b̄ij(vIivRj − vRivIj) (psr.a.i)

yij = true → pT ij = ḡij(v
2
Rj + v2

Ij)− ḡij(vRjvRi + vIjvIi)− b̄ij(vIjvRi − vRjvIi) (psr.a.ii)

yij = true → qFij = b̄ij(v
2
Ri + v2

Ii) + b̄ij(vRivRj + vIivIj)− ḡij(vIivRj − vRivIj) (psr.a.iii)

yij = true → qT ij = b̄ij(v
2
Rj + v2

Ij) + b̄ij(vRjvRi + vIjvIi)− ḡij(vIjvRi − vRjvIi) (psr.a.iv)

yij = false → pFij = qFij = pT ij = qT ij = 0 (psr.a.v)

Constraints of the second type encode the flow propagation through the network using
Kirchhoff’s Law (flow conservation at the buses (psr.b.i-psr.b.ii)) whilst enforcing that no
faulty bus (i ∈ F) is fed (psr.c.i), that non-faulty generator buses (i ∈ G \ F) are fed
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(psr.c.ii), and that connected buses have the same fed status (psr.c.iii).

pGi − fip̄Li −
∑

j:(i,j)∈L

pFij +
∑

j:(j,i)∈L

pTji = 0 i ∈ B (psr.b.i)

qGi − fiq̄Li −
∑

j:(i,j)∈L

qFij +
∑

j:(j,i)∈L

qTji = 0 i ∈ B (psr.b.ii)

fi = 0 i ∈ F (psr.c.i)

fi = 1 i ∈ G \ F (psr.c.ii)

yij = true →fi = fj (i, j) ∈ L (psr.c.iii)

Finally, the following constraints encode limits on generation (psr.d.i-psr.d.ii), voltage
magnitude (psr.e), and apparent power (psr.f.i-psr.f.ii).

0 ≤pGi ≤ P̄Gi i ∈ G (psr.d.i)

q̄Gi ≤qGi ≤ Q̄Gi i ∈ G (psr.d.ii)

v̄2
i ≤v2

Ri + v2
Ii ≤ V̄ 2

i i ∈ G (psr.e)

p2
Fij + q2

Fij ≤ s̄2
ij (i, j) ∈ L (psr.f.i)

p2
T ij + q2

T ij ≤ s̄2
ij (i, j) ∈ L (psr.f.ii)

A restoration plan is a sequence of switching operations, each changing the value of
one variable yij . One objective is to resupply as much load as possible as fast as possible:
if we plot the power supplied as a function of time (plan steps), the objective function
that we wish to maximise is the area under this curve (Thiébaux et al., 2013). Unlike
typical planning objectives (e.g., cost or makespan), this value can be strongly affected by
reordering independent actions. Another objective is to minimise the deviation from the
standard (pre-fault) network configuration. Both objectives can be expressed as a sum of
state-dependent action costs. However, minimising plan length is a reasonable proxy, at
least for the latter objective, and is much easier for planners to do. In this paper, we
consider only this variant.

3.3 Multi-commodity Linehaul Transportation

Logistics problems have long been a staple planning benchmark. Our third example domain
models a real-world multi-commodity transportation problem (Kilby, Abio, Guimarans,
Harabor, Haslum, Mayer-Eichberger, Siddiqui, Thiébaux, & Urli, 2015).

Goods, of different types, need to be transported from a depot to customer locations,
1, . . . , m̄. As a convention, we label the depot location 0. Dij , i, j ∈ {0, . . . , m̄} is the
distance, along the road network, between locations i and j. Each customer i has a demand
q̄gi for good type g. Transportation is done with a fleet of n̄ trucks. Each truck k has a
set Ḡk of goods types that it can carry, a capacity p̄k, and a per-kilometer cost c̄k. In the
problems we encounter, there are usually several trucks of the same type, i.e., with identical
parameters. Also, there are only two goods types: ambient and chilled. Refrigerated trucks
can carry both types, while non-refrigerated trucks can only carry ambient temperature
goods. All trucks start at the depot and must return to the depot at the end of the plan, as
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well as meet all customer demands. Because of time constraints, each truck can only make
one tour (from depot to customers and back) in a plan.

In our model of this problem, all reasoning about goods delivery is done in the secondary
model. Primary state variables are lock for each truck k, with domain {0, 0?, . . . , m̄},
representing the current location of the truck (0 means the truck has not yet left the depot,
while 0? means it has returned to the depot). In addition, a Boolean variable visitedk,i
keeps track of whether truck k has visited location i. The only action is drive(k, i, j), with
precondition lock = i, effect lock = j and visitedk,j = true, and cost c̄k ·Di,j .

For each truck k, customer location i, and goods type g ∈ {am, ch}, a secondary variable
dgk,i represents the amount of goods type g that truck k delivers to customer i. The following
constraints ensure that trucks deliver only to locations that they visit, and that type and
capacity restrictions are met:

visitk,i = false → dgk,i = 0 k = 1, . . . , n̄, i = 1, . . . , m̄, (lh.a)

g ∈ {am, ch} ∑
i=1,...,m̄,g∈{am,ch}

dgk,i

 ≤ p̄k k = 1, . . . , n̄ (lh.b)

The goal of meeting customer demands is expressed by a secondary goal constraint: ∑
k:g∈Ḡk

dgk,i

 = qgi i = 1, . . . , m̄, g ∈ {am, ch} (lh.c)

Demand and capacity values are integer, and for every problem instance there is a finite
maximum. Hence, this problem can also be modelled as a classical planning problem, using
only finite-domain variables. We explore the relative performance of our formulation and a
purely classical formulation in Section 7.6.

3.4 The Counters Domain

The counters domain was invented by Francès and Geffner (2015), as a simple example to
illustrate one of the flaws of heuristics based on delete relaxation (also called monotonic
relaxation, cf. Section 5). They introduce state constraints into the construction of the
relaxation to overcome it. We show how this domain can be modelled in our formalism,
and later, in Sections 5.5 and 7.6, that this model also leads to a relaxation that is as
powerful as that proposed by Francès and Geffner.

The domain features n̄ counters, X1, . . . , Xn̄, each ranging over integers 0, . . . , m̄. Ac-
tions inc(i) and dec(i) increment and decrement, respectively, counter i by 1. Initial values
of the counters can be all zero, all maximum, or random. The goal is X1 < X2 ∧ X2 <
X3 ∧ . . . ∧Xn̄−1 < Xn̄.

The failure of delete relaxation that this problem demonstrates is that it evaluates each
goal conjunct in isolation. For example, if, in a relaxed state, the value of each of counters
X1, X2 and X3 is in {0, 1}, subgoals X1 < X2 and X2 < X3 are both satisfiable, but the
conjunction of them is not.
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In our model, primary state variables are m̄ propositional variables, pi,j , for each counter
i and j = 1, . . . , m̄. The model represents Xi = k with pi,j = true for j = 1, . . . , k and
pi,j = false for j = k + 1, . . . , m̄. Formulating the actions to maintain this representation
is straightforward. Because we do not use conditional effects we need a separate action for
each counter value. For example, action inc(i, j) (with j > 0), which increments counter i
from j − 1 to j, has primary precondition pi,j−1 = true (except if j = 1) and pi,j = false,
and effect pi,j = true. Each counter is also represented by a secondary variable, xi. The
following invariant constraints ensure that the primary and secondary representations agree:

pi,j = true → xi ≥ j i = 1, . . . , n̄, j = 1, . . . , m̄ (counters.i)

pi,j = false → xi ≤ j − 1 (counters.ii)

0 ≤ xi ≤ m̄ i = 1, . . . , n̄ (counters.iii)

For example, if pi,1 = true and pi,2 = false, (counters.i) and (counters.ii) force 1 ≤
xi ≤ 2 − 1, i.e., xi = 1. Constraint (counters.iii) ensures that xi = 0 when pi,1 = false
and that xi = m̄ when pi,m̄ = true. The goal is expressed on the secondary variables. To
account for the fact that counter values are integer, we write the subgoals as xi+1 ≤ xi+1.

4. Expressivity

We now return to the question whether the formalism with state constraints is more ex-
pressive than classical planning, and the complexity of solving problems expressed in it.

Our first observation is that the secondary part of any partitioned condition can be
compiled into the primary part, albeit not necessarily into a simple formula over the primary
variables.

Proposition 9. Let (ϕP , ϕS) be a partitioned condition. There is a formula F(ϕS) over
VP such that for every state s, s(ϕP ∧ F(ϕS)) = true if and only if (ϕP , ϕS) holds in s.

Proof. Let Models(ϕS) = {s |CP (s) ∪ ϕS ∪ Cinv is satisfiable }. (ϕP , ϕS) holds in state
s if and only if s(ϕP ) = true and s ∈ Models(ϕS) (by Definition 3). Since states are
assignments of values to the primary state variables, each of which has a finite domain of
values (Definition 1), the set of possible states is finite (though exponentially large) and
hence so is Models(ϕS). Thus, there exists a finite-sized formula, F(ϕS), over VP , that is
true exactly in the states Models(ϕS). This formula may be written simply as a disjunction
of conjunctions of variable–value equalities each defining a complete state in Models(ϕS),
but more compact forms may also exist. Then ϕP ∧ F(ϕS) characterises exactly the states
in which (ϕP , ϕS) holds.

Thus, secondary conditions can be eliminated from action preconditions and the goal. This
may introduce disjunctive (primary) conditions, but these can be compiled away follow-
ing standard procedures (Nebel, 2000). But what of the invariant constraints? A formula
F(Cinv) that characterises valid states in terms of the primary variables only can be con-
structed as in the proof of Proposition 9. Adding F(Cinv) to all action preconditions and
to the goal ensures that a plan visits only valid states: each state except the last must be
valid for the next action to be applicable, and the final state must be valid to satisfy the
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goal. Hence, our formalism can be reduced to classical planning. The compilation given
in the proof of Proposition 9 increases problem size exponentially. The proposition does
not, however, prove that a more space-efficient compilation is not possible. Proposition 10
below, answers this question.

Recall that although in this paper we focus on switched constraints over real-valued
secondary variables, our approach to extending classical planning with state constraints,
as defined in Section 2, is independent of the constraint language. Proposition 9 holds no
matter what kinds of secondary variables and constraints over them appear in the problem.
This also implies that, independently of the size of the problem that results from compiling
away state constraints, we cannot upper-bound the time complexity of performing the
compilation, since it depends on the complexity of checking if a set of constraints are
satisfiable in a given state. Depending on the constraint language, this may be tractable,
NP-hard or worse, or not even be decidable. (Proposition 9 states that the formula F(ϕS)
exists, not that it is computable.)

Our second observation is that we can encode complex conditions over the primary vari-
ables into secondary constraints, provided the constraint language is sufficiently expressive.
In particular, within the formalism of linear switched constraints over real-valued secondary
variables we can formulate action preconditions and goals that are equivalent to general for-
mulas over the primary variables. Thus, the restriction that primary conditions are simple
(conjunctions of variable–value equalities or inequalities) is not a true restriction on the
expressivity of the formalism.

Proposition 10. Let ϕ be any formula over the primary variables VP . There exists a set
of linear switched constraints C such that for every state s, CP (s) ∪ C is satisfiable if and
only if s(ϕ) = true. Moreover, the size of C is polynomial in the size of ϕ.

Proof. Without loss of generality we can assume ϕ to be in negation normal form, since
translation to this form does not increase the size of the formula more than polynomially.

We will introduce a secondary variable 0 ≤ pψ ≤ 1 for every subformula ψ of ϕ, along
with a set of constraints C ′ such that

{pψ > 0} ∪ C ′ ∪ CP (s) is satisfiable if only if s(ψ) = true. (?)

The constraint set C claimed by the proposition is then given by C = {pϕ > 0} ∪ C ′. The
construction of C ′ is as follows:

• For each atomic subformula of the form v = e, C ′ contains the two switched con-
straints v = e→ pv=e = 1 and v 6= e→ pv=e = 0.

• For each atomic subformula of the form v 6= e, C ′ contains the two switched con-
straints v 6= e→ pv 6=e = 1 and v = e→ pv 6=e = 0.

• For each conjunctive subformula ψ = χ1 ∧ . . . ∧ χk, C ′ contains the constraints
pψ ≤ pχ1 , . . . , pψ ≤ pχk

.

• For each disjunctive subformula ψ = χ1 ∨ . . . ∨ χk, C ′ contains the constraint pψ ≤
pχ1 + . . .+ pχk

.
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(The construction has some resemblance with well-known encodings of propositional logic
into integer linear programs. Note, however, that the secondary variables here are real, not
integer.) Both the number of constraints in C ′ and the number of terms in any expression
that appears in one of them is bounded by a constant times the number of subformulas of
ϕ, so the size of C is polynomial in that of ϕ. It remains to show that C ′ has property (?).

For the “if” part, let s be an arbitrary state and extend s to an assignment σ over primary
variables and the secondary variables mentioned in C ′ by setting σ(pψ) = 1 if s(ψ) = true
and σ(pψ) = 0 if s(ψ) = false for each subformula ψ. We will show that σ satisfies every
constraint in C ′. Thus, this assignment is a witness to the fact that {σ(pψ) > 0}∪C ′∪CP (s)
is satisfiable if s(ψ) = true.

If σ(v = e) = true the constraint v = e→ pv=e = 1 is satisfied because σ(pv=e) = 1 (by
construction) and the constraint v 6= e → pv=e = 0 is satisfied because σ(v 6= e) = false;
if σ(v = e) = false it is the other way around. Constraints v 6= e → pv 6=e = 1 and
v = e → pv 6=e = 0 are analogous. The constraints pψ ≤ pχ1 , . . . , pψ ≤ pχk

created for a
conjunction ψ = χ1 ∧ . . . ∧ χk are satisfied because σ(pψ) = 1 only if σ(ψ) = true only if
σ(χi) = true for each conjunct χi, in which case σ(pχi) = 1; when σ(pψ) = 0 the constraints
are satisfied because all the indicator variables are bounded and must be greater than or
equal to zero. Similarly, the constraint pψ ≤ pχ1 + . . . + pχk

created for a disjunction is
satisfied because σ(pψ) = 1 only if σ(ψ) = true only if σ(χi) = true for at least one disjunct
χi, in which case σ(pχi) = 1 which makes also the sum at least 1, and if σ(pψ) = 0 because
zero also lower-bounds the sum.

For the “only if” part, we proceed by a structural induction. As the first base case,
consider an atomic subformula of the form v = e, and a state s such that s(v = e) = false.
Then {σ(pv=e) > 0} ∪ C ′ ∪ CP (s) contains {v = e′, v 6= e → pv=e = 0, pv=e > 0}, for some
e′ 6= e, which is clearly not satisfiable. The second base case, an atomic subformula of the
form v 6= e, is analogous.

Consider a conjunctive formula, ψ = χ1 ∧ . . . ∧ χk. If s(ψ) = false then s(χi) = false
for at least one conjunct χi. By inductive assumption, this implies {pχi > 0} ∪ C ′ ∪ CP (s)
is unsatisfiable. Since C ′ contains pψ ≤ pχi , pψ > 0 implies pχi > 0 in any model for C ′,
which means that {pψ > 0} ∪ C ′ ∪ CP (s) is also unsatisfiable.

Finally, consider a disjunctive formula, ψ = χ1 ∨ . . . ∨ χk. If s(ψ) = false then s(χi) =
false for every disjunct χi. By inductive assumption, this implies {pχi > 0} ∪ C ′ ∪ CP (s)
is unsatisfiable. Thus, the sum pχ1 + . . .+ pχk

also cannot be greater than zero (since that
would imply one of its parts is), and thus {pψ > 0} ∪ C ′ ∪ CP (s) is also unsatisfiable.

Nebel (2000) analysed the complexity of compilations between classical planning formalisms
spanning from (propositional) ADL to (propositional) STRIPS. Two of the implications of
his results are that compiling away general Boolean formulas (in action preconditions and
the goal) requires either a worst-case exponential increase in the size of the problem, or a
super-linear (but still polynomial) increase in plan length. This, together with Proposition
10, implies that extending classical planning with state constraints increases expressivity, in
the following sense: If the constraint language is sufficiently expressive to compactly encode
arbitrary action preconditions and goals over the primary variables – and linear switched
constraints are, as shown by Proposition 10 – then compiling away those constraints must
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require at least the same worst-case complexity as compiling away those pre- and goal
conditions.

5. Relaxations of Planning with State Constraints

To derive admissible heuristics to guide search for optimal plans, we draw on the well-
known idea of optimal relaxed planning. We explore two kinds of relaxations: one is based
on the monotone (also known as “value accumulating”) relaxation that generalises the
delete relaxation to non-propositional state variables (Gregory et al., 2012; Domshlak &
Nazarenko, 2013), and the other on a form of abstraction, namely projection. In both we
have relaxed states, which can be viewed as representing sets of assignments to the primary
state variables. The key question is how to evaluate conditions on secondary variables in
a relaxed state. Our approach is to treat this as a question of consistency, which can be
delegated to an appropriate external solver.

From the monotone relaxation, we obtain analogues of the classical hmax and h+ heuris-
tics for our extended planning formalism. To compute h+, we use the landmark-based
algorithm of Haslum, Slaney and Thiébaux (2012). By changing the algorithm slightly, we
can also get an analogue of the LM-Cut heuristic (Helmert & Domshlak, 2009), although
it is not likely to achieve the same advantageous trade-off between computational cost and
accuracy that LM-Cut does compared to h+ in the classical case (cf. Section 5.3.2). From
abstraction we obtain pattern database (PDB) heuristics (Edelkamp, 2001). PDBs are a
building block that can be used in additive ensembles (Haslum, Bonet, & Geffner, 2005) or
on-line optimisation (Pommerening, Röger, & Helmert, 2013) to obtain better admissible
heuristics. Where it is necessary to distinguish these from the classical versions, we refer
to these heuristics as constraint-aware, because they are based on relaxations that take the
state constraints into account. However, when we say hmax, h+, etc, in the context of a
domain formulation with state constraints, it is implied that we mean the constraint-aware
version.

5.1 The Monotone Relaxation of Classical Planning

Several researchers (e.g., Gregory et al., 2012; Domshlak & Nazarenko, 2013) have noted
that the delete relaxation of propositional planning can also be characterised as planning
with a value accumulating interpretation of action effects, instead of the usual value assign-
ment semantics: each state variable, v, in a relaxed state has a set of values instead of just
one value, and applying an action effect v := e adds the new value, e, to the set, without
removing any existing value.

Definition 11. Let VP be the set of primary state variables, and for each variable v ∈ VP ,
D(v) the domain of v, i.e., its set of possible values. A relaxed state, s+, is a mapping from
VP to sets of values such that s+(v) ⊆ D(v) for all v ∈ VP .

The relaxed application of an action a to s+ results in a state t+ = apply+(a, s+) such
that t+(v) = s+(v) ∪ {e} if v := e ∈ eff(a) and t+(v) = s+(v) otherwise.

A relaxed state s+ represents a set of states, namely those obtainable by assigning each
variable vi one value from its value set s+(vi):

states(s+) = {{v1 = x1, . . . , vn = xn} | ∀i : xi ∈ s+(vi)}
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The value-set semantics extends to logical formulas. Intuitively, given a formula ϕ, s+(ϕ)
denotes the set of values that ϕ can take in relaxed state s+.

Definition 12. s+(ϕ) = {s(ϕ) | s ∈ states(s+)}

In other words, true ∈ s+(ϕ) if and only there exists a state s ∈ states(s+) such that
s(ϕ) = true (and analogously for false).

Determining the truth value of a general formula in a relaxed state according to Defini-
tion 12 is equivalent to deciding satisfiability of the formula conjoined with the restriction
on variable values imposed by the relaxed state, and hence potentially intractable. In one
special case, however, efficient evaluation is possible: Recall that a simple formula is a con-
junction of variable–value equalities or inequalities, without repeated variables. Because
each conjunct in a simple formula mentions only one state variable, and is the only part of
the formula to mention that variable, their satisfiability in the relaxed state can be evalu-
ated independently (Francès & Geffner, 2015). However, as also observed by Francès and
Geffner (2015), this is not true in general: evaluating conjuncts of a non-simple formula
independently results in an overapproximation of the set of possible truth values.

The relaxed planning problem is defined by replacing s(ϕ) = true with true ∈ s+(ϕ), i.e.,
actions’ preconditions and the goal only need to be possibly true, and replacing the normal
(value-assigning) definition of action effects with the relaxed (value-accumulating) one. Any
plan for the original problem is also a plan under the relaxed semantics; hence the minimum
relaxed plan cost is a lower bound on minimum real plan cost. Furthermore, it is never
required to apply any action more than once in a relaxed plan, which bounds the length
of optimal relaxed plans by the number of actions, and, when pre- and goal conditions are
simple, makes relaxed plan existence decidable in polynomial time. Computing the optimal
relaxed plan cost, however, is NP-hard (Bylander, 1994).

5.2 Monotone Relaxation of Planning with State Constraints

Adapting the monotone relaxation to our extended formalism requires only resolving how
to determine whether a secondary condition (action precondition or goal) holds in a re-
laxed state, and whether a relaxed state is valid. Our solution to this question is a natural
extension of our handling of state constraints in non-relaxed planning, and of the relaxed
evaluation of primary conditions in relaxed states: a set of state constraints C holds in
a relaxed state s+ if it is consistent with the restrictions on the primary variable assign-
ment imposed by s+. However, since state constraints can express non-simple conditions,
solving this consistency question exactly is NP-hard in general. In Section 5.5, we define
two successively weaker relaxations, which are solvable in polynomial time (assuming that
consistency of secondary constraints is tractable). Because of this, we will also refer to the
relaxation defined here as “strong”.

Recall that CP (s) denotes a set of constraints (variable–value equalities) that specify
the state s exactly, i.e., such that CP (s) is satisfied in s and not in any other state. In
the same way, a set of constraints can specify a relaxed state. The only difference is that
where a variable has several possible values, these constraints are disjunctions. That is,
the characteristic constraint set of a relaxed state s+ is {

∨
x∈s+(v) v = x | v ∈ VP }, (or,

equivalently, {v ∈ s+(v) | v ∈ VP }). We denote this as well with CP (s+). As we mentioned
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in Section 2, this leads to a natural generalisation of when a partitioned condition holds in
a state (Definition 3) to when it holds in a relaxed state:

Definition 13. Let s+ be a relaxed state. A partitioned condition (ϕP , ϕS) holds in s+

according to the strong relaxation iff {ϕP } ∪ CP (s+) ∪ ϕS ∪ Cinv is satisfiable.

Note that while item (ii) of Definition 3 required only satisfiability of CP (s) ∪ ϕS ∪ Cinv,
the above definition requires that this is jointly satisfiable with the primary part of the
condition, ϕP . In a relaxed state s+ there can be a choice of values for state variables;
thus, requiring that this choice satisfies ϕP can constrain the values, which can affect the
satisfiability of CP (s+)∪ϕS∪Cinv. In a non-relaxed state, on the other hand, which assigns a
single value to each variable, the simple formula ϕP is satisfiable if and only if it evaluates to
true, so requiring that it is true cannot constrain the state. This is also why true ∈ s+(ϕP ),
the equivalent of item (i) in Definition 3 is omitted from the definition above. It is implied
by the requirement that {ϕP } ∪ CP (s+) is satisfiable.

We define the (strong) monotone relaxation of a planning problem with state constraints
by replacing states and action application with their relaxed counterparts (Definition 11)
and condition evaluation with relaxed evaluation (Definition 13).

Analogously to the classical planning relaxation, a set of constraints that is satisfiable
in a relaxed state s+ remains satisfiable in any relaxed state reachable from s+ by relaxed
application of action effects (i.e., “true conditions remain true”). Hence, this relaxation
keeps the properties that a plan for the original problem is also a plan for the relaxation
(thus optimal relaxed plan cost is a lower bound on optimal real plan cost) and that no
action needs to be applied more than once in a relaxed plan.

5.3 Deriving Heuristics from the Monotone Relaxation

The monotonicity property of the relaxation means that we can build a relaxed planning
graph, following the same procedure as in classical planning (Hoffmann, 2000). Fact layers
are relaxed states. Each action layer includes all actions that are allowed in the preceding
relaxed state and that have not appeared in any previous action layer. An action a is
allowed in a relaxed state s+ iff (i) (pre(a)P ,pre(a)S) holds in s+ and (ii) (eff(a), ∅) holds in
apply+(a, s+). The second part ensures that the action’s effects, considered by themselves,
do not lead to an invalid state. Note that just as in the classical relaxed planning graph, we
make an independence assumption in that the allowedness of each action is tested separately
from other actions in the same layer. The next fact layer is the relaxed state that results from
applying the effects of all actions in the current layer. (There is no need for explicit no-ops,
since previously achieved values remain under the value accumulating semantics.) Graph
construction stops when the goal holds in the last relaxed state, or when two consecutive
relaxed states are the same, indicating that all reachable variable values have been achieved.

The relaxed planning graph construction provides a basis for computing several admis-
sible heuristics. First, it provides a yes/no decision procedure for relaxed plan existence: If
it ends with a final relaxed state in which the goal does not hold, the goal is not relaxed
reachable. Equipped with this test, we can compute the optimal relaxed plan heuristic, i.e.,
constraint-aware h+, using the iterative landmark algorithm (described below). Second, the
number of action layers added before the goal condition holds is a lower bound on optimal
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plan length. A lower bound on plan cost can be obtained by indexing fact layers of the re-
laxed planning graph by accumulated cost, rather than depth. We define this lower bound
to be the constraint-aware hmax heuristic. (In the classical setting, the hmax heuristic is
defined as the greatest fixpoint of the relaxation’s Bellman equation, which can be shown
to be equivalent to the heuristic computed by the (cost-sensitive) relaxed plan graph con-
struction (Haslum, 2009). However, we have not formulated an equational definition of the
hmax heuristic for the formalism with state constraints.)

Although the size of the graph is polynomial (in the size of the planning problem), its
construction is not necessarily tractable since deciding if a partitioned condition holds in
relaxed state, according to Definition 13, may require solving an NP-hard constraint satis-
faction problem. (This is true even if all state constraints are linear switched constraints,
because Definition 13 asks for an assignment to the discrete primary variables that are
under-constrained by the relaxed state.) In Section 5.5 we define two weaker relaxations,
by replacing the exact satisfiability test of Definition 13 with weaker, i.e., overapproxi-
mating, conditions, which are decidable in polynomial time (assuming that consistency of
secondary constraints is tractable). This makes the relaxed planning graph construction
tractable.

5.3.1 Computing h+

A disjunctive action landmark (“landmark” for short; Karpas & Domshlak, 2009) is a set
of actions at least one of which must appear in every relaxed plan; hence, a relaxed plan is
a hitting set over any collection of landmarks. The iterative landmark algorithm (Haslum
et al., 2012) exploits this by formulating relaxed plan computation as an incremental hitting
set problem. Given a set of landmarks, L, it finds a minimum-cost hitting set H of actions.
If H is a relaxed plan, it is optimal (because every relaxed plan must hit all landmarks in
L, and none can do this at less cost than H). If not, the algorithm generates a new minimal
landmark l′ disjoint from H, adds l′ to the collection L and repeats the process. Generating
the new landmark l′ is done by extending H to an inclusion-maximal set of actions H ′ that
is not sufficient to make the goal relaxed-reachable, then taking l′ = (A − H ′). Since the
actions in H ′ alone are not sufficient to make the goal relaxed-reachable, any relaxed plan
must include at least one action not in H ′; thus (A−H ′) is a landmark. Computing H ′ is
done by iteratively adding actions to the set and testing if it has become a relaxed plan; if
so, the last action added is removed again (it will be in the landmark).

Because this algorithm interfaces with the planning formalism only through a relaxed
reachability test (is the goal relaxed-reachable from the initial state using a given subset of
actions?), which we can perform as explained above, and because our relaxation, like the
classical delete-relaxation, does not require any action more than once in an optimal relaxed
plan, we can apply this algorithm to compute h+ also for problems with state constraints.
Haslum, Slaney and Thiébaux (2012) propose several modifications to the basic algorithm,
which serve mainly to reduce the number of optimal hitting set problems that need to be
solved, at the expense of increasing the number of relaxed reachability tests. Although
these modifications are applicable also in our setting, they do not lead to faster heuristic
computation because the runtime for relaxed reachability testing relative to that of the
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hitting set solver is much higher. Also unlike Haslum, Slaney and Thiébaux we use an
integer programming solver (Gurobi Optimization Inc., 2016) to find optimal hitting sets.

When computing h+ for each state, we can use information from the parent state to
speed up the iterative landmark algorithm. Let s be a state, L(s) the set of landmarks
computed for s, and s′ = apply(a, s) the state resulting from applying action a in s. Then
each element of {l ∈ L(s) | a 6∈ l} is also a landmark for s′. Thus, we can start the
algorithm with this collection of landmarks, instead of an empty set. This reduces the
number of iterations, and hence the number of relaxed reachability tests substantially. A
similar technique was used by Pommerening and Helmert (2012) for the LM-Cut heuristic.

5.3.2 Computing LM-Cut

There is a close relationship between the iterative landmark algorithm and the LM-Cut
heuristic (Helmert & Domshlak, 2009), as observed already by Bonet and Helmert (2010).
The LM-Cut heuristic also iteratively computes disjunctive action landmarks, and the
heuristic value is a lower bound on the cost of hitting every landmark in the computed
set. However, the landmarks computed by LM-Cut are disjoint. This makes the optimal
hitting set problem trivial, since it reduces to finding the least cost element in each set.
(The heuristic deals with non-unit action costs by subtracting the least action cost in the
landmark from the cost of the others, in a sense “partially hitting” the more costly actions.)
As a consequence, LM-Cut is dominated (i.e., upper-bounded) by h+. On the other hand,
in the classical setting, LM-Cut is computable in polynomial time, and in practice strikes a
compromise between computation time and heuristic accuracy that is for the vast majority
of problems more effective than using h+.

The iterated landmark algorithm can be restricted to finding a set of disjoint landmarks
by initialising the set H ′ with the union of all landmarks found so far, rather than a hitting
set over them. This emulates one aspect of the behaviour of LM-Cut. However, the LM-
Cut heuristic, as originally proposed by Helmert and Domshlak (2009), uses a different
procedure to compute each landmark. This procedure exploits the explicit causal structure
of a propositional planning problem, in the form of a so-called “justification graph”, and has
a time complexity that is linear in the number of actions, whereas the time complexity of the
landmark generation procedure used by Haslum, Slaney and Thiébaux (2012) is quadratic
in the number of actions.

It is not obvious how, or even if, an equivalent of the justification graph-based procedure
can be constructed for planning problems with state constraints, since it requires pinpointing
which action is responsible for adding each proposition (at least cost). Thus, while we can
compute an admissible constraint-aware heuristic equivalent to LM-Cut, it is not clear if it
will have the same computation time–accuracy trade-off, relative to the optimal monotone
relaxation heuristic h+, as in the classical setting.

5.4 Abstraction of Planning with State Constraints

An abstraction maps the states of a planning problem into a smaller, abstract state space,
such that the existence of a path between two states in the original problem implies the
existence of a path of lower or equal cost between the corresponding abstract states. Thus,
optimal plan cost in the abstract space is a lower bound on optimal real plan cost. Ab-
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straction is the basis of planning heuristics such as merge-and-shrink (Helmert, Haslum,
Hoffmann, & Nissim, 2014). A projection is an abstraction in which all but a designated
subset of primary state variables are ignored. Thus, the abstract state space is defined as
the set of value assignments over the variables in this set. The set of kept variables is called
the pattern, and the heuristic obtained from this kind of abstraction is known as a pattern
database, or PDB (Culberson & Schaeffer, 1998; Edelkamp, 2001).

We define the projection of a planning problem with state constraints onto a subset of
primary state variables, B. Action preconditions and effects on primary state variables, and
the primary goal condition, in the abstract problem are obtained by ignoring any variable
not in B, just as in the classical case. For the state constraints, note that we can view an
abstract state sB as a relaxed state in which primary variables in B have a single value and
primary variables not in B have all possible values in their domain. That is,

states(sB) = {{x1 = v1, . . . , xn = vn} | vi = sB(xi) if xi ∈ B; else vi ∈ D(xi)}.

Thus, the truth value of a partitioned condition in an abstract state is determined in
exactly the same way as in any other relaxed state, according to Definition 13. That is,
a partitioned condition (ϕP , ϕS) holds in sB iff {ϕP } ∪ CP (sB) ∪ ϕS ∪ Cinv is satisfiable.
As mentioned in the context of the monotone relaxation above, this means that evaluating
a partitioned condition in an abstract state may require solving an NP-hard constraint
satisfaction problem. Either of the weaker but tractable satisfaction conditions described in
Section 5.5 below can be used in place of the condition of Definition 13 to make the abstract
evaluation tractable.

Note that all secondary variables are, in a sense, present in the abstraction. However,
heuristic values from abstractions onto effect-disjoint sets of primary variables can still be
admissibly added (Edelkamp, 2001). This is a consequence of the fact that the values of
the secondary variables are free, and are independently chosen in each abstraction to result
in a minimal cost abstract plan for that particular abstraction.

5.4.1 Computing PDB Heuristics

A PDB heuristic precomputes the optimal cost to reach the goal from every abstract state,
so that during search the heuristic value of a state can be found by looking up in a table the
value of the corresponding abstract state (Culberson & Schaeffer, 1998; Edelkamp, 2001).
This means that there is no computational overhead for handling state constraints in the
heuristic evaluation of search states, since the PDB abstracts primary states. (There is,
of course, an overhead in the precomputation phase, where the state constraints must be
considered.) This is one of the features that make PDB heuristics attractive in our setting.

In the classical setting, a PDB can be efficiently constructed by an exhaustive reverse
exploration from the (abstract) goal states, but this strategy is not easily adapted to prob-
lems with state constraints. For example, in many of the example domains presented in
Section 3, the goal condition is defined on the secondary model only. This means to even
identify the abstract goal states we need to enumerate the models of the set of constraints
over primary and secondary variables.

Instead, we adopt a two-stage PDB computation (Ivankovic & Haslum, 2015). The first
stage builds an explicit graph of the reachable abstract space, by forward exploration from
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the initial state; it also identifies which of the reachable abstract states are goal states. The
second stage computes the optimal cost-to-goal for each abstract state present in this graph.
This is done by a reverse exploration, starting from the goal states, like in the classical
case. This two-stage procedure is more expensive than the classical PDB construction,
but still practical for projections that induce a small enough abstract state space. As
already mentioned, however, the overhead of handling state constraints is limited to the
PDB construction phase: once the PDB is built, state evaluation is done by a table lookup
and takes no more time than in a classical PDB heuristic. As we will see in the experimental
analysis (Section 7.5), this means that reducing the number of state evaluations has less
impact on total runtime when using constraint-aware PDB heuristics than when using the
h+ heuristic, which carries the overhead every time it is computed.

5.5 Tractable Relaxed Evaluation with State Constraints

As shown in Section 4, state constraints in any sufficiently expressive language can encode
non-simple formulas over the primary state variables. This, as we have seen above, implies
that deciding the truth of a partitioned condition in a relaxed or abstract state, where
primary state variables are only partially constrained, may require solving an NP-hard
constraint satisfaction problem.

There are several ways to deal with this problem: (1) We can simply accept it, and
invoke a complete constraint solver. Although it may take exponential time in the worst
case, the worst case does not always occur; depending on the specific form of the constraints
and the techniques employed in the solver, it can often be fast enough. We have previously
demonstrated in the context of planning with logical axioms that this can be effective for
some classes of problems (Ivankovic & Haslum, 2015). (2) We can apply a tractable, sound,
but incomplete, inference algorithm to the constraints. The relaxation is still sound as long
as we treat a constraint set as satisfiable unless it is proven inconsistent by the inference
algorithm. This is the approach taken by Francès and Geffner (2015) to dealing with
constraints over the primary variables in the monotone relaxation. (3) In a similar vein, we
can define a weaker, but tractable, condition for the relaxed satisfaction of constraints, and
thus a weakened relaxation. This is the approach we will take here: in the following two
subsections, we define two successively weaker but computationally cheaper conditions for
the satisfaction of a partitioned condition in a relaxed or abstract state. In principle, this
can also be viewed as using an incomplete inference method.

5.5.1 1st Weaker Relaxation

Once more, it is the syntactic form of switched constraints that allows us to separate
reasoning about the primary and secondary parts of the model. In the relaxed case, however,
this separated satisfaction condition is not equivalent to the full consistency test (Definition
13) but induces a further relaxation. Before we can define this relaxation, two technical
definitions are needed.

Definition 14. Let s+ be a relaxed state and C a set of switched constraints. The relaxed
active set of C in s+ is

active+(C, s+) = {γ | ϕ→ γ ∈ C, false 6∈ s+(ϕ)}.
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In other words, a switched constraint ϕ→ γ is active in a relaxed state only if false is not
a possible value for the triggering condition ϕ in s+; i.e., ϕ must be true.

Definition 15. Let s+ be a relaxed state and ϕ a simple formula (i.e., a conjunction of
variable–value equalities or inequalities without repeated variables) over the primary vari-
ables VP such that true ∈ s+(ϕ). s+|ϕ, called s+ conditioned on ϕ, is the relaxed state
defined by

(s+|ϕ)(v) = {e} if v = e in ϕ

(s+|ϕ)(v) = s+(v) \ {e} if v 6= e in ϕ

(s+|ϕ)(v) = s+(v) otherwise

We define the 1st weaker relaxation by replacing the satisfaction condition for partitioned
conditions (Definition 13) with the following weaker condition:

Definition 16. Let s+ be a relaxed/abstract state. A partitioned condition (ϕP , ϕS) holds
in s+ according to the 1st weaker relaxation iff (i) true ∈ s+(ϕP ) and (ii) active+(ϕS ∪
Cinv, s

+|ϕP ) is satisfiable.

If the consistency of secondary constraints can be decided in polynomial time, so can this
condition. This is the case when, for example, secondary constraints are linear inequalities.
Note that we can apply the weaker satisfaction condition of Definition 16 in both the
monotone relaxation and abstractions. In both cases, it induces a further relaxation; that
is, any plan for the strong monotone relaxation (abstraction) of a planning problem with
state constraints is also a plan for the 1st weaker monotone relaxation (abstraction). Thus,
optimal plan cost in the weaker relaxations is also a lower bound on real optimal plan cost.

The reason why it is weaker is that the truth of the triggering conditions of switched
constraints are evaluated in independently. Consider, for example, constraints (hbw.b.i–
hbw.b.ii) from the Hydraulic Blocks World domain described in Section 3.1:

ini 6= k → pi,k = 0 (hbw.b.i)

ini = k → pi,k = w̄i (hbw.b.ii)

In the state depicted in Figure 1(a), inB = 2. Applying the relaxation of action pickup(B, 2)
results in a relaxed state with s+(inB) = {2, none}. The set of constraints {inB 6= 2 →
pB,2 = 0, inB = 2→ pB,2 = 2, inB ∈ {2, none}, pB,2 = 1} is not satisfiable, since s+ encodes a
discrete disjunction between inB = 2∧pB,2 = 2 and inB = none∧pB,2 = 0. However, because
false ∈ s+(inB = 2) and false ∈ s+(inB 6= 2), neither of the two switched constraints is active
in s+, leaving only constraint (hbw.b.iv): 0 ≤ pB,2 ≤ 2, which is consistent with pB,2 = 1.
(This also demonstrates why constraint (hbw.b.iv), which is redundant in the non-relaxed
problem, is useful in the relaxation: without it, pB,2 would be free to take any value in s+.)

Conditioning the relaxed state on the primary part of an action’s precondition, or its
effects when testing if the resulting relaxed state is valid, is a way to partially rectify
this, by asserting the variable–value equalities and inequalities that are known to be nec-
essarily true while evaluating the triggering conditions of switched constraints. For ex-
ample, to determine if the action stack(B,A, 1) is allowed in the relaxed state s+ in the
example above, we test the satisfiability of the invariant constraints that are active in
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the resulting state conditioned on this action’s effects. The action has, i.a., the effect
inB := 1, so in the resulting state t+ = apply+(stack(B,A, 1), s+), t+(inB) = {1, 2, none}.
However, (t+|eff(stack(B,A, 1)))(inB) = 1, activating constraints inB = 1 → pB,1 = 2,
inB 6= 2 → pB,2 = 0, etc., such that the resulting set of active secondary constraints is
unsatisfiable, proving that the plan pickup(B, 2), stack(B,A, 1) is not valid even in the re-
laxation of the problem.

5.5.2 2nd Weaker Relaxation

Although tractable, the 1st weaker relaxation can be still be too computationally expensive
to be the basis of a cost-effective search heuristic. It needs two secondary constraint con-
sistency checks to determine the applicability of an action in a relaxed state (one for the
action’s preconditions and one to determine if the successor relaxed state is allowed). Each
consistency check involves a call to an external solver, which is substantially more time-
consuming than evaluating a simple formula over the primary variables in a relaxed state.
A relaxation that can be decided more efficiently, but which is also weaker, is obtained by
not conditioning the relaxed state in which active constraints are determined. This is the
approach we adopted in our earlier work (Ivankovic et al., 2014).

We define the 2nd weaker relaxation by replacing the satisfaction condition for parti-
tioned conditions with the following weaker condition:

Definition 17. Let s+ be a relaxed/abstract state. A partitioned condition (ϕP , ϕS) holds
in s+ according to the 2nd weaker relaxation iff true ∈ s+(ϕP ) and active+(ϕS ∪Cinv, s

+) is
satisfiable.

Again, we can apply this weaker condition in the monotone relaxation and abstractions, and
again this results in further relaxation of the original problem. The 2nd weaker monotone
relaxation has the property that invariant constraints are always satisfiable in any relaxed
state that is relaxed reachable starting from a valid state. Thus, in this relaxation, if an
action’s precondition holds in a relaxed state, the action is also allowed in the state. (Note,
however, that this is not necessarily true of 2nd weaker abstractions.) This eliminates one of
the two consistency tests needed for each action in each layer of the relaxed planning graph.
If the action has no secondary preconditions, no consistency test is needed; it suffices to
check if the primary precondition holds in the relaxed state.4

As demonstrated by the Hydraulic Blocks World example above, removing the condi-
tioning of the relaxed state can lead to a weaker relaxation. However, this can only happen
if the invariant constraints of the problem are unsatisfiable in some reachable states. In
two of the example domains presented in Section 3, namely the Linehaul and Counters do-
mains, no reachable state is invalid. In these domains, the secondary model determines only
whether the goal has been achieved (and there is no primary goal condition). In domains
of this kind, the 2nd weaker relaxation is as good as the 1st.

Consider, for example, the problem with three (integer) counters, X1, X2 and X3,
initially all at zero, and the goal {X1 < X2, X2 < X3}, described in Section 3.4. In our

4. If the action’s precondition does have non-empty primary and secondary parts, a consistency test of the
secondary precondition is neeeded anyway, and the relaxation can be strengthened, without significant
computational overhead, by conditioning the relaxed state on the primary part of the condition.
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Figure 3: Dominance relations among constraint-aware heuristics. Heuristics in the shaded
area are intractable. Heuristics marked with a box are experimentally compared
in Section 7.

formulation of the problem, relaxed application of the actions inc(2) and inc(3) leads to
a relaxed state s+ where s+(p1,0) = s+(p2,0) = s+(p3,0) = {true}, s+(p1,1) = s+(p2,2) =
s+(p3,2) = {false}, and s+(p2,1) = s+(p3,1) = {true, false}. Hence, we have the active
constraints 0 ≤ x1 ≤ 0, 0 ≤ x2 ≤ 1 and 0 ≤ x3 ≤ 1. (Recall that the secondary variables
xi here are real-valued, while the counters Xi are integer-valued.) It is clear that their
conjunction with the secondary goal condition {x1 + 1 ≤ x2, x2 + 1 ≤ x3} is unsatisfiable.
Thus, although both the individual goal conjuncts are relaxed achievable by the plan inc(2),
inc(3), their conjunction is not, even in the 2nd weaker monotone relaxation. Francès and
Geffner (2015) show that the same conclusion can be reached by enforcing arc consistency
on the constraints X1 < X2 and X2 < X3, over integer-valued variables for each counter.

Figure 3 summarises the constraint-aware heuristics defined in this section, and domi-
nance relations between them. (An arrow h′ → h means h′(s) ≤ h(s) for all s; this is not the
same as the per-state existential dominance relation used by Helmert & Domshlak, 2009.)
PDB heuristics are incomparable with all monotone relaxation heuristics. The shaded area
of the figure indicates which heuristics are inherently intractable, while those in the area
below are computable in polynomial time, under the assumption that checking consistency
of secondary constraints is. Section 7 presents an experimental comparison of a subset of
heuristics across the four example domains described in Section 3. The heuristics compared
are marked with a box in Figure 3.
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6. Preferred Actions in A? Search

In the preceding sections, we have shown how to extend a classical planning formalism with
state constraints, and how to derive constraint-aware relaxations of the extended planning
problem and heuristics from the relaxations. To solve the relaxed problem, and therefore to
compute the heuristics, may involve many consistency tests over the secondary model, each
of which requires a call to an external solver. This is typically much more time-consuming
than solving the corresponding classical planning relaxation. Hence, it is in our interest to
extract and make use of as much information as we can from the solution to the relaxed
problem, beyond only the heuristic value.

We have combined two ideas — preferred actions and Partial Expansion A? — to create
a novel search algorithm that can achieve significant runtime savings when the heuristic is
computationally expensive but quite accurate, and states have many successors (Ivankovic
et al., 2014). This situation is characteristic of many planning heuristics and problems,
including the Power Supply Restoration problem that we tackle. Before presenting the
algorithm, we briefly review the two ideas it builds on.

6.1 Preferred Actions in Planning

Preferred actions (also known as “helpful” actions) can be obtained as a side-effect of any
heuristic that computes a plan from the current state in some relaxation of the problem.
This is the case with, for example, the h+ heuristic, which computes a plan for the monotonic
relaxation, and with PDB heuristics, which are based on the cost of an abstract plan in
each projection. (The PDB must be modified to store the first action in the abstract plan
for each abstract state.) Even the so-called critical path heuristics, which include hmax,
can be seen as providing a relaxed plan, consisting of the actions on one (arbitrary) critical
path. The preferred actions in a state s are actions that appear in the relaxed plan for s
that are also applicable in s. The intuition behind their use is that if the relaxed plan is
similar to a real plan, then taking an action that is part of it is more likely to be a step
towards the goal, and therefore giving preference to the successor states generated by such
actions can lead to a goal state more quickly. This has been shown highly useful in greedy
and hill-climbing search (Richter & Helmert, 2009; Hoffmann, 2000), but as far as we are
aware there has been no use of this source of information in optimal search.

6.2 Partial Expansion A?

An optimal search algorithm such as A? must expand any state that could possibly lie on
a cheaper path to the goal, i.e., any state whose f -value is less than the optimal plan cost,
f?. The Partial Expansion A? (PEA?) algorithm (Yoshizumi, Miura, & Ishida, 2000) tries
to avoid placing unpromising states on the open list, by expanding states only partially and
re-inserting them on the open list for later consideration. If the f -value of the expanded
node n is f(n), only successors with an f -value less than or equal to f(n)+ ∆ are placed on
the open list (∆ is an algorithm parameter), and the expanded node is re-inserted with its
f -value set to the smallest f -value among the discarded successors. However, this means
that vanilla PEA? still evaluates all successors to determine which are promising. Felner et
al. (2012) noticed that using a problem- and heuristic-specific procedure, it can sometimes
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1: procedure PrefPEA?

2: Set open = {(s0, 0, h(s0), pref(s0))}, closed = ∅.
3: while open 6= ∅ do
4: Select n = min≺ open,

where (n ≺ n′) ≡ (f(n) < f(n′))
∨ (f(n) = f(n′) ∧ h(n) < h(n′))
∨ (f(n) = f(n′) ∧ h(n) = h(n′) ∧ pref(n) 6= ∅ ∧ pref(n′) = ∅))

5: if n is a goal state then return n.

6: if pref(n) 6= ∅ then
7: Select a ∈ pref(n), remove a from pref(n).
8: Generate s′ from n through a.
9: NewState(s′, g(n) + cost(a))

10: else
11: for each non-preferred successor (a′, s′) of n do
12: NewState(s′, g(n) + cost(a′))

13: Move n to closed.
14: return null.

15: procedure NewState(s, g)
16: if 6 ∃n′ ∈ open ∪ closed with state s then
17: Add (s, g, h(s), pref(s)) to open.
18: else if g < g(n′) then
19: Set g(n′) = g and update parent pointer.
20: if n′ ∈ closed then Move n′ back to open.

Figure 4: Partial Expansion A? with Preferred Actions (PrefPEA?). The NewState
subroutine handles path cost updates and node re-opening, as in standard A?.

be possible to determine the partial successor set without generating and evaluting all
successors.

6.3 The PrefPEA? Algorithm

The PrefPEA? search algorithm adopts the idea of partial expansion from PEA?, but
stages node expansion by the preferredness of successors instead of their f -value. Pseudo-
code for the algorithm is shown in Figure 4. When a state is generated, its set of preferred
actions are extracted from the heuristic computation, and stored with the node. When the
node is selected for expansion, we generate (and evaluate) only one preferred successor, using
one of the actions in its preferred set. This action is then removed from the preferred set,
and the parent node kept in the open list. Only when an expanded node has no remaining
preferred actions are all its non-preferred successors generated, and the node moved to the
closed list. The algorithm prioritises expansion of nodes that have still unexplored preferred
successors. This is done using non-emptiness of the preferred action set as an additional
tie-breaking criterion, after the standard tie-breaking in favour of lower h-value. That is, if
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Figure 5: Illustration of PrefPEA? (Ivankovic et al., 2014). Black nodes have f(n) < f?;
these must be fully expanded. Gray nodes have f(n) = f?; some of these will be
expanded, and may be partially expanded. White nodes have f(n) > f?. The
dashed part represents non-preferred successor nodes that are never generated or
evaluated. Once the search has reached the f? layer and hit a node on an optimal
path, tie-breaking on h will keep it on this path (assuming no zero-cost actions).
From this point, only preferred successors are generated.

two nodes n and n′ have equal f - and h-values, but pref(n) 6= ∅ and pref(n′) = ∅, then n is
chosen for expansion before n′.

Proposition 18. Given an admissible heuristic, the PrefPEA? algorithm returns an
optimal-cost path.

Proof. PrefPEA? expands nodes in order of non-decreasing f -values (cf. definition of ≺ in
line 4 of the algorithm). A node is removed from the open list only when all its successors
have been generated (line 13); until then, it remains in the open list with its original f -value,
or a lower value if it is updated (cf. line 19). Thus, when the first goal node is selected for
expansion and the algorithm returns it, every node reachable by a path of lower f -values
has been expanded, and found not to be a goal. Admissibility then implies the goal is not
reachable at lower cost, in the same was as it does for A?.

Because PrefPEA? modifies the order of node expansion in a way that is not guaranteed
to be congruent with the heuristic, it may need to reopen closed nodes even if the heuristic
is consistent. Like A?, the algorithm must expand every node whose f -value is strictly
smaller than the optimal plan cost (f?). The benefit of PrefPEA? lies in avoiding the
generation, and heuristic evaluation, of some siblings of nodes expanded in the final f -layer.
This is illustrated in Figure 5. If a large fraction of generated states lie in the final f -
layer, if states have, on average, many successors but few preferred ones, and if heuristic
computation accounts for a large portion of runtime, these savings can be substantial.
If, on the other hand, most node’s estimates are below the optimal cost, the branching
factor is small, or the heuristic is cheap to compute, then the savings can be expected to
be minor. Section 7.5 presents an experimental comparison between A? and PrefPEA?,
using the constraint-aware h+ and PDB heuristics, on problems in the AC-PSR, Hydraulic
Blocksworld and Linehaul domains (cf. Section 3). Results of the experiment are mostly in
line with predictions based on the characterisation above, though there is one case in which
PrefPEA? performs much better that expected.
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7. Results

In this section, we present experimental and some analytical results regarding the effective-
ness of our approach to planning with state constraints. The questions that we study are:
(1) the informativeness, and computational cost, of the proposed heuristics, including the
relative strength and cost of the 1st and 2nd weaker monotone relaxation (Sections 7.3–7.4);
(2) the benefit of PrefPEA? over plain A? (Section 7.5); and (3) the possible benefits of
modelling problems in our formalism with (linear or non-linear switched) state constraints
compared to modelling domains in other formalisms (including classical, or classic numer-
ical, planning), where such a comparison is possible (Section 7.6). Sections 7.1 and 7.2
describe the planner implementation and the problem sets, respectively.

7.1 Implementation

We have implemented a framework for planning with state constraints, and in this frame-
work the PrefPEA? and A? search algorithms and several heuristics based on the relax-
ations described in this paper.5 Checking the consistency of linear constraints is done by
calling an off-the-shelf LP solver; we have used Gurobi, version 6.5.2 (Gurobi Optimization
Inc., 2016). For the AC Power Supply Restoration domain, which has non-linear constraints,
consistency is tested by a custom solver, built on the PowerTools and SmartGridToolbox
libraries.6 PowerTools in turn uses the Bonmin (Bonami, Biegler, Cohn, Cournéjouls, Gross-
mann, Laird, Lee, Lodi, Margot, Sawaya, & Wächter, 2008), IPOPT (Wächter & Biegler,
2006) and Gurobi solvers.

The heuristics we have tested are constraint-aware hmax and h+ based on the two
tractable monotone relaxations, and an additive constraint-aware PDB heuristic. Our im-
plementation of the 2nd weaker monotone relaxation uses the strengthening described in
Section 5, by conditioning the relaxed state when evaluating a partitioned condition that
has non-empty primary and secondary parts. The implementation of h+ uses caching of
parent node landmarks, as described in Section 5.

The PDB heuristic is based on the tractable 2nd weaker abstraction. The additive pat-
tern collection used by the heuristic is found by a local search in the pattern space, following
the procedure described by Haslum, Helmert, Bonet, Botea, and Koenig (2007). For do-
mains where the goal condition is on the primary variables, the initial pattern collection has
one projection onto each single primary goal variable. (In our test set, only the Hydraulic
Blocksworld problems have primary goals.) For domains where the goal is expressed only
in terms of secondary constraints, the initial collection is an arbitrary partitioning of the
primary state variables that generate small abstractions.

7.2 Problem Sets

We used 1292 problem instances across the four domains presented in Section 3. Details of
the instances of the Counters domain are provided in Section 7.6.4.

5. The planner is implemented in Python. Source code and benchmarks are available from https://github.

com/patrikhaslum/gscplanner/
6. See http://github.com/hhijazi/PowerTools and http://nicta.github.io/SmartGridToolbox/.
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7.2.1 Hydraulic Blocksworld (HBW)

We created 75 problem instances, with 4–7 blocks, using Slaney and Thiébaux’s (2001)
Blocksworld state generator. Because we did not control the number of towers in the
initial or goal states, the number of cylinders for each problem was set to the maximum
of the number of towers in the initial and goal states, with a minimum of 3. This resulted
in problems with 3–5 cylinders. Block weights and cylinder areas and heights were held
constant across all instances (weights: w1 = 5, w2 = 9, w3 = 7, w4 = 2, w5 = 4, w6 = 7,
w7 = 1; areas: a1 = 2, a2 = 2, a3 = 1, a4 = 4, a5 = 1). We further vary the constrainedness
of the problem instances by varying the total volume of fluid in the cylinders and reservoir,
between v = 2 and v = 10 in steps of 1. Cylinder heights are large enough that at these
volumes no piston ever overflows; only the lower limit 0 ≤ hk imposes a constraint on plans.
Thus, problems with lower v are more constrained than those with higher v. This can
be seen in Figure 6, which shows the distribution of the ratio of optimal plan lengths for
solvable instances of the domain compared to the optimal plan length for the corresponding
instances ignoring the secondary constraints. At v = 2 or v = 3, most problems are
unsolvable, and the ones that have solutions are trivial (have plans of zero or a few steps).
At v = 10, the secondary constraint plays essentially no role: all instances are solvable in
the same number of steps as when no constraints are imposed. However, at intermediate
levels (v̄ = 5, v̄ = 6) most instances are solvable but require plans that are significantly
longer than when cylinder height constraints are not enforced. Experimental comparison
of planner configurations in this domain is done with v̄ = 4, . . . , 10, yielding a total of 525
problem instances, 341 solvable and 184 unsolvable. Every instance was decided by some
planner configuration.

7.2.2 AC Power Supply Restoration (AC-PSR)

The power network switching problem we consider is a variant of supply restoration planning
(PSR). In the initial state, a number of switches are open to protect the network from
overloads caused by faults, isolating some loads from any source of power. The goal is to
resupply a given set of loads while at all times ensuring that no faulty bus is connected
to a live power feed, and that the AC power flow equations and the generator capacity,
voltage, and line thermal limit constraints are satisfied. Power networks were drawn from
the NESTA benchmark collection (Coffrin, Gordon, & Scott, 2014). We used networks with
up to 30 buses. The NESTA benchmarks provide realistic values for all network parameters
(loads, generator and line capacities, voltage bounds, etc), which would otherwise be difficult
to obtain. The disadvantage of using this benchmark set is that we do not obtain a smooth
spread of network sizes. We generated PSR instances as follows. For each bus, we created
one instance in which this bus is faulty. The initial state for this instance is obtained,
starting with all switches being closed, by opening the switches adjacent to a minimal set
of generators sufficiently large to ensure that the faulty bus is not fed. This set of switches
to open is determined by depth-first search from the faulty bus. The goal is to supply a
subset of buses, selected so as to maximise their sum of active loads p̄Li whilst satisfying
constraints (psr.a.i-psr.f.ii) (Jabr, 2006; Hijazi & Thiébaux, 2015). Note that even though
the goal condition is feasible, it is not guaranteed that a goal state is actually reachable
because there may not be a transition sequence from the initial state that passes only
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Figure 6: Distribution of the ratio of plan lengths in solvable instances of the hydraulic
blocksworld domain to plan length of the corresponding unconstrained problem.
Instances are grouped by reservoir volume. Problems with lower volumes are
more tightly constrained, so fewer of them are solvable; at intermediate levels
(v̄ = 5, v̄ = 6) more instances are solvable but require longer plans than when
cylinder height constraints are not considered.

through valid states. We encountered a small number of instances (all derived from NESTA
network 6-ww) that were unsolvable for precisely this reason.

7.2.3 Linehaul Transportation

Our data set comprises requests for 364 daily deliveries to 6 customer locations. The
distance between the depot and each customer is much greater than the distance between
customers (which is why it is called a “linehaul” problem). Therefore, it is generally cheaper
to use only the largest available vehicles, which have the lowest cost per unit of capacity.
We created problem instances by varying the number of refrigerated (R) and ambient-
temperature (A) trucks, each between 2 and 4. For a given fleet of trucks, a set of deliveries
is feasible if and only if the total quantity of chilled goods requested is at most the total
capacity of the refrigerated trucks (

∑
i q̄

ch
i ≤

∑
k:ch∈Ḡk p̄k) and the total quantity requested

is at most the total capacity of all trucks (
∑

i

(
q̄ch
i + q̄am

i

)
≤
∑

k p̄k), since ambient goods
can be transported also in refrigerated trucks. We created only solvable instances for each
fleet size.

Because our approach to optimally solving planning problems with numeric state con-
straints is based on admissible heuristic search, it is affected by problem symmetries, such as
those caused by identical trucks in the linehaul transportation problem. We can eliminate
some of these symmetries (though by no means all) by a small reformulation of the primary
model. drive actions are formulated so that trucks can not leave the sink location (0?) or
move back to the source (0) once they have left it. To permit the plan to not use a particular

406



Extending Classical Planning with State Constraints

truck, a zero-cost action drive(k, 0, 0?) is added for each truck. Since movements of different
trucks are completely independent, they can be ordered in any way. To avoid the factorial
number of equivalent plans that differ only by reordering of independent actions, we force
trucks to move in sequence: Truck k + 1 can only leave the source (depot) after truck k
has reached the sink (depot). Furthermore, if trucks k+ 1 and k are of the same type (i.e.,
Ḡk = Ḡk+1, p̄k = p̄k+1 and c̄k = c̄k+1), then truck k + 1 cannot be used (i.e. visit at least
one customer) unless k has. This avoids the exponential number of equivalent plans that
differ only by which subset of identical trucks is used.

7.3 Summary of Results

Coverage (number of problems solved or proven unsolvable) is summarised in Table 1. (The
column headed “Alternative formulation” shows the best result achieved by planners tested
on alternative domain formulations without state constraints; see Section 7.6 for details.)

Figure 7 shows the distribution of runtimes and search efforts (as measured by nodes
evaluated or expanded) for the Hydraulic Blocksworld, Power Supply Restoration and Line-
haul Transportation domains. As can be seen, these three domains present very different
positions along the trade-off axis between the computational cost and value of heuristic in-
formation. In the Hydraulic Blocksworld domain, blind search is nearly the most effective.
A? search with the hmax heuristic performs fewer node evaluations, but that gain is matched
by an almost equal increase in time per node (for computing the heuristic) such that the
runtime of this configuration ends up matching that of the blind search very closely. With
the h+ heuristic, although it is even better informed and evaluates fewer nodes, the net
effect is negative as the increased time-per-node results in higher runtimes overall. In the
AC Power Supply Restoration domain, on the other hand, informed search – even using the
expensive h+ heuristic, together with preferred action information – solves more problems
than blind search, and, for the harder problems, in less time. The Linehaul Transportation
domain positions itself in the middle, in that A? search with the computationally cheaper
but less informative hmax heuristic solves far more problems than either of using the more
informed but expensive h+ heuristic or no heuristic at all.

The accuracy of PDB heuristics depends on how good the chosen abstractions (patterns)
are. In the HBW domain, goals are defined on the primary variables, leading to a good
pattern selection and a heuristic that is almost as good as h+, and roughly an order of
magnitude more informed than blind search. In the other two domains, the goal is defined
only in terms of secondary constraints, and consequently the pattern selection is essentially
arbitrary (as explained in Section 7.1 above). In AC-PSR, the resulting heuristic is still
good, while in the Linehaul domain it is almost the same as blind search. (The latter is
not surprising, since it is known that projections, which PDBs are based on, are often not
capable of capturing useful abstractions of transportation domains; cf. Helmert et al., 2014.)

7.4 Comparing the 1st and 2nd Weaker Monotone Relaxations

The results for hmax and h+ shown in Table 1 and Figure 7 are for the heuristics based
on the 2nd weaker monotone relaxation. We have compared the h+ heuristic also with
its counterpart based on the 1st weaker monotone relaxation. Although the 1st weaker
relaxation dominates the 2nd, recall that it is only in domains that have reachable invalid
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Problems # A? PrefPEA? Alternative
Blind hmax h+ PDB h+ PDB formulation

Hydraulic Blocksworld (HBW)

solvable

4 blocks 110 110 110 110 110 110 110 110

5 blocks 84 84 84 84 84 84 84 84

6 blocks 80 80 80 52 80 77 80 80

7 blocks 67 64 65 23 67 23 67 66

Σ 341 338 339 269 341 294 341 340(a)

unsolvable

4 blocks 23 23 23 23 23 23 23 23

5 blocks 42 42 42 27 42 37 42 42

6 blocks 53 53 53 50 53 50 53 53

7 blocks 66 66 63 51 66 54 66 66

Σ 184 184 181 151 184 164 184 184

AC Power Supply Restoration (AC-PSR)

solvable

4-bus 1 1 1 1 1 1 1 1

6-bus 5 5 5 5 5 5 5 5

9-bus 6 6 6 6 6 6 6 6

14-bus 11 9 9 6 10 8 11 1

24-bus 12(b) 0 2 2 2 2 2 2

29-bus 2(b) 0 0 0 0 1 1 0

30-bus 47(b) 5 5 5 5 5 6 5

Σ 84 26 28 25 29 28 32 20

unsolvable

6-bus 6 6 6 6 6 6 6 2

Linehaul Transportation

2R/2A trucks 6 6 6 6 6 6 6 6

3R/2A trucks 19 9 19 7 9 7 12 9

3R/3A trucks 87 7 68 6 7 6 7 9

4R/3A trucks 258 7 63 4 7 6 7 10

4R/4A trucks 303 7 62 4 7 4 7 9

Σ 673 36 218 27 36 27 39 43

Counters

4–7 counters 4 – 2 2 – 4 – 4

Table 1: Summary of coverage (problems solved or proven unsolvable). The last column
shows the best result achieved by planners we tried on domain formulations with-
out state constraints (see Section 7.6 for details). Notes: (a) The unsolved problem
was reported unsolvable by the ENHSP planner. This is due to a numeric preci-
sion problem; see Section 7.6. (b) It is unknown exactly how many of these are
solvable. The solved instances of the largest network sizes have very short plans.
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Figure 7: Cumulative distributions of runtime (left) and search effort (right) for different
planner configurations in the Hydraulic Blocksworld (top), Power Supply Restora-
tion (middle) and Linehaul Transportation (bottom) domains. (“PPA?” stands
for PrefPEA?.)
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Figure 8: Average number of consistency tests (left) and time in seconds (right) per evalu-
ation of the h+ heuristic based on the 1st and 2nd relaxation, respectively. (Each
point represents one problem solved with both heuristics, and is the average of
state evaluations for that problem.) Note that the scales on the x- and y-axes
differ by several orders of magnitude.

states that it is potentially stronger. Among our examples, this occurs in the HBW and AC-
PSR domains. However, the 1st weaker relaxation is also computationally more demanding,
and as a consequence it is not effective in either domain. PrefPEA? with h+ based on the
1st weaker relaxation solves fewer problems (154 vs. 269 in HBW and 19 vs. 28 in AC-PSR,
a subset in both domains) and takes substantially more time than using h+ based on the
2nd weaker relaxation (mean 46.3, median 19.5 times longer in AC-PSR and mean 68.8,
median 67.4 times longer in HBW, on commonly solved problems).

The increased runtime is because the number of consistency tests (calls to the external
solver) required for each relaxed reachability computation is higher. This difference is
substantial: Figure 8 shows the (per-problem) average number of consistency tests (left)
and the average time in seconds (right) for each h+ evaluation. In the HBW domain, the
average, over commonly solved problems, number of consistency tests (calls to the LP solver)
per h+ evaluation with the 1st weaker relaxation is more than three orders of magnitude
greater than when using the heuristic based on the 2nd weaker relaxation (mean 1317.9,
median 782.3), and the average time per h+ evaluation around 70 times longer (mean 73.1,
median 71.6). In the PSR domain, the average number of consistency tests is only one order
of magnitude greater (mean 12.7, median 6.6), but since calls to the AC powerflow solver
are more time-consuming, the average time per h+ evaluation is still around 50 times longer
(mean 48.9, median 19.3).

The information gain from this extra effort is minor: Comparing the number of nodes
expanded to before the optimal f -value is reached (which is guaranteed to be less or equal
with a dominating heuristic, with PrefPEA? as well as A?), it is the same for 132 of
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the 154 commonly solved problems in the HBW domain and 18 of the 19 commonly solved
problems in the AC-PSR domain; where there is a difference, the reduction is between 1 and
7 nodes. Comparing node evaluations (which are not guaranteed to decrease with the more
informed heuristic, due to tie-breaking effects in the final f -layer), there is a reduction on 42
of the 154 solved problems in the HBW domain, with on average 17% fewer states evaluated
on these 42 problems, and on 5 problems in the AC-PSR domain, averaging 47%. In the
HBW domain, there is an increase, of 5.3% on average, in the number of node evaluations
on 5 problems.

7.5 The Effect of Partial Expansion by Preferred Actions

Recall that the potential benefit of PrefPEA?, compared to the standard A? search al-
gorithm, lies in avoiding the heuristic evaluation of some siblings of nodes expanded in the
final (f?) layer. If the heuristic is computationally expensive but accurate and states have,
on average, many successors but few preferred ones, these savings can be substantial. If, on
the other hand, heuristic estimates are far off and the branching factor is small, so are the
savings.

The three example domains illustrate both of these cases. The distributions in Figure
9 show the reduction in state evaluations from A? to PrefPEA?, over problems solved
by both, using the h+ (left) and PDB (right) heuristic. (Note that in all three domains
and with both heuristrics, PrefPEA? solves all problems that A? can solve; it solves
strictly more problems in all cases but for HBW with the PDB heuristic.) Although the
distributions are not smooth, it is clear that with h+, the means as well as modes are
ordered Linehaul—HBW—AC-PSR, from lowest to highest. (The average reduction is
70.6% in AC-PSR, 49.8% in HBW and 31.7% in Linehaul; the medians are 64.7%, 47% and
28.4%, respectively.) With the PDB heuristic it is less clear-cut, but the means are still
ordered in the same way (71.3% in AC-PSR, 44.1% in HBW and 37.9% in Linehaul).

This is mostly consistent with our expectation of when PrefPEA? should offer an
advantage over A?. Both heuristics are, on average, more accurate in the AC-PSR and
HBW domains compared to Linehaul. The average ratio of the h+ heuristic value of the
initial state to the optimal plan cost is 0.790 in AC-PSR, 0.641 in HBW and 0.506 in the
Linehaul domain; for the PDB heuristic the average ratios are 0.611 in AC-PSR, 0.540 in
HBW, and nearly zero in the Linehaul domain. The average branching factor is 7.52 in AC-
PSR, 2.52 in HBW and 3.05 in Linehaul. The only really unexpected result is the substantial
reduction achieved by PrefPEA? with the PDB heuristic in the Linehaul domain, in many
cases needing 50% fewer state evaluations. These are problems on which both algorithms
search a large number of nodes (between 10,000 and 350,000 for A?).

When using h+, heuristic computation as a percentage of total runtime is, on average,
99% in HBW, 93% in AC-PSR and 89% in Linehaul. Hence, the reduction in state evalu-
ations with PrefPEA? leads to a roughly matching reduction in runtime. With the PDB
heuristic, on the other hand, state evaluations are relatively fast, and the reduction in state
evaluations does not lead to any significant runtime saving; in fact, PrefPEA? with the
PDB heuristic is usually slower than A? with the same heuristic.
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Figure 9: Above: Number of state evaluations made by PrefPEA? compared to plain A?,
using h+ (left) and PDB (right) heuristics. Below: Distribution of the reduction
in the number of state evaluations made by PrefPEA? compared to plain A?,
using h+ (left) and PDB (right) heuristics.
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7.6 Comparison of Problem Formulations

In this section, we compare the effectiveness of our planner in problem domains formulated
with linear or non-linear switched constraints against that of planners that take alternative
problem formulations. This includes classical, or classical numeric, planners, where such a
formulation is possible, as well as a formulation of the AC-PSR domain as a mixed-integer
non-linear program (MINLP). Since our planner is cost-optimal, we consider mainly cost-
optimal planners in this comparison. However, we have also tried the suboptimal POPF-TIF
planner (Bernardini, Fox, Long, & Piacentini, 2017) on the AC-PSR domain, because this
planner is extensible with procedurally defined semantic attachments.

7.6.1 Hydraulic Blocksworld

The Hydraulic Blocksworld domain admits a numeric planning formulation. A numeric
fluent pk tracks the total weight of blocks in each cylinder k. This fluent is decreased or
increased, respectively, by actions that take or place a block in the cylinder. The height of
the fluid column in each cylinder can then be expressed as a function of the total weight on
the pistons in all cylinders:

hk =
v

aT
+

∑
i 6=k

pi
aT

− ∑i 6=k ai

akaT
pk

where aT =
∑

i=1,...,m ai is the total area of all cylinders. The invariant constraint that the

column height remains within the height of the cylinder, i.e., 0 ≤ hk ≤ lk for k = 1, . . . ,m,
can then be enforced by substituting the above formula for hk, and making it a precondition
of every action and a goal (as explained in Section 4). Note that this formulation is possible
only because in this domain the values of all secondary variables in a state are a function
of the primary state (i.e., the arrangement of blocks). In the general case, constraints can
allow for more than one assignment of the secondary variables to be consistent with a state.

We solved the numeric planning formulation of the HBW domain with the optimal
configuration of the ENHSP planner, which uses A? search with the admissible numeric
hmax heuristic (Scala, Haslum, & Thiébaux, 2016a). As shown by Figure 7 (top row),
ENHSP is faster on most problems it solves, and it generally performs less search (evaluates
fewer states) than the closest corresponding configuration (A? with hmax) of our planner
on the formulation with state constraints. This is in spite of the numeric hmax heuristic not
considering the state constraints in its reachability analysis, since they are already satisfied
in every evaluated state. In the HBW domain, the state constraints prune infeasible actions
but this creates only very shallow dead ends; that the heuristic fails to anticipate them does
little harm to the search.

ENHSP reports as unsolvable one problem instance that has a valid plan. We traced this
to a problem with the precision of floating point arithmetic. The failed instance traverses
at least one state in which the height of the fluid column in some cylinder is equal to the
lower bound, and thus satisfies the constraint, but due to round-off errors in the floating
point calculation, the height that ENHSP obtains from the formula above is slightly below
the lower bound. The plan validator VAL (Howey, Long, & Fox, 2004), which also uses a
floating point representation of numeric fluents, makes the same error.
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4-bus 1 1 1 1 1 1 1 1 1 1
6-bus 5 5 5 5 5 5 5 5 5 5
9-bus 6 6 6 6 6 6 6 6 6 6
14-bus 11 9 9 6 10 8 11 1 11 11
24-bus 12 0 2 2 2 2 2 2 2 2
29-bus 2 0 0 0 0 1 1 0 0 1
30-bus (a) 24 0 0 0 0 0 1 0 0 12
30-bus (b) 23 5 5 5 5 5 5 5 5 7

Σ 84 26 28 25 29 28 32 20 30 45

Table 2: Problems solved in the AC Power Supply Restoration domain. (The same data as
shown in Table 1, but including results for the suboptimal POPF-TIF planner on
two domain formulations with different levels of domain-specific advice. Results
for the two 30-bus networks have also been separated.)

7.6.2 AC Power Supply Restoration

We are not aware of any optimal planner that could solve the AC-PSR domain off-the-shelf.
Instead, we created an encoding of the problem into mixed-integer non-linear programming
(MINLP) to take advantage of the capability of the Bonmin solver (Bonami et al., 2008).
We also tried the suboptimal POPF-TIF planner (Bernardini et al., 2017), using our AC
power flow solver as a semantic attachment.

The MINLP formulation is essentially a classic SATPLAN encoding, with the state
replicated for each time step and logical constraints linking consecutive states. The invariant
constraints (psr.a.i)–(psr.f.ii) are enforced over the variables representing each state. It
allows at most one action per time step. We tried two methods of minimising plan length:
The first is the traditional SATPLAN approach, of formulating and solving the encoding
for increasing plan lengths, starting from a lower bound on the number of actions, until a
solution exists. The second approach is to solve the encoding only once, with a horizon that
is (assumed to be) an upper bound on plan length, with an objective function that minimises
the number of non-noop actions. Somewhat surprisingly, we found the first approach to be
more efficient. Even using a fairly small upper bound (equal to the number of lines, i.e.,
assuming that every line changes state at most once, which is not necessarily true of an
optimal solution), the optimisation-based method is usually slower, and roughly equal in
runtime only when the actual plan length is more than half of the bound. Consequently,
we evaluate and report results only for the first approach on larger problem instances.
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Figure 10: (a) Distribution of runtimes of different planner configurations and the MINLP
solver on problems of the AC-PSR domain. (b) Distribution of the ratio of
lengths of plans found by POPF-TIF to optimal plan lengths, over problems
where the optimal plan is known.

The POPF-TIF planner is able to use externally defined functions that compute the
values of some numeric state variables from the values of other variables. Actions can not
have direct effects on these computed variables. In this, they are analogous to PDDL2.2’s
derived predicates. In our basic formulation of the AC-PSR problem for POPF-TIF, the
AC power flow solver computes fedi for each bus i and a status variable which is 1 (true) if
the state is valid and 0 (false) if it is not. Adding the precondition status > 0 to every action
and to the goal ensures that any solution plan traverses only valid states, as described in
Section 4.

The planner’s heuristic does not automatically infer anything about the effect of actions
on externally computed state variables. Instead, it relies on the domain designer manually
specifying a linear approximation of the effect of any external function. Without this man-
ually specified “advice”, the planner’s heuristic has no knowledge of the effects of switching
lines, and the planner declares every problem instance unsolvable. We tried two formula-
tions, with different levels of advice: In our first formulation, the heuristic effect of closing
a line (i, j) is to increase fedi by the current value of fedj , and vice versa. This signals to
the planner that buses can be supplied by connecting them to an already supplied part of
the network. In our second formulation, the AC power flow solver computes an additional
variable unsafei for each bus, with value 1 if there is a conducting path from bus i to a faulty
bus and 0 otherwise. We add the preconditions unsafei + fedj ≤ 1 and unsafej + fedi ≤ 1
to the action that closes line (i, j), and the heuristic effects unsafei := 0 and unsafej := 0 to
the action that opens line (i, j). This forces the planner to not feed faults (which leads to
an immediate constraint violation) and hints that opening a line may isolate the adjacent
buses from faults.
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Table 2 summarises the number of problems solved by all the planners and the MINLP
model. (This is the same data that is shown in Table 1, but including also the suboptimal
planner.) Figure 10(a) shows the corresponding runtime distribution. As mentioned above,
the approach used here to minimise plan length in the MINLP model is that of solving it
multiple times for increasing lengths.

The MINLP solver struggles with networks of size 14 and above, as well as with un-
solvable problems. This result contrasts sharply with the informal comparison between the
earlier version of our planner, which solved only the linearised DC approximation of the
PSR domain (Ivankovic et al., 2014), and the corresponding mixed-integer linear program-
ming (MIP) formulation by Thiebaux et al. (2013), which indicated that the MIP-based
planner scales much better.7 We conjecture that this difference reflects differences in the
maturity of MIP- and MINLP-solving technology.

Using our basic domain formulation #1, the suboptimal POPF-TIF planner solves
slightly fewer problems as the PrefPEA?/PDB configuration of our heuristic search-based
planner, though it is faster on the problems that it does solve. (This is not a strict sub-
set: POPF-TIF solves one instance that is not solved by the PrefPEA?/PDB planner.)
Providing more domain-specific rules to the planner, as in our domain formulation #2,
improves its coverage. It is of course possible that providing the planner with even more
advice would enable it to perform better. The improvement in coverage, however, is at
the expense of plan quality. The distribution of the ratio of the length of plans found by
POPF-TIF, with the two domain formulations, to optimal plan length, across the problem
instances for which we have optimal plans, is shown in Figure 10(b). Note that POPF-TIF
is unable to offer any guarantee on the quality of the plans it finds.

7.6.3 Linehaul Transportation

The Linehaul domain also admits a numeric formulation, with numeric fluents representing
the amount of goods delivered to each customer and the unused capacity in each truck.
Since demands and capacities in our problem set are all expressed in integer units, with
known tight bounds, we also created a classical formulation of the problem, using proposi-
tionally represented counters. This makes the selection of cost-optimal planners that we can
attempt to solve the formulation with much larger. We tried the Fast Downward planner
(Helmert, 2006), which implements forward state-space A? search, in a variety of config-
urations that use different heuristics, because this allows for the most direct evaluation
of the two problem formulations. We also included the SymBA? planner (Torralba, Al-
cazar, Borrajo, Kissmann, & Edelkamp, 2014), which was the best-performing planner in
the cost-optimal track of the most recent planning competition. We also ran the optimal
configuration of the ENHSP planner – A? with the numeric hmax heuristic (Scala et al.,
2016a) – on the numeric problem formulation.

The numeric and classical formulations require explicit actions for trucks delivering
(“unloading”) goods at customer locations. This also means that a forward state-space
search planner must commit to the amount delivered by truck k to customer i while the

7. We say “informal” because although the early version of the heuristic search-based planner and the
MIP-based planner were evaluated on problem instances drawn from the same network, the MIP-based
planner optimises more a general objective function, and they were not tested under equal conditions.
If anything, the differences suggest the MIP-based planner is even more effective.
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Table 3: Problems solved in the Linehaul Transportation domain. (The same data as shown
in Table 1, but with results for all the tried classical planners. The ENHSP planner
is applied to the numeric formulation of the domain.)
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Figure 11: Number of states evaluated by heuristic forward state-space search planners on
the 21 commonly solved problem in the Linehaul domain. (Note that the ENHSP
planner on the numeric formulation solves only 15 problems in this domain.)
The problems are sorted left-to-right by the number of states generated by blind
search on the state constraints formulation.
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truck is at the customer location. We tried a formulation with one action for each possible
amount, i.e., unload(k, i, g, l) for all 0 ≤ l ≤ min(pk, q

g
i ), and one formulation with an action

unload(k, i, g) that delivers a single unit. The former led to an infeasibly large number
of ground actions for all but the smallest instances; hence, we use only the latter. In
contrast, the formulation with state constraints leaves the choice of how much each truck
delivers implicit in the resolution of the secondary goal constraints. Other than this, our
classical formulation uses the same symmetry-reducing devices (described in Section 7.2.3)
as the state constraints model. We verified with a subset of instances that these improve
performance also of the classical planners.

However, the deferred choice makes a great difference in efficiency between the two
problem formulations. The difference in search effort required with equivalent heuristics on
the two formulations is between one to five orders of magnitude. The classical heuristic
search planners always solve fewer problems (and always a subset) than the corresponding
configuration of the planner with state constraints. This is summarised in Table 3. Figure
11 shows a problem–by–problem view of search effort (state evaluations) for the 21 instances
solved by all planners. We observe that the heuristics ranked by performance fall in the
same order on both problem formulations. (Fast Downward does not implement h+, but
we can compare it with the LM-Cut heuristic as the closest substitute.) The merge-and-
shrink abstraction heuristic, for which we have not implemented an analogue in the planner
with state constraints, is much better informed than the projection abstraction (i.e., PDB
heuristic) in this domain. This agrees with the outcome of other comparisons between these
two types of abstraction heuristics on similar classical planning problems (Helmert et al.,
2014).

7.6.4 Counters

The Counters domain was proposed by Francès and Geffner (2015) as the simplest illus-
tration of one of the weaknesses of the monotone (delete) relaxation of classical planning.
Because this relaxation effectively considers each subgoal Xi + 1 ≤ Xi+1 in isolation, incre-
menting each counter, except the first, once suffices to achieve all of them in the relaxed
model. Therefore, the classical hmax heuristic’s estimate will be 1 regardless of the number
of counters. The h+ heuristic considers the union of relaxed plans for each subgoal, but not
interference between them; thus, its estimate will be n−1 for a problem with n counters. In
the relaxation of our formulation with state constraints, the entire goal is checked for con-
sistency with the relaxed state. Because of this, the goal is achieved only by a state in which
Xi ≥ i−1 for each counter i, also in the relaxation. Thus, the value of the constraint-aware
hmax heuristic is n−1 (the number of increments required for the highest-indexed counter),

and the value of the h+ heuristic on this formulation is
∑

i=1,...,n(i − 1) = n(n−1)
2 , which

is exactly the optimal plan length. Not only is the value of the heuristic perfect, but the
optimal relaxed plan is actually the real optimal plan. As a consequence, PrefPEA? with
h+ on the state constraint formulation generates only the nodes on the optimal path, and
for each of them generates no more than one successor. Standard A? will expand only nodes
on the optimal path, but will generate (and evaluate) all successors of each one of them.
In contrast, the information gap of the corresponding heuristics on the classical formula-
tion means that search effort and runtime grow exponentially. Table 4 shows these results

418



Extending Classical Planning with State Constraints

Number of counters (n)
4 5 6 7

Optimal plan length (f?) 6 10 15 21

h(s0)
state constraints h+ 6 10 15 21

hmax 3 4 5 6
classical h+ 3 4 5 6

hmax 1 1 1 1

Nodes expanded
state constraints PrefPEA?, h+ 0 0 0 0

A?, h+ 6 10 – –
A?, hmax 35 465 – –

classical A?, h+ 25 219 – –
A?, hmax 70 835 14341 275465

Nodes evaluated
state constraints PrefPEA?, h+ 6 10 15 21

A?, h+ 36 77 – –
A?, hmax 205 3681 – –

classical A?, h+ 87 617 – –
A?, hmax 154 1633 23549 388671

Total time (seconds)
state constraints PrefPEA?, h+ 21.0 107.7 407.1 1141.1

A?, h+ 137.7 950.9 – –
A?, hmax 2.3 72.0 – –

classical A?, h+ 0.7 58.5 – –
A?, hmax 0.1 1.5 47.9 1555.2

Table 4: Detailed results on Counters problems. The maximum counter value (m) is 8 in
all instances. In PrefPEA?, we count a node as expanded only when it has been
fully expanded, i.e., all successors generated.

in detail. (The h+ heuristic used for the classical formulation is a domain-independent
implementation of the same algorithm that is used in our state constraint-aware planner.)

Although computing the h+ heuristic is in general NP-hard, the Counters problems have
the property that all generated landmarks are disjoint. This makes the hitting set problem
trivial, and means that PrefPEA? search with h+ on the state constraint formulation
solves arbitrary instances of the Counters domain in polynomial time.

8. Related Work

We survey two areas of related work: (1) planning models and planners that incorporate
some form of state constraints; and (2) approaches to interfacing heuristic search-based
planners with special-purpose solvers or functions.
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8.1 Planning with State Constraints

Early work on planning – including STRIPS, planners based on theorem-proving, and many
subsequent action formalisms – used state constraints to concisely represent actions, allow-
ing a rich set of derived predicates and functions in preconditions and goals and helping
to alleviate the frame and ramification problems (e.g., Green, 1969; Fikes & Nilsson, 1971;
Liftschitz, 1987; Ginsberg & Smith, 1988; Winslett, 1988 Thiébaux & Herzberg, 1992;
Sandewall, 1994; Levesque, Reiter, Lespérance, Lin, & Scherl, 1997).

However, state constraints have not found their way into efficient implementations of
modern planners. Much of recent work in planning has focused on improving the algorithmic
aspects of plan generation for simpler formalisms that do not support state constraints.
The quantified and conditional effects found in ADL variants do not achieve the same
purpose, since state constraints do not update variables based on the predecessor state,
but are equations relating the values of variables in the same state. Weld and Etzioni
(1994) proposed integrating safety constraints into a partial-order planner. In their model,
however, constraints serve only the role of specifying invalid states; they are not used to
compute values of derived variables.

PDDL2.2’s derived predicates and axioms (Thiébaux et al., 2005; Hoffmann & Edelkamp,
2005) enable the compact encoding of a larger class of constraints over Boolean variables,
suitable for capturing transitive closure and thus the reachability aspects of network flows.
However, only a handful of domain-independent planners support them, and with few ex-
ceptions (e.g., Gerevini, Saetti, Serina, & Toninelli, 2005; Helmert, 2006) do not include
substantial improvements to domain-independent heuristics to deal with complications aris-
ing from the presence of axioms. Moreover, there was to our knowledge no work on optimal
planning with derived predicates before the planner we built on the basis of the framework
presented in this paper (Ivankovic & Haslum, 2015).

Extending classical planners to deal with problems with numeric state variables and
effects has been an area of research for some time (e.g., Koehler, 1998; Wolfman & Weld,
1999; Hoffmann, 2003; Coles, Coles, Fox, & Long, 2013; Scala et al., 2016a; Scala, Haslum,
Thiébaux, & Ramı́rez, 2016b), and more recently the scope of this work has widened to in-
clude planning for hybrid discrete–continuous dynamical systems, in which the state evolves
following autonomous processes as time progresses (e.g., Shin & Davis, 2005; Li & Williams,
2008; Della Penna, Magazzeni, Mercorio, & Intrigila, 2009; Coles, Coles, Fox, & Long, 2009;
Löhr, Eyerich, Keller, & Nebel, 2012). These planners are, however, designed for models
that associate a small number of discrete modes with (dynamical) equations, not to mod-
eling network flows in which the number of modes required is equal to the, prohibitively
large, number of network configurations.

Nevertheless, a few authors describe applications of planning in physically intercon-
nected domains. Aylett et al. (1998) plan operating procedures for a chemical plant, while
Piacentini et al. (2015) address voltage control in a power distribution network, both using
planning systems. To reason about network flows, both use an architecture in which the
planner interacts with a special-purpose solver. We discuss these approaches in detail in the
following subsection. Vallati et al. (2016) model the flow of traffic in an urban environment
as a set of interacting processes. However, in this application the planner controls only
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the rate of flows at intersections, by switching traffic lights, and not the direction that the
traffic flows.

8.2 Special-Purpose Solvers in Heuristic Search Planning

The idea of delegating parts of the reasoning (or computation) required to construct a plan
to one or more specialised solvers has been proposed many times in planning. This can be
done for the purpose of broadening the scope of problems that the planner can address, or
only for the purpose of improving efficiency on special classes of classical planning models
(e.g., Fox & Long, 2001; Srivastava & Kambhampati, 1999).

Dornhege et al. (2009) use the term “semantic attachment” for a predicate or function
in the planning model that is evaluated by calling a procedure. This type of integration of
special-purpose computational procedures or solvers has a long history of use in planning,
appearing in systems such as Prodigy (Veloso, Carbonell, Perez, Borrajo, Fink, & Blythe,
1995), O-Plan (Currie & Tate, 1991; Tate, Drabble, & Kirby, 1994), TLPlan (Bacchus
& Kabanza, 2000), CEP (Aylett et al., 1998) and RAX-PS (Jonsson, Morris, & Rajan,
1999). A key property of such mechanisms is that they are, at least in principle, extensible
to arbitrary procedures. Hence, we do not consider the use of, for example, specialised
temporal reasoning in temporal planners (e.g., Halsey, Long, & Fox, 2003; Shin & Davis,
2005) to be in this category. However, one special case worth mention is the integration
of geometric path or motion planning with task planning, which has been a focus of work
in planning for robotics (Cambon, Gravot, & Alami, 2003; Cambon, Alami, & Gravot,
2009; Plaku & Hager, 2010; Lagriffoul, Dimitrov, Saffiotti, & Karlsson, 2012; Srivastava,
Fang, Riano, Chitnis, Russel, & Abbeel, 2014; Toussaint, 2015; Garrett, Lozano-Pérez, &
Kaelbling, 2015).

The partitioning of the planning problem into a primary (usually classical) part and
one or more attached subproblems which are solved by other methods may be seen as a
form of Bender’s decomposition (Hooker, 2000). Factored planning methods (e.g., Amir
& Engelhardt, 2003; Domshlak & Brafman, 2006; Fabre, Jezequel, Haslum, & Thiébaux,
2010) decompose the problem into parts that are all classical, but may still distinguish one
of those as primary (Gnad & Hoffmann, 2018). Most planners with semantic attachments
do not implement an analogue of Bender’s cuts, i.e., inferring constraints on the primary
model from inconsistencies or suboptimal solutions to the subproblem, though there are
exceptions, e.g., the ITSAT temporal planner, which infers causal constraints from incon-
sistencies in temporal constraints (Rankooh & Ghassem-Sani, 2015). We experimented with
a no-good learning approach, which lazily adds constraints to the primary model to elimi-
nate partial state variable assignments that have been discovered to lead to inconsistency
in the secondary model, but this did not lead to significant improvement in runtime.

Integrating semantic attachments into search is straightforward, as the planner only
needs to call the attached procedure when all its inputs are known. The attached proce-
dure may be a non-deterministic function returning several solutions, the choice over which
become backtracking points in the search (e.g., Aylett et al., 1998). For example, in a
forward-chaining state space search a predicate defined by an attached procedure is evalu-
ated only in fully defined states, while in a constraint-based planner a procedurally defined
constraint can be checked once all involved variables are assigned. What is not so simple is
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how to make heuristics that guide the search aware of the domain knowledge embedded in
the semantic attachments.8 As an indication, the early planning systems mentioned above
all rely on domain-specific search control knowlege (hand-crafted or learned) rather than
the kind of domain-independent search heuristics obtained from problem relaxations that
have become favoured more recently.

Three recent proposals have integrated semantic attachments into heuristic state-space
search planning. Dornhege et al. (2009) state that “..., we require that effect-applicators
[i.e., the attached functions] always terminate and result, for identical parameters and states,
in identical settings of the fluents they act on. In particular, effect applicators should not
contain any mechanism for making choices between different outcomes, such as selecting a
location for placing an object.” In other words, they restrict semantic attachments to be
deterministic predicates or functions of the planning state. However, one of their example
domains – robot manipulation planning – contradicts this description, in that the attached
motion planning procedure computes a set of alternative grasping poses, which appears to
become a branching point in the search. For guiding the search, Dornhege et al. (2009) use
an FF-like heuristic, based on the monotone relaxation. Computed predicate and function
values are treated as facts, and therefore subject to the same value-accumulating semantics
as normal state variables. This means that attached functions must either be able to take
as input a relaxed state (in which variables have a range of values), or all combinations of
reachable function inputs enumerated to compute new reachable values. It is unclear which
of these two options the planner uses. Enumeration may be feasible if each function’s inputs
is only a few state variables, but for functions of the entire state (such as, for example, the
power flow in a power network) this amounts to enumerating all realisations of the relaxed
state, i.e., all of states(s+). The authors equip attached functions with a flag to indicate
when the function is called as part of heuristic evaluation, suggesting that it may then use
a computationally cheaper approximation.

Gregory et al. (2012) propose “planning modulo theories” (PMT). Their approach ex-
tends the planning model with new state variable types (e.g., integers, sets, or arrays). Each
type is equipped with a defined set of interpreted functions and predicates. Like Dornhege
et al.’s semantic attachments, these functions are deterministic, so that their computation
does not introduce branching points in the search. To define a heuristic for the extended
planning model, they use a domain abstraction for each attached type. The abstraction may
be chosen depending on the state. The implementation of the attached type must provide
implementations of all its functions in the abstract value domain, as well as a “folding” op-
erator which combines abstract values; the role of this folding operator is analogous to that
of the union of sets of values in the monotone relaxation. Provided this, they show how to
compute the hmax heuristic. In principle, it is possible to use hmax as a relaxed reachability
test and therefore to compute h+ or LM-Cut in the way we have shown in this paper also

8. Here, we can make an analogy with search-based constraint solvers: Semantic attachments are similar
to propagators, in that they are procedures invoked at a point in the search, which perform specialised
inference and provide a result (in the form of reduced variable domains) to the search. However, the
heuristics that guide the search (that is, variable and value selection heuristics) are typically unaware of
what the propagators do, and are based only on what can be directly observed from the variables and
their domains.
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in the PMT framework. However, the hmax computation is guaranteed to terminate only
if, for every state, every relaxed reachable abstract domain is finite.

Piacentini et al. (2015) present an extension of the temporal numeric planner POPF-
TIF for the voltage control problem in AC power networks. Unlike the power network
problems we considered, they do not include switching actions that modify the network
topology; instead, actions in their problem affect network elements that control voltage, such
as changing transformer settings and activating or deactivating capacitors; their problem
also includes the possibility of shedding loads. Like in our problem, however, actions are
discrete and can have ramifications on continuous state variables (such as voltage and
power flow) across the entire network. The power flow calculation is integrated into the
planner as a semantically attached function. Different from the works above, Piacentini et
al. partition (numeric) state variables into “special” variables, which are computed by the
attached function, and normal variables, which are affected by actions; the special variables
are updated automatically (by calling the power flow solver) when any variable that they
depend on changes. This is similar to PDDL2.2’s partitioning of predicates into basic
(persistent) and derived (defined by axioms). Note that the power flow solver computes
only one solution (flow and voltage values) even through several may exist. To make the
indirect effect of actions on the special variables visible in the heuristic calculation, these
are approximated by a linear effect. For example, if the action changing the tap setting of
a transformer up by one step in a given state s increases the voltage at bus b by δ, then
the heuristic is evaluated in a model where this action has the constant effect (increase

(voltage b) δ). The POPF planner is a temporal numeric planner, so its heuristic is able
to deal with linear numeric effects of this kind. Note, however, that this is an approximation,
because as the state changes so does the effect of the action on the voltage. They compare
several versions of this heuristic, which differ in how and when the linear approximation
is computed. It may be computed only once, in the initial state, by more or less precise
methods, or recomputed for every evaluated state. Bernardini et al. (2017) applied the
POPF-TIF approach to several other problems using semantic attachments. In each case,
the approximate effect used in the heuristic is a form of “advice” that must be manually
provided by the domain modeller; the planner does not attempt to extract any information
from attached functions automatically.

Although the state constraints in our extended planning model can be seen as a form of
semantically attached predicates, a significant difference to the approaches described above
is that in our model, the values computed by the constraint solver do not persist between
states. As shown in Section 4, this limits the expressivity of the extended formalism. How-
ever, that limitation is also what makes the problem decidable for any type of secondary
variables and constraints (as long as consistency of the constraints is decidable) and en-
ables us to guarantee plan optimality. Allowing persistent state variables with non-finite
domains leads very easily to an undecidable plan existence problem, as demonstrated in the
case of numeric planning (Helmert, 2002). Of the works above, Gregory et al. (2012) are
the only to propose a method of cost-optimal planning for the extended planning model,
and that is only possible with finite types. Another important advantage of our way of ex-
tending the planning formalism, which sets it apart from the approaches described above, is
that problem relaxations, and therefore heuristics which are computed automatically from
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the domain formulation, can be made aware of the secondary model without the external
constraint solver needing to implement any specialised functionality for relaxed reasoning.

In planning for mobile robots, the main constraint is collision-free reachability in the
physical world. An abstract task, such as pickup(o,table), can correspond to many concrete
movements, as long as they bring the robot’s manipulator into a position where it can
grasp object o, and neither the robot nor the object collide with any obstacle along the
way. In this way, the specific robot poses and object positions chosen for an abstract action
sequence can be seen as under-constrained variables, akin to the secondary variables in our
formalism but with the important difference that the collision-free reachability constraint
spans pairs of subsequent states, rather than just a single state. Several integrated task
and motion planners take the approach of formulating a motion planning problem that is
constrained by a proposed abstract action sequence, interleaved with planning the action
sequence (e.g., Cambon et al., 2003, 2009; Plaku & Hager, 2010; Lagriffoul et al., 2012;
Srivastava et al., 2014; Toussaint, 2015). To guide the exploration of potential action
sequences, these planners plan in the abstract action space using some relaxation of the
geometric and motion constraints to evaluate candidate actions, or (incrementally) compile
some of the constraints into the abstract planning model. This use of a relaxed motion
constraint check, which differs from our approach that uses the same consistency solver
for both action validation and heuristic computation, is motivated by the computational
cost of invoking a complete motion planner. As demonstrated by our experiments (Section
7.3), invoking the constraint solver in heuristic computation can be costly, and the idea of
using a weaker, sound but incomplete, inference algorithm can be applied in our setting as
well. This approach was taken by Francès and Geffner (2015) in their constrained planning
graph heuristic, and in the application of our framework to planning with PDDL2.2’s derived
predicates (Ivankovic & Haslum, 2015).

9. Conclusion

We have introduced a principled way of extending a classical planning formalism with sys-
tems of state constraints. Checking the consistency of state constraints, both in validating
actions and computing heuristics, is outsourced to suitable solver; the integration of con-
straints into the formalism and of the solver into the planner is independent of the type
of the constraints and requires no additional capabilities of the solver. In this paper, we
have applied our approach to planning with linear and non-linear constraints over numeric
variables, but we have also applied it to planning with derived predicates defined by logical
axioms, demonstrating its generality (Ivankovic & Haslum, 2015).

Numerical state constraints provide support for modelling interconnected physical sys-
tems, in which a single discrete control action can have global effects (e.g., network flows)
that depend on the states of many components, and thereby can enable the application
of automated planning to a wider range of problems in areas such as power systems. We
also demonstrated that even for problems that can be modelled in a purely classical formal-
ism, deferring some choices from the planner’s search space to a constraint solver can have
computational advantages. This supports the argument that more expressive formalisms
can enable more efficient modelling (e.g., Francès & Geffner, 2015). It is related to the
idea of improving planner efficiency by domain reformulation in the classical setting, for
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example by modelling identical objects with counters (Riddle, Douglas, Barley, & Franco,
2016; Fuentetaja & De la Rosa, 2016), but more powerful in that the secondary model can
compactly express complex state constraints. However, repeatedly calling the constraint
solver, for example during heuristic computation, consumes time, and it is not always cost
effective. In our experiments with the h+ heuristic on the Counters domain, the time spent
calling the LP solver is between 82%–90% of total runtime (averaging 87%). However, of
that time, less than 10% is spent actually solving the LP; the remaining 90% or more is
spent in the interface between the planner and the LP solver. This suggests some of the
computational overhead can be engineered out of the integration.

The main limitation of our extension framework is that it includes only constraints
over each state in the plan trajectory. On the one hand, this limitation means that we
are able to solve planning problems in the extended formalism cost-optimally, but on the
other, it also means that problems with constraints that require persistence of secondary
variables – for example, trajectories in space or slow-moving network flows – cannot be
easily expressed. Finding a restricted fragment of cross-state constraints, or a combination
of state constraints with a restricted use of numeric primary variables (see, e.g., Scala,
Ramı́rez, Haslum, & Thiébaux, 2016c), that allows for modelling relevant problems while
maintaining the desirable properties of our framework is a topic of future work.
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