
Graph Neural Networks for Dynamic Abstraction Sampling

Vincent Hsiao 1, Dana Nau 1, Rina Dechter 2

1University of Maryland, College Park
2University of California, Irvine

Abstract

Abstraction Sampling (AS) is an extension of importance
sampling inspired by the concept of abstractions in automated
planning. An important component of Abstraction Sampling
is the abstraction function that determines how nodes are
grouped together into abstract states. Existing abstraction
functions based on context-based heuristics such as RandCB
have been proposed, but may not be good for many prob-
lems. In this paper, we demonstrate that the problem of find-
ing an optimal abstraction function can be framed as a vari-
ance minimization optimization problem. We propose a new
method for learning abstraction functions parameterized us-
ing graph neural networks. Furthermore, we introduce a novel
algorithm, Dynamic Abstraction Sampling that is capable of
competitive results with respect to existing abstraction func-
tions.

Introduction
A standard task in probabilistic inference on graphical mod-
els is the computation of the partition function, commonly
denoted using the variable Z (Darwiche 2009) (Dechter
2013). Because this computation is frequently intractable,
it is common to use stochastic methods such as Monte-
Carlo sampling to generate estimates of the Z-value. Vari-
ance reduction techniques such as Importance Sampling (IS)
(Gogate and Dechter 2011) are frequently employed to im-
prove the precision of the Monte-Carlo estimates. In this pa-
per, we are concerned with the task of generating samples
for computing the partition function over search trees. Each
estimate is generated through the construction of a sample
probe down the tree. In IS, this probe consists of a path in the
search tree, denoting a single configuration of all the vari-
ables in the tree. In Abstraction Sampling (AS), this probe
can be a subtree, allowing for the representation of multiple
configurations of variables in one probe.

For the purpose of this paper, we focus on regular search
trees (OR-trees). In order to decide what nodes in the search
tree should be included in a subtree probe, (Broka et al.
2018) introduces the notion of an abstraction function that
separates nodes level by level in an search tree into ab-
stract states. This process is inspired by abstractions in au-
tomated planning and can be traced to work by (Chen 1992)
and (Knuth 1975). The idea is also similar to stratified im-
portance sampling, a variance reduction technique in which

the sample space is split into distinct groups. The abstrac-
tion functions introduced by (Broka et al. 2018) are context-
based heuristics inspired by properties inherent to AND/OR-
trees of graphical model. However, these abstraction func-
tions can be improved for a given AND/OR-tree.

Contribution
Our contributions are as follows:

1. We propose a novel reformulation of learning abstraction
functions as a variance minimization problem within re-
inforcement learning framework.

2. We demonstrate how RandCB (an abstraction function
proposed by (Broka et al. 2018)) can be represented as a
single layer graph neural network.

3. We propose an evolutionary algorithm for training ab-
straction functions parameterized using graph neural net-
works.

4. We devise a novel algorithm, termed GNN based Dy-
namic Abstraction Sampling that can be used to learn
graph neural network abstraction functions on problems
without a known ground truth.

5. We provide empirical results comparing GNN Dynamic
Abstraction Sampling to the RandCB abstraction func-
tion and demonstrate that it can learn better abstraction
functions.

Background
Graphical Models and Probabilistic Inference
A graphical model is a 3-tuple M = (X,D,Ψ), consisting
of a discrete variable set X = {X1, X2, . . . , XN}, a set of
corresponding domains: D = {DX1

, DX2
, . . . , DXN

} with
xi ∈ DXi ,∀i (where the lowercase xi indicates an assign-
ment to the corresponding uppercase variable Xi) and a set
of functions Ψ = {Ψ1,Ψ2, . . . ,ΨN} (also known as fac-
tors). Each function Ψi is defined over a subset XΨi ⊆ X
denoted its scope and maps its corresponding subset of do-
main values DΨi

(corresponding to XΨi
) to a positive real

number: Ψi : DΨi
→ R+. Graphical models are used

to represent probability distributions over configurations of
the discrete variable set X , where for a configuration x =

(x1, x2, ..., xN), xi ∈ DXi , the probability of the configura-
tion x is:

Pr(X = x) =

∏
i Ψi(x)∑

x

∏
i Ψi(x)

(1)

where
∑

x denotes a summation over all possible config-
urations of X and the denominator Z =

∑
x

∏
i Ψi(x) is

a normalization constant also known as the partition func-
tion. The computation of the partition function is frequently
intractable and it is common to estimate its value using
stochastic Monte-Carlo methods.

Search spaces A graphical model can be transformed into
an alternative representation known as an AND/OR or an
OR search space (Dechter and Mateescu 2007). In this paper
we focus on simple OR-trees. Given a variable ordering o =
(v1, v2, ..., vN), N = |X|, let the root of the search tree on
the 0-th level be a dummy node. Each level i in the search
tree corresponds to a variable vi ∈ o and each node in level
i corresponds to a configuration to all variables up to vi. Let
oi = (v1, v2, ...vi) be the i-th prefix of o. The edges of the
search tree are weighted such that each edge into a node nvi
has a weight c(nvi) defined to be the product of all functions
Ψi ∈ M that have scope XΨi , s.t. XΨi ⊆ oi and XΨi 6⊂
oj , j < i. We define the value of a node nvi as the following
recursive expression:

Z(nvi) =
∑

nvj
∈ch(nvi

)

c(nvi)Z(nvj) (2)

where ch(nvi) is the set of children of the node nvi . The par-
tition function of the graphical model M can be computed
as Z = Z(root) of the corresponding OR-tree search space
(Dechter and Mateescu 2007).

Abstraction Sampling as Trajectories
In this paper, we consider Abstraction Sampling (Broka
et al. 2018) on the special case of OR-trees. It would be
straightforward to extend to AND/OR-trees. Given a graph-
ical model M = (X,D,Ψ), let o = (v1, v2, ..., vN), N =
|X| be some elimination ordering and let To = (V,E) be
the search tree generated from ordering o on M .

Abstraction Probe A probe ST is a subtree of To such
that:
1. It includes the root of To and if n ∈ ST , then it also

includes the parent of n, par(n) ∈ ST .
2. Each ST has an associated value Z(ST) = Z(root)

where

Z(nvi) =
∑

nvi+1
∈ch(nvi

)

c(nvi+1) · Z(nvi+1)

Z(nvN) = 1 (3)

Abstraction Function Let d be a constant denoting the
number of abstract states, A = {1, 2, . . . , d}. We define an
abstraction function FA : (M,ST , C) → A|C| as a mapping
from the graphical model M , the current probe iterate SiT ,
and a set of nodes C to a list of abstract states {s1, s2, ...s|C|},
one for each node n ∈ C.

Abstraction Sampling In Abstraction Sampling, to gen-
erate an abstraction probe ST , we perform the following
steps iteratively starting from S0

T = {ST ,root} = {ST ,v0}
where v0 is a dummy variable with child v1.

1. Given SiT = {ST ,v0 , . . . , ST ,vi}, let ch(ST , vi) be the
set of child nodes to be partitioned in the next level vi+1.

2. Given an abstraction function FA, generate the assign-
ment SA = FA(M,SiT , ch(SiT , nvi)). We place each
node ni ∈ ch(SiT , vi) into abstract state si ∈ SA.

3. For each non-empty abstract state Ai ∈ A, we perform
importance sampling with heuristic h(n) to generate a
representative node nAi

and assign a weight:

wAi
=

∑
n∈Ai

w(par(n))g(n)h(n)

w(par(nAi
))g(nAi

)h(nAi
)

(4)

4. Let ST ,vi+1
= {nAi

,∀ non-empty Ai}, then Si+1
T =

SiT ∪ ST ,vi+1
.

We repeat the above steps from i = {0, . . . , N}. It is also
possible to terminate this early if we know heuristic h(nvi)
is exact at vi and we set the value Z(nvi) = h(nvi).

Z-estimate Given a full probe ST , the Z-estimate of ST
denoted Z ′(S′T), where all leaves are located at the lowest
level N , is defined by:

Z ′(nvi) =
∑

nAi
∈ch′(nvi

)

c(nAi) · Z ′(nAi)
wnAi

wnvi

Z ′(nvN) = 1 (5)

where ch′(nvi) denotes the children of nvi in the pruned
tree.

Optimality Let θ be some parameterization of a family of
abstraction functions denoted FA,θ and Ẑθ be a Z estimate
generated using the abstraction function FA,θ. Our goal is
to minimize the variance of our Z-estimates over the family
FA,θ:

θ′ = arg inf
θ
E[(Ẑθ − Z)2] (6)

where E[(Ẑθ − Z)2] denotes the expected squared differ-
ence between our Z-estimates and a ground truth Z value.
Since AS is an unbiased sampling algorithm, minimizing
this quantity is equivalent to minimizing the variance of our
abstraction sampling procedure.

Reinforcement Learning
We formalize the task of choosing the optimal abstrac-
tion function as a reinforcement learning (RL) problem
where an RL agent is tasked with learning a mapping FA :
(M,ST , ch(SiT , vi)) → A|ch(vi)| that minimizes the vari-
ance of the Z-estimates (Eq. 6). At each step i, given the
current state (M,SiT , ch(SiT , vi)), the task is to return an
action α ∈ A|ch(vi)| which is the assignment of ch(SiT , vi)
to d abstract states.

Markov Process We denote the stochastic process SiT →
Si+1
T induced by our importance sampler, Prh,α(Si+1

T |SiT)
as a Markov process parameterized by the heuristic function
h and abstract state assignment α.

Reward Function LetZ be the value of the partition func-
tion of M . At step N , a full probe SNT has been sampled
having a Z-estimate of Z ′(SNT). We assign a reward:

rN = −‖Z − Z ′(SNT)‖2 (7)

to our learned probe. Since M is constant and ch(SiT , vi) is
a deterministic function of SiT , the task is to learn a value
function V : ST → R specified by the following Bellman
Equation:

V (SiT) = max
α∈A|ch(vi)|

{
∑
Si+1
T

V (Si+1
T)Prh,α(Si+1

T |S
i
T)}

V (SNT) = rN = −‖Z − Z(SNT)‖2 (8)

where the value function specifies the negative expected
variance at a given probe and can be computed recursively
from the full probes. Unfortunately, due to the size of the
state space of possible probes, this computation is intractable
and we will need to rely on a different method for computing
the optimal abstraction function FA.

Evolution Strategies
First developed for continuous parameter optimization for
the control of nonlinear systems, evolution strategies are a
class of heuristic search procedures, similar to stochastic lo-
cal search, that comprises a major subset of evolutionary al-
gorithms. The general idea is an iterative process applied to
a population of randomly generated individuals. Each indi-
vidual is a set of continuous valued parameters θ and at each
iteration (termed generation of the population), the fitness of
each individual is evaluated, and the most fit individuals are
selected from the current population and perturbed to gener-
ate the next population of individuals.

Evolution strategies appear to have some success in appli-
cation to difficult RL environments (Salimans et al. 2017).
More concretely, we propose the following evolution strate-
gies approach to evolve a population of parameterized ab-
straction function:
1. Let {θ1, ...θL} be a population of L abstraction functions

that map a context representation (M,C(vi), vi) to an
abstract state Ach(vi). As an example, one possible pa-
rameterization is a neural network, where each θi would
correspond to the weights and biases of a given network.

2. Evaluate each θi as an abstraction function FA,θi for m
rollouts obtaining estimates Ẑi,1, ...Ẑi,m for each mem-
ber of the population θi.

3. Evaluate the fitness f(θi):

f(θi) = − 1

m

m∑
j

‖Z − Ẑi,j‖2 (9)

for each abstraction function θi where Ẑi,j are the roll-
outs mentioned in the previous step.

4. Let the next population be composed of the following
networks:
• r (in practice r = 0.2∗L) individuals from the current

population with the best fitness. These individuals are
called parents.

• N − r − 1 children θj = θi + N (0, σ), i ∼ [1, r]
where the parameters of a randomly chosen parent θi
are perturbed with Gaussian noise N (0, σ) to produce
a child θj . For numerical stability, we constrain param-
eter values to be within [−1, 1].

• A copy of the individual with the highest fitness
through all population iterations (this is a convention
known as elitism).

5. Repeat from step 1.
This algorithm is a standard (r/1 + λ)-ES scheme (Beyer
and Schwefel 2002) with an additional slot for elitism
(Baluja and Caruana 1995).

Dynamic Abstraction Sampling
So far, we have assumed that we know the ground truth parti-
tion function Z when we compute a reward/fitness function.
Clearly, this is not the case when we would like to apply
our algorithms to practical problems. Instead of using Z as
our target value, we can use a running estimate Zest of the
ground truth as our target:

Zest =
1

m · L · g

g∑
k

L∑
i

m∑
j

Ẑk,i,j (10)

where g denotes the generation of the evolution strategy and
Ẑk,i,j is the Z-estimate from the j rollout of the i member
of the k-th generation of the evolution strategy.

Graph Neural Networks
Graph neural networks (GNNs) are a type of neural network
architecture that has found recent success in its application
to structured data. Compared to other architectures such as
multi-layer perceptrons (MLPs), one of the primary advan-
tages of a graph neural network is its flexibility in handling
arbitrary relational data structures. Notably, unlike MLPs, a
GNN does not need an input that is of a fixed length. Fur-
thermore, the structure of the data directly impacts the com-
putations performed in an GNN unlike in an MLP where
such information is typically discarded. Additionally, GNNs
are typically more efficient than MLPs for training since the
weights in a GNN are shared across the nodes for an input
graph. This advantage can also be found in convolutional
neural networks (CNNs) and GNNs can be seen as a method
of extending the local computations that are present in CNNs
towards computation on arbitrary graph structures.

An important subclass of graph neural networks are
aggregate-combine graph neural networks (AC-GNN) (Bar-
celó et al. 2020). The AC-GNN consists of two operations,
the graph aggregation operation, and the combine operation.
To be concrete, consider a graph G = (V,E), and let N(v)
denote the neighborhood of a vertex v ∈ V . Let each v ∈ V
be associated with some real vector xv ∈ Rn. For a given
node v, we define the following:

• An aggregation operation is a function that maps a set
of vectors to a single vector. Namely Agg : {xj , j ∈
N(v)} → Rn. An example of an aggregation operation
is the mean of a set of vectors:

Agg(v) =
1

|N(v)|
∑

j∈N(v)

xj (11)

Alternatively, this operation can be parameterized using
a recurrent neural network (e.g. through an LSTM in
GraphSage (Hamilton, Ying, and Leskovec 2017)).

• A combine operation maps the result of the aggregation
operation and the current node’s vector xv to a real vec-
tor: Comb : Rn×Rn → Rn. Typically this is done using
a simple feed forward neural network:

Comb(xv, Agg(v)) = f(Cxv +A[Agg(v)] + b) (12)

whereA and C are trainable weight matrices, b is a train-
able bias, and f is some non-linear function (a train-
able MLP or just a non-linear activation function such
as ReLU).

In a graph neural network, each layer represents an aggrega-
tion operation followed by a combine operation that is com-
puted for each node in an input graph.

Let x(0)
v denote the vectors associated with v ∈ V in the

input graph G. Let x(i)
v denote the vector associated with

vertex v after the i-th layer of the graph neural network. A
graph neural network with l layers obeys the following equa-
tion:

x(i)
v = Comb(i)(x(i−1)

v , Agg(i)(v)), ∀v ∈ V, ∀i ∈ [1, ..., l]
(13)

Additional Details
• Loss Function: The output of the final layer of a graph

neural network with l layers is a vector x(d)
v for each ver-

tex in the graph G. GNN loss functions can directly use
this information for node-level loss functions (e.g. ap-
proximating node classifiers as in (Barceló et al. 2020))
or include an additional global aggregation layer for
graph-wide loss functions (approximating a value func-
tion in (Ståhlberg, Bonet, and Geffner 2022)).

• Global Readout: In (Barceló et al. 2020), there is an addi-
tional component called a readout that aggregates all the
nodes in the graph. The result of this readout operation is
fed as an additional argument to the combine operation.
This global readout improves the expressivity of a given
GNN (Barceló et al. 2020) and allows them to represent
a larger class of node classification functions.

For this paper, we are only learning the param-
eters for the combination operation. This means
that each graph neural network is parameterized by
θ = {θ(1), ...θ(l)}, θ(i) = {C(i), A(i), R(i), b(i)}, where
C,A,R, b are trainable weight matrices and biases.

Graph Neural Networks for Abstraction Functions
Our goal is to learn a graph neural network that approxi-
mates the optimal abstraction function over the family of

abstraction functions parameterized by l layer GNNs as in
Eq. 6. To describe our approach, we begin with the follow-
ing two motivations:

• Consider a set of nodes: ch(SiT). Recall that at a given
iteration i, an abstraction function maps the set of nodes
ch(SiT) to a list of abstract states {s1, s2, ..., s|ch(Si

T)|}.
This can be thought of as a node classification problem.

• By definition, the assignment to the context of a vari-
able uniquely determines the value of its rooted subtree
(Broka et al. 2018) (Kask et al. 2020). For each node
nj ∈ ch(SiT), we can encode the context assignment
into the structure of a bipartite constraint graph, similar
to factor graphs for constraint satisfaction problems.

Given a set of nodes ch(SiT) for variable vi with context
C(vi) = {vj , j ∈ C(vi)} and domains Dvj , vj ∈ C(vi), we
define a bipartite context graph as G = (U, Y,E) where:

• U : ch(SiT)

• Y : each vertex in yj,a ∈ Y corresponds to one value
a ∈ Dvj for each vj ∈ C(vi)

• E: there is an edge from a vertex ∈ U to a vertex yj,a ∈
Y if the assignment for the child node nvi for the variable
vj is a.

An Example Let ch(SiT) = {n1, n2} associated with vi,
where C(vi) = {X1, X2}, and C(n1) = [X1 = 1, X2 =
2], C(n2) = [X1 = 1, X2 = 1]. The bipartite context graph
is:

Figure 1: Example bipartite context graph for two child
nodes.

We can now define the input and outputs of our graph neural
network to approximate an abstraction function:

• Input: a bipartite context graph
• Output: a label for each node unj

∈ U

Recall that in order to use a GNN, we need a vector x(0)
v as-

sociated with each vertex in the input graph. We will discuss
the considerations behind the initial values of these vectors
in a later section, but for now we assume that x(0)

unj
= 0 for

every vertex unj
∈ U and x(0)

yj,a ∼ N (0, 1)d for every vertex
yj,a ∈ Y , where d is the number of abstract states that can
be used in our abstraction function.

Figure 2: Example computational graph to compute x(1)
n for

the bipartite context graph in Fig. 1. Dotted lines represent
the connections in the bipartite context graph. Similar sub-
structures are present for the computation of every other
node in layer l1. The node y1,2 is removed as it is discon-
nected from the rest of the graph.

Given a spatial partitioning function H that maps Rd →
[1, ..., d] (e.g. argmax), a graph neural network abstraction
function is defined in Algorithm 1. The graph neural net-
work (Comb(i), Agg(i)) can be learned through reinforce-
ment learning using evolution strategies on a variance re-
duction objective as discussed in Section as in Alg. 2. For
this paper, we choose the following Aggregation and Com-
bination functions:

1

N(v)

∑
k∈N(v)

xj

f(C(i)xv +A(i)[Agg(v)] +R(i)[Readout] + b(i)) (14)

where Readout is the global aggregation operations dis-
cussed in (Barceló et al. 2020).

RandCB as a graph neural network
It is possible to formulate the RandCB abstraction function
as a special case of a graph neural network. Consider the
example in Fig. 1. In RandCB, we generate a random integer
Cj ∈ k for each variable vj ∈ C(vi). In the corresponding
graph aggregation operation, let each variable x(0)

yj,a ∼ a ·
[1, ...k] such that x(0)

yj,a = a ·Cj . The bipartite context graph
is shown in Fig. 3.

Suppose we define the following graph neural network
with 1 layer and spatial partitioning function:

Algorithm 1: Graph Neural Network Abstraction
Function
Input: A graphical model M , a partial probe ST , a
set of child nodes to be partitioned ch(SiT)
Parameters: A graph neural network
(Comb(i), Agg(i)), i ∈ [1, ..., l] parameterized by θ
, a spatial partitioning function H : Rd → {1, ..., d}
Output: Labels si ∈ {1, ..., d},∀ni ∈ ch(SiT)

Generate a bipartite context graph G = (U, V,E)
from (M,ST , ch(SiT)) ;

Initialize x(0)
unj

= 0, ∀unj
∈ U ;

Initialize x(0)
yj,a ∼ N (0, 1)d, ∀yj,a ∈ Y ;

for i = 1→ l do
for v ∈ U ∪ V do

x
(i)
v = Comb(i)(x

(i−1)
v , Agg(i)(v))

end
end
return {H(x

(l)
unj

), ∀unj
∈ U}

Algorithm 2: Dynamic Abstraction Sampling
Input: Graphical model M and corresponding
search tree To
Parameters: A spatial partitioning function H :
Rd → {1, ..., d}, g number of generations or T time-
limit, L number of individuals per generation, m
number of rollouts per individual
Output: Estimate of the partition function Zest

Randomly initialize population of parameters θi,
i ∈ [1, ..., L] ;
n = 0, s = 0 ;
for number of generations g or time-limit T do

for i = 1→ L do
for j = 1→ m do

Call Abstraction Sampling with (Alg. 1
using parameter θi and function H) as
the abstraction function to sample a
probe ST on To ;
Ẑi,j = Z ′(S′T) (Eq. 5) ;
s = s+ Z(S′T), n = n+ 1 ;

end
end
Zest = s/n ;
for i = 1→ L do

fi = − 1
m

∑
j(max(Zest − Ẑi,j , 0))2 ;

end
Evolve population {θ1, ..., θL} using fitness
values fi according to bullet 4 in Section ;

end
return Zest

Figure 3: Bipartite context graph for RandCB

• Comb(1) = (C = I, A = I, b = 0), where I is the
identity matrix

• Agg(1) =
∑

• H = mod d

If we run Algorithm 1 and evaluate the above graph neural
network on the biparatite context graph in Fig. 3, we get the
exactly the same computations present in RandCB. Essen-
tially, the graph neural network specified above is equivalent
to RandCB.

In general, a single layer graph neural network parame-
terizes a multidimensional hash function. Let cnj be the as-
signments to C(vi) for a node nj . We have for any nj , nk:

cnj = cnk
→ Agg(nj) = Agg(nk)→ x(i)

nj
= x(i)

nk
(15)

It has been shown in past work that RandCB is an effective
abstraction function for many problems. Since RandCB can
be written as a special case of a graph neural network, we
hypothesize it can be possible to learn even better abstraction
functions for a given problem using more expressive graph
neural networks.

Spatial Partitioning
One important aspect of designing a graph neural network
as an abstraction function is the spatial partitioning function
H . Before we discuss this, we first provide a geometric un-
derstanding of what the computations performed in a graph
neural network abstraction function actually do.

The graph neural network abstraction function can be
seen as a multivariable hash function that maps vertices in
U to a real vector in Rd. To better visualize this process,
assume that we are working with just two abstract states,
d = 2. For simplicity, assume that we use a single layer
GNN similar to the RandCB example in the previous exam-
ple. In the first step of a GNN computation, the aggregation
step computes Agg(nj) for each unj

∈ U , we can visualize
this as the computation of a 2-dimensional hash similar to
how a one dimensional hash is computed in RandCB.

The initial positions of the vectors Agg(ni) are mapped
using the Comb function which essentially acts as a kernel

Figure 4: Two dimensional hash space

Figure 5: H = argmax spatial partitioning function in two
dimensional space

function as in Fig. 4. We then use a spatial partitioning func-
tionH to map the real space into d abstract states. An exam-
ple is shown in Fig. 5, where H is chosen to be the argmax
function.

The computations of a graph neural network abstraction
function can be thought of as three functions: a hash func-
tion, a kernel function, and a spatial partitioning function. As
shown in previous work on GNNs, additional layers in the
graph neural network increase the expressivity of the model
and essentially allow for the approximation of a wider class
of kernel functions.

Graph Neural Network Initialization
Another important aspect of designing a graph neural net-
work abstraction function is determining the process for the
generation of the initial vectors x0

yj,a . It can be useful to gen-
erate x0

yj,a such that the initial vectors for variable nodes
specifying the same variable with different values are re-
lated.

For example, consider an input graph where the domains
of each variable in C(vi) is limited to two values. Our ini-
tial construction of the GNN abstraction function assumes
that x0

yj,1 and x0
yj,2 are drawn independently fromN (0, 1)d.

However, this means that we lose some information in the
form that the two nodes in Y represent the same variable vj .
One possible way to limit the effect of this loss of informa-
tion is to define a function J such that:

x0
yj,2 = J(x0

yj,1) (16)

and we only need to sample x0
yj,1 . For this paper, we use

J(x) = −x as the initialization mapping as the problems
we deal with have boolean-valued variables.

Empirical Results
For evaluation we run Dynamic Abstraction Sampling using
a Graph Neural Network with the evolution strategies rein-
forcement learning approach described in the section (with

Table 1: Graph Neural Network parameters for empirical
tests

Parameter Value
Comb f(Cxv +A[Agg(v)] +R[Readout] + b)
Agg 1

|N(v)|
∑
j∈N(v) xj

H ∼ Softmax(x)
Initialization x0

yj,1 ∼ Uniform[−1, 1], x0
yj,2 = −x0

yj,1

Table 2: Empirical results on a selection of problems for 1 hr
of computation. Estimates closer to ground truth values are
bolded.

Problem Instance Truth RandCB GNN
grid20x20.f2 291.732 291.310 291.537
grid20x20.f5 665.116 661.149 661.859
grid20x20.f10 1311.983 1302.819 1307.786
grid20x20.f15 1962.977 1944.677 1949.414
grid20x20.f15.wrap 1979.962 1966.380 1968.297
rbm20 58.530 57.354 57.058
rbm21 63.112 57.592 62.829
rbm22 66.553 61.219 65.454
or chain 10.fg -8.330 -8.810 -8.391

population size = 40, 2 evaluations per generation). As a fit-
ness function, we use

fitness = − 1

m

∑
i

(max(Zest − Ẑi, 0))2 (17)

where Zest is the current running estimate over all popula-
tion members of the Z-value. The graph neural network is
specified with the parameters listed in Table 1, with trainable
parameters (C,A,R, b). We compare the running estimate
Zest of the GNN after one hour of computation with one
hour of abstraction samplign using RandCB in Table 2 on
a preliminary selection of problem instances taken from ex-
isting benchmarks: Grids, DBN, and Promedas (Kask et al.
2020).

Dynamic Abstraction Sampling is the most effective when
the problem is somewhat difficult but not too large as in the
problems tested in Table 2. Compared to Abstraction Sam-
pling with RandCB, each full probe generation using Dy-
namic Abstraction Sampling takes roughly 3-4 x more time.
As a result, if the problem is small and Abstraction Sam-
pling already performs very well, the benefits provided from
learning better abstraction functions may not be able to over-
come the difference in computational efficiency.

On the other hand, because we need multiple rollouts to
update our abstraction functions, it is difficult to apply our
method directly to large problem instances. In the Grids
benchmark, it can take several minutes for just one roll-
out on an 80 x 80 sized problem instance. This limits the
direct applicability of our method. However, given certain
constraints, we can attempt to use transfer learning to bridge
this gap in applicability. For example, it is possible to learn
abstraction functions on a small problem instance such as

Table 3: Transfer learning results for networks trained for
1 hr on given small instance and then evaluated for 1 hr
on larger instance in Grid benchmark. Values are com-
pared with results from 1 hr of Abstraction Sampling using
RandCB.

Base Truth RandCB GNN
Trained on grid20x20.f15

grid40x40.f5 2792.203 2743.674 2747.990
grid40x40.f10 5491.076 5402.128 5392.410
grid40x40.f15 8198.61 8022.986 8037
grid80x80.f5 11163 10901 10902
grid80x80.f10 21785.5 21225.005 21226.268
grid80x80.f15 32550 31655 31750

Trained on grid20x20.f5
grid40x40.f5 2792.203 2743.674 2746.933
grid40x40.f15 2792.203 8022.986 8031.676

Trained on grid20x20.f10
grid40x40.f5 2792.203 2743.674 2746.589
grid40x40.f10 5491.076 5402.128 5405.262
grid40x40.f15 8198.61 8022.986 8033.929
grid80x80.f10 21785.5 21225.005 21256.046

grid20x20.f5 and then evaluate the function on similar but
large instances such as grid40x40.f5 or grid 80x80.f5. We
demonstrate the capability of our method to generalize from
smaller instances in Table 3.

Conclusion

We have proposed Dynamic Abstraction Sampling, an on-
line method for learning better abstraction functions. Our
method uses evolutionary methods as a backbone to opti-
mize towards a running estimate. We propose a bipartite
graph structure for capturing the information present in the
context of frontier nodes and a graph neural network ar-
chitecture to exploit the information encoded in this struc-
ture. We provide preliminary empirical evaluation over sev-
eral problem instances from different benchmarks and also
demonstrate the potential generalizability that our method
can have by training on smaller instances and evaluating on
larger ones in a given benchmark.

While it seems that evolutionary strategies are an effective
method for learning abstraction functions, it would be inter-
esting to explore other reinforcement learning approaches
such as policy gradient methods. However, any potential gra-
dient based method will be slower than the current evolu-
tionary approach and it will be necessary to evaluate whether
the benefit of using gradient based algorithms can outweigh
the increasing computational cost.

Furthermore there are still some details that could be ex-
panded upon in the graph neural network architecture. In
particular, it is not clear what initialization functions should
be used if the variables in a problem instance take more than
two values. In this case, it may be interesting to learn the
initialization function along with the abstraction function.

Acknowledgements This work supported in part by NSF
grant IIS-2008516 and AFOSR grant 1010GWA357. Special
thanks to Alexander Ihler and Bobak Pezeshki for their help
in discussions about the work.

References
Baluja, S.; and Caruana, R. 1995. Removing the genetics
from the standard genetic algorithm. In Machine Learning
Proceedings 1995, 38–46. Elsevier.
Barceló, P.; Kostylev, E.; Monet, M.; Pérez, J.; Reutter, J.;
and Silva, J.-P. 2020. The logical expressiveness of graph
neural networks. In 8th International Conference on Learn-
ing Representations (ICLR 2020).
Beyer, H.-G.; and Schwefel, H.-P. 2002. Evolution
strategies–a comprehensive introduction. Natural comput-
ing, 1(1): 3–52.
Broka, F.; Dechter, R.; Kask, K.; and Ihler, A. 2018. Ab-
straction sampling in graphical models. In Thirty-Second
AAAI Conference on Artificial Intelligence.
Chen, P. C. 1992. Heuristic sampling: A method for pre-
dicting the performance of tree searching programs. SIAM
Journal on Computing, 21(2): 295–315.
Darwiche, A. 2009. Modeling and reasoning with Bayesian
networks. Cambridge university press.
Dechter, R. 2013. Reasoning with probabilistic and deter-
ministic graphical models: Exact algorithms. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, 7(3):
1–191.
Dechter, R.; and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial intelligence, 171(2-3): 73–
106.
Gogate, V.; and Dechter, R. 2011. SampleSearch: Impor-
tance sampling in presence of determinism. Artificial Intel-
ligence, 175(2): 694–729.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.
Kask, K.; Pezeshki, B.; Broka, F.; Ihler, A.; and Dechter,
R. 2020. Scaling up AND/OR abstraction sampling. In Pro-
ceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence,{IJCAI} 2020.
Knuth, D. E. 1975. Estimating the efficiency of backtrack
programs. Mathematics of computation, 29(129): 122–136.
Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; and Sutskever, I.
2017. Evolution strategies as a scalable alternative to rein-
forcement learning. arXiv preprint arXiv:1703.03864.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learning
general optimal policies with graph neural networks: Ex-
pressive power, transparency, and limits. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 32, 629–637.

