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Abstract

A great challenge in using any planning system to solve
real-world problems is the difficulty of acquiring the domain
knowledge that the system will need. We present a way to
address part of this problem, in the context of Hierarchical
Task Network (HTN) planning, by having the planning sys-
tem learn the HTN methods incrementally under supervision
of an expert. We present a general formal framework for
learning HTN methods, and a supervised learning algorithm,
named CaMeL, based on this formalism. We present theo-
retical results about CaMeL’s soundness, completeness, and
convergence properties. We also report experimental results
about its speed of convergence under different conditions.
The experimental results suggest that CaMeL has the poten-
tial to be useful in real-world applications.

Introduction
A great challenge in using any planning system to solve
real-world problems is the difficulty of acquiring the domain
knowledge and the associated control rules (i.e., rules that
help the planner to search the search space efficiently) that
abstract the real-world domain. One way to address this is-
sue is to design the planning system to learn the constituents
of the planning domain and the associated control rules. This
requires the system to be supervised by a domain expert who
solves instances of the problems in that domain. This will re-
sult in a supervised learning process. In this paper, we dis-
cuss a supervised incremental learning algorithm in a Hier-
archical Task Network (HTN) planning context.

In recent years, several researchers have reported work on
the HTN planning formalism and its applications (Wilkins
1990; Currie & Tate 1991; Erol, Hendler, & Nau 1994). The
hierarchical semantics of this kind of planning gives us the
ability to model planning problems in domains that are nat-
urally hierarchical. A good example is planning in mili-
tary environments, where conventional linear STRIPS-style
planners (Fikes & Nilsson 1971) cannot be exploited to ab-
stract the planning problems accurately. An example of us-
ing HTN planning in such environments is a system called
HICAP (Muñoz-Avila et al. 1999), which has been used to
assist with the authoring of plans for noncombatant evacu-
ation operations. To support plan authoring, HICAP inte-
grates the SHOP hierarchical planner (Nau et al. 1999) to-
gether with a case-based reasoning (CBR) system named Na-

CoDAE (Aha & Breslow 1997).
As with any incremental learning problem, there are at

least two approaches that one might consider for learning
HTN methods. First, a lazy CBR approach can be used to
directly replay plans previously generated by the human ex-
pert. It assumes that plans that were successfully used in situ-
ations similar to the current situation are likely to work now.
Second, an eager approach can be used to induce methods
that could be used to mimic the human expert. In either ap-
proach, adding new training samples, which represent hu-
man expert activities while solving an HTN planning prob-
lem, is expected to yield better approximations of the do-
main. However, due to the complexity of the semantics of
HTN planning, one should carefully define the inputs and
outputs of the learning algorithm and what learning means
in this context. In this paper, we use an eager approach.

In this paper, we introduce a theoretical basis for formally
defining algorithms that learn preconditions for HTN meth-
ods. This formalism models situations when we have the fol-
lowing:�

General information about possible decompositions of
tasks into subtasks, but without sufficient details to tell
where each decomposition will be successful and when it
won’t.�
Plan traces that are known to be successful or unsuccessful
for certain problem instances.

Such situations occur in several important practical do-
mains, such as the domain of Noncombatant Evacuation Op-
erations(DoD 1994; Lamber 1992), in which a military doc-
trine provides the planner with general information about
how to carry out an evacuation operation, while the details
of such an operation are not specified.

We also discuss CaMeL (Candidate Elimination Method
Learner), an algorithm that instantiates this formalism. We
state theorems about CaMeL’s soundness, completeness, and
convergence properties. Our experimental results show the
speed with which CaMeL converges in different situations
and suggest that CaMeL has the potential for use in deployed
systems.

Hierarchical Task Network Planning
In an HTN planning system, instead of having traditional
STRIPS-style operators with delete and add lists used to



achieve goal predicates (Fikes & Nilsson 1971), the main
goal of planning is to accomplish a list of given tasks. Each
task can be decomposed into several subtasks using prede-
fined methods. Each possible decomposition represents a
new branch in the search space of the problem. At the bot-
tom level of this hierarchy lie primitive tasks, whose actions
can be executed using an atomic operator. In summary, the
plan still consists of a list of instantiations of operators, par-
tially ordered in some planners and fully ordered in other
ones, but the correctness definition of the plan differs. In tra-
ditional planning, a plan is correct if it is executable, and the
goal state is a subset of the world state after the plan’s execu-
tion (i.e., each goal atom is achieved by some operator in the
plan). In HTN planning, a plan is correct if it is executable in
the initial state of the world, and it achieves the task list that
is given as an input in the planning problem using the meth-
ods defined as a part of planning domain. In other words, the
main focus of an HTN planner is task decomposition, while
a traditional planner focuses on achieving the desired state.
In this paper we use a form of HTN planning called Ordered
Task Decomposition (Nau et al. 1999) in which at each point
in the planning process, the planner has a totally ordered list
of tasks to accomplish.

An HTN domain is a triple �����	�
���� where:�
� is a list of tasks. Each task has a name and zero or more
arguments, each of which is either a variable symbol1 or a
constant symbol. Each task can be either primitive or non-
primitive. A primitive task represents a concrete action,
while a non-primitive task must be decomposed into sim-
pler subtasks.�
� is a collection of methods, each of which is a triple��� ������������������ , where ��� is a non-primitive task,����� is a totally-ordered list of tasks called a decomposi-
tion of ��� , and � (the set of preconditions) is a boolean
formula of first-order predicate calculus. Every free vari-
able in � must appear in the argument list of ��� , and ev-
ery variable in ����� must appear either in the argument
list of ��� or somewhere in � . We will assume that each
method � can be uniquely identified by its first two parts,��� and ����� (i.e., there will be no two different methods������������������ and �������	�������	���� such that � �� �!� ).�
� is a collection of operators, each of which is a triple"#� ���!���	����$��&%!���� , where �!� is a primitive task,
and ����$ and %'��� are the sets of logical atoms that will
be respectively deleted from and added to the world state
when the operator is executed. All variables in ����$ and%'��� must appear in the argument list of �!� . We also as-
sume that, for each primitive task (�)*� , there is at most
one operator �����+������$��,%'���� such that ( unifies with�!� (i.e., each primitive task can be performed in at most
one way).

An HTN planning problem is a triple ��-.�	/0���� , where -
(the initial task list) is a totally ordered list of ground in-
stances of tasks (i.e., members of � ) to be performed, / (the

1We denote variable symbols by names that begin with question
marks, such as 132 .

initial state of the world) is a set of ground logical atoms, and� � �������4���� is an HTN domain.
A binding 5 is a set of pairs �&67���� , where 6 is a variable

symbol, and � is a constant symbol. In other words, 5 is a
substitution that replaces variables with constants. The result
of applying a binding 5 to an expression 8 is denoted by 895 .

The inverse of the binding 5 , which replaces every con-
stant � with its corresponding variable 6 (in 5 ) is denoted
by 5;:=< .

Let � � ������������������ be a method. Then >� ��������	������ is called the incomplete version of � . Sim-
ilarly, if � 5 � �,�����?,5@�3��������,5@�	��5A is an instance
of a method � , then the incomplete version of � 5 is>� 5 � �,�����?,5@�3��������,5A . Note that we have assumed
that there are no two different methods �������	�������	�� and�������	���������!�� such that � �� �!� . Therefore, there
is a one-to-one correspondence between a set of methods� � < �CB9B9B	� �ED � and their incomplete versions

� >� < �9BCB9B��F>�GD �
and thus each incomplete version >��H can be used to represent� H .

Let � � �I�+���
�	�� be an HTN domain. Then, if >� de-
notes the set of incomplete versions of all methods in � ,>� � �I�+� >�J���� is defined to be the incomplete version of� .

A method ���K�+���������	�� is applicable in a state / if
there is a binding 5 that binds all variables in ��� ’s argument
list such that ��5 is satisfied in / .

A partial solution tree for a ground instance L of a task in
an HTN domain � � �I���	�
���� is an ordered tree M having
the following properties:�
M ’s root is L ;�
Each node of M is a ground instance of a task;�
For each non-leaf node � of M , there is a method �N��������	�������	�� and a binding 5 such that � � �����?,5
and ��� < �9B9BCB���� D  � ��������&5 , where ��� < �CB9BCB���� D  is the
list of the children of � . � 5 � �,�����?,5@�3��������&5@����5A
is called the method instance for � .
A partial solution forest for an HTN planning problem��-O��/0�	�� is a totally ordered list ��M < �9B9BCB���M D  of partial so-

lution trees, one for each member of - .
In a partial solution forest P � ��M < �9B9BCB���M D  , a node Q oc-

curs before a node R in each of the following cases:�
Q and R are in different trees M H and MTS , respectively, whereUWVYX

.�
There is a node Z such that Q is the

U
’th child of Z and R

is the
X
’th child of Z , where

U0V[X
.�

Q and R have ancestors Q.� and RA� , respectively, such that Q.�
occurs before RA� . (Note that we may have Q.� � Q and/orR\� � R .)

Given these definitions, it follows that the leaves of a partial
solution forest are totally ordered by the “occurs before” re-
lation.

A solution for a planning problem ��-.�	/0���� is a partial so-
lution forest P for ��-.�	/0���� having the following properties:�

For every leaf node $ of P , there is an operator "]����!���	����$^�&%!���� and a binding 5 such that $ � ���!�?,5 ." 5 is called the operator instance for $ .



�
For every non-leaf node � of P , let �_� �������	�������	��
be` the method instance for � . Let ��$ < �CB9BCB���$ D  be the to-
tally ordered list of leaf nodes that occur before � , and
let " < �9BCB9B&� "AD , respectively, be the operator instances for
these nodes. Then � is satisfied in the state produced by
starting with / and applying " < �CB9BCB,� " D sequentially.

Two HTN domains � < and �ba are equivalent if and only
if, for any arbitrary task list - and state of the world / ,
the planning problems ��-O��/0��� <  and ��-O��/0�	� a  have ex-
actly the same set of possible solution forests. For ex-
ample, let � � � ��� < ��cAde3����� a ��cAde3���!�!��cAde�� be a
set of two non-primitive tasks and one primitive task, let"f� ���!�!��cAdgh� � �i� � �j be an operator with empty add
and delete lists that achieves the primitive task �!�!��cAdg ,
let � < � ���K� < ��cAde3�h�����Fa9��cAdg,3��kO��cAdg, and � � < ����K� < ��cAde3�h����� a ��cAdg,3��kO��cAdgYlnm9��cAde& be two methods
that can decompose the non-primitive task �K� < ��cAdg into���FaA��cAdg , and let � a � �����FaA��cAdgh�3���!�!��cAde&h�	m9��cAdg, be
a method for decomposing the non-primitive task ��� a ��cAdg
into the primitive task ���!��cAde . Then the domains � < ������ � � < � � a �i� � " �A and � a � ����� � � � < � � a �i� � " �A are
equivalent.

Inputs to the Learning Algorithm
Motivation
For supervised learning of domains (either in an action-based
or an HTN planning environment), two possible forms of in-
put are:�

A set of previously generated plans. These plans can be
generated in several ways (e.g., by a human expert in that
domain). The learning process consists of extracting do-
main information from these plans.�
A collection of plan traces, which contain not only the cor-
rect solution for a planning problem, but also information
about inferences derived and decisions made while this
plan was generated (e.g., by a human expert).

The second form of input is preferable because it will
result in faster and more accurate learning, because plan
traces contain much more information about the domain be-
ing learned than plans. For this reason, most previous re-
lated work has used the second form of input. For example,
in PRODIGY, a system that uses learning techniques in an
action-based planning context, derivational traces are used
in the learning process (Veloso & Carbonell 1993). These
traces contain information about the planner’s internal right
and wrong decisions in addition to the final solution.

In this paper, we also use this second form of input, with
appropriate adaptations for use in an HTN-planning environ-
ment rather than an action-based planning environment. In
addition to its efficiency advantages, this form is well suited
to our other goals. Ultimately, we want to develop a learning
mechanism that can be used for HICAP (Muñoz-Avila et al.
1999), an interactive plan authoring system for HTN plans
that allows manual editing of the plans by the user. We in-
tend to soon develop a supervisor module on top of HICAP
that track a user’s edits during plan authoring. This sequence

of edits corresponds roughly to the plan traces that we use as
input to CaMeL.

In addition to the plan traces, we will assume that the input
to the learning algorithm includes the incomplete version of
the domain. By definition, the incomplete version includes
the operator definitions, which seems reasonable given that
operators usually denote concrete/simple actions with obvi-
ous effects.

Definitions
We are now ready to formally define plan traces and our in-
puts. A plan trace o consists of (1) a solution to an HTN
planning problem and (2) for each internal node � in the so-
lution forest, an incomplete version of all instances of meth-
ods that were applicable. This will obviously include the in-
stance of the method that was actually used to decompose � .

The inputs for an HTN method learning algorithm consist
of:�

The incomplete version >� of a domain � .�
A set of HTN planning problems

� ��- S �	/ S �	��p� , whereqsr[Xtrvu
.�

A plan trace o S for each of these problems.

Outputs of the Learning Algorithm
One of the challenges in any learning algorithm is how to
define a criterion to evaluate its output. Often, there is not
enough information in the input or there are not enough train-
ing samples to derive an optimal output. Therefore, learning
algorithms may return a set of candidate answers instead of
a single answer. This phenomenon can affect the definition
of soundness and completeness, which play a crucial role in
evaluating outputs in a planning context.

We will assume that every constituent of the domains with
which we are dealing is deterministic and training samples
are not noisy. Therefore, there may be two reasons why a
complete and correct definition of a method cannot be in-
duced:�

Lack of knowledge about the internal domain representa-
tion:
For example, suppose that a learning algorithm does
not know whether the preconditions of methods being
learned consist of only conjunctions, or whether disjunc-
tions are also allowed. Suppose this learning algorithm
is trying to learn a method � that decomposes the
task �G" Rw8\��ch(C��cAxw��cAy@ , and assume that the algorithm’s
inputs include two instances of � : an instance to de-
compose the task instance �E" Rw8\�z(	{AQe|3} < �	| U (	~ < �	| U (	~ a 
and the other one to decompose the task instance�G" Rw8\�z(	{AQe|3} a ��| U (	~9�i��| U (	~9�j . Suppose also that these two
methods are applied, respectively, in the following world
states:� (	{AQe|3}e�z(	{AQe|3} < 3��k\(3�z(	{AQe|3} < ��| U (	~ < h�	| "A�z" {;�z(	{AQe|3} < ��m � Qe8Cp�� (	{AQe|3}e��(	{AQg|h}ia�h�	k\(3�z(	{AQe|3}@aA��| U (	~ � h�	| "A��" {;�z(	{AQe|3}@aC��{A89yip�
If we give these two instances of � to an HTN method
learner, then both

(	{AQg|h}e��ch(	FlGkA(3��ch(C�	cAx9



and

(	{AQg|h}e��ch(	Al!k\(3��ch(C��cCx9Al���| "A��" {;��ch(C�&m � Qg89A�?| "A��" {;��ch(C��{C89y@&
can be preconditions for method � , and the learner has no
way to tell which one is the precondition of � if the learner
doesn’t know that only conjunctions are allowed.�
Insufficient coverage of the domain information by train-
ing samples:
Consider another example, with the same
method as in last example, and three instances:�E" R;8A��(	{AQg|3} < �	| U (	~ < �	| U (	~ a  , �G" Rw8\�z(	{AQe|3} a ��| U (	~9�i��| U (	~9�j
and �E" Rw8\�z(	{AQe|3};�O��| U (	~A�;��| U (	~A�h . The states of the world
in which these three instances are applied are respectively:

� (	{AQe|3}e��(	{AQg|3} < h�	k\(3��(	{AQg|3} < ��| U (	~ < 3��| "A�z" {;��(	{AQg|h} < �	m � Qg89��� (	{AQe|3}e��(	{AQg|3} a h�	k\(3��(	{AQg|3} a ��| U (	~9�A3��| "A�z" {;��(	{AQg|h} a �	m � Qg89��� (	{AQe|3}e�z(	{AQe|3};�33��k\(3�z(	{AQe|3};�w�	| U (	~A�3h�	| "A�z" {;�z(	{AQe|3};�w��{A8Cy@��
Suppose that the algorithm knows the preconditions of
the methods in this specific domain contain only con-
junctions. Knowing this, if the algorithm only encoun-
ters the first two examples, it will not be able to induce
that | "A��" {;��ch(C��m � Qe8C is not in the preconditions of this
method, no matter how well it works, simply because
there is not enough information in the given input to in-
fer this. The best the algorithm can do is to say that
the precondition of this method is a generalization2 of� (	{AQe|3}e��ch(	3��kA(3��ch(C�	cAx93��| "A�z" {;��ch(C�&m � Qe89�� . When given the
third training sample, the algorithm will be able to deter-
mine that | "A�z" {;��ch(C�	m � Qg89 is not part of the method’s pre-
condition.

In this paper, we will assume that the exact form of the pre-
conditions of methods for the target domain is known a pri-
ori. Thus, the only reason not to learn the exact method pre-
conditions will be the fact that given training examples have
not covered the whole domain information.

Before we can formally present soundness and complete-
ness definitions in the context of HTN method learning, we
need to define consistent answers:

A domain � < is consistent with another domain � a with
respect to a set of pairs ��- S ��/ S  of a task list - S and a state
of the world /@S if and only if for every

X
, the plan traces for

HTN planning problems ��-�SO��/@SO�	� <  and ��-�SO��/@S@�	� a  are
exactly the same. This definition says that although there
may be differences in the methods and/or operators in � < and�ba when solving problems relative to the task list - S and state/@S for each

X
, the resulting traces are identical.

Using the above definition, we can now formally define
soundness and completeness for HTN method learning algo-
rithms. In order to make these definitions simpler, we will as-
sume that output of an HTN method learner is a set of HTN
domains rather than a set of possible method preconditions.

2A conjunction �0� of logical atoms is more general than an-
other conjunction �=� of logical atoms if and only if the set of logical
atoms appearing in �0� is a subset of the set of logical atoms appear-
ing in � � .

This is a reasonable assumption, because the incomplete ver-
sion of the domain is given to the learning algorithm as input,
and the algorithm induces method preconditions for that do-
main. These preconditions are the only missing part in the
domain definition. Therefore, having these preconditions,
the learner can build a complete HTN domain from the in-
complete domain given as input.

The definition of soundness is as follows:
Consider an HTN method learning algorithm whose in-

puts are� >� , the incomplete version of a domain � ;�
A set of HTN planning problems

� ��- S �	/ S �	��p� , whereqsr[Xtrvu
;�

A plan trace o S for each of these HTN planning problems.

An HTN method learning algorithm is sound if, whenever it
returns a set of HTN domains, each of them is consistent with� with respect to the set of all ��-�SO��/@Sw pairs.

Consider an HTN method learner whose inputs are the
three listed above. Then this algorithm is complete if, for ev-
ery domain �b� that is consistent with � with respect to the
set of all ��-�SO��/@Sj pairs, the algorithm’s answer includes a do-
main that is equivalent to �b� .

Another useful notion is convergence. Intuitively, it tells
us whether an algorithm is expected to find a final answer in
finite time. An algorithm converges to the correct answer in
a domain � that satisfies our restrictions and assumptions, if
and only if it is given a finite set of plan traces for the HTN
planning problems ��-�S.�	/@S@���� as input, and it terminates and
outputs a set of HTN domains, each of which is consistent
with � with respect to the set of all possible pairs of an initial
task list and a world state. Apparently, all of the domains in
the output set of a method learner that has already converged
must be equivalent to each other.

Algorithm Implementation
Motivation
The main goal of learning HTN methods is to be able to gen-
erate plans for new planning problems (or queries). This
ability will be obtained by learning how to plan using a set
of previously generated plans or plan traces. In the machine
learning literature, two entirely different kinds of learning,
namely lazy learning and eager learning are discussed: In
the purest form of lazy learning, training samples are sim-
ply stored. At query time, the algorithm compares the query
instance with its recorded training samples. Thus, learning
time is minimized while query time can be high, especially
if no attempt is made to prune the number of stored training
samples. On the other hand, eager learners induce an abstract
concept during the training process. At query time, this con-
cept, rather than the training samples themselves, are used
to answer the query. Thus, learning time is higher than for
purely lazy algorithms, while query time is usually lower.

In the context of method learning, lazy learning has been
done using CBR, which involves locating those training sam-
ples that are most similar to the planning problem given as
the query (Veloso, Muñoz-Avila, & Bergmann 1996; Han-
ney & Keane 1996; Lenz et al. 1998). This problem is then



solved by adapting the solutions stored in the retrieved train-
ing samples.� Our focus in this paper is on eager learning.
Some of the advantages of using eager learning in our con-
text are:�

Less query time: Lazy learning is useful when the number
of training samples and frequency of query arrival is small.
However, when these numbers are large, finding the most
similar training samples can be time consuming (i.e., as-
suming that no smart indexing method is used). In such
situations, eager learners are preferable.�
Reduced knowledge base size: Once the methods are
learned, the system can discard the training samples and
use the induced methods to solve new planning problems.
In other words, the learned methods will act as a compact
summary of the training cases. In contrast, purely lazy ap-
proaches require that, for every new planning problem, all
previously seen examples must be revisited and therefore
must be stored in the algorithm’s knowledge base. Also,
although several algorithms exist for significantly reduc-
ing storage requirements for case-based classifiers, they
do not yet exist for case-based HTN planners.�
Easier plan generation: If we learn methods completely,
then the process of generating a plan for a new planning
problem will be much easier. This requires inducing meth-
ods for a hierarchical planner so that it can automatically
generate plans for new planning problems. In contrast, a
case-based planner must dynamically decide, for each new
problem, which stored case or combination of cases to ap-
ply.
As mentioned earlier, HTN method learning algorithms

may not be given enough information in the training set to
derive a single exact domain as output. Therefore, the al-
gorithm may return a set of domains. In these situations, a
policy is needed to decide which possible domains should be
output by the algorithm. Two extreme policies are:�

The minimal policy: Any possible domain is added to the
output set if and only if there is enough evidence in the
input to prove that this domain must be in the output.�
The maximal policy: Any possible domain is added to the
output set if and only if there is not enough evidence in the
input to prove that this domain must not be in the output.
For example, suppose that an HTN method learner is try-

ing to learn the preconditions of a method � that is used to
decompose the task �E" Rw8\��ch(C��cAx;�	cAy@ . Consider the follow-
ing two cases:
1. Suppose the algorithm is told that there was an

instance �E" R;8A��(	{AQg|h} < ��| U (	~ < ��| U (	~Aah of method� that was applied when the world state was� (	{AQe|3}e��(	{AQg|3} < 3��k\(3�z(	{AQe|3} < �	| U (	~ < �� . Using this train-
ing sample (which is a positive sample, since it tells
us when a method is applicable), a minimal approach
will yield: “The method � can be applied whenever� (	{AQe|3}e��ch(	�l]k\(3��ch(C��cAxCp� is true in the world state.”
However, a maximal approach will yield “Method � is
always applicable.” This is because the algorithm has no
way to prove that method � is not indeed applicable in
some cases, according to its input.

2. Suppose the algorithm is told that there was a world
state where

� (	{AQe|3}e�z(	{AQe|3} < 3��k\(3�z(	{AQe|3} < �	| U (	~ a �� was
true, but � was not applicable to decompose the task�G" Rw8\�z(	{AQe|3} < ��| U (	~ < ��| U (	~AaC . (Recall that algorithm’s
inputs are plan traces, so it knows exactly at each state
which methods are applicable to decompose a task.) If
this negative training sample is the only input to the
learning algorithm, a minimal approach will answer
“Method � is never applicable” because no examples
have been given that can prove that � is applicable in
some cases. However, a maximal policy will answer
with “Method � is applicable whenever the expression� ��(	{AQg|h}e��ch(	el�kA(3��ch(C�	cAy@, is satisfied in the world state.”

The minimal policy yields a sound algorithm while the
maximal policy yields a complete algorithm. However, both
of these extreme approaches perform poorly and neither is
both sound and complete. This is because there may be pos-
sible domains whose existence in the output set cannot be
proved or disproved using the current input, simply because
there is not enough information in the input to do so and more
training samples are required. These possible domains are
discarded in the minimal view and added to the output set in
the maximal view.

One way to obtain better performance is to track the possi-
ble domains that cannot be proved or disproved so that they
can be assessed in the future, after more training samples are
acquired. Thus, we need an algorithm for tracking possi-
ble domains, while preferably maintaining its soundness and
completeness.

Candidate Elimination
Candidate elimination is a well-known machine learning al-
gorithm introduced in (Mitchell 1977). Several extensions
of the original algorithm have been proposed (Hirsh 1994;
Hirsh, Mishra, & Pitt 1997; Sebag 1995). Candidate elimina-
tion is based on the concept of a version space, the set of pos-
sible explanations of the concept that is being learned. This
concept is represented by two sets: a set � of maximally gen-
eral possible predicates to explain the concept, and a set / of
maximally specific possible such predicates. Every concept
between these two borders is a member of the version space,
and is a possible explanation of the concept being learned.
If enough training samples are given, the version space con-
verges to a single answer (i.e., sets / and � become equiv-
alent). It is also possible that the version space can collapse
if the training samples are not consistent with each other.

Candidate elimination is indeed a very general algorithm.
However, to apply this algorithm for a specific application, a
generalization topology (a lattice) on the set of possible con-
cepts must be defined (i.e., the generalization/specialization
relation, along with the top and bottom of the lattice). In our
algorithm CaMel, every method has a corresponding version
space, and each member of a method’s version space is a pos-
sible precondition for that method.

CaMeL requires both negative and positive examples.
The concept of a “negative” example in a planning context
may not be clear. However, for our context, negative exam-
ples can be generated easily. In our definitions, the input to



a method learner includes plan traces, each of which lists all
applicable� method instances that can be used to decompose
a task instance in a specific world state. Therefore, if other
methods can be used to decompose this task (i.e., for some
other world states), we can infer that they were not applica-
ble in those specific world states, and can hence serve as neg-
ative examples.

In our context, using candidate elimination has two main
advantages. First, the resulting algorithm is sound and com-
plete if our output is the set of all possible domains, where
each method’s set of preconditions can be any member of
its corresponding version space. Second, candidate elimi-
nation is an incremental algorithm: whenever the algorithm
acquires a new training sample, it just updates its version
spaces and discards that training sample afterwards. There
is no need to keep the training samples.

CaMeL: An HTN Method Learner Based On
Candidate Elimination
Before detailing CaMeL, we need to introduce the notion of
normalization. Suppose that an HTN method learner is try-
ing to learn the preconditions of a method � that is used to
decompose the task �G" Rw8\��ch(C��cAxw��cAy@ . Assume that two in-
stances of this method are given. The first instance is used
to decompose the task � < �N�G" Rw8\�z(	{AQe|3} < ��| U (	~ < ��| U (	~AaC
in the state / < � � (	{AQe|3}e�z(	{AQe|3} < 3��k\(3�z(	{AQe|3} < �	| U (	~ < p� ,
while the second instance is used to decompose the task� a � �E" R;8A��(	{AQg|3} a �	| U (	~9�@�	| U (	~9�C in the state / a �� (	{AQe|3}e��(	{AQg|h} a h�	k\(3�z(	{AQe|3} a ��| U (	~9�C�� . Apparently, these two
training samples contain the same piece of information. In-
tuitively, it is: “You can move an object ch( from any start-
ing location cAx to any destination cAy if ch( is a truck and it is
initially at cAx .” But how is a learning algorithm supposed to
derive such a general statement from such a specific exam-
ple? This statement contains three variables, while the facts
are about specific constants such as (	{AQg|h} < , | U (	~ < , and | U (	~ a .
A generalization process is required that changes these con-
stants to variables. This is roughly what happens during a
normalization process.

Consider a ground instance � 5 of a method � that de-
composes task ( for world state / . Then, /05;:=< is called a
normalization of / with respect to � 5 , and 5;:=< is called a
normalizer for / . For the above example, both the normal-
ization of / < with respect to � < and the normalization of / a
with respect to � a yield

� (	{AQe|3}e��ch(	h�	k\(3��ch(C�	cAx9�� .
The normalization process replaces constants in different

training examples that play the same role (e.g., (	{AQe|3} < and(	{AQe|3}@a ) with a variable (e.g., ch( ) in order to generalize the
facts that are given as input. Fact generalization is indeed a
basic strategy in most eager learning algorithms.

The pseudo-code of our algorithm, CaMeL, is given in
Figure 1. The algorithm subroutines are as follows:�
LocateInstances( o , >� ), where o is a plan trace
and >��� �������	������ is an incomplete method, is a func-
tion that returns a set of triples � �z" |A��5@� u@�  . Each of these
triples corresponds to one of the places where an instance�����?,5 of a non-primitive task ��� was decomposed in o .�z" | denotes the number of operators that occur before this

Given:>� � �I��� >�J���� , the incomplete version
of � � �������
�	��- � � - < �9BCB9B&��-��F� , a set of task lists/ � � / < �9BCB9B��	/ � � , a set of world stateso � � o < �CB9B9B	��o � � , a set of plan traces,
one per planning problem ( - H , / H , � )

CaMeL( >� , - , / , o ) =
FOR each method >� S�) >�
Initialize a version space 6�/@S .

FOR each plan trace o H )�o
FOR each method >� S ) >�UIu x�( = LocateInstances( o H , >� S )
FOR each ( �z" | , 5 , u@� ) ) UIu xp(/=�H = ComputeState( >� , / H , o H , �z" | )6'/ S = CE(Normalize( /=�H , 5 ), 6�/ S , u@� )
IF Converged( 6'/ < ,..., 6!/e� )
RETURN all 6�/@S ’s

RETURN all 6�/@S ’s

Figure 1: The CaMeL Method-Learning Algorithm

instance of a task in the plan trace o , and
u@�

is a boolean
variable indicating whether method instance � 5 was ap-
plicable to decompose �����?,5 .�
ComputeState( >� , / , o , �z" | ) is a function that com-
putes the world state after applying the first �z" | operators
of the plan trace o in incomplete HTN domain >� , where
the initial world state is / .�
CE( / , 6�/ , u@� ) is an implementation of candidate elim-
ination algorithm on version space 6�/ with training sam-
ple / .

u@�
is a boolean variable that indicates whether / is

a negative or positive example.�
Converged( 6?/ < ,..., 6'/e� ) checks if the algorithm
has converged. As mentioned before, a method learning
algorithm converges to an answer when and only when
all of the members in its output set are equivalent to each
other. CaMeL uses this fact to verify whether it has con-
verged to an answer after processing each training sam-
ple. Note that, in general case, this function can be ex-
tremely expensive to evaluate in practice. However, in
many cases where additional restrictions on the form of
the preconditions are given, this function can be computed
more quickly.

Algorithm analysis
In this section, we will discuss the assumptions and restric-
tions a domain must satisfy in order for CaMeL to work cor-
rectly. We will also propose a few theorems about CaMeL in
the framework we have defined.

Two kinds of constants may appear in an HTN plan trace o
or its corresponding HTN planning problem ��-O��/0�	�� . First,
explicit constants appear explicitly in the domain definition



� (e.g., in the effects of operators, argument list of tasks, or
decomposition� list of methods). Second, implicit constants
are those that do not appear in the � explicitly. These con-
stants appear in a plan trace because some of the variables in� were instantiated to them while the plan trace was created.

For example, consider an HTN method � for decompos-
ing the task L " ��cAd=��cA~w that decomposes this task to a prim-
itive task Z?k � }e��cAd���cA~w . The precondition of this method
is Z?89k\(	�g89{;��L "A" yisl�kA(3��cAdg . Now, if there are two atomsk\(3��� "A� 89 and Z?89k\(	�g89{;��L "A" y@ in the current world state and
an instance of the method � is used to decompose the taskL " ��cAd���cA~w to the subtask Zsk � }e��� "A� 8;��x�(	k\( U " u  in the cor-
responding plan trace, then the constants � "A� 8 and xp(	k\( U " u
are implicit constants, while in the HTN domain definition,L "A" y is an explicit constant.

As another example, in the blocks world domain, (	kim � 8 is
an explicit constant while names of blocks are implicit con-
stants.

When normalization is used to generalize the training
samples, the following crucial assumption is made:

Assumption 1 No constant can be both implicit and ex-
plicit.

Another assumption should be made because we use the
candidate elimination algorithm. In order for candidate elim-
ination to work properly, the terms more general, more spe-
cific, etc., must be defined for the set of possible members
of the version space. CaMeL uses version spaces to show
the possible preconditions of methods, which in general can
be any first order predicate calculus formula. Unfortunately,
these terms cannot be defined for the set of all possible
boolean formulas in first order predicate calculus.

Assumption 2 Preconditions of the methods have a known
form, and this form is such that the relations more general,
less general, more specific, less specific, maximally gen-
eral, maximally specific, minimal generalization and mini-
mal specialization can be defined for them.

This assumption defines the learning algorithm’s repre-
sentational bias. A representational bias defines the states
in the search space of a learning algorithm (Gordon & Des-
jardins 1995). It guarantees that we can generalize given
facts about the training samples (Mitchell 1980).

Given these assumptions, the following theorems can be
proved:

Theorem 1 CaMeL is a sound and complete HTN method
learner.

Theorem 2 For any given HTN domain � that satisfies our
restrictions and assumptions, there exist a finite set of plan
traces which causes the CaMeL to converge to � .

We omit the proofs here, due to lack of space. The proof
of theorem 1 is straightforward: It proceeds by applying the
relevant theorems about version space algorithms repeatedly,
once for each method to be learned. The proof of theorem 2
is more complicated, as it has to deal with interactions among
tasks and their subtasks, sub-subtasks, and so forth.

Experiments
Theorem 2 says that there always exists a set of training sam-
ples that causes CaMeL to converge if the domain definition
satisfies our restrictions and assumptions. However, this the-
orem does not give us any information about the number of
training samples in such a set. What we need in practice is an
answer to the question “How many samples will be needed to
converge in average case?”. In this section, we will discuss
our experiments to answer this question.

Test Domain
The domain we used is a simplified and abstracted version
of planning a NEO (Noncombatant Evacuation Operation).
NEOs are conducted to assist the U.S.A. Department of State
with evacuating noncombatants, nonessential military per-
sonnel, selected host-nation citizens, and third country na-
tionals whose lives are in danger from locations in a host for-
eign nation to an appropriate safe haven. The decision mak-
ing process for a NEO is conducted at three increasingly-
specific levels: strategic, operational, and tactical. The
strategic level involves global and political considerations
such as whether to perform the NEO. The operational level
involves considerations such as determining the size and
composition of its execution force. The tactical level is the
concrete level, which assigns specific resources to specific
tasks. This hierarchical structure makes HTNs a natural
choice for NEO planning.

Simulating a Human Expert
One goal in our work is to learn methods for HTN planners in
military planning domains. These domains are usually com-
plicated, requiring many samples to learn each method. It
is difficult to obtain these training samples for military do-
mains. Even if we had access to the real world NEO training
samples, those samples would need to be classified by human
experts and the concepts learned by CaMeL would need to
be tested by human experts to assess their correctness. This
would be very expensive and time-consuming.

In order to overcome this problem, we decided to simu-
late a human expert. We used a correct hierarchical plan-
ner to generate planning traces for random planning prob-
lems on an HTN domain. Then we fed these plan traces to
CaMeL and observed its behavior until it converged to the
set of methods used to generate these plan traces.

The hierarchical planner we used is a slightly modified
version of SHOP (Nau et al. 1999). In SHOP, if more than
one method is applicable in some situation, the method that
appears first in the SHOP knowledge base is always chosen.
Since in our framework there is no ordering on the set of
methods, we changed this behavior so that SHOP chooses
one of the applicable methods randomly at each point. We
also changed the output of SHOP from a simple plan to a plan
trace.

Generating the Training Set
In order to generate each plan trace, we had to generate a ran-
dom NEO planning problem and feed it to the modified ver-
sion of SHOP. To generate a random NEO planning problem,



0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

Training Set

P
la

n
 T

ra
ce

s 
N

ee
d

ed

Figure 2: Number of plan traces needed to converge

every possible state atom was assigned a random variable, in-
dicating whether or not it should be present the initial state of
the world (e.g., should there be an airport in a specific city),
or what value its corresponding state atom should have (e.g.,
should hostility level be hostile, neutral, or permissive). In
our preliminary experiments, we noticed that the distribution
of these random variables did not affect our experiments very
much. However, there is one exception to this rule: the prob-
ability � that there is an airport in a city makes a lot of dif-
ference. Therefore, we decided to assign a uniform distribu-
tion to all random variables other than � and to perform ex-
periments with several different values of � . We conducted
eleven sets of experiments, with � � << a , a< a ,..., <�<< a .
Results
After generating the eleven sets of training samples for � �<< a , a< a ,..., <�<< a , we fed each training set to CaMeL until it con-
verged. Figure 2 shows the number of plan traces needed in
each case in order for CaMeL to converge. Figure 3 shows
the time in seconds CaMeL needed to converge in each of
those cases3 . As can be seen, the number of required plan
traces and time is minimized when the probability � of a
city having an airport is approximately 50%. For other val-
ues of � , methods are harder to learn. When � is close to
0, the hard-to-learn methods are those whose preconditions
require cities to have airports, because the cases where these
methods are applicable somewhere in given plan trances are
so rare that learner can not easily induce their preconditions.
When � is close to 1, the hard-to-learn methods are those
whose preconditions do not require cities to have airports:
the probability that there accidentally is an airport whenever
these methods are applicable is so high that the learner can-
not induce that an airport’s presence is not indeed required.

Although it takes CaMeL tens and sometimes a few hun-
dred training samples to learn all of the methods in the do-
main, CaMeL learns several of the methods in the NEO do-
main very quickly. Figure 4 shows how many of the methods
are learned completely as a function of the number of plan
traces, for the cases where � � �< a � �< a ���< a ���< a . From ex-

3These experiments were conducted on a Sun Ultra 10 machine
with a 440 MHz SUNW UltraSPARC-IIi CPU and 128 megabytes
of RAM.
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Figure 4: Speed of convergence for different training sets.
The total number of methods in the domain is 17.

amining the raw data that went into this figure, we have ob-
served that:

1. When � is close to 50%, all methods are learned very
quickly.

2. When � is close to 0, methods whose preconditions do not
require cities to have airports are learned very quickly.

3. When � is close to 1, methods whose preconditions re-
quire cities to have airports are learned very quickly.

We believe that these observations are quite important:
When � is close to zero, methods that do not use airports
are more likely to be used to decompose the tasks and are
therefore of more importance than the other methods. The
opposite is true when � is close to 1. In other words,
CaMeL learns the most useful methods quickly, suggesting
that CaMeL may potentially be of use in real world domains
even if only a small number of training samples are available.

Related Work
Much of the work done on the integration of learning and
planning is focused on conventional action-based planners.
Usually, this work, as formulated in (Minton 1990), is aimed



at speeding up the plan generation process or to increase
quality� of the generated plans by learning search control
rules. These rules give the planner knowledge to help it de-
cide at choice points and include selection (i.e., rules that
recommend to use an operator in a specific situation), re-
jection (i.e., rules that recommend not to use an operator
in a specific situation or avoid a world state), and prefer-
ence (i.e., rules that indicate some operators are preferable
in specific situations) rules. Generally speaking, the input
for this kind of learning, as mentioned in (Langley 1996),
consists of partial given knowledge of a problem-solving
domain and a set of experiences with search through the
problem’s search space. The idea that this set of experi-
ences can contain solution paths (or in our terminology, plan
traces) were suggested in (Sleeman, Langley, & Mitchell
1982). In (Mitchell, Mahadevan, & Steinberg 1985), learn-
ing apprentices, which acquire their knowledge form ob-
serving a domain expert solving a problem, were suggested
to be used as control rule learning algorithms for the first
time. Explanation-Based Learning (EBL) has been used
to induce control rules (Minton 1988). STATIC (Etzioni
1993) uses a graph representation of problem spaces to de-
rive EBL-style control knowledge. Kautukam and Kamb-
hampati (Kautukam & Kambhampati 1994), discuss the in-
duction of explanation-based control rules in partial ordered
planning. In (Leckie & Zukerman 1998), inductive methods
are used to learn search control rules.

There has been some recent work on applying various
learning algorithms in order to induce task hierarchies. In
(Garland, Ryall, & Rich 2001), a technique called program-
ming by demonstration is used to build a system in which a
domain expert performs a task by executing actions and then
reviews and annotates a log of the actions. This informa-
tion is then used to learn hierarchical task models. KnoMic
(van Lent & Laird 1999) is a learning-by-observation sys-
tem which extracts knowledge from observations of an ex-
pert performing a task and generalizes this knowledge to a
hierarchy of rules. These rules are then used by an agent to
perform the same task.

Another aspect concerning the integration of planning and
learning is automatic domain knowledge acquisition. In this
framework, the planner does not have the full definition of
the planning domain and tries to learn this definition by ex-
perimentation. In (Gil 1992; 1994), a dynamic environment
in which the preconditions or effects of operators change
during the time is introduced and methods to derive these
preconditions and effects dynamically is discussed. In (Gil
1993), instead of revising existing operators, new operators
are acquired by direct analogy with existing operators, de-
composition of monolithic operators into meaningful sub-
operators and experimentation with partially-specified oper-
ators.

Several systems have integrated machine learning and
planning before. For example, PRODIGY(Minton et al.
1989) is an architecture that integrates planning and learn-
ing in its several modules (Veloso et al. 1995). SCOPE (Es-
tlin 1998) is a system which learns domain-specific control
rules for a partial-ordered planner that improve both plan-
ning efficiency and plan quality (Estlin & Mooney 1997)

and uses both EBL and Inductive Logic Programming (ILP)
techniques. SOAR (Laird, Rosenbloom, & Newell 1986) is
a general cognitive architecture for developing systems that
exhibit intelligent behavior.

Conclusion and Future Work
In this paper, we introduced CaMeL, an algorithm that inte-
grates machine learning techniques with HTN planning. Our
ultimate goal is embedding CaMeL as a module in HICAP
to help its users in the planning process. CaMeL is supposed
to observe domain experts while they are solving instances
of HTN planning problems, and gather and generalize infor-
mation on how these experts solved these problems, so that
it can assist other users in future planning problems. As our
preliminary experiments suggest, CaMeL can quickly (i.e.,
with a small number of plan traces) learn the methods that are
most useful in a planning domain. This suggests that CaMeL
may potentially be useful in real-world applications, because
it may be able to generate plans for many problems even be-
fore it has fully learned all of the methods in a domain.

CaMeL is an incremental algorithm. Therefore, even if
has not been given enough training samples in order to con-
verge, it should be able to approximate the methods that have
not yet been fully learned. Our future work will include de-
veloping techniques to do these approximations. We also in-
tend to integrate CaMeL into HICAP, and conduct subject
study experiments with domain experts to obtain their judg-
ments about the quality and validity of the generated plans.
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