
ELSEVIER Artificial Intelligence 82 (1996) 129-155

Artificial
Intelligence

On the nature and role of modal truth criteria in
planning

Subbarao KambhampatiaT*, Dana S. Nau b
A Department of Computer Science and Engineering, Arizona State Universiry, Tempe,

AZ 85287-5406, USA
h Department of Computer Science, Institute for Systems Research, and Institute for Advanced Computer

Studies, University of Maryland, College Park. MD 20742, USA

Received June 1993; revised November 1994

Abstract

Chapman’s paper, “Planning for conjunctive goals”, has been widely acknowledged for its
contribution toward understanding the nature of partial-order planning, and it has been one of the

bases of later work by others-but it is not free of problems. This paper addresses some problems
involving modal truth and the modal truth criterion (MTC) Our results are as follows: (i) Even
though modal duality is a fundamental property of classical modal logics, it does not hold for
modal truth in Chapman’s plans; i.e., “necessarily p” is not equivalent to “not possibly 7~“.

(ii) Although the MTC for necessary truth is correct, the MTC for possible truth is incorrect: it
provides necessary but insuficient conditions for ensuring possible truth. Furthermore, even though
necessary truth can be determined in polynomial time, possible truth is NP-hard. (iii) If we rewrite
the MTC to talk about modal conditional truth (i.e., modal truth conditional on executability)
rather than modal truth, then both the MTC for necessary conditional truth and the MTC for

possible conditional truth are correct; and both can be computed in polynomial time. (iv) The
MTC plays a different role in plan generation than it does in checking the correctness of plans,
and this has led to several misconceptions about the MTC. Several researchers have mistakenly
attempted to simplify the MTC by eliminating the white-knight declobbering clause from it; and
others have used Chapman’s results to conjecture that partial-order planning will not scale up
to more expressive action representations. We point out that these ideas are misconceptions, and
explain why.

* Corresponding author. Fax: (602) 965-2751. E-mail: rao@asu.edu.

0004.3702/96/$15.00 @ 1996 El sevier Science B.V. All rights reserved
SSDlOOO4-3702(94)00095-6

130 S. Kambhampati, D.S. NadArhjkial Intelligence 82 (1996) 129-155

1. Introduction

Chapman’s paper, “Planning for conjunctive goals”, [2] has been widely acknowl-
edged as an important step towards formalizing partial-order planning, ’ and it has been
one of the bases of later work by others (for example [7,8,10,12,18,3 1,361) . Unfortu-

nately, however, Chapman’s work is not free of problems, and this has led to confusion
about the meaning of his results. Previous papers [7,8,19,36] have pointed out several
of these problems.

One of the fundamental concepts used by Chapman is the idea of modal truth in
plans. We will discuss the details of this concept later-but a simple version of it is
that if P is a partially ordered, partially instantiated plan and p is a ground literal, then
p is necessurily (or possibly) true in P’s final situation if for every (or some) totally
ordered ground instance P’ of P, p is true after executing P’. Chapman’s modal truth

criterion (MTC) purports to give necessary and sufficient conditions for ensuring that
p is necessarily or possibly true. As we describe below, this paper addresses several

problems with modal truth and the MTC.

Modal duality and the MTC
Chapman explicitly states and proves the MTC for necessary truth, and claims that

by modal duality (i.e., the equivalence of “necessarily p” and “not possibly -p”), the
MTC for possible truth is obtained via a simple rewording of the MTC for necessary
truth. But in this paper, we show that although modal duality is a fundamental property
of classical modal logics, it does not hold for modal truth in Chapman’s plans. This has

several consequences:

(i)

(ii)

The MTC for possible truth is not completely correct: it provides necessary
but insufficient conditions for ensuring possible truth. Furthermore, although
necessary truth in plans can be computed in polynomial time as pointed out

by Chapman, 2 the same is not true for possible truth. Instead, the problem of
computing possible truth in plans is NP-hard. 3

We can define a concept called modal conditional truth, which is similar to
modal truth but does not require that a plan be executable as modal truth does.
Necessary conditional truth and possible conditional truth are duals of each other,
and both can be computed in polynomial time. Furthermore, if we rewrite the
MTC to talk about modal conditional truth rather than modal truth, then both
the MTC for necessary conditional truth and the MTC for possible conditional

truth are correct.

’ farfial-order planning is planning by searching in the space of partially ordered, partially instantiated plans.

We prefer not to use the more common term “nonlinear planning”, because it appears to mean different things

to different people.
2 There are some difficulties with Chapman’s proof of this, but these difficulties have been cleared up by

Nebel and Backstrom [261.
3 If modal duality held, then both necessary truth and possible would be at similar levels of complexity:

either both would be polynomial, or one would be NP-hard and the other co-NP-hard. Section 3.2.2 discusses

some formulations of planning in which this occurs.

S. Kambhampati, D.S. Nau/ArtiJicial Intelligence 82 (1996) 129-155 131

The role of the MTC in plan generation
The MTC plays a different role in plan generation than it does in checking the

correctness of plans. In particular, the MTC provides both necessary and sufficient
conditions for necessary truth-but it is possible to write sound and complete partial-
order planners which use only s@kient but not necessary conditions for necessary

truth.
This has led to a number of misconceptions about the MTC. Several researchers have

mistakenly attempted to simplify the MTC by eliminating the white-knight declobbering
clause 4 from it. Others (including Chapman) (cf. [i, 23,341) have used Chapman’s
results to conjecture that partial-order planning will not scale up to more expressive
action representations. In this paper, we explain why both of these notions are incorrect-

and observe that at the root of the confusion lies the peculiar predicament of partial-order
planners, which search in the space of partially ordered partially instantiated plans, but
need completeness only in the space of totally ordered ground plans.

This paper is organized as follows. Section 2 contains basic definitions, and clarifi-
cations and corrections of some of Chapman’s terminology. Section 3 presents results

about modal duality, the complexity of modal truth, and the modal truth criterion, and
compares and contrasts these results with Chapman’s claims, as well as with other re-

lated work. Section 4 discusses and clarifies the misconceptions regarding the role of
modal truth criterion in plan generation vs. verification of plan correctness. Section 5
contains concluding remarks. Complicated proofs appear in the appendix; simpler proofs
are in the body of the paper.

2. Definitions

Below, we have tried to be as compatible as possible with Chapman’s ‘%VEAK-style”
plans, situations, and modal truth. However, at certain points, technical problems have

forced us to adopt a different approach. At those points, we explain how our approach
differs and why.

2. I. Basics

The planning language .C is any function-free first-order language. 5 Since L is
function-free, every term is either a variable symbol or a constant symbol, and thus

every ground term is a constant symbol. We follow the usual convention of defining an
atom to be a predicate symbol followed a list of terms, a literal to be an atom or its
negation, and a proposition to be a 0-ary atom. Thus, what Chapman calls a proposition,

we call a literal.

4 For the benefit of those unfamiliar with this clause, our presentation of the MTC in Section 3.2.1 points it

out explicitly.

’ Conventional first-order languages contain only finitely many constant symbols, but Chapman requires his

planning language to contain an infinite number of constant symbols. For compatibility with Chapman’s work,

we will assume that L contains infinitely many constant symbols-but in Section 3.2.2 we will discuss what
happens if the number of constant symbols is finite.

132 S. Kambhampati, D.S. Nau/Art@cial Intelligence 82 (1996) 129-155

A state is any finite collection of ground atoms of C. If a state s contains a ground
atom p, then p is true in s and lp is false in s; otherwise p is false in s and lp is true
in s. Thus, a state is simply an Herbrand interpretation for the language ,!Z, and hence

each formula of first-order logic is either satisfied or not satisfied in s according to the
usual first-order logic definition of satisfaction.

If T is a finite set of terms, then a codesignation constraint on T is a syntactic
expression of the form ‘t M u’ or ‘t $ u’, where t, u E T. Let D be a set of codesignation
constraints on T, and B be a ground substitution over T (i.e., a substitution that assigns
a ground term to each variable in T). Then 8 satisfies D if to = m9 for every syntactic
expression ‘t z u’ in D, and te # uB for every syntactic expression ‘t $ u’ in D. D is
consistent if there is at least one ground substitution B that satisfies D. If te = u/3 for

every 0 that satisfies D, then t codesignates with u.’

A step is a triple a = (name(a), pre(a), post(a)), where name(a) is a constant
symbol called a’s name, and pre(a) and post(a) are collections of literals called a’s

preconditions and postconditions. ’ If A is a set of steps, then an ordering constraint

on A is a syntactic expression of the form ‘a + 6’ (read as “a precedes b”), where

a, b E A. If 0 is a set of ordering constraints on A and 4 is a total ordering on A, then
-X satisfies 0 if for every syntactic expression ‘a 4 b’ in 0, a -+ b.

A partially ordered, partially instantiated plan (or more succinctly, a plan) is a 4-
tuple P = (SO, A, D, 0), where SO is a state called P’s initial state, A is a set of steps,
D is a set of codesignation constraints on the terms of P (i.e., the terms in SO and A),
and 0 is a set of ordering constraints on the steps of A. P is complete if it is totally

ordered and ground, i.e., if there is a unique total ordering al 4 a2 < . . . 4 a, over A

that satisfies 0, and a unique ground substitution B over the terms of P that satisfies
D. If P is not complete, then it is incomplete. If P is complete, we will often write P

informally as al 4 a2 + . . . 4 a,.
Suppose that P is a complete plan, and let k be the largest integer 6 n for which there

are states ~1, ~2, . . , Sk such that the following properties are satisfied for 1 6 i < k:
(i) si-1 satisfies ai’s preconditions; i.e., pB is true in si-1 for every literal p E

pre(oi).
(ii) si is the state produced by performing the step ai in the state si_1; i.e., Si =

(si- 1 - fi) U ti, where ti is the set of all ground atoms p8 such that p E post(a;),
and fi is the set of all negated ground atoms pB such that p E post(ai).

Then for 1 < i 6 k, ai is executable in the input state Si_1, producing the output state

si. If k = n, then P is executable, and it produces the$nal state s,,.
A plan P’ = (sb, A’, D’, 0’) is a constrainment of a plan P = (so,A, D, 0) if

$, = so, A’ = A, 0 & Of, and D C D’. A completion of P is any constrainment of

5 If D is consistent, then this is equivalent to saying that t codesignates with u iff ‘t w u’ is in D’s transitive

closure.

’ Informally, we will use the terms a and name(a) interchangeably. Chapman’s definition of a step actually
omits name(a) completely-but as pointed out by McAllester and Rosenblitt [22], unless we give unique

names to steps, it is impossible for a plan to contain two distinct steps that have the same preconditions and

postconditions.

S. Kambhampati, D.S. Nau/Artifcial Intelligence 82 (1996) 129-155 133

P that is complete.s P is consistent if it has at least one completion; otherwise P is
inconsistent.

2.2. Situations, truth, and modality

Chapman defines a situation to be a collection of literals.9 Given a literal p and a
situation s, he defines p to be true if it codesignates with a literal in s, and false if
it codesignates with the negation of a literal in s. Chapman also makes the following
definitions [2, p. 3381:

A plan has an initial situation, which is a set of [literals] describing the world

at the time that the plan is to be executed, and a$naZ situation, which describes
the state of the world after the whole plan has been executed. Associated with
each step in a plan its input situation, which is the set of [literals] that are true
in the world just before it is executed, and its output situation, which is the set of
[literals] that are true in the world just after it is executed. In a complete plan,

the input situation of each step is the same as the output situation of the previous
step. The final situation of a complete plan has the same set of [literals] in it as
the output situation of the last step. . . . A [literal] is denied in a situation if its

negation is asserted there. It is illegal for a [literal] to be both denied and asserted
in a situation.

This approach leads to several difficulties:
(i) As pointed out by Yang and Tenenberg [361, if a plan P is not complete, then

its situations are ill-defined. For example, suppose P consists of two unordered
steps a and b, such that a asserts p and denies q, and b asserts q and denies p.
Then P’s final situation is either {p} or {q}, depending on which completion of
P we choose.

(ii) If a situation contains literals that are not completely ground, then what those
literals mean is problematic. For example, suppose a plan’s initial situation con-

tains the literal p(x), where x is a variable symbol. This cannot mean (‘d’x>p(x) ,
because Chapman’s TWEAK planner may later constrain x $ y for some constant
or variable y. It cannot mean (3x)p(x), because TWEAK may later constrain

x z y. Apparently, it means p(x) for some undetermined x, and TWEAK gets to
choose what x is. In other words, if the initial situation contains any variables,
then TWEAK changes the meaning of the initial situation as it goes along.

Thus, rather than using Chapman’s approach, we define plans using STRIPS-style states
of the world, and then define situations in terms of states. The intent of our definitions is
that if a plan is complete and can be executed at least far enough to reach the situation

s, then s corresponds to some state t that arises while executing the plan; and what

x Chapman’s definition of a completion does not make it entirely clear whether a completion of P should

include only the steps in P, or allow other steps to be added. However, other statements in his paper make
it clear that he means for a completion to include only the steps in P, so this is how we and most others

(e.g., 1 18,361) use the term.
‘) He calls them propositions-but as mentioned at the beginning of Section 2.1, we call them literals instead.

134 S. Kambhampati. D.S. Nau/Art#cial intelligence 82 (1996) 129-155

is true and false in s is precisely what is true and false in t. lo Otherwise, nothing is
true or false in s although certain things may be conditionally true or false (as defined
below). These ideas are formalized below.

If P is a plan, then associated with each step a of P ace two symbols in(a) and
out(a), called a’s input and output situations. Associated with P are symbols init and
fin called the initial and jinal situations of P. All of these symbols must be distinct.
Whenever a + b, we will also say that x 4 y, where x may be a or in(u) or out(u),
and y may be b or in(b) or out(b).”

We now define what is true and false in a situation of a complete plan. Let P be a

complete plan, and p be a ground literal. Then p is true in init if p is true in P’s initial
state, and p is true in fin if p is true in P’s final state. If a is an executable step of

P, then p is true in in(ui> (or out(ui)) if p is true in u’s input state (or output state,
respectively). A ground literal p is false in a situation s iff up is true in s. Note that if
P is not executable, then the law of the excluded middle does not apply, for p will be
neither true nor false in P’s final situation.

As a consequence of the above definitions, it follows that p is true in s (which we
write as M (p, s)) iff the following three conditions are satisfied:

l Establishment: Either p codesignates with a postcondition of some step a such that
a -X s, or else p E SO.

l Nondeletion: For all steps b between u (or so) and s, no postcondition of b

codesignates with up. l2

l Executability: Every step that precedes s is executable.
A closely related concept is conditional truth, which is like ordinary truth except

that it does not require executability: p is conditionally true in s (which we write
symbolically as C(p, s)) iff the establishment and nondeletion conditions hold.

We defined truth and conditional truth only for complete plans, because for incomplete

plans, what is true or conditionally true will vary depending on which completion we
choose. In incomplete plans, we instead need to talk about modal truth, which Chapman
defines as follows [2, p. 3361:

I will say “necessarily p” if p is true of all completions of an incomplete plan, and

“possibly p” if p is true of some completion.

Above, Chapman apparently means p to be nearly any statement about a plan: examples
in his paper include not only statements about specific literals and situations in the plan,
but also statements about the entire plan (e.g., the statement [2, p. 3411 that a plan

“necessarily solves the problem”). However, unless we place some restrictions on the
nature of p, this has some dubious results-for example, if P is an incomplete plan,

‘I) From our definition of a state earlier, the truth value of every literal p is known in the state t, and hence
in the situation s. This differs from Chapman’s formulation of a situation, in which the truth value of p is

unknown in s unless s explicitly contains something codesignating with p or 7~.

‘I According to this definition, out(a) and in(b) are always distinct; hence we would say out(a) 4 in(b)

in some cases where Chapman would say out(a) = in(b). However, this makes no significant difference in

any of the results.
‘* This is basically the white-knight declobbering clause of the MTC (see Section 3.2.1)) simplified to handle

the special case where the plan is complete.

Table 1

S. Kambhampati, D.S. Nau/Artificial Intelligence 82 (1996) 129-155 135

Relationships among truth, modal truth and modal conditional truth of a literal p in the final situation of a
plan P

Complete plans Incomplete plans

Truth M (p. fin) : P is executable, and produces p in Necessary truth q lM(p, fin): every completion of P
fin. This requires that the establishment, nondeletion is executable, and produces p in fin.

and executability conditions hold. Possible truth OM(p,fin): SOme completion of P is

executable, and produces p in fin.

Conditional truth C(p, fin): if P’s steps did not have Necessary conditional truth q C(p, fin): if P’s steps
preconditions, then P would have produced p in fin. did not have preconditions, then every completion of

This requires the establishment and nondeletion con- P would have produced p in fin.

ditions, but nor the executability condition. Possible conditional truth OC(p,fin): if P’s steps did

not have preconditions, then some completion of P
would have produced p in fin.

then all completions of P are complete, and therefore P itself is necessarily complete.

Therefore, for the forma1 results in the paper, we will use “necessarily” and “possibly”
only in the following cases (although we will sometimes use them informally in a
broader sense). If p is an atom, P is a plan, and s is a situation in P, then:

l p is necessarily (or possibly) true in s (written CM4 (p, S) and OM (p, S) , respec-
tively) iff M(p, s) in every (or some) completion of P;

l p is necessarily (or possibly) conditionally true in s (written q C(p, S) and
OC(p, s) , respectively) iff C(p, s) in every (or some) completion of P.

Table 1 summarizes the relationships among truth, modal truth and modal conditional

truth.
We now define the following decision problems:

NECESSARY TRUTH: Given a ground literal p and a plan P, is p necessarily true
in P’s final situation fin? Or equivalently, does every completion of P produce a
final state in which p is true?
POSSIBLE TRUTH: Given a ground literal p and a plan P, is p possibly true in P’s

final situation fin? Or equivalently, is there a completion of P that produces a final
state in which p is true?
NECESSARY CONDITIONAL TRUTH: Given a ground literal p and a plan P, is p
necessarily conditionally true in P’s final situation fin?

POSSIBLE CONDITIONAL TRUTH: Given a ground literal p and a plan P, is p

possibly conditionally true in P’s final situation fin?

3. Modal duality and the complexity of modal truth

3.1. Our results

From the definitions of truth and conditional truth in the previous section, it is easy to
see that in each completion of a plan P, a literal p is true in the final situation fin if and
only if (I) p is conditionally true in fin, and (2) the completion itself is executable.
The completion is executable if and only if for every action a and every precondition
p. of a, pLr is conditionally true in the situation in (a). Thus,

136 S. Kambhampati, D.S. Nau/Art$cial Intelligence 82 (1996) 129-155

M(p, fin) c C(p, fin) A C(p,, in(a)) . (1)
-0

1,
Executability of the completion _

Since ensuring that p is necessarily true in P’s final situation is equivalent to ensuring
that p is true in the final situation of every completion of P, we have:

q M(p, fin) E 0 A
V&R Vwepre(a)

(2)

Now, since modal necessity distributes over conjunctions (i.e., q (p A q) E O(p) A

O(q)), we can rewrite Eq. (2) as

q M(p,fin) E q C(p,fin) A

1
A q C(p,, in(a))

V&P, b‘zpre(a) I,
Executability of all completions

Thus we can determine whether p is necessarily true by checking

(3)

to see whether it

is necessarily conditionally true, and whether the preconditions of each step of the
plan are necessarily conditionally true. This can be done in polynomial time using
the same technique Chapman suggests for computing the MTC in [21. In particular,
computing the necessary conditional truth of a literal in a situation (which involves
checking whether the MTC’s establishment and declobbering clauses are consistent with
the plan’s ordering and codesignationlnoncodesignation constraints) can be done in time
polynomial (O(n3)) in the plan length. Thus, since the total number of preconditions
in a plan is of the order of number of actions in the plan, computing whether p is
necessarily true can also be done in polynomial time.

Coming to the case of possible truth, by similar arguments we get:

OM(p,fin) z 0 C(p,fin) A

[[

A C(p,, in(a)) .
vae,Vpa~pre(aJ 11 (4)

But possible truth does not distribute over conjunctions (i.e., in general, O(p A q) $

O(p) A O(q)), so there is no way to simplify Eq. (4) into component tests of com-
puting possible conditional truth of individual literals. Thus, even though possible con-
ditional truth in fin and necessary conditional truth in fin are duals of each other (i.e.,
OC(p,fin) z -ClX(p, fin)), possible truth in fin and necessary truth in fin are mt

duals of each other. More specifically:

Theorem 1. There exist a ground literal p and a plan P such that in P’sjinul situation

fin, LlM(p,fin) $ 10 TM(p,fin).

S. Kamblzampati, D.S. NadArtijicial Intelligence 82 (1996) 129-155

pre: Clear(A), Clear(B), On(A, Table)

137

post: On(B, C), Clear(B), -Clear(C), -On(B, Table)

Fig. I. A blocks-world plan illustrating the nonduality of necessary truth and possible truth in TWEAK-Style

plans. As shown in the drawing, the following atoms are true in the initial situation: On(A, Ta ble),

On(B, Table), On(C, Table), Clear(A), Clear(B), Clear(C). The operator move-from-table(x.v) moves

block x from the table to block v. The preconditions and postconditions of each step are shown above and

below the box that represents the step.

Proof. Consider the blocks-world plan shown in Fig. 1. This plan has only one exe-
cutable completion, namely u2 < at. This completion produces a final state in which

A is on B and B is on C. Thus, no executable completion produces a final state where

-On(A,B) is true, so TOn(A,B) is not possibly true in the final situation fin. If
possible truth and necessary truth were duals, then this would mean that On(A, B) is
necessarily true in fin. However, On(A,B) is not necessarily true in fin, because the
plan contains an unexecutuble completion, namely at -X ~22. Thus possible truth and

necessary truth are not duals. 0

Thus, unlike necessary conditional truth and possible conditional truth, necessary truth
and possible truth do not obey the modal duality that is obeyed by all classical modal
logics [4, p. 621, and thus do not define a well-formed modal logic. It is easy to
understand why this is so. The semantics of modal logics are based on Kripke structures
(a.k.a. possible worlds). In this formulation, if p is a ground literal, then for every
possible world, p must either be true or false in that world. For partially ordered plans,

one might expect that each completion of the plan would give rise to a possible world.
However, the modal truth of p in a situation of a plan requires that the plan’s actions
be executable in order to produce that situation. Thus, if a completion is not executable,

then the truth of p is not defined in the corresponding possible world. l3
Given a ground literal p and a plan P, p is possibly true in P’s final situation if and

only if there is an executable completion of P that produces a final state in which p
is true, and this happens iff it is not the case that every executable completion of P
produces a final state in which up is true. Thus, POSSIBLE TRUTH is the dual of the
following problem:

” Although TWEAK plans cannot be modeled using the semantics of classical modal logic& they can be

modeled in a variant of modal logics, called first-order dynamic logic [321. Dynamic logic, which has been

used to provide semantics for programs and plans, provides a clean way to separate executability/termination

conditions from goal satisfaction conditions. More about this in Section 3.2.2.

138 S. Kambhampati, D.S. Nau/Art@cial Intelligence 82 (1996) 129-155

pre: Clear(A), Clear(B), ONA, Table)

,&On(A, B), Clear(A), -Clear(B), -ONA, Table)

move-tc-tabMA, 6)

post: On(A, Table), Clear(B), TONA, B)

Atoms with that property

ifprecnnditionsarestrippedoffl

Partially true (produced 1 Clear(A). On(A, Table),

by all e&utabl~ completions) / Clear(B), On(B, Table)

Fig. 2. Example showing that partial truth is weaker than both necessary truth and necessary conditional truth.
The table shows which atoms satisfy various truth conditions in fin.

l PARTIAL TRUTH: Given a ground literal p and a plan P, does every executable
completion of P produce a final state in which p is true? l4

Lemma A.1 of the appendix shows that PARTIAL TRUTH is NP-hard.
PARTIAL TRUTH is a weaker condition than both NECESSARY TRUTH and NRCES-

SARY CONDITIONAL TRUTH. t5 The example in Fig. 2 illustrates this. There are some
cases in which every executable completion of P produces a final state in which p
is true, but p is neither necessarily true nor necessarily conditionally true in P’s final
situation.

Another way of understanding the problem with simplifying Eq. (4) is to note that
if p is possibly conditionally true and that all the preconditions of the preceding actions
are possibly conditionally true, this only implies that each of them is individually true
in at least one completion-and this condition is necessary but insz.&cient for ensuring
possible truth. We could check possible truth by checking to see whether all these
conditions are collectively true in at least one completion of the plan, but since the
number of completions of a plan is exponential in the number of actions of the plan,
this would take exponential time. Furthermore, the following theorem (proved in the
appendix) shows that unless P = NP, there is no polynomial-time approach for solving
this problem.

I4 PARTIAL TRUTH corresponds closely to the notion of partial correctness, which was studied in connection
with dynamic logic-based modeling of computer programming languages [29,321.
I5 It may seem at first glance that partial truth rather than necessary truth should form the basis of planning,

since we are only interested in the executable completions of the plan. However, if a planner returned a

plan whose conditions were all partially true rather than necessarily true, this would require the user of the

plan to spend time trying to figure out which of the possibly exponential number of completions is actually
executable.

S. Kambhampati, D.S. NadArtijicial Intelligence 82 (1996) 129-155 139

Theorem 2. POSSIBLE TRUTH is NP-hard.

Thus, NECESSARY TRUTH and POSSIBLE TRUTH have different levels of complexity.
If modal duality held, then this would not be so, for each would be reducible to the
other’s complement via an equivalence of the form OM(p, s) s 10 lM(p, s). Thus
it would follow [9, p. 291 that either POSSIBLE TRUTH would be polynomial like NEC-
ESSARY TRUTH, or else NECESSARY TRUTH would be co-NP-hard. In Section 3.2.2,
we discuss some planning situations where this occurs.

3.2. Comparison with other work

3.2.1. The modal truth criterion
Chapman states the MTC as follows [2, p. 3401:

Modal truth criterion. A [literal] p is necessarily true in a situation s iff two
conditions hold: I6 there is a situation t equal or necessarily previous to s in which
p is necessarily asserted; and for every step C possibly before s and every [literal]
q possibly codesignating with p which C denies, there is a step W necessar-
ily between C and s which asserts r, a [literal] such that r and p codesignate

whenever p and 4 codesignate. The criterion for possible truth is exactly analo-

gous, with all the modalities switched (read “necessary” for “possible” and vice

versa).

If we take these words literally, then the definition of modal truth tells us that the plan
must be modally executable. This is consistent with Chapman’s definition of a situation
(quoted in Section 2.2)) from which it follows that a step’s output situation (and hence
what is true in that situation) is only defined if the step can be executed. However,
a careful look at Chapman’s proof of necessity and sufficiency of his MTC reveals
that his proof deals with necessary conditional truth rather than necessary truth.” In
proving that any literal with an establisher and no clobberer must be necessarily true,
Chapman’s proof refers to white-knight steps for every potential clobberer, [2, p. 3701,
without checking that the white knights are in fact executable. l8

For the “necessary truth” version of the MTC, this does not affect the validity of

Chapman’s proof, since executability occurs naturally as a consequence of applying
necessary conditional truth recursively to prerequisites of all preceding steps. The same,
however, cannot be guaranteed for possible truth, since modal possibility does not
commute over conjunctions-and thus Chapman’s proof cannot be extended to possible
truth. In particular, the following theorem shows that the “possible truth” version of the
MTC sometimes fails:

I6 The second of these conditions is the “white-knight declobbering clause” that we refer to elsewhere. The

steps C and W are often called a clobberer and a white knight, respectively. The situation t can be either the

initial situation or the output situation of some step e, and in the latter case e is often called an establisher.
” Had Chapman explicitly noted this use of modal conditional truth in his proof, we believe he would have

noticed the nonduality of necessary and possible truths.

‘s Note that in Chapman’s terminology, the establisher is a situation, while clobberers and white knights are

steps.

140 S. Kumbhampati, D.S. Nuu/Arti&ial intelligence 82 (1996) 129-155

Theorem 3. There is a plan P and a ground literal p such that in P's final situation,
p is not possibly true but the MTC concludes otherwise.

Proof. In the blocks-world plan in Fig. 2, consider the condition On(A, B), which holds

in out(at). a2 deletes On(A, B), but al adds On(A, B), and al can possibly come after

a2. Thus, the MTC would conclude that On(A, B) is possibly true in fin. In this case
the MTC is incorrect, since there is no executable completion of the plan for which
On(A, B) is true in the final state. t9 Cl

The MTC and modal conditional truth

The above discussion suggests an alternative interpretation of the MTC that sidesteps
the problem: drop the executability requirement, and interpret the MTC as a statement
about modal conditional truth rather than modal truth. This alternative interpretation is
not as far-fetched as it might sound. To see this, note that Chapman defines the notion
of truth of a literal in a situation as follows [2, p. 3381:

A [literal] is true in a situation if it codesignates with a [literal] that is a member
of the situation. A step asserts a [literal] in its output situation if the [literal]

codesignates with a postcondition of the step.

Here, there is no explicit requirement that the step be executable. This suggests that the
MTC does not require that P be modally executable, and thus suggests that Chapman
was talking about modal conditional truth. This interpretation is also consistent with
his “nondeterministic achievement procedure” [2, Fig. 71, where to make a literal
necessarily true in a situation, he only ensures establishment and declobbering without
explicitly stating that the establisher needs to be executable. (As explained above, for

the case of necessary truth, executability follows from making every prerequisite of
every action necessarily conditionally true.)

The “conditional truth” interpretation of the MTC gives a quasi-local flavor to plan-
ning, by separating the process of ensuring local establishment and declobbering from

the process of ensuring executability, with the understanding that if all preconditions are
necessarily established and declobbered, then the whole plan itself will be executable

and correct. In fact, some latter rewrites of the MTC (e.g. [18,361) use this interpreta-
tion to eliminate the notion of situations entirely, and state the MTC solely in terms of
steps (operators) and their preconditions and postconditions.

Although a truth criterion for modal conditional truth does have utility in plan gener-
ation, it is of limited utility in projecting plans or partially ordered events. As mentioned
in Section 2.2, the latter are more naturally related to modal truth.

3.2.2. Modal duality and universal executability

In Section 3.1, we observed that the main reason why necessary truth and possible
truth are not duals in TWEAK-style plans is that such plans can contain unexecutable
completions. Thus, one way to achieve duality between necessary truth and possible

I’) Note, however, that On(A, B) is possibly conditionally true in fin, because if the steps had no preconditions,

then one of the completions would have produced On(A, B).

S. Kambhanzpati, D.S. NadArtijiciul intelligence 82 (1996) 129-155 141

TWEAK Plans
(Have Unexecutable Completions)

I

Plans with Universally Executable Steps

(Co-NP-Complete)
Possible Truth
(NP-Complete)

Partial Truth
(C&VP-Complete)

Possible Truth
(NP-Complete)

Fig. 3. Complexity relations among decision problems for plans containing actions that have executability

preconditions, and plans containing universally executable actions.

truth is to restrict our attention to plans whose completions are always executable. One

way to guarantee that plans will always be executable is to restrict the actions to have
no preconditions, i.e., to consider only those plans P such that pre(a) = 8 for every
step a of P. In this case, it is easy to see that Eqs. (2) and (4) in Section 3.1 will

simplify respectively to:

q M (p, s> =: q C(p, s>; (5)

OM(p, 3) = OC(p, s). (6)

In other words, for the set of plans composed entirely of precondition-less steps, modal

truth and modal conditional truth are identical, necessary truth and possible truth are
duals, and all are computable in polynomial time.

The above approach to achieving universal executability is clearly too restrictive,

since it precludes modeling actions with any form of preconditions. But if we relax the
restrictions of TWEAK-style action representation, there is a more reasonable way to
guarantee universal executability: let an action a be executable even if its preconditions
are not satisfied. If the preconditions are satisfied, then a will produce its postconditions;
otherwise, a will simply have no effects. For plans that contain only this type of action,
possible truth and necessary truth are duals of one another, computation of possible
truth is NP-hard, and computation of necessary truth is co-NP-hard. Fig. 3 summarizes
the complexity relations among the various decision problems. As discussed below, this
approach has been used in different forms by several different researchers.

Propositional dynamic logic
To our knowledge, the above approach was first used in Rosenschein’s work [321 on

providing semantics to plans based on first-order propositional dynamic logic. Proposi-
tional Dynamic Logic (PDL) is a variant of modal logic, which was originally designed

142 S. Kambhamputi, D.S. Nuu/Artifcial Intelligence 82 (1996) 129-1.55

to provide semantics to computer programs [291. In PDL, the semantics of a program
are described in terms of what will be necessarily and possibly true after the execution

of that program. A program is said to be totally correct if (a) it halts, and (b) whenever
it halts, certain goal propositions will be true in the resulting world. Programs that only
satisfy condition (b) are said to be partially correct. (Note the similarity between partial
correctness and PARTIAL TRUTH.) In using PDL to provide semantics to plans, Rosen-
schein guarantees universal executability of plans by starting with a loop-free subset
of PDL, and restricting it further to allow only the so-called C-programs. C-programs
restrict the use of conditionals in PDL to guarantee that the plan terminates irrespective
of which branch of the conditional it takes.

,Temporal projection

A very similar idea is used in Dean and Boddy’s work on temporal projection [51.
Specifically, they use actions that have ground preconditions and effects. The effects of
the actions are defined in terms of projection rules, which are of the form (e, 4, (Y, 6),

where e is an event with which the rule is associated, and 4 is a set of antecedent
conditions, which if true before e, will cause the cr conditions to be added and the 6
conditions to be deleted. Dean and Boddy are concerned with the following decision

problem: given a partially ordered set of events A, does a condition C belong to
Possible(e), where the latter is the set of conditions that hold immediately following
the event e in some totally ordered ground instance (i.e., completion) of A.

In Dean and Boddy’s formulation, A is executable even when a rule’s preconditions
don’t hold (in which case the rule simply has no effect). Thus as discussed earlier,
possible truth is equivalent to possible conditional truth, necessary truth is equivalent

to necessary conditional truth, and possible truth and necessary truth are duals. Hence
they are able to prove that in their formalism, determining possible truth is NP-hard and

determining necessary truth is co-NP-hard.

Conditional steps

Chapman uses universally executable actions (he calls them conditional steps) in

proving his intractability theorem for actions containing conditional effects. Specifically,
Chapman defines a conditional step as follows [2, p. 37 1] :

A conditional step is always applicable, but has two sets of postconditions, the if-
true and the if-false postconditions. The if-true postconditions hold in the output
situation if all the preconditions were satisfied in the input situation; otherwise the
if-false postconditions hold.

Since these conditional steps are always applicable, a plan composed entirely of such
steps will always be executable. Thus, just as in Dean and Boddy’s formalism, de-
termining necessary truth is co-NP-hard, as shown by Chapman in the proof of his
Intractability Theorem.

Since the Intractability Theorem is based on planning operators that have conditional
effects, it has been natural for planning researchers to interpret it to mean that the con-
ditionality of these operators is what causes necessary truth to be intractable. However,
this interpretation is misleading. The intractability result depends just as much on the

S. Kambhampati, D.S. Nau/Artijicial Intelligence 82 (1996) 129-155 143

universal executability of Chapman’s conditional steps as it does on their conditionality.
Below we explain why.

Consider an incomplete plan P composed of ordinary “unconditional” steps as de-
fined in Section 2, and let a be a step of P such that pre(a) and post(u) contain an
unconstrained variable X. Then for the purposes of both planning and temporal projec-

tion, the effects of a are to some extent conditional. In particular, depending on what
value we give to X, a will have different effects in different completions of P. However,
computing necessary truth in such plans is still polynomial. Since Chapman’s planning
language has an infinite number of constant symbols, it follows that in the plan P we

can always find a binding for x that makes u unexecutable. As a consequence, P will
always have at least one unexecutable completion. Hence, determining necessary truth
is trivial: nothing will be necessarily true in P’s final situation.

Now, suppose we restrict our planning language L to contain only finitely many
constant symbols (and thus only finitely many ground terms, since C is function-free).
Then there will be some plans in which a is executable for every binding of x. In this
case, as the following theorem shows, checking necessary truth will be co-NP-hard, even

with unconditional steps.

Theorem 4. If the language L contains only jinitely many constant symbols, then

NECESSARY TRUTH is co-NP-hard.

Notice that this result is related to Chapman’s observation [2, p. 3561 that restrict-

ing the range of a variable to a finite set will defeat the MTC, and make constraint
computations NP-complete.

Coherent plans
Nebel and B%zkstrGm [26] have recently studied the computational complexity of

plan validation and temporal projection. While our investigation was initially motivated
by the apparent lack of modal duality in Chapman’s MTC, Nebel and BgckstrGm’s work

is motivated by the apparent asymmetry between the complexity of plan validation as

studied by Chapman, and temporal projection as studied by Dean and Boddy [51.
Although Nebel and B&ckstrijm’s results are related to ours, there are several signifi-

cant differences. Rather than interpret the MTC in terms of modal conditional truth and
use that to explain the asymmetry in the possible and necessary truth, as we have done
in this paper, Nebel and B%zkstrGm instead chose to restrict the MTC to apply only to
plans whose completions are all executable (they call this property coherence). Further-
more, they restricted their plans to be ground (i.e., to contain no variables), and our
plans do not have this restriction. We believe that the results in this paper complement
theirs and together provide a coherent interpretation of the role of modal truth criteria
in planning.

4. The role of the MTC in partial-order planning

Chapman’s original motivation for the formulation of the MTC was to provide a
formal basis for partial-order planning. Intuitively, since the MTC accounts for all the

144 S. Kumblumpaii, D.S. Nuu/Art@ciul Intelligence 82 (1996) 129-155

scenarios in which a proposition p is necessarily true in a situation, we can make p
necessarily true by simply adding constraints to the plan to make one of those scenarios

true. While this use of the MTC provides a suficient formal basis for partial-order
planning, it turns out not to be necessary. More specifically, sound and complete partial-

order planners:
l do not need to reason about the correctness of arbitrary partially ordered plans;
l do root need to consider only those goals that are not necessarily true for achieve-

ment;
l do not need to base their goal achievement procedure on a necessary and sufficient

truth criterion for partially ordered plans.
These seemingly counter-intuitive facts are a result of the somewhat peculiar predica-

ment of partial-order planners: they search in a space of plans that are partially ordered
and partially instantiated, to find a totally ordered ground plan that solves the prob-
lem. This has lead to several confusions about the role of the MTC in planning. In

this section, we will clarify the role played by the MTC in partial-order planning,
and then address some misconceptions that resulted from misunderstandings in this

regard.

4.1. Unnecessity of the MTC for partial-order planning

Many planning algorithms can be thought of as repeated iterations of the following
steps: take a plan, evaluate it to see if it is a solution, and if it is not, then refine it

further using a goal achievement procedure. For example, Chapman describes TWEAK,

a planner based on his MTC, as follows:

[The planner] enters a loop in which some goal not yet achieved is chosen and the

[goal achievement] procedure is applied. ([2, p. 3441; emphasis ours)

The goal achievement procedure is derived by interpreting the necessary truth
criterion as a nondeterministic procedure. The criterion tells us all the ways a
proposition could be necessarily true; the procedure chooses one of them and

modifies the plan accordingly. [2, p. 3411

In the above, the MTC plays three separate roles: as a termination criterion (the
planning stops when all the goals are necessarily correct), as a goal selection criterion
(only conditions that are not necessarily true are selected for goal achievement), and as

the basis for the nondeterministic goal achievement procedure.
Although the MTC is sufficient for serving these roles, it is not required for either

of them-it is possible to provide a formal basis for partial-order planning without
recourse to the MTC (cf. [281) . To see this, we must start with a clear understand-
ing of the objectives of partial-order planning. For both partial-order and total-order
planning, the objective is to find a ground operator sequence which when executed
in the initial state produces a desired goal state. In the case of partial-order planning,
the search is conducted in the space of partially ordered plans for efficiency of plan
generation, and each partially ordered plan is simply a shorthand representation for the

S. Kambhampati, D.S. NadArttjkial Intelligence 82 (1996) 129-155 145

set of all ground operator sequences that are consistent with the plan’s constraints.20
This means that one can do partial-order planning without having to reason about the
“correctness” of partially ordered plans. Let us now re-examine how crucial the MTC

is for termination, goal-selection and goal achievement procedures of a partial-order

planner.

4. I. 1. Termination

Since the objective of partial-order planning is to find plans that are ground and totally
ordered, it follows that for sound and complete partial-order planning, it is sufficient
for the termination condition to be capable of checking the correctness of totally or-
dered ground plans. Rather than using Chapman’s MTC for this purpose, a termination
condition such as the one given below can be used instead:

Eager termination. Randomly generate a completion (ground linearization) of the

current plan. If the completion solves the problem the planner is trying to solve,
then terminate the planner and return the completion.

The eager termination criterion is always tractable, since a completion can be enu-

merated in polynomial time, and can be checked for correctness in polynomial time.
Furthermore, a planner using this termination criterion will terminate on any incom-
plete plan on which a planner using MTC terminates. This is because whenever a plan
satisfies the MTC, all of its completions (including the randomly generated one) are
guaranteed to solve the problem the planner is trying to solve. Finally, the eager ter-
mination criterion may allow the planner to terminate earlier than the MTC would,
because the MTC is not satisfied unless all completions of the current plan solve the

problem.

4.1.2. Goal selection

Since the order in which goals are selected does not affect the completeness of partial-
order planning [16,221, MTC-based goal selection is just one of many possible goal

selection strategies. Goal selection based on the MTC essentially boils down to preferring
to work on preconditions of the plan that are not necessarily true, with the rationale
that such a strategy may allow the planner to exploit any serendipitously satisfied goals
by terminating without having to explicitly work on achieving them.*’ Replacing this
strategy or complementing it with other goal selection strategies does not affect the
soundness and completeness of the underlying planner.

4.1.3. Goal achievement

The last and perhaps most important role of the MTC in plan generation in TWEAK is
as the basis for the goal achievement procedure. Although Chapman’s interpretation of
the MTC as a nondeterministic program provides a sufficient basis for goal achievement,

2” See I 16,201 for an elaboration of this view.

2’ The occurrence of such a serendipitously satisfied goal has been referred to in [1 I I as an enabling-condition
interaction.

146 S. Kambhampati, D.S. NadArtijicial Intelligence 82 (1996) 129-155

it is once again not necessary. In fact, many partial-order planners, such as McAllester’s
SNLP [15,22,241, use a goal achievement procedure that corresponds to a modified
MTC in which the white-knight declobbering clause is replaced with a much simpler
demotion clause:

A literal p is necessarily true in a situation s if p is necessarily asserted in a
situation s’ which necessarily precedes s, and p is necessarily not deleted by any
step a that possibly comes between s’ and s.

With this modification, the truth criterion is sufficient but unnecessary for ensuring the
truth of a literal (see Section 4.2 for an example and related discussion). A planner

using this modified truth criterion can still be complete, because for the special case of
totally ordered plans, this criterion is equivalent to the MTC, and provides sufficient as
well as necessary conditions for determining whether the plan solves the problem. To

put it another way, for every plan P that is correct according to Chapman’s MTC, there
will be a constrainment P’ of P that will be correct according to this modified truth
criterion such that whenever TWEAK terminates with P, the planner using the modified
truth criterion will terminate with the constrainment P’.

4.2. The role of white-knight declobbering

4.2.1. White-knight declobbering in checking plan correctness

Starting with the fact that one does not need the full power of Chapman’s MTC in
order to do sound and complete partial-order planning, some researchers have attempted

to simplify the MTC by eliminating the white-knight clause from it. Unfortunately,
such a simplification is erroneous. As Chapman’s proof shows, something similar to
the white-knight clause is still required if we want to state the necessary and sufficient
conditions for the necessary truth of a literal in a given partially ordered plan (or
equivalently, recognize the correctness of a given partially ordered plan) in polynomial

time.

If we don’t care about polynomial time, then we can simply enumerate all the com-
pletions of the plan, and verify that each completion is a correct totally ordered ground

plan for solving the problem. But since the number of completions of a partially ordered
plan is exponential in the size of the plan, this is very inefficient unless the plan is

already totally ordered-in which case one can use a “nondeletion” condition similar to

that we discussed in Section 2.2.
Although the necessity of the white-knight declobbering clause does depend on

whether or not the plan is totally ordered, it does not depend on whether or not the plan
is ground. (Chapman’s use of a partially instantiated plan [2, Fig. 5, p. 3391 to motivate
white-knight declobbering seems to have caused this misimpression.) The following ex-

ample, due to Mark Drummond [61, illustrates this point. Consider the ground partially
ordered plan in Fig. 4, in which the literal p is required in the final situation fin, the steps
bl and b:! add p, the steps at and a2 delete p, and the steps at and bl are unordered
with respect to a2 and b2. We can see that p is true in the situation preceding fin in
every completion of this plan. However, without the white-knight clause, the modal truth

S. Kumbhampati, D.S. Nau/Artifcial Intelligence 82 (1996) 129-155 147

h-p P,r

Fig. 4. A ground partially ordered plan for which the white-knight clause is needed to verify plan correctness

(example due to Mark Drummond). Each step’s name is in a box, with its preconditions and postconditions

above and below the box. fin is the final situation, and init is the initial situation.

criterion would not be able to recognize this fact. 22

Since the MTC can be used to determine efficiently (in polynomial time) whether

all the completions of an arbitrary partially ordered plan are correct, it can also be
used as a basis for removing any unnecessary orderings in a given plan in polynomial

time [1,191: repeatedly remove some (nontransitive) ordering relation from the plan,
and check if all its completions are still correct. 23 Such “order generalization” could
be useful if one wants to execute steps of the plan in parallel in order to improve

the execution time. It could also be useful when one wants to separate independent
subparts of the plan to facilitate storage compactions in case-based approaches (cf.

[171).

4.2.2. White-knight declobbering in goal achievement

Although the white-knight declobbering clause is needed in the MTC, we pointed out
in Section 4.1.3 that white-knight declobbering is not required to guide plan generation.
In fact, Chapman’s own implementation of TWEAK [2, p. 3611, as well as many

later partial-order planners such as SNLP [22] do not use white-knight declobbering
clause in the goal achievement procedure. However, as Chapman remarks [2, p. 3591,
avoiding the white-knight declobbering clause during planning means that the planner
may terminate with somewhat more constrained plans. For the example in Fig. 4, a
planner such as SNLP that does not use the white-knight declobbering clause will find
one of two alternate plans:

22 Historictrl Note: Although the term “white knight” became popular after Chapman’s work on TWEAK [2 1,
Tate’s Nonlin was the first planner to use a white-knight clause to specify weakest conditions for establishment

and declobbering. Nonlin’s Q&A procedure [33] says that a literal p is true at a step s in a partially ordered

plan, if and only if (I) there exists a step n’ such that n’ < n, and n’ asserts p, and (2) there does not exist

a step n” such that n” deletes p. and (2.1) either n” is unordered with respect to n or (2.2) there does not

exist any step n”’ _(n which deletes p without a subsequent node w > n”’ asserting it back again. According

to this criterion, the plan in Fig. 4 is found to be correct. In Nonlin, this check is done by ensuring that (I)

for every branch of the plan that is coming into s, the last node in the branch that gives a value to p must

be asserting p and (2) no branch parallel to s contains a node that deletes p, Unlike TWEAK, Nonlin did

not deal with partially instantiated plans (however, O-PLAN [3 1, a successor of Nonlin, does deal with such
plans).

” Note that this involves removing existing orderings, without adding any new orderings. BSckstr6m [I 1
shows that if we also allow arbitrary addition and deletion of orderings, then the problem of finding the least
constrained plan is NP-hard.

148 S. Kambhampati, D.S. Nau/Ar@cial Intelligence 82 (1996) 129-155

P,t. : al 4 bl < a2 + b2;

Pkz : a2 4 62 i al 4 bl.

Note that both of these plans are constrainments of the original plan. However, since the
objective of partial-order planning is only to find a ground operator sequence, terminating

with these constrainments in itself is not a problem, unless there is a concomitant loss
of efficiency in planning. 24

This gives rise to the question of whether the use of white-knight declobbering will

improve or reduce the efficiency of plan generation of a partial-order planner. The use
of white-knight declobbering as part of the goal achievement procedure does tend to

increase the redundancy in the search space (in particular, the same ground operator

sequence may be considered in more than one search branch of the planner)-but as
we discuss in [14, 151, whether or not such redundancy leads to inefficiency depends
on the tradeoffs between the search space redundancy vs. level of commitment made
by the planner. Thus using the white-knight declobbering clause does not ipso facto
make planning inefficient, as has been conjectured by some researchers (cf. [131).
An important issue is whether the planner implements white-knight declobbering only

through steps that already exist in the plan, or whether it also allows new steps to be
introduced as white knights into the plan. In [1.51, we describe a planner called MP-I,
which allows white-knight declobbering only via already existing steps. Our experiments
show that this opportunistic declobbering leads to significant performance improvements
in certain domains.

4.3. Plan generation with more expressive action representations

One unfortunate result of the misinterpretation of the role of the MTC in partial-order
planning is the misconception that partial-order planning has more difficulty in scaling
up to a more expressive action representation than does total-order planning. Not only
did this belief slow down progress on planning with expressive action representations, it
also inhibited some learning researchers from basing their work on partial-order planning

frameworks [17,23,34].
As we noted earlier, planning can be seen as an iterative process, such that during

each iteration the planner takes a plan, evaluates it to see if it is a solution, and refines

24 A related question is whether the MTC, and in particular the white-knight declobbering clause, would be

necessary in the goal achievement procedure if one wants to find optimal partially ordered plans (for example,

to ensure optimal execution time, cf. 121 I). At first glance, it might seem that we must search in the space

of all partially ordered plans to find the optimal partially ordered plan, and thus the white-knight declobbering
clause would be necessary. However, this is not strictly required, since the unnecessary ordering constraints

can be removed from plans in polynomial time (Section 4.2.1). In particular, suppose we defined the cost of
each plan P to be the execution time that would be needed for P if all unnecessary ordering constraints were

removed. If this cost were used as part of an admissible search strategy in a planner like SNLP [22] or even a

total-order planner, then the planner would terminate with some plan PC such that PC is a constrainment of an

optimal partially ordered plan Ps. We could then derive Ps from PC by once again removing all unnecessary

ordering constraints from PC.

S. Kambharnpati, D.S. Nau/Art@cial Intelligence 82 (1996) 129-155 149

it further (using the goal achievement procedure) if it is not. The argument about
the disadvantages of partial-order planning for expressive action representation is based
on the complexity of each of these iterations. It starts with Chapman’s Intractability
Theorem, which shows that if conditional steps are allowed, then necessary truth is
NP-hard. ” The argument goes that since a planner must compute necessary truth each
time it evaluates and refines a plan, the amount of time taken per iteration will increase
drastically in partial-order planning.

This reasoning is fallacious, since, as we noted earlier, determining necessary truth
is not required in order to do partial-order planning. In particular, as we discussed
in Section 4.1, a sound and complete partial-order planner will not have to compute

necessary truth either for termination or for goal selection. Thus, the NP-hardness result
is clearly irrelevant. Indeed, Pednault [27,281 provides a formal theory of partial-order
planning in the presence of actions with conditional and quantified effects, 26 and his
theory has served as the basis for a popular implementation called UCPOP [30], that

takes only a polynomial amount of time per iteration.
Moreover, even if one were to compute necessary truth during goal selection and

termination, it is possible to devise partial-order planners in which each plan that is
generated is constrained in such a way that necessary truth can be evaluated in polyno-
mial time. One extreme example of this would be a planner that generates only ground
linear plans, but there are however other types of constrainments in which the plans
are partially ordered-for example, unambiguous constrainments (cf. [24]), and safe
constrainments (cf. [16,221)-which avoid the extreme of searching with totally or-
dered plans. All of these attempt to reduce the cost of plan evaluation and refinement

by possibly increasing the search space size.
In order to determine the overall time complexity of the planner, what really counts

not the time per iteration, but the tradeoff between the time per iteration and the size
of the space searched (i.e., the number of iterations), since the time complexity is
the product of these two factors. In [16,201, we systematically classify the types of
operations (called “tractability refinements”) used by various planners to ensure tractable

plan evaluation and analyze the tradeoffs offered by them.
Finally, it is also wrong to believe that planning itself is more difficult if conditional

operators are allowed. Erol et al. [8] have analyzed how the complexity of planning
varies under a wide variety of conditions, including whether or not function symbols,
negative preconditions, or delete lists (i.e., negative postconditions) are allowed, whether
or not the predicates are propositional (i.e., 0-ary), and whether the planning opera-
tors are part of the input or fixed in advance. In all of these cases, the presence or

absence of conditional operators made no difference in the complexity or decidability
of planning.

” However, as we discussed in Section 3.2.2, the NP-hardness depends as much on the universal executability

of these steps as it does on the conditionality of their effects.

” Instead of checking for necessary truth, Pednault’s theory of planning concentrates on adding a sufficient

number of constraints (including steps, orderings, bindings, and secondary preconditions) to ensure necessary
truth in the resulting plan.

IS0 S. Kumbhampaii, D.S. Nau/Art@cial Intelligence 82 (1996) 129-155

5. Concluding remarks

In this paper, we have discussed several misconceptions regarding the role of modal
truth and the modal truth criterion (MTC) in planning. Along the way, we have also
clarified and corrected several problems with Chapman’s terminology.

First, we have presented the following results about modal truth and the modal truth
criterion:

(i) Contrary to Chapman’s statement, the principle of modal duality that is obeyed
by all classical modal logics is not obeyed in TWEAK-style plans. The lack

of duality between necessary truth and possible truth is related to the fact that
modal truth of a literal in a situation of a plan requires that the plan’s actions
be executable in order to produce that situation. To achieve modal duality, one
needs universally executable plans.

(ii) Even though necessary truth in plans can be determined in polynomial time as

stated by Chapman, the same statement does not hold for possible truth. Instead,
the problem of determining possible truth in plans is NP-hard. This is important
because checking possible truth has several applications in plan projection [5]
as well as plan generalization [191,

(iii) As stated by Chapman, the MTC is correct only as a criterion for necessary truth

(not as a criterion for possible truth). However, if we reinterpret it as a criterion
for modal conditional truth (i.e., modal truth conditional on plan executability),

then it is correct as a criterion for both necessary conditional truth and possible
conditional truth.

Second, we clarified the role of the MTC in plan generation vs. checking the correct-
ness of a given plan, by emphasizing the peculiar predicament of partial-order planners:

they search in the space of partially ordered partially instantiated plans, but need com-
pleteness only in the space of totally ordered and totally instantiated plans. We showed
that misunderstandings in this regard have been the root of several of the confusions
regarding the role of the MTC:

(i) Sound and complete partial-order planning is possible as long as the goal
achievement procedure is based on a truth criterion that is consistent with the

necessary and sufficient truth criterion for totally orderered plans.
(ii) Although the MTC provides a sufficient basis for partial-order planning, it is

not necessary for sound and complete partial-order planning. Specifically, it is
possible to devise sound and complete partial-order planners whose termination,

goal selection and goal achievement procedures do not depend upon Chapman’s
MTC.

(iii) Although the white-knight declobbering clause of the MTC is needed in order
to provide both necessary and sufficient conditions for ensuring truth of a literal
in a partially ordered plan, white-knight declobbering is not required for partial-
order planning. Several sound and complete partial-order planners use demotion
instead.

(iv) Although Chapman proved that is NP-hard to verify necessary truth in plans
whose steps have conditional effects, this does not necessarily imply (as has
been conjectured elsewhere) that partial-order planners are any worse off than

S. Kambhampati, D.S. Nau/Artijicial Intelligence 82 (I 996) 129-155 151

total-order planners in dealing with actions that have conditional effects. There
are two reasons for this: (1) partial-order planners do not have to compute
necessary truth in order to be sound and complete, and (2) even if a partial-
order planner does compute necessary truth, it can be sound and complete while
only generating plans for which necessary truth can be computed in polynomial
time.

Because of the wide impact of Chapman’s paper, it is important to correct any
misimpressions that may result from it. We hope readers will find this paper useful for
that purpose.

Appendix A. Proofs

Lemma A.1. PARTLAL TRUTH is co-NP-hard.

Proof. The proof is by reduction from the complement of 3-SAT (satisfiability with
three literals per clause). In particular, let X = cl + c:! + . . . + c,, be a DNF formula

over the Boolean variables x1, x2, . . . ,x,,, where each ci is a conjunct of three literals

ci = lilli21ij. We encode X as a plan P$ and a ground atom sat(yes, yes, yes), such that

every executable completion of Pi produces a final situation containing sat(yes, yes, yes)
iff X is a tautology. Pi is the following plan (see Fig. A.l):

l Initial state. P;‘s initial state SO is the empty set.
l Steps. For each Boolean variable Xi, there are two steps, Seti and Unseti.

- S&i has no preconditions, and has the following postconditions:

-2; (yes), !ii (no) ,~xi(nO),xi(yes).

- Unset; has no preconditions, and has the following postconditions:

Here, yes and no are constant symbols; the interpretations of xi(yes), Xi(no),

X;(yes), and xi(no) are that the Boolean variable xi is true, not false, false, and
not true, respectively. Thus, the interpretations of Seti and Unseti are that they
make Xi true and false, respectively.

_ There is a step Sep, which has no preconditions nor postconditions. Its only
purpose is to separate the steps Seti and Unseti (defined above) from the steps
Coni defined below.

_ For each conjunct ci = Zilli21i3 in X, there is a step Coni. Corresponding to the
literals in ci, Coni has preconditions Lil, Liz, Li3, as follows. Each Zij is either
Xk Or q for SOltle d'k. If Zij = Xk, then Lij iS Xk(uij), where LJij iS a variable;

*’ To prove his Intractability Theorem, Chapman also uses steps that have no preconditions and postconditions.

However, this raises the question of whether TWEAK can ever create a plan such as Pi. It is easy to modify Pi

so that TWEAK will construct it; here’s how. For each step N of Pi, add a new postcondition done(name(a))

(recall that name(cl) is a constant symbol). For each ordering constraint ‘a + h’ of Pi, give h a new

precondition done(name((1))

1.52 S. Kambhanzpati, D.S. Nau/Artijicial Intelligence 82 (1996) 129-155

I Set,

xdyes)
%(no)

7x1 (yes)
%(no) .

pq / IUnset,l pq
x00) XdYW x2(no) xdyes)
%(yes) %(no) Wes) Uno)

-Z,(no) WYes) -%(no) -%(Yes)
-xl(Yes) -x?(no) -xAYes) 7x3070)

~$z$$

Con, Con,

j Last /

[Unset3 /

xAn0)
%(YW

-%(no)
-dyes)

Fig. A.1. An example of the plan P: in the case where X = X~~XJ + Tixzq. Each step’s name is in a box,

with its preconditions and postconditions above and below the box.

if lij = q, then _&j is Kk(Uij). Coni has one postcondition: sat(uil, Ui2, Uis). The

interpretation of sat(yes, yes, yes) is that X is satisfied. For any other constant
symbols u, u and w, sat(u, u, w) has no particular interpretation. Thus, the
interpretation of Coni is that if ci = litZi21is is satisfied, then Coni asserts that X

is satisfied.
- There is one other step, Last, which has no preconditions and no postconditions.

Last’s purpose is to provide a final step in the plan.
l Constraints. 0 contains an ordering constraint ‘Seti 4 Sep’ for every Seti, an or-

dering constraint ‘Unseti 4 Sep’ for every Unseti, and ordering constraints ‘Sep <
Coni’ and ‘Coni 4 Last’ for every Coni. There are no other ordering constraints.
There are no codesignation constraints; i.e., D = 0.

Let P be any executable completion of P$, and 8 be the unique ground substitution

that satisfies P’s codesignation constraints. In P, Sep’s input and output states are a

set s of ground atoms corresponding to truth values for all the xi. More specifically,
s=si US?U... U sn, where each Sk is either {&(yes),xk(no)} (meaning xk is false),

or {& (yes), Xk (no)} (meaning xk is true).
The input state for each Coni consists of some ground atoms of the form sat(u, u, w) ,

plus the set s described above. Since Coni is executable, each precondition Li,j of Coni
codesignates with an atom in Coni’s input state. In particular, since each Lij is either
Xk(Uij) Or &(Uij) for some k, it follows that Lij6 E Sk. Thus, either Uij6 = yes or
Vii6 1 no, depending on whether Sk corresponds to a truth value for xk that makes Zij
true, or one that makes I, false. Coni asserts sat(yes, yes, yes) iff s corresponds to a set
of truth values that make lit, li2, and li3 all true.

Thus, P produces a final state containing sat(yes,yes,yes) iff s corresponds to a
set of truth values that makes at least one of the conjuncts ci = litli21ij true. Since
s may correspond to any assignment of truth values to xl, x2, . . . ,x,,, this means that
all executable completions of P; produce final states containing sat(yes, yes, yes) iff
X = ct + c:! + + c,, is true for all assignments of truth values to x1, x2, . . . , x,. 0

S. Kambhatnpati, D.S. NadArtijicial Intelligence 82 (1996) 129-155 153

Theorem 2. POSSIBLE TRUTH is NP-hard.

Proof. Let Y = CICZ . . . c,, be a CNF formula over the Boolean variables yl, ~2,. . . , Y,~,
with three literals in each disjunctive clause ci. Let X = ?Y. Using de Morgan’s laws, in
linear time we can express X as a DNF formula over ~1, ~2,. . . , y,,, with three literals
in each conjunct.

Suppose Y is unsatisfiable. Then X is a tautology, so from the proof of Lemma A.1,

every executable completion of Px produces a final state containing sat(yes,yes,yes).
Thus, no executable completion of P$ produces a final state in which Tsat(yes, yes, yes)

is true, so -sat.(yes, yes, yes) is not possibly true in P;‘s final situation.
Suppose Y is satisfiable. Then X is not a tautology, so from the proof of Lemma

A.1, there is an executable completion P of P$ that produces a final state that does
not contain sat(yes, yes, yes). Thus Tsat(yes, yes, yes) is true in P’s final state, so it is
possibly true in Px’s final situation. 0

Remark A.2. The above proof makes use of the duality between satisfiability checking
and tautology checking. However, it is also quite straightforward to prove the theorem
without using this duality, by constructing a plan Qt and a ground atom sat(yes, . , yes)

such that that some completion of QG produces sat(yes, . . . , yes) iff Y is satisfiable. Such
a proof appears in [251.

Theorem 4. If the language C contains only finitely many constant symbols, then

NECESSARY TRUTH is co-NP-hard.

Proof. In the proof of Lemma A.1, suppose we specify that the only constant symbols
in the language .C are yes and no. Then every completion of P.$ is executable, and thus
sat(yes,yes,yes) is necessarily true in fin iff the formula X is a tautology.

Even if L contains finitely many additional constant symbols, we can still make
sat(yes,yes,yes) necessarily true in fin iff the formula X is a tautology, by adding
codesignation constraints to P; of the form u $ c for each constant symbol c other than

yes or no, and each variable u appearing in the steps Con1 and Con2. Thus Lemma A.1
shows that if L contains only finitely many constant symbols, then NECESSARY TRUTH

is co-NP-hard even with ordinary “unconditional” steps. 0

Acknowledgements

We wish to thank Christer BgckstrGm, John Bresina, Mark Drummond, Kutluhan
Erol, Jim Hendler, Craig Knoblock, Ed Pednault, Arunabha Sen, Austin Tate and V.S.
Subrahmanian for their helpful criticisms and comments.

Kambhampati’s research is supported in part by an NSF Research Initiation Award
IRI-9210997, an NSF Young Investigator Award IRI-9457634, and ARPA/Rome Labo-
ratory planning initiative under grants F30602-93-C-0039 and F30602-95-C-0247. Nau’s
research is supported in part by NSF grants IRI-9306580, NSF EEC 94-02384 and ARPA
grant DATB63-95-C-0037. Any opinions, findings, and conclusions or recommendations

154 S. Kambhampaii, D.S. Nau/Artificial Intelligence 82 (1996) 129-1.55

expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation or ARPA.

References

I I I C. Backstrom, Finding least-constrained plans and optimal parallel executions is harder than we thought,

in: Proceedings 2nd European Workshop on Planning (1993).
12 I D. Chapman, Planning for conjunctive goals, Artif: Infell. 32 (1987) 333-379.

I3J K. Currie and A. Tate, O-Plan: the open planning architecture, Artif: Intell. 52 (1991) 49-86.
I 4 I E. Davis, Represenfations of Commonsense Knowledge (Morgan Kaufmann, San Mateo, CA).
[5 I T. Dean and M. Boddy, Reasoning about partially ordered events, Arf$ Intell. 36 (1988) 375-399.

16 I M. Drummond, Private communication, 1991.
I 7 I K. Erol, D. Nau and VS. Submhmanian, When is planning decidable?, in: Proceedings First International

Conference AI Planning Systems (1992) 222-227.
18 I K. Erol, D.S. Nau and VS. Subrahmanian, Complexity, decidability and undecidability results for

domain-independent planning, Arti& Intell. 76 (1995) 75-88.
I 9 I M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness

(Freeman, New York, 1979).

1 IO 1 M.L. Ginsberg, What is a modal truth criterion?, Unpublished manuscript (1990).

[I1] N. Gupta and D.S. Nau, On the complexity of blocks-world planning, Art@ Intell. 56 (1992) 223-254.
I 12 I S. Hanks and D.S. Weld, Systematic adaptation for case-based planning, in: Proceedings First

International Conference AI Planning Systems (1992) 96-105.

1 13 1 E. Jacopin, C. Le Pape and J.F. Puget, A theoretical analysis of the “uselessness” of white-knights, Tech.

Rept. 92/27, Institut Blaise Pascal (1992).

1 14 I S. Kambhampati, On the utility of systematicity: Understanding tradeoffs between redundancy and

commitment in partial ordering planning, in: Proceedings IJCAI-93, Chambery, France (1993).

[15 I S. Kambhampati, Multi-contributor causal structures for planning: a formalization and evaluation, Art$
Intell. 69 (1994) 235-278.

[I6 I S. Kambhampati, Refinement search as a unifying framework for analyzing planning algorithms, in:

Proceedings 4th International Conference on Principles of Knowledge Representation and Reasoning,
Bonn (1994).

[I7 1 S. Kambhampati and J. Chen, Relative utility of EBG based plan reuse in total ordering vs. partial

ordering planning, in: Proceedings AAAI-93, Washington, DC (1993).

[18 I S. Kambhampati and S. Kedar, Explanation-based generalization of partially ordered plans, in:

Proceedings AAAI-91, Anaheim, CA (1991) 679-685.
I 19 I S. Kambhampati and S. Kedar, A unified framework for explanation-based generalization of partially

ordered and partially instantiated plans, Artit Intell. 67 (1994) 29-70.

[201 S. Kambhampati, CA. Knoblock and Q. Yang, Planning as refinement search: a unified framework for
evaluating design tradeoffs in partial order planning, Artif: Intell. 76 (1995) 167-238.

I 2 I I CA. Knoblock, Generating parallel execution plans with a partial-order planner, in: Proceedings AIPS-94
(1994).

I22 1 D. McAllester and D. Rosenblitt, Systematic nonlinear planning, in: Proceedings AAAI-91, Anaheim,

CA (1991) 634-639.

I23 I D. McDermott, Regression planning, Int. J. Intelligent Systems 6 (1991) 357-416.
124) S. Minton, M. Drummond, J. Bresina and A. Philips, Total order vs. partial order planning: factors

influencing performance, in: Proceedings Third International Conference on Principles of Knowledge
Representation and Reasoning, Cambridge, MA (1992).

1251 D. Nau, On the complexity of possible truth, in: Proceedings AAAf Spring Symposium, Stanford, CA

(1993).
I26 1 B. Nebel and C. Backstrom, On the computational complexity of temporal projection, planning and plan

validation, Artif: Intell. 66 (1994) 125-160.
I27 [E.P.D. Pednault, Synthesizing plans that contain actions with context-dependent effects, Comput. Intell.

4 (1988) 356-372.

S. Kambhampati, D.S. Nau/Arrifcial Intelligence 82 (1996) 129-155 15.5

I28 1 E.P.D. Pednault, Generalizing nonlinear planning to handle complex goals and actions with context-

dependent effects, in: Proceedings IJCAI-91, Sydney, Australia (199 1)

I 29] V. Pratt, Semantical considerations on Floyd-Hoare logic, in: Proceedings 17th Annual Symposium on

[30

131

132

133
I34

Foundations of Cornpurer Science, Houston, TX (1977) 109-121.

I J.S. Penberthy and D.S. Weld, UCPOP: a sound, complete, partial order planner for ADL, in: Proceedings
Third international Conference on Principles of Knowledge Representation and Reasoning, Cambridge,

MA (1992).

M.A. Peot, Conditional nonlinear planning, in: Proceedings Firsf International Conference on A/
Planning Sysfems (1992) 189- 197.

S. Rosenschein, Plan synthesis: a logical perspective, in: Proceedings IJCAI-81, Vancouver, BC (198 1)

331-337.

A. Tate, Generating project networks, in: Proceedings IJCAI-77, Cambridge, MA (1977) 888-893.

M.M. Veloso, M.A. Perez and J.G. Carbonell, Nonlinear planning with parallel resource allocation, in:

Proceedings Workshop on Innovative Approaches to Planning, Scheduling and Control (1990) 207-212.
135 1 M.M. Veloso, Learning by analogical reasoning in general problem solving, Ph.D. thesis (CMU-CS-92-

174)) Carnegie-Mellon University, Pittsburgh, PA (1992).

I36 I Q. Yang and J.D. Tenenberg, Abtweak: abstracting a nonlinear, least commitment planner, in:

Proceedings AAAI-90, Boston, MA (1990) 204-209.

