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Abstract

Chapman’s paper, “Planning for Conjunctive Goals,” has
been widely acknowledged for its contribution toward un-
derstanding the nature of nonlinear (partial-order) planning,
and it has been one of the basesof later work by others—but
it is not free of problems. This paper addresses some prob-
lems involving modal truth and the Modal Truth Criterion
(MTC). Our results are asfollows:

1. Even though modal duality is a fundamental axiom of
classical modal logics, it does not hold for modal truth in
Chapman’splans; i.e., “necessarily p” isnot equivalent to
“not possibly —p.”

2. Althoughthe MTC for necessary truth is correct, theMTC
for possible truth is incorrect: it provides necessary but
insufficient conditions for ensuring possible truth. Fur-
thermore, even though necessary truth can be determined
in polynomial time, possibletruth is NP-hard.

3. If we rewrite the MTC to talk about modal conditional
truth (i.e., modal truth conditional on executability) rather
than modal truth, then both the MTC for necessary condi-
tional truth and the M TC for possible conditional truth are
correct; and both can be computed in polynomial time.

1 Introduction

Chapman's paper, “Planning for Conjunctive Goals,” [2]
has been widely acknowledged as an important step towards
formalizing partial-order planning, and it has been one of
the bases of later work by others (for example, [5, 7, 9, 12,
14]). Unfortunately, however, Chapman’'s work is not free
of problems, and thishas|ed to confusi on about the meaning
of hisresults. Previous papers [5, 9, 14] have pointed out
severa of these prablems.

One of thefundamental concepts used by Chapman isthe
idea of modal truth in plans. We will discuss the details
of this concept later—but asimple version of it isthat if P
is a partialy-ordered, partially-instantiated plan and p isa
ground literal, then p isnecessarily (or possibly) truein P’s
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final situation if for every (or some) totally-ordered ground
instance P’ of P, p istrue after executing P’. Chapman’s
Modal Truth Criterion (MTC) purports to give necessary
and sufficient conditions for ensuring that p is necessarily
or possibly true. Aswe describe below, thispaper addresses
severa problemswith modal truth and the MTC.

Chapman explicitly statesand provesthe M TC for neces-
sary truth, and claimsthat by modal dudlity (i.e., the equiv-
alence of “necessarily p” and “not possibly —p”), the MTC
for possible truth is obtained via a simple rewording of the
MTC for necessary truth. But in this paper, we show that
although modal duality isafundamenta axiom of classical
modal logics, it doesnot hold for modal truthin Chapman’s
plans.! This has several consequences:

1. The MTC for possible truth is not completely correct: it
provides necessary but insufficient conditionsfor ensur-
ing possibletruth. Furthermore, athough necessary truth
in plans can be computed in polynomial time as pointed
out by Chapman, the same is not true for possible truth.
Instead, the problem of computing possibletruthin plans
isNP-hard.?

2. We can define a concept called modal conditional truth,
which is similar to modal truth but does not require that
a plan be executable as modal truth does. Necessary
conditional truth and possible conditional truth are duals
of each other, and both can be computed in polynomial
time. Furthermore, if we rewrite the MTC to talk about
modal conditional truth rather than modal truth, then both
theMTC for necessary conditional truthandthe M TC for
possible conditional truth are correct.

This paper is organized as follows. Section 2 contains
basic definitions, and clarifications/corrections of some of
Chapman’s terminology. Section 4 presents results about

Although Chapman does not explicitly state that his usage is
consistent with modal logics, it seems clear to us that this is what
hehadin mind. In particular, Chapman explicitly appeal sto modal
duality in his proof of the MTC [2, p. 368].

2If modal duality held, then both necessary truth and possible
would be at similar levels of complexity: either both would be
polynomial, or one would be NP-hard and the other co-NP-hard.
Section 5.2 discusses some formulations of planning in which this
occurs.
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modal duality, the complexity of modal truth, and the modal
truth criterion, and compares and contrasts these results
with Chapman’s claims, as well as with other related work.
Section 6 contains concluding remarks. Proofs of all the
theorms stated in this paper can be foundin [8].

2 Bascs

The planning language £ is any function-free first-order
language. Since £ is function-free, every term is either a
variablesymbol or aconstant symbol, and thusevery ground
term is a constant symbol. We follow the usual convention
of defining an atom to be a predicate symbol followed a
list of terms, aliteral to be an atom or its negation, and a
proposition to be a 0-ary atom. Thus, what Chapman calls
a proposition, we call a literal.

A stateisany finite collection of ground atomsof L. If a
dtate s contains a ground atom p, then p istruein s and —p
isfasein s; otherwisep isfasein s and —p istruein s.

If 7" is afinite set of terms, then a codesignation con-
straint on 7" isa syntactic expression of theform ‘¢ =~ u’ or
‘t £ u',wheret,u € T. Let D be aset of codesignation
congtraintson 7", and ¢ beaground substitutionover 7' (i.e.,
a substitution that assigns a ground term to each variablein
T). Then ¢ satisfies D if t6 = u0 for every syntactic ex-
pression ‘t & «’ in D, and ¢ # uf for every syntactic
expression ‘t % «' in D. D isconsistent if thereis at least
one ground substitution ¢ that satisfies D. If t6 = ué for
every  that satisfies D, then ¢ codesignates with w.

A stepisatriplea = (name(a), pre(a), post(a)), where
name(a) is a constant symbol called «’s name, and pre(a)
and post(a) are collections of literals called a’s precon-
ditions and postconditions. A plan is a 4-tuple P =
(s0, A, D,0), where s¢ is a state called P’sinitial state,
Aisaset of steps, D isa set of codesignation constraints
on thetermsof P (i.e, thetermsin so and A), and O isa
set of ordering constraints on the stepsof A. P iscomplete
if there is a unique total ordering a1 < a2 < ... < a,
over A that satisfies O, and a unique ground substitution ¢
over theterms of P that satisfies . (Notethat a complete
plan need not necessarily be executable). Suppose that P
is complete, and let & be the largest integer < n for which
there are states s1, s», ..., sp suchthat for 1 < i < k, s;_1
satisfies a;'s preconditions, and s; is the state produced by
performingthestep a; inthestates; 1. Thenforl < i < k,
a; isexecutableintheinput state s;_ 1, producing the output
dtate s;. If k = n, then P isexecutable, and it produces the
final state s,,.

A plan P = (sp, A, D', 0) is a constrainment of a
plan P = (so, A, D,0) if sj; = sg, A’ = 4, O C O,
and D C D’. A completion of P isany constrainment of
P that is complete.® P is consistent if it has at least one
completion; otherwise P isinconsi stent.

3Chapman’sdefinition of acompletion doesnot makeit entirely
clear whether a completion of P should include only the stepsin
P, or allow other stepsto be added. However, other statementsin
his paper make it clear that he means for a completion to include
only the stepsin P, sothisishow we and most others(e.g., [9, 14])
use the term.

3 Situations, Truth, and Modality

One of the basic concepts in Chapman’s planning frame-
work is the idea of a situation. To avoid some problems
with Chapman'’s definitions, we define plans using STRIPS-
style states of theworld, and then define situationsin terms
of states. The intent of our definitionsis that if a plan is
complete and can be executed at least far enough to reach
the situation s, then s correspondsto some statet that arises
while executing the plan; and what is true and false in s
is precisely what istrue and falsein ¢t. Otherwise, nothing
istrue or false in s athough certain things may be condi-
tionally true or false (as defined below). These ideas are
formalized below.

If P isaplan, then associated with each step « of P are
two symbolsin(a) and out(a), caled «’s input and output
situations. Associated with P are symbolsinit andfin called
the initial and final situations of P. All of these symbols
must be distinct. Whenever a < b, we will also say that
z < y, where z may bea or in(a) or out(a), and y may be
borin(b) orout(b).

We now define what is true and false in a situation of a
complete plan. Let P beacomplete plan, and p be aground
literal. Then pistrueininit if p istruein P’sinitia state,
and p istrueinfin if pistruein P'sfina state. If ¢ isan
executable step of P, then p istrueinin(a;) (or out(a;)) if
pistruein a’sinput state (or output state, respectively). A
ground litera p isfalsein a situation s iff —p istruein s.
Notethat if P isnot executable, thenthelaw of the excluded
middle does not apply, for p will be neither true nor falsein
P’sfinal situation.

Asaconsequence of the above definitions, it followsthat
pistruein s (which we write symbolically as M(p, s)) iff
the following three conditions are satisfied:

Establishment: either p codesignates with apostcondition
of somestepa < s, 0or elsep € sp.

Nondeletion: for al steps b between a (or sp) and s, no
postcondition of & codesignates with —p.

Executability: every step that precedes s is executable.

A closely related concept is conditional truth, whichislike
ordinary truth except that it does not require executability:
p is conditionally true in s (which we write symbolically
asC(p, s)) iff the establishment and nondel etion conditions
hold.

We defined truth and conditional truth only for complete
plans, because for incomplete plans, what is true or condi-
tionally true will vary depending on which completion we
choose. In incomplete plans, we instead need to talk about
modal truth, which Chapman defines as follows[2, p. 336]:

| will say “necessarily p” if p istrueof al completions
of an incomplete plan, and “possibly p” if p istrue of
some completion.

Above, Chapman apparently means p to be nearly any state-
ment about a plan: examples in his paper include not only
statements about specific literals and situationsin the plan,
but a so statements about the entire plan (e.g., the statement
[2, p. 341] that a plan “necessarily solves the problem”).



However, unless we place some restrictions on the nature
of p, thishas some dubious results—for example, if P isan
incomplete plan, then al completions of P are complete,
and therefore P itself is necessarily complete. Therefore,
for theformal resultsin the paper, wewill use“necessarily”
and “possibly” only inthefollowing cases (althoughwe wil
sometimes use them informally in a broader sense). If pis
an atom, P isaplan, and s isasituationin P, then:

e pisnecessarily (or possibly) truein s (written OM (p, s)
and OM(p, s), respectively) iff M(p,s) in every (or
some) completion of P;

e pisnecessarily (or possibly) conditionaly truein s (writ-
ten OC(p, s) and OC(p, s), respectively) iff C(p,s) in
every (or some) completion of P.

We now define the following decision problems (where

P isaplanand p isaground litera):

NECESSARY TRUTH: givenp and P, iSp necessarily truein
P’sfina situationfin?

POSSIBLE TRUTH: given p and P, isp possibly truein P’s
final situation fin?

NECESSARY CONDITIONAL TRUTH: given p and P, is p
necessarily conditionally truein P’sfinal situationfin?

POSSIBLE CONDITIONAL TRUTH: givenp and P, iSp possi-
bly conditionally truein P’sfinal situationfin?

4 Duality, and Complexity of Modal Truth

Given the definitions of modal truth and modal conditional
truth above, it is easy to see that a litera p is necessarily
true in the final situation fin of a plan P if and only if (1)
p is necessarily conditionally truein fin, and (2) for every
action a of the plan and every precondition p, of a, p, IS
necessarily conditionally truein the Situationin(a). Thus,*

OM(p, fin)

O | C(p,fin) A /\

Ya€P Vp.€pre(a)

Cpa,in(a)) | |, (1)

“We could consider generalizing Eq. 1 to apply to situations
s # fin, by replacing the condition “va € P” with the condition
“Ya € S,” where S is the set of all actions that precede s in at
least one completion of P. However, such a generalized version
of Eg. 1 would not always hold, as illustrated by the following
counterexample(dueto Backstrom[1]). Let P beaplanwith three
actions a, b, ¢, suchthat a < b, a < ¢, pre(a) = 0, post(a) =
{-p}, pre(b) = 0, post(b) = {p}, pre(c) = {-p}, and post(c) =
. Then OM(p, out(d)), but it is not true that O[C(p, out(b)) A
[A{C(pa,in(d)) : d € S&pa € pre(d)}]]. To seethis, note that
P hastwo completions, one executableand one non-executable. ¢
precedesb in one completion (the executableone) and thusc € S.
However for ¢'s precondition (—p), C(—p, in(c)) failsin the other
(non-executable) completion of P. The main reason for this is
that the set of steps that precede out(b) is different in different
completions — {a, b} in one, and {a, b, c} in the other. Thus,
the correct way of generalizing Eq. 1 will involve doing the
inner conjunction with S ranging over each of these values, and
disioining all the resulting conjunctions.

Now, since modal necessity commutes over conjunctions
(i.e, O(p A q) = O(p) A O(q)), we can write Eq. 1 as

OM(p, fin)

= | OC(p, fin) A A 0OC(pa,in(a))| | . (2)

Ya€PVp.€pre(a)

Thus computing whether p isnecessarily trueinfin involves
computing whether p isnecessarily conditionally trueinfin,
as well as computing the necessary conditional truth of al
preconditions of all steps preceding fin. As noted in Chap-
man, computing the necessary conditional truth of aliteral in
adituation (whichinvolveschecking whether theMTC' ses-
tablishment and decl obbering clauses are consistent withthe
plan’s ordering and codesi gnation/non-codesignation con-
straints) can be done in time polynomia (O(n®)) in the
plan length. Thus, since the total number of preconditions
in a plan is of the order of number of actions in the plan,
computing whether p is necessarily true can also be donein
polynomial time. Coming to the case of possible truth, we
have

OM(p, fin)

=< |C(p, fin) A A
Ya€P Vp.€pre(a)

Cpa,in(a))| |- (3)

But possible truth does not commute over conjunctions
(i.e, in generd, O(p A q) £ O(p) A Olg)), so thereis
no way to simplify Eq. 3 into component tests of comput-
ing possible conditional truth of individual literals. Thus,
even though possible conditiona truth in fin and neces-
sary conditiona truth in fin are duals of each other (i.e,
OC(p, fin) = —=0O-C(p, fin)), possible truth in fin and nec-
essary truthin fin are not duals of each other. More specifi-
caly:

Theorem 1 Thereisaground literal p, a plan P, with the
final situation fin such that OM(p, fin) Z =C-M(p, fin).

Thus, unlikenecessary conditional truth and possiblecon-
ditional truth, necessary truth and possibletruth do not obey
themodal duality that isobeyed by al classical modal logics
[3, p. 62], and thusdo not define awellI-formed modal logic.
It is easy to understand why thisis so. The semantics of
modal logicsare based on Kripkestructures (a.k.a. possible
worlds). Inthisformulation, if pisagroundlitera, then for
every possible world, p must either be true or false in that
world. For partialy ordered plans, one might expect that
each completion of the plan would give rise to a possible
world. However, the moda truth of p in a situation of a
plan requires that the plan’s actions be executable in order
to produce that situation. Thus, if a completion is not exe-
cutable, then truth of p is not defined in the corresponding
possible world.

SAlthough TWEAK plans cannot be modeled using thesemantics



Given aground literal p and aplan P, p ispossibly true
in P’s final situation if and only if there is an executable
completionof P that producesafina stateinwhichp istrue,
and this happens iff it is not the case that every executable
completion of P produces a fina state in which —p is true.
Thus, PossIBLE TRUTH isthedual of thefollowing problem:

PARTIAL TRUTH: given aground literd p and a plan P,
does every executable completion of P produce a final
statein which p istrue?®

Lemmal PARTIAL TRUTH is NP-hard.

PARTIAL TRUTH is a weaker condition than both NECES-
SARY TRUTH and NECESSARY CONDITIONAL TRUTH. There
are some cases (one occurs in the proof of Lemma 1) in
which every executable completion of P produces a final
statein which p istrue, but p is neither necessarily true nor
necessarily conditionally truein P’sfina situation.

Another way of understanding the problem with simpli-
fying Eq. 3isto notethat if p ispossibly conditionaly true
and that all the preconditions of the preceding actions are
possibly conditionally true, this only implies that each of
them is individually true in at least one completion—and
this conditionis necessary but insufficient for ensuring pos-
sible truth. We could check possible truth by checking to
see whether all these conditions are collectively true in at
least one completion of the plan, but since the number of
completionsof aplanisexponentia inthe number of actions
of the plan, thiswould take exponential time. Furthermore,
the following theorem shows that unless P=NP, there is no
polynomial-time approach for solving this problem.

Theorem 2 POSSIBLE TRUTH is NP-hard.

Thus, NECESSARY TRUTH and POSSIBLE TRUTH have dif-
ferent levels of complexity. If moda duaity held, then
this would not be so, for each would be reducible to
the other’s complement via an equivalence of the form
OM(p, fin) = =0-M(p,fin). Thus it would follow [6,
p. 29] that either POSSIBLE TRUTH would be polynomial
like NECESSARY TRUTH, Or €lse NECESSARY TRUTH would
be co-NP-hard. In Section 5.2, we discuss some planning
situations where this occurs.

5 Comparison with Other Work
5.1 TheModal Truth Criterion
Chapman statesthe MTC as follows[2, p. 340]:

of classical modal logics, they can be modeled in a variant of
modal logics, called first order dynamic logic [13]. Dynamic
logic, which has been used to provide semanticsfor programs and
plans, provides a clean way to separate executability/termination
conditions from goal satisfaction conditions. More about this in
Section 5.2.

SPARTIAL TRUTH corresponds closely to the notion of partial
correctness, which was studied in connection with dynamic-logic-
based modeling of computer programming languages[11, 13].

Modal Truth Criterion. A [literal] p is necessarily
truein asituation s iff two conditionshold:” thereisa
Situationt equal or necessarily previousto s in which

p isnecessarily asserted; and for every step C' possibly

before s and every [literal] ¢ possibly codesignating

with p which €' denies, thereis a step W' necessarily
between €' and s which asserts r, a[literal] such that

r and p codesignate whenever p and ¢ codesignate.

The criterion for possible truth is exactly analogous,

with al the modalities switched (read “necessary” for

“possible” and vice versa).

If we take these words literally, then the definition of modal
truth tells us that the plan must be modally executable.
Thisis consistent with Chapman’s definition of a situation
[2], from which it follows that a step’s output situation
(and hence what is true in that situation) is only defined
if the step can be executed. However, a careful look at
Chapman’s proof of necessity and sufficiency of his MTC
reveal s that hisproof dealswith necessary conditional truth
rather than necessary truth. In proving that any literal
with an establisher and no clobberer must be necessarily
true, Chapman’s proof refersto white-knight steps for every
potentia clobberer, [2, p. 370], without checking that the
white knightsare in fact executable.

For the “necessary truth” version of the MTC, this does
not affect thevalidity of Chapman’s proof, since executabil-
ity occurs naturally as aconsequence of applying necessary
conditional truth recursively to prerequisites of al preced-
ing steps. The same, however, cannot be guaranteed for
possible truth, since modal possibility does not commute
over conjunctions—and thus Chapman’s proof cannot be
extended to possible truth. In particular, the following the-
orem shows that the “possible truth” version of the MTC
sometimes fails:

Theorem 3 Thereisa plan P and a ground literal p such
thatin P’sfinal situation, p isnot possibly truebut theMTC
concludes otherwise,

The above discussion suggests an aternative interpreta-
tion of the MTC that sidesteps the problem: drop the exe-
cutability requirement, and interpret the M TC asastatement
about modal conditional truth rather than modal truth. This
alternative interpretation is not as far-fetched as it might
sound. To see this, note that Chapman defines the notion of
truth of aliteral in asituation as follows[2, p. 338]:

A [literal] istruein a situation if it codesignates with
a [literd] that is a member of the situation. A step
asserts a [literd] in its output situation if the [literal]
codesignates with a postcondition of the step.

Here, thereis no explicit requirement that the step be exe-
cutable. Thissuggeststhat theMTC does not requirethat P

"The second of these conditions is the “white-knight declob-
bering clause” that we refer to elsewhere.

8Had Chapman explicitly noted this use of modal conditional
truthin hisproof, we believe hewould have noticed the non-duality
of necessary and possibletruths.

9Note that in Chapman’s terminology, the establisher is a situ-
ation, while clobberers and white knights are steps.



be modally executabl e, and thussuggests that Chapman was
talking about modal conditional truth. Thisinterpretationis
also consistent with his* nondetermini stic achievement pro-
cedure’ [2, Fig. 7], where to make a literal necessarily true
in asituation, he only ensures establishment and declobber-
ing without explicitly stating that the establisher needsto be
executable. (Asexplained above, for the case of necessary
truth, executability followsfrom making every prerequisite
of every action necessarily conditionally true.)

The “conditional truth” interpretation of MTC gives a
quasi-local flavor to planning, by separating the process of
ensuring local establishment and decl obbering fromthepro-
cess of ensuring executability, with the understanding that
if al preconditions are necessarily established and declob-
bered, then thewhole plan itself will be executable and cor-
rect. Infact, some latter rewrites of the MTC (e.g. [14, 9])
use this interpretation to eliminate the notion of situations
entirely, and state MTC solely in terms of steps (operators)
and their preconditions and postconditions.

Although a truth criterion for modal conditiona truth
does have utility in plan generation, itisof limited utility in
projecting plans or partially ordered events. As mentioned
in Section 3, the latter are more naturally related to modal
truth.

5.2 Modal Duality and Univer sal Executability

In Section 4, we observed that the main reason why neces-
sary truth and possible truth are not duas in TWEAK-style
plans is that such plans can contain unexecutable comple-
tions. Thus, one way to achieve duality between necessary
truth and possible truth is to restrict our attention to plans
whose completions are aways executable. One way to
guarantee that planswill always be executable isto restrict
the actions to have no preconditions, i.e., to consider only
those plans P such that pre(a) = () for every step a of P.

Thisapproach isclearly too restrictive, sinceit precludes
modeling actions with any form of preconditions. But if
we relax the restrictions of TWEAK-style action representa-
tion, there is a more reasonable way to guarantee univer-
sal executability: let an action a be executable even if its
preconditions are not satisfied. If the preconditions are sat-
isfied, then « will produce its postconditions; otherwise, a
will simply have no effects.® For plans that contain only
this type of actions, possible truth and necessary truth are
duals of one another, computation of possible truth is NP-
hard, and computation of necessary truthisco-NP-hard. As
discussed below, this approach has been used in different
forms by several different researchers.

To our knowledge, the above approach was first used
in Rosenchein’s work [13] on providing semantics to
plans based on first-order propositional dynamic logic.

Owhile seemingly unintuitive, this relaxation is in fact very
much consistent with the original formalization of actionsin sit-
uational calculus [3]. In this formalism, actions are modeled
as situation-transformers, with the transformation given by the
Resul t function, which takes an action and a situation as the
arguments. Having universally executable steps corresponds to
having the Resul t be atotal rather than a partial function.

Rosenchein restrictsthe use of conditionalsin PDL to guar-
antee that the plan terminates irrespective of which branch
of the conditional it takes.

A very similar ideais used in Dean and Boddy’ swork on
temporal projection[4]. In Dean and Boddy’sformulation,
apartialy ordered set of events A isprojectibleeven when a
rule’s preconditionsdon’t hold (in which case the rule sim-
ply has no effect). Hence in their formalism, determining
possible truth and necessary truth are duas, and both are
NP-hard.

Chapman [2, p. 371] uses universally executable actions
(he calls them conditional steps) in proving hisintractabil-
ity theorem for actions containing conditional effects. A
plan composed entirely of such steps will always be exe-
cutable, leading to the same results as in Dean and Boddy's
formalism.

Since Chapman’sintractability theorem isbased on plan-
ning operatorsthat have conditional effects, it has been nat-
ural for planning researchers to interpret it to mean that the
conditionality of these operators is what causes necessary
truth to be intractable. However, thisinterpretation ismis-
leading. The intractability result depends just as much on
the universal executability of Chapman’s conditiona steps
asit doeson their conditionality. Here's why:

Consider an incomplete plan P composed of ordinary
“unconditional” steps as defined in Section 2, and let a be
a step of P such that pre(a) post(a) contain an unbound
variablez. Thenfor the purposes of both planning and tem-
poral projection, a has conditional effects: itseffectswill be
different in different completions of P, depending on what
we bind « to. However, computing necessary truthin such
plansis still polynomial. Since Chapman’s planning lan-
guage has an infinitenumber of constant symbols, it follows
that in the plan P we can always find a binding for « that
makes a unexecutable. As a consequence, P will aways
have at least one unexecutable completion. Hence, deter-
mining necessary truthistrivia: nothingwill be necessarily
truein P’sfina situation.

Now, suppose we restrict our planning language £ to
contain only finitely many constant symbols (and thus only
finitely many ground terms, since £ isfunction-free). Then
there will be some plansin which a is executable for every
binding of . Inthis case, as the following theorem shows,
checking necessary truth will be co-NP-hard, even with
unconditional steps.

Theorem 4 If the language £ contains only finitely many
constant symbols, then NECESSARY TRUTH is co-NP-hard.

Noticethat thisresult isrelated to Chapman’s observation
[2, p. 356] that restricting the range of a variableto afinite
set will defeat the MTC, and make constraint computations
NP-compl ete.

Finally, a recent investigation by Nebel and Backstrom
[10] on the computational complexity of plan-validation
and tempora projection has yielded results related to those
presented in this paper. While our investigationisinitialy
motivated by the apparent lack of moda duality in Chap-
man's MTC, Nebel and Backstrom’s work is motivated by



the apparent asymmetry in the complexity of plan valida-
tion through modal truth criterion, and temporal projection
(cf. [4]). Rather than interpret MTC in terms of modal
conditiona truth, and use that to explain the asymmetry
in the possible and necessary truth, as we have done in
this paper, Nebel and Backstrom choose to restrict appli-
cability of MTC only for plans whose completions are al
executable (they term this property coherence). Another
difference with their research is that they concentrate on
ground (variable-less) plans, while we look at the more
genera variablized plans. We believethat theresultsin this
paper complement theirs and together provide a coherent
interpretation of the role of modal truth criteriain planning.

6 Concluding Remarks

In this paper, we have presented the following results about
modal truth and the modal truth criterion:

1. Contrary to Chapman’s statement, the principle of modal
duality that is obeyed by all classicd moda logics is
not obeyed in TwWeak-style plans. The lack of duaity
between necessary truthand possibletruthisrelated to (a)
thefact that modal truth of aliteral inasituation of aplan
requires that the plan’s actions be executable in order to
produce that situation, and (b) the asymmetry in the way
necessary conditional truth and possible conditional truth
commute over conjunctions: O(p A ¢) = O(p) A O(q)
whileO(pAg) £ O(p)A<O(¢). Toachievemodal duality,

one needs universally executable plans.

2. Even though necessary truth in plans can be determined
in polynomial timeas stated by Chapman, the same state-
ment does not hold for possible truth. Instead, the prob-
lem of determining possibletruth in plansis NP-hard.*!

3. As stated by Chapman, the MTC is correct only as a
criterionfor necessary truth (not asacriterionfor possible
truth). However, if we reinterpret it as a criterion for
modal conditional truth (i.e., modal truth conditiona on
plan executahility), then it is correct as a criterion for
both necessary conditiona truth and possible conditional
truth.

Because of the wide impact of Chapman’s paper, it is
important to correct any misimpressions that may result
fromit. We hope readers will find this paper useful for that
purpose. Finaly, while we concentrated on clarifying the
nature of modal truth criterion, there have also been several
misimpressions regarding itsrolein plan generation. Inthe
extended version of this paper [8], we aso address these
confusions.
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