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Abstract 

Chapman’s paper, “Planning for conjunctive goals”, has been widely acknowledged for its 
contribution toward understanding the nature of partial-order planning, and it has been one of the 

bases of later work by others-but it is not free of problems. This paper addresses some problems 
involving modal truth and the modal truth criterion (MTC) Our results are as follows: (i) Even 
though modal duality is a fundamental property of classical modal logics, it does not hold for 
modal truth in Chapman’s plans; i.e., “necessarily p” is not equivalent to “not possibly 7~“. 

(ii) Although the MTC for necessary truth is correct, the MTC for possible truth is incorrect: it 
provides necessary but insuficient conditions for ensuring possible truth. Furthermore, even though 
necessary truth can be determined in polynomial time, possible truth is NP-hard. (iii) If we rewrite 
the MTC to talk about modal conditional truth (i.e., modal truth conditional on executability) 
rather than modal truth, then both the MTC for necessary conditional truth and the MTC for 

possible conditional truth are correct; and both can be computed in polynomial time. (iv) The 
MTC plays a different role in plan generation than it does in checking the correctness of plans, 
and this has led to several misconceptions about the MTC. Several researchers have mistakenly 
attempted to simplify the MTC by eliminating the white-knight declobbering clause from it; and 
others have used Chapman’s results to conjecture that partial-order planning will not scale up 
to more expressive action representations. We point out that these ideas are misconceptions, and 
explain why. 
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1. Introduction 

Chapman’s paper, “Planning for conjunctive goals”, [2] has been widely acknowl- 
edged as an important step towards formalizing partial-order planning, ’ and it has been 
one of the bases of later work by others (for example [ 7,8,10,12,18,3 1,361) . Unfortu- 

nately, however, Chapman’s work is not free of problems, and this has led to confusion 
about the meaning of his results. Previous papers [ 7,8,19,36] have pointed out several 
of these problems. 

One of the fundamental concepts used by Chapman is the idea of modal truth in 
plans. We will discuss the details of this concept later-but a simple version of it is 
that if P is a partially ordered, partially instantiated plan and p is a ground literal, then 
p is necessurily (or possibly) true in P’s final situation if for every (or some) totally 
ordered ground instance P’ of P, p is true after executing P’. Chapman’s modal truth 

criterion (MTC) purports to give necessary and sufficient conditions for ensuring that 
p is necessarily or possibly true. As we describe below, this paper addresses several 

problems with modal truth and the MTC. 

Modal duality and the MTC 
Chapman explicitly states and proves the MTC for necessary truth, and claims that 

by modal duality (i.e., the equivalence of “necessarily p” and “not possibly -p”), the 
MTC for possible truth is obtained via a simple rewording of the MTC for necessary 
truth. But in this paper, we show that although modal duality is a fundamental property 
of classical modal logics, it does not hold for modal truth in Chapman’s plans. This has 

several consequences: 

(i) 

(ii) 

The MTC for possible truth is not completely correct: it provides necessary 
but insufficient conditions for ensuring possible truth. Furthermore, although 
necessary truth in plans can be computed in polynomial time as pointed out 

by Chapman, 2 the same is not true for possible truth. Instead, the problem of 
computing possible truth in plans is NP-hard. 3 

We can define a concept called modal conditional truth, which is similar to 
modal truth but does not require that a plan be executable as modal truth does. 
Necessary conditional truth and possible conditional truth are duals of each other, 
and both can be computed in polynomial time. Furthermore, if we rewrite the 
MTC to talk about modal conditional truth rather than modal truth, then both 
the MTC for necessary conditional truth and the MTC for possible conditional 

truth are correct. 

’ farfial-order planning is planning by searching in the space of partially ordered, partially instantiated plans. 

We prefer not to use the more common term “nonlinear planning”, because it appears to mean different things 

to different people. 
2 There are some difficulties with Chapman’s proof of this, but these difficulties have been cleared up by 

Nebel and Backstrom [261. 
3 If modal duality held, then both necessary truth and possible would be at similar levels of complexity: 

either both would be polynomial, or one would be NP-hard and the other co-NP-hard. Section 3.2.2 discusses 

some formulations of planning in which this occurs. 
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The role of the MTC in plan generation 
The MTC plays a different role in plan generation than it does in checking the 

correctness of plans. In particular, the MTC provides both necessary and sufficient 
conditions for necessary truth-but it is possible to write sound and complete partial- 
order planners which use only s@kient but not necessary conditions for necessary 

truth. 
This has led to a number of misconceptions about the MTC. Several researchers have 

mistakenly attempted to simplify the MTC by eliminating the white-knight declobbering 
clause 4 from it. Others (including Chapman) (cf. [i, 23,341) have used Chapman’s 
results to conjecture that partial-order planning will not scale up to more expressive 
action representations. In this paper, we explain why both of these notions are incorrect- 

and observe that at the root of the confusion lies the peculiar predicament of partial-order 
planners, which search in the space of partially ordered partially instantiated plans, but 
need completeness only in the space of totally ordered ground plans. 

This paper is organized as follows. Section 2 contains basic definitions, and clarifi- 
cations and corrections of some of Chapman’s terminology. Section 3 presents results 

about modal duality, the complexity of modal truth, and the modal truth criterion, and 
compares and contrasts these results with Chapman’s claims, as well as with other re- 

lated work. Section 4 discusses and clarifies the misconceptions regarding the role of 
modal truth criterion in plan generation vs. verification of plan correctness. Section 5 
contains concluding remarks. Complicated proofs appear in the appendix; simpler proofs 
are in the body of the paper. 

2. Definitions 

Below, we have tried to be as compatible as possible with Chapman’s ‘%VEAK-style” 
plans, situations, and modal truth. However, at certain points, technical problems have 

forced us to adopt a different approach. At those points, we explain how our approach 
differs and why. 

2. I. Basics 

The planning language .C is any function-free first-order language. 5 Since L is 
function-free, every term is either a variable symbol or a constant symbol, and thus 

every ground term is a constant symbol. We follow the usual convention of defining an 
atom to be a predicate symbol followed a list of terms, a literal to be an atom or its 
negation, and a proposition to be a 0-ary atom. Thus, what Chapman calls a proposition, 

we call a literal. 

4 For the benefit of those unfamiliar with this clause, our presentation of the MTC in Section 3.2.1 points it 

out explicitly. 

’ Conventional first-order languages contain only finitely many constant symbols, but Chapman requires his 

planning language to contain an infinite number of constant symbols. For compatibility with Chapman’s work, 

we will assume that L contains infinitely many constant symbols-but in Section 3.2.2 we will discuss what 
happens if the number of constant symbols is finite. 



132 S. Kambhampati, D.S. Nau/Art@cial Intelligence 82 (1996) 129-155 

A state is any finite collection of ground atoms of C. If a state s contains a ground 
atom p, then p is true in s and lp is false in s; otherwise p is false in s and lp is true 
in s. Thus, a state is simply an Herbrand interpretation for the language ,!Z, and hence 

each formula of first-order logic is either satisfied or not satisfied in s according to the 
usual first-order logic definition of satisfaction. 

If T is a finite set of terms, then a codesignation constraint on T is a syntactic 
expression of the form ‘t M u’ or ‘t $ u’, where t, u E T. Let D be a set of codesignation 
constraints on T, and B be a ground substitution over T (i.e., a substitution that assigns 
a ground term to each variable in T). Then 8 satisfies D if to = m9 for every syntactic 
expression ‘t z u’ in D, and te # uB for every syntactic expression ‘t $ u’ in D. D is 
consistent if there is at least one ground substitution B that satisfies D. If te = u/3 for 

every 0 that satisfies D, then t codesignates with u.’ 

A step is a triple a = (name(a), pre(a), post(a)), where name(a) is a constant 
symbol called a’s name, and pre( a) and post(a) are collections of literals called a’s 

preconditions and postconditions. ’ If A is a set of steps, then an ordering constraint 

on A is a syntactic expression of the form ‘a + 6’ (read as “a precedes b”), where 

a, b E A. If 0 is a set of ordering constraints on A and 4 is a total ordering on A, then 
-X satisfies 0 if for every syntactic expression ‘a 4 b’ in 0, a -+ b. 

A partially ordered, partially instantiated plan (or more succinctly, a plan) is a 4- 
tuple P = (SO, A, D, 0), where SO is a state called P’s initial state, A is a set of steps, 
D is a set of codesignation constraints on the terms of P (i.e., the terms in SO and A), 
and 0 is a set of ordering constraints on the steps of A. P is complete if it is totally 

ordered and ground, i.e., if there is a unique total ordering al 4 a2 < . . . 4 a, over A 

that satisfies 0, and a unique ground substitution B over the terms of P that satisfies 
D. If P is not complete, then it is incomplete. If P is complete, we will often write P 

informally as al 4 a2 + . . . 4 a,. 
Suppose that P is a complete plan, and let k be the largest integer 6 n for which there 

are states ~1, ~2, . . , Sk such that the following properties are satisfied for 1 6 i < k: 
(i) si-1 satisfies ai’s preconditions; i.e., pB is true in si-1 for every literal p E 

pre(oi). 
(ii) si is the state produced by performing the step ai in the state si_1; i.e., Si = 

(si- 1 - fi) U ti, where ti is the set of all ground atoms p8 such that p E post( a;), 
and fi is the set of all negated ground atoms pB such that p E post(ai). 

Then for 1 < i 6 k, ai is executable in the input state Si_1, producing the output state 

si. If k = n, then P is executable, and it produces the$nal state s,,. 
A plan P’ = (sb, A’, D’, 0’) is a constrainment of a plan P = (so,A, D, 0) if 

$, = so, A’ = A, 0 & Of, and D C D’. A completion of P is any constrainment of 

5 If D is consistent, then this is equivalent to saying that t codesignates with u iff ‘t w u’ is in D’s transitive 

closure. 

’ Informally, we will use the terms a and name(a) interchangeably. Chapman’s definition of a step actually 
omits name(a) completely-but as pointed out by McAllester and Rosenblitt [22], unless we give unique 

names to steps, it is impossible for a plan to contain two distinct steps that have the same preconditions and 

postconditions. 
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P that is complete.s P is consistent if it has at least one completion; otherwise P is 
inconsistent. 

2.2. Situations, truth, and modality 

Chapman defines a situation to be a collection of literals.9 Given a literal p and a 
situation s, he defines p to be true if it codesignates with a literal in s, and false if 
it codesignates with the negation of a literal in s. Chapman also makes the following 
definitions [2, p. 3381: 

A plan has an initial situation, which is a set of [literals] describing the world 

at the time that the plan is to be executed, and a$naZ situation, which describes 
the state of the world after the whole plan has been executed. Associated with 
each step in a plan its input situation, which is the set of [literals] that are true 
in the world just before it is executed, and its output situation, which is the set of 
[literals] that are true in the world just after it is executed. In a complete plan, 

the input situation of each step is the same as the output situation of the previous 
step. The final situation of a complete plan has the same set of [literals] in it as 
the output situation of the last step. . . . A [literal] is denied in a situation if its 

negation is asserted there. It is illegal for a [literal] to be both denied and asserted 
in a situation. 

This approach leads to several difficulties: 
(i) As pointed out by Yang and Tenenberg [ 361, if a plan P is not complete, then 

its situations are ill-defined. For example, suppose P consists of two unordered 
steps a and b, such that a asserts p and denies q, and b asserts q and denies p. 
Then P’s final situation is either {p} or {q}, depending on which completion of 
P we choose. 

(ii) If a situation contains literals that are not completely ground, then what those 
literals mean is problematic. For example, suppose a plan’s initial situation con- 

tains the literal p(x), where x is a variable symbol. This cannot mean (‘d’x>p( x) , 
because Chapman’s TWEAK planner may later constrain x $ y for some constant 
or variable y. It cannot mean (3x)p(x), because TWEAK may later constrain 

x z y. Apparently, it means p(x) for some undetermined x, and TWEAK gets to 
choose what x is. In other words, if the initial situation contains any variables, 
then TWEAK changes the meaning of the initial situation as it goes along. 

Thus, rather than using Chapman’s approach, we define plans using STRIPS-style states 
of the world, and then define situations in terms of states. The intent of our definitions is 
that if a plan is complete and can be executed at least far enough to reach the situation 

s, then s corresponds to some state t that arises while executing the plan; and what 

x Chapman’s definition of a completion does not make it entirely clear whether a completion of P should 

include only the steps in P, or allow other steps to be added. However, other statements in his paper make 
it clear that he means for a completion to include only the steps in P, so this is how we and most others 

(e.g., 1 18,361) use the term. 
‘) He calls them propositions-but as mentioned at the beginning of Section 2.1, we call them literals instead. 
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is true and false in s is precisely what is true and false in t. lo Otherwise, nothing is 
true or false in s although certain things may be conditionally true or false (as defined 
below). These ideas are formalized below. 

If P is a plan, then associated with each step a of P ace two symbols in(a) and 
out(a), called a’s input and output situations. Associated with P are symbols init and 
fin called the initial and jinal situations of P. All of these symbols must be distinct. 
Whenever a + b, we will also say that x 4 y, where x may be a or in(u) or out(u), 
and y may be b or in(b) or out(b).” 

We now define what is true and false in a situation of a complete plan. Let P be a 

complete plan, and p be a ground literal. Then p is true in init if p is true in P’s initial 
state, and p is true in fin if p is true in P’s final state. If a is an executable step of 

P, then p is true in in( ui> (or out(ui) ) if p is true in u’s input state (or output state, 
respectively). A ground literal p is false in a situation s iff up is true in s. Note that if 
P is not executable, then the law of the excluded middle does not apply, for p will be 
neither true nor false in P’s final situation. 

As a consequence of the above definitions, it follows that p is true in s (which we 
write as M (p, s) ) iff the following three conditions are satisfied: 

l Establishment: Either p codesignates with a postcondition of some step a such that 
a -X s, or else p E SO. 

l Nondeletion: For all steps b between u (or so) and s, no postcondition of b 

codesignates with up. l2 

l Executability: Every step that precedes s is executable. 
A closely related concept is conditional truth, which is like ordinary truth except 

that it does not require executability: p is conditionally true in s (which we write 
symbolically as C(p, s) ) iff the establishment and nondeletion conditions hold. 

We defined truth and conditional truth only for complete plans, because for incomplete 

plans, what is true or conditionally true will vary depending on which completion we 
choose. In incomplete plans, we instead need to talk about modal truth, which Chapman 
defines as follows [ 2, p. 3361: 

I will say “necessarily p” if p is true of all completions of an incomplete plan, and 

“possibly p” if p is true of some completion. 

Above, Chapman apparently means p to be nearly any statement about a plan: examples 
in his paper include not only statements about specific literals and situations in the plan, 
but also statements about the entire plan (e.g., the statement [2, p. 3411 that a plan 

“necessarily solves the problem”). However, unless we place some restrictions on the 
nature of p, this has some dubious results-for example, if P is an incomplete plan, 

‘I) From our definition of a state earlier, the truth value of every literal p is known in the state t, and hence 
in the situation s. This differs from Chapman’s formulation of a situation, in which the truth value of p is 

unknown in s unless s explicitly contains something codesignating with p or 7~. 

‘I According to this definition, out(a) and in(b) are always distinct; hence we would say out(a) 4 in(b) 

in some cases where Chapman would say out(a) = in(b). However, this makes no significant difference in 

any of the results. 
‘* This is basically the white-knight declobbering clause of the MTC (see Section 3.2.1)) simplified to handle 

the special case where the plan is complete. 
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Relationships among truth, modal truth and modal conditional truth of a literal p in the final situation of a 
plan P 

Complete plans Incomplete plans 

Truth M (p. fin) : P is executable, and produces p in Necessary truth q lM(p, fin): every completion of P 
fin. This requires that the establishment, nondeletion is executable, and produces p in fin. 

and executability conditions hold. Possible truth OM(p,fin): SOme completion of P is 

executable, and produces p in fin. 

Conditional truth C(p, fin): if P’s steps did not have Necessary conditional truth q C(p, fin): if P’s steps 
preconditions, then P would have produced p in fin. did not have preconditions, then every completion of 

This requires the establishment and nondeletion con- P would have produced p in fin. 

ditions, but nor the executability condition. Possible conditional truth OC(p,fin): if P’s steps did 

not have preconditions, then some completion of P 
would have produced p in fin. 

then all completions of P are complete, and therefore P itself is necessarily complete. 

Therefore, for the forma1 results in the paper, we will use “necessarily” and “possibly” 
only in the following cases (although we will sometimes use them informally in a 
broader sense). If p is an atom, P is a plan, and s is a situation in P, then: 

l p is necessarily (or possibly) true in s (written CM4 (p, S) and OM (p, S) , respec- 
tively) iff M(p, s) in every (or some) completion of P; 

l p is necessarily (or possibly) conditionally true in s (written q C(p, S) and 
OC(p, s) , respectively) iff C(p, s) in every (or some) completion of P. 

Table 1 summarizes the relationships among truth, modal truth and modal conditional 

truth. 
We now define the following decision problems: 

NECESSARY TRUTH: Given a ground literal p and a plan P, is p necessarily true 
in P’s final situation fin? Or equivalently, does every completion of P produce a 
final state in which p is true? 
POSSIBLE TRUTH: Given a ground literal p and a plan P, is p possibly true in P’s 

final situation fin? Or equivalently, is there a completion of P that produces a final 
state in which p is true? 
NECESSARY CONDITIONAL TRUTH: Given a ground literal p and a plan P, is p 
necessarily conditionally true in P’s final situation fin? 

POSSIBLE CONDITIONAL TRUTH: Given a ground literal p and a plan P, is p 

possibly conditionally true in P’s final situation fin? 

3. Modal duality and the complexity of modal truth 

3.1. Our results 

From the definitions of truth and conditional truth in the previous section, it is easy to 
see that in each completion of a plan P, a literal p is true in the final situation fin if and 
only if ( I) p is conditionally true in fin, and (2) the completion itself is executable. 
The completion is executable if and only if for every action a and every precondition 
p. of a, pLr is conditionally true in the situation in (a). Thus, 
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M(p, fin) c C(p, fin) A C(p,, in(a)) . (1) 
-0 

1, 
Executability of the completion _ 

Since ensuring that p is necessarily true in P’s final situation is equivalent to ensuring 
that p is true in the final situation of every completion of P, we have: 

q M(p, fin) E 0 A 
V&R Vwepre(a) 

(2) 

Now, since modal necessity distributes over conjunctions (i.e., q (p A q) E O(p) A 

O(q)), we can rewrite Eq. (2) as 

q M(p,fin) E q C(p,fin) A 

1 
A q C(p,, in(a)) 

V&P, b‘zpre(a) I, 
Executability of all completions 

Thus we can determine whether p is necessarily true by checking 

(3) 

to see whether it 

is necessarily conditionally true, and whether the preconditions of each step of the 
plan are necessarily conditionally true. This can be done in polynomial time using 
the same technique Chapman suggests for computing the MTC in [ 21. In particular, 
computing the necessary conditional truth of a literal in a situation (which involves 
checking whether the MTC’s establishment and declobbering clauses are consistent with 
the plan’s ordering and codesignationlnoncodesignation constraints) can be done in time 
polynomial (O(n3)) in the plan length. Thus, since the total number of preconditions 
in a plan is of the order of number of actions in the plan, computing whether p is 
necessarily true can also be done in polynomial time. 

Coming to the case of possible truth, by similar arguments we get: 

OM(p,fin) z 0 C(p,fin) A 

[ [ 

A C(p,, in(a)) . 
vae,Vpa~pre(aJ 11 (4) 

But possible truth does not distribute over conjunctions (i.e., in general, O(p A q) $ 

O(p) A O(q) ), so there is no way to simplify Eq. (4) into component tests of com- 
puting possible conditional truth of individual literals. Thus, even though possible con- 
ditional truth in fin and necessary conditional truth in fin are duals of each other (i.e., 
OC(p,fin) z -ClX(p, fin)), possible truth in fin and necessary truth in fin are mt 

duals of each other. More specifically: 

Theorem 1. There exist a ground literal p and a plan P such that in P’sjinul situation 

fin, LlM(p,fin) $ 10 TM(p,fin). 
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pre: Clear(A), Clear(B), On(A, Table) 

137 

post: On(B, C), Clear(B), -Clear(C), -On(B, Table) 

Fig. I. A blocks-world plan illustrating the nonduality of necessary truth and possible truth in TWEAK-Style 

plans. As shown in the drawing, the following atoms are true in the initial situation: On( A, Ta ble), 

On( B, Table), On(C, Table), Clear(A), Clear(B), Clear(C). The operator move-from-table(x.v) moves 

block x from the table to block v. The preconditions and postconditions of each step are shown above and 

below the box that represents the step. 

Proof. Consider the blocks-world plan shown in Fig. 1. This plan has only one exe- 
cutable completion, namely u2 < at. This completion produces a final state in which 

A is on B and B is on C. Thus, no executable completion produces a final state where 

-On(A,B) is true, so TOn(A,B) is not possibly true in the final situation fin. If 
possible truth and necessary truth were duals, then this would mean that On(A, B) is 
necessarily true in fin. However, On(A,B) is not necessarily true in fin, because the 
plan contains an unexecutuble completion, namely at -X ~22. Thus possible truth and 

necessary truth are not duals. 0 

Thus, unlike necessary conditional truth and possible conditional truth, necessary truth 
and possible truth do not obey the modal duality that is obeyed by all classical modal 
logics [4, p. 621, and thus do not define a well-formed modal logic. It is easy to 
understand why this is so. The semantics of modal logics are based on Kripke structures 
(a.k.a. possible worlds). In this formulation, if p is a ground literal, then for every 
possible world, p must either be true or false in that world. For partially ordered plans, 

one might expect that each completion of the plan would give rise to a possible world. 
However, the modal truth of p in a situation of a plan requires that the plan’s actions 
be executable in order to produce that situation. Thus, if a completion is not executable, 

then the truth of p is not defined in the corresponding possible world. l3 
Given a ground literal p and a plan P, p is possibly true in P’s final situation if and 

only if there is an executable completion of P that produces a final state in which p 
is true, and this happens iff it is not the case that every executable completion of P 
produces a final state in which up is true. Thus, POSSIBLE TRUTH is the dual of the 
following problem: 

” Although TWEAK plans cannot be modeled using the semantics of classical modal logic& they can be 

modeled in a variant of modal logics, called first-order dynamic logic [ 321. Dynamic logic, which has been 

used to provide semantics for programs and plans, provides a clean way to separate executability/termination 

conditions from goal satisfaction conditions. More about this in Section 3.2.2. 
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pre: Clear(A), Clear(B), ONA, Table) 

,&On(A, B), Clear(A), -Clear(B), -ONA, Table) 

move-tc-tabMA, 6) 

post: On(A, Table), Clear(B), TONA, B) 

Atoms with that property 

ifprecnnditionsarestrippedoffl 

Partially true (produced 1 Clear(A). On(A, Table), 

by all e&utabl~ completions) / Clear(B), On(B, Table) 

Fig. 2. Example showing that partial truth is weaker than both necessary truth and necessary conditional truth. 
The table shows which atoms satisfy various truth conditions in fin. 

l PARTIAL TRUTH: Given a ground literal p and a plan P, does every executable 
completion of P produce a final state in which p is true? l4 

Lemma A.1 of the appendix shows that PARTIAL TRUTH is NP-hard. 
PARTIAL TRUTH is a weaker condition than both NECESSARY TRUTH and NRCES- 

SARY CONDITIONAL TRUTH. t5 The example in Fig. 2 illustrates this. There are some 
cases in which every executable completion of P produces a final state in which p 
is true, but p is neither necessarily true nor necessarily conditionally true in P’s final 
situation. 

Another way of understanding the problem with simplifying Eq. (4) is to note that 
if p is possibly conditionally true and that all the preconditions of the preceding actions 
are possibly conditionally true, this only implies that each of them is individually true 
in at least one completion-and this condition is necessary but insz.&cient for ensuring 
possible truth. We could check possible truth by checking to see whether all these 
conditions are collectively true in at least one completion of the plan, but since the 
number of completions of a plan is exponential in the number of actions of the plan, 
this would take exponential time. Furthermore, the following theorem (proved in the 
appendix) shows that unless P = NP, there is no polynomial-time approach for solving 
this problem. 

I4 PARTIAL TRUTH corresponds closely to the notion of partial correctness, which was studied in connection 
with dynamic logic-based modeling of computer programming languages [ 29,321. 
I5 It may seem at first glance that partial truth rather than necessary truth should form the basis of planning, 

since we are only interested in the executable completions of the plan. However, if a planner returned a 

plan whose conditions were all partially true rather than necessarily true, this would require the user of the 

plan to spend time trying to figure out which of the possibly exponential number of completions is actually 
executable. 
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Theorem 2. POSSIBLE TRUTH is NP-hard. 

Thus, NECESSARY TRUTH and POSSIBLE TRUTH have different levels of complexity. 
If modal duality held, then this would not be so, for each would be reducible to the 
other’s complement via an equivalence of the form OM(p, s) s 10 lM(p, s). Thus 
it would follow [ 9, p. 291 that either POSSIBLE TRUTH would be polynomial like NEC- 
ESSARY TRUTH, or else NECESSARY TRUTH would be co-NP-hard. In Section 3.2.2, 
we discuss some planning situations where this occurs. 

3.2. Comparison with other work 

3.2.1. The modal truth criterion 
Chapman states the MTC as follows [2, p. 3401: 

Modal truth criterion. A [literal] p is necessarily true in a situation s iff two 
conditions hold: I6 there is a situation t equal or necessarily previous to s in which 
p is necessarily asserted; and for every step C possibly before s and every [literal] 
q possibly codesignating with p which C denies, there is a step W necessar- 
ily between C and s which asserts r, a [literal] such that r and p codesignate 

whenever p and 4 codesignate. The criterion for possible truth is exactly analo- 

gous, with all the modalities switched (read “necessary” for “possible” and vice 

versa). 

If we take these words literally, then the definition of modal truth tells us that the plan 
must be modally executable. This is consistent with Chapman’s definition of a situation 
(quoted in Section 2.2)) from which it follows that a step’s output situation (and hence 
what is true in that situation) is only defined if the step can be executed. However, 
a careful look at Chapman’s proof of necessity and sufficiency of his MTC reveals 
that his proof deals with necessary conditional truth rather than necessary truth.” In 
proving that any literal with an establisher and no clobberer must be necessarily true, 
Chapman’s proof refers to white-knight steps for every potential clobberer, [ 2, p. 3701, 
without checking that the white knights are in fact executable. l8 

For the “necessary truth” version of the MTC, this does not affect the validity of 

Chapman’s proof, since executability occurs naturally as a consequence of applying 
necessary conditional truth recursively to prerequisites of all preceding steps. The same, 
however, cannot be guaranteed for possible truth, since modal possibility does not 
commute over conjunctions-and thus Chapman’s proof cannot be extended to possible 
truth. In particular, the following theorem shows that the “possible truth” version of the 
MTC sometimes fails: 

I6 The second of these conditions is the “white-knight declobbering clause” that we refer to elsewhere. The 

steps C and W are often called a clobberer and a white knight, respectively. The situation t can be either the 

initial situation or the output situation of some step e, and in the latter case e is often called an establisher. 
” Had Chapman explicitly noted this use of modal conditional truth in his proof, we believe he would have 

noticed the nonduality of necessary and possible truths. 

‘s Note that in Chapman’s terminology, the establisher is a situation, while clobberers and white knights are 

steps. 
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Theorem 3. There is a plan P and a ground literal p such that in P's final situation, 
p is not possibly true but the MTC concludes otherwise. 

Proof. In the blocks-world plan in Fig. 2, consider the condition On( A, B), which holds 

in out(at). a2 deletes On(A, B), but al adds On(A, B), and al can possibly come after 

a2. Thus, the MTC would conclude that On(A, B) is possibly true in fin. In this case 
the MTC is incorrect, since there is no executable completion of the plan for which 
On(A, B) is true in the final state. t9 Cl 

The MTC and modal conditional truth 

The above discussion suggests an alternative interpretation of the MTC that sidesteps 
the problem: drop the executability requirement, and interpret the MTC as a statement 
about modal conditional truth rather than modal truth. This alternative interpretation is 
not as far-fetched as it might sound. To see this, note that Chapman defines the notion 
of truth of a literal in a situation as follows [ 2, p. 3381: 

A [literal] is true in a situation if it codesignates with a [literal] that is a member 
of the situation. A step asserts a [literal] in its output situation if the [literal] 

codesignates with a postcondition of the step. 

Here, there is no explicit requirement that the step be executable. This suggests that the 
MTC does not require that P be modally executable, and thus suggests that Chapman 
was talking about modal conditional truth. This interpretation is also consistent with 
his “nondeterministic achievement procedure” [2, Fig. 71, where to make a literal 
necessarily true in a situation, he only ensures establishment and declobbering without 
explicitly stating that the establisher needs to be executable. (As explained above, for 

the case of necessary truth, executability follows from making every prerequisite of 
every action necessarily conditionally true.) 

The “conditional truth” interpretation of the MTC gives a quasi-local flavor to plan- 
ning, by separating the process of ensuring local establishment and declobbering from 

the process of ensuring executability, with the understanding that if all preconditions are 
necessarily established and declobbered, then the whole plan itself will be executable 

and correct. In fact, some latter rewrites of the MTC (e.g. [ 18,361) use this interpreta- 
tion to eliminate the notion of situations entirely, and state the MTC solely in terms of 
steps (operators) and their preconditions and postconditions. 

Although a truth criterion for modal conditional truth does have utility in plan gener- 
ation, it is of limited utility in projecting plans or partially ordered events. As mentioned 
in Section 2.2, the latter are more naturally related to modal truth. 

3.2.2. Modal duality and universal executability 

In Section 3.1, we observed that the main reason why necessary truth and possible 
truth are not duals in TWEAK-style plans is that such plans can contain unexecutable 
completions. Thus, one way to achieve duality between necessary truth and possible 

I’) Note, however, that On(A, B) is possibly conditionally true in fin, because if the steps had no preconditions, 

then one of the completions would have produced On( A, B). 
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TWEAK Plans 
(Have Unexecutable Completions) 

I 

Plans with Universally Executable Steps 

(Co-NP-Complete) 
Possible Truth 
(NP-Complete) 

Partial Truth 
(C&VP-Complete) 

Possible Truth 
(NP-Complete) 

Fig. 3. Complexity relations among decision problems for plans containing actions that have executability 

preconditions, and plans containing universally executable actions. 

truth is to restrict our attention to plans whose completions are always executable. One 

way to guarantee that plans will always be executable is to restrict the actions to have 
no preconditions, i.e., to consider only those plans P such that pre(a) = 8 for every 
step a of P. In this case, it is easy to see that Eqs. (2) and (4) in Section 3.1 will 

simplify respectively to: 

q M (p, s> =: q C(p, s>; (5) 

OM(p, 3) = OC(p, s). (6) 

In other words, for the set of plans composed entirely of precondition-less steps, modal 

truth and modal conditional truth are identical, necessary truth and possible truth are 
duals, and all are computable in polynomial time. 

The above approach to achieving universal executability is clearly too restrictive, 

since it precludes modeling actions with any form of preconditions. But if we relax the 
restrictions of TWEAK-style action representation, there is a more reasonable way to 
guarantee universal executability: let an action a be executable even if its preconditions 
are not satisfied. If the preconditions are satisfied, then a will produce its postconditions; 
otherwise, a will simply have no effects. For plans that contain only this type of action, 
possible truth and necessary truth are duals of one another, computation of possible 
truth is NP-hard, and computation of necessary truth is co-NP-hard. Fig. 3 summarizes 
the complexity relations among the various decision problems. As discussed below, this 
approach has been used in different forms by several different researchers. 

Propositional dynamic logic 
To our knowledge, the above approach was first used in Rosenschein’s work [ 321 on 

providing semantics to plans based on first-order propositional dynamic logic. Proposi- 
tional Dynamic Logic (PDL) is a variant of modal logic, which was originally designed 
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to provide semantics to computer programs [ 291. In PDL, the semantics of a program 
are described in terms of what will be necessarily and possibly true after the execution 

of that program. A program is said to be totally correct if (a) it halts, and (b) whenever 
it halts, certain goal propositions will be true in the resulting world. Programs that only 
satisfy condition (b) are said to be partially correct. (Note the similarity between partial 
correctness and PARTIAL TRUTH.) In using PDL to provide semantics to plans, Rosen- 
schein guarantees universal executability of plans by starting with a loop-free subset 
of PDL, and restricting it further to allow only the so-called C-programs. C-programs 
restrict the use of conditionals in PDL to guarantee that the plan terminates irrespective 
of which branch of the conditional it takes. 

,Temporal projection 

A very similar idea is used in Dean and Boddy’s work on temporal projection [ 51. 
Specifically, they use actions that have ground preconditions and effects. The effects of 
the actions are defined in terms of projection rules, which are of the form (e, 4, (Y, 6), 

where e is an event with which the rule is associated, and 4 is a set of antecedent 
conditions, which if true before e, will cause the cr conditions to be added and the 6 
conditions to be deleted. Dean and Boddy are concerned with the following decision 

problem: given a partially ordered set of events A, does a condition C belong to 
Possible(e), where the latter is the set of conditions that hold immediately following 
the event e in some totally ordered ground instance (i.e., completion) of A. 

In Dean and Boddy’s formulation, A is executable even when a rule’s preconditions 
don’t hold (in which case the rule simply has no effect). Thus as discussed earlier, 
possible truth is equivalent to possible conditional truth, necessary truth is equivalent 

to necessary conditional truth, and possible truth and necessary truth are duals. Hence 
they are able to prove that in their formalism, determining possible truth is NP-hard and 

determining necessary truth is co-NP-hard. 

Conditional steps 

Chapman uses universally executable actions (he calls them conditional steps) in 

proving his intractability theorem for actions containing conditional effects. Specifically, 
Chapman defines a conditional step as follows [ 2, p. 37 1 ] : 

A conditional step is always applicable, but has two sets of postconditions, the if- 
true and the if-false postconditions. The if-true postconditions hold in the output 
situation if all the preconditions were satisfied in the input situation; otherwise the 
if-false postconditions hold. 

Since these conditional steps are always applicable, a plan composed entirely of such 
steps will always be executable. Thus, just as in Dean and Boddy’s formalism, de- 
termining necessary truth is co-NP-hard, as shown by Chapman in the proof of his 
Intractability Theorem. 

Since the Intractability Theorem is based on planning operators that have conditional 
effects, it has been natural for planning researchers to interpret it to mean that the con- 
ditionality of these operators is what causes necessary truth to be intractable. However, 
this interpretation is misleading. The intractability result depends just as much on the 
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universal executability of Chapman’s conditional steps as it does on their conditionality. 
Below we explain why. 

Consider an incomplete plan P composed of ordinary “unconditional” steps as de- 
fined in Section 2, and let a be a step of P such that pre(a) and post(u) contain an 
unconstrained variable X. Then for the purposes of both planning and temporal projec- 

tion, the effects of a are to some extent conditional. In particular, depending on what 
value we give to X, a will have different effects in different completions of P. However, 
computing necessary truth in such plans is still polynomial. Since Chapman’s planning 
language has an infinite number of constant symbols, it follows that in the plan P we 

can always find a binding for x that makes u unexecutable. As a consequence, P will 
always have at least one unexecutable completion. Hence, determining necessary truth 
is trivial: nothing will be necessarily true in P’s final situation. 

Now, suppose we restrict our planning language L to contain only finitely many 
constant symbols (and thus only finitely many ground terms, since C is function-free). 
Then there will be some plans in which a is executable for every binding of x. In this 
case, as the following theorem shows, checking necessary truth will be co-NP-hard, even 

with unconditional steps. 

Theorem 4. If the language L contains only jinitely many constant symbols, then 

NECESSARY TRUTH is co-NP-hard. 

Notice that this result is related to Chapman’s observation [2, p. 3561 that restrict- 

ing the range of a variable to a finite set will defeat the MTC, and make constraint 
computations NP-complete. 

Coherent plans 
Nebel and B%zkstrGm [26] have recently studied the computational complexity of 

plan validation and temporal projection. While our investigation was initially motivated 
by the apparent lack of modal duality in Chapman’s MTC, Nebel and BgckstrGm’s work 

is motivated by the apparent asymmetry between the complexity of plan validation as 

studied by Chapman, and temporal projection as studied by Dean and Boddy [ 51. 
Although Nebel and B&ckstrijm’s results are related to ours, there are several signifi- 

cant differences. Rather than interpret the MTC in terms of modal conditional truth and 
use that to explain the asymmetry in the possible and necessary truth, as we have done 
in this paper, Nebel and B%zkstrGm instead chose to restrict the MTC to apply only to 
plans whose completions are all executable (they call this property coherence). Further- 
more, they restricted their plans to be ground (i.e., to contain no variables), and our 
plans do not have this restriction. We believe that the results in this paper complement 
theirs and together provide a coherent interpretation of the role of modal truth criteria 
in planning. 

4. The role of the MTC in partial-order planning 

Chapman’s original motivation for the formulation of the MTC was to provide a 
formal basis for partial-order planning. Intuitively, since the MTC accounts for all the 
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scenarios in which a proposition p is necessarily true in a situation, we can make p 
necessarily true by simply adding constraints to the plan to make one of those scenarios 

true. While this use of the MTC provides a suficient formal basis for partial-order 
planning, it turns out not to be necessary. More specifically, sound and complete partial- 

order planners: 
l do not need to reason about the correctness of arbitrary partially ordered plans; 
l do root need to consider only those goals that are not necessarily true for achieve- 

ment; 
l do not need to base their goal achievement procedure on a necessary and sufficient 

truth criterion for partially ordered plans. 
These seemingly counter-intuitive facts are a result of the somewhat peculiar predica- 

ment of partial-order planners: they search in a space of plans that are partially ordered 
and partially instantiated, to find a totally ordered ground plan that solves the prob- 
lem. This has lead to several confusions about the role of the MTC in planning. In 

this section, we will clarify the role played by the MTC in partial-order planning, 
and then address some misconceptions that resulted from misunderstandings in this 

regard. 

4.1. Unnecessity of the MTC for partial-order planning 

Many planning algorithms can be thought of as repeated iterations of the following 
steps: take a plan, evaluate it to see if it is a solution, and if it is not, then refine it 

further using a goal achievement procedure. For example, Chapman describes TWEAK, 

a planner based on his MTC, as follows: 

[The planner ] enters a loop in which some goal not yet achieved is chosen and the 

[goal achievement] procedure is applied. ( [2, p. 3441; emphasis ours) 

The goal achievement procedure is derived by interpreting the necessary truth 
criterion as a nondeterministic procedure. The criterion tells us all the ways a 
proposition could be necessarily true; the procedure chooses one of them and 

modifies the plan accordingly. [ 2, p. 3411 

In the above, the MTC plays three separate roles: as a termination criterion (the 
planning stops when all the goals are necessarily correct), as a goal selection criterion 
(only conditions that are not necessarily true are selected for goal achievement), and as 

the basis for the nondeterministic goal achievement procedure. 
Although the MTC is sufficient for serving these roles, it is not required for either 

of them-it is possible to provide a formal basis for partial-order planning without 
recourse to the MTC (cf. [ 281) . To see this, we must start with a clear understand- 
ing of the objectives of partial-order planning. For both partial-order and total-order 
planning, the objective is to find a ground operator sequence which when executed 
in the initial state produces a desired goal state. In the case of partial-order planning, 
the search is conducted in the space of partially ordered plans for efficiency of plan 
generation, and each partially ordered plan is simply a shorthand representation for the 
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set of all ground operator sequences that are consistent with the plan’s constraints.20 
This means that one can do partial-order planning without having to reason about the 
“correctness” of partially ordered plans. Let us now re-examine how crucial the MTC 

is for termination, goal-selection and goal achievement procedures of a partial-order 

planner. 

4. I. 1. Termination 

Since the objective of partial-order planning is to find plans that are ground and totally 
ordered, it follows that for sound and complete partial-order planning, it is sufficient 
for the termination condition to be capable of checking the correctness of totally or- 
dered ground plans. Rather than using Chapman’s MTC for this purpose, a termination 
condition such as the one given below can be used instead: 

Eager termination. Randomly generate a completion (ground linearization) of the 

current plan. If the completion solves the problem the planner is trying to solve, 
then terminate the planner and return the completion. 

The eager termination criterion is always tractable, since a completion can be enu- 

merated in polynomial time, and can be checked for correctness in polynomial time. 
Furthermore, a planner using this termination criterion will terminate on any incom- 
plete plan on which a planner using MTC terminates. This is because whenever a plan 
satisfies the MTC, all of its completions (including the randomly generated one) are 
guaranteed to solve the problem the planner is trying to solve. Finally, the eager ter- 
mination criterion may allow the planner to terminate earlier than the MTC would, 
because the MTC is not satisfied unless all completions of the current plan solve the 

problem. 

4.1.2. Goal selection 

Since the order in which goals are selected does not affect the completeness of partial- 
order planning [ 16,221, MTC-based goal selection is just one of many possible goal 

selection strategies. Goal selection based on the MTC essentially boils down to preferring 
to work on preconditions of the plan that are not necessarily true, with the rationale 
that such a strategy may allow the planner to exploit any serendipitously satisfied goals 
by terminating without having to explicitly work on achieving them.*’ Replacing this 
strategy or complementing it with other goal selection strategies does not affect the 
soundness and completeness of the underlying planner. 

4.1.3. Goal achievement 

The last and perhaps most important role of the MTC in plan generation in TWEAK is 
as the basis for the goal achievement procedure. Although Chapman’s interpretation of 
the MTC as a nondeterministic program provides a sufficient basis for goal achievement, 

2” See I 16,201 for an elaboration of this view. 

2’ The occurrence of such a serendipitously satisfied goal has been referred to in [ 1 I I as an enabling-condition 
interaction. 
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it is once again not necessary. In fact, many partial-order planners, such as McAllester’s 
SNLP [ 15,22,241, use a goal achievement procedure that corresponds to a modified 
MTC in which the white-knight declobbering clause is replaced with a much simpler 
demotion clause: 

A literal p is necessarily true in a situation s if p is necessarily asserted in a 
situation s’ which necessarily precedes s, and p is necessarily not deleted by any 
step a that possibly comes between s’ and s. 

With this modification, the truth criterion is sufficient but unnecessary for ensuring the 
truth of a literal (see Section 4.2 for an example and related discussion). A planner 

using this modified truth criterion can still be complete, because for the special case of 
totally ordered plans, this criterion is equivalent to the MTC, and provides sufficient as 
well as necessary conditions for determining whether the plan solves the problem. To 

put it another way, for every plan P that is correct according to Chapman’s MTC, there 
will be a constrainment P’ of P that will be correct according to this modified truth 
criterion such that whenever TWEAK terminates with P, the planner using the modified 
truth criterion will terminate with the constrainment P’. 

4.2. The role of white-knight declobbering 

4.2.1. White-knight declobbering in checking plan correctness 

Starting with the fact that one does not need the full power of Chapman’s MTC in 
order to do sound and complete partial-order planning, some researchers have attempted 

to simplify the MTC by eliminating the white-knight clause from it. Unfortunately, 
such a simplification is erroneous. As Chapman’s proof shows, something similar to 
the white-knight clause is still required if we want to state the necessary and sufficient 
conditions for the necessary truth of a literal in a given partially ordered plan (or 
equivalently, recognize the correctness of a given partially ordered plan) in polynomial 

time. 

If we don’t care about polynomial time, then we can simply enumerate all the com- 
pletions of the plan, and verify that each completion is a correct totally ordered ground 

plan for solving the problem. But since the number of completions of a partially ordered 
plan is exponential in the size of the plan, this is very inefficient unless the plan is 

already totally ordered-in which case one can use a “nondeletion” condition similar to 

that we discussed in Section 2.2. 
Although the necessity of the white-knight declobbering clause does depend on 

whether or not the plan is totally ordered, it does not depend on whether or not the plan 
is ground. (Chapman’s use of a partially instantiated plan [ 2, Fig. 5, p. 3391 to motivate 
white-knight declobbering seems to have caused this misimpression.) The following ex- 

ample, due to Mark Drummond [ 61, illustrates this point. Consider the ground partially 
ordered plan in Fig. 4, in which the literal p is required in the final situation fin, the steps 
bl and b:! add p, the steps at and a2 delete p, and the steps at and bl are unordered 
with respect to a2 and b2. We can see that p is true in the situation preceding fin in 
every completion of this plan. However, without the white-knight clause, the modal truth 
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h-p P,r 

Fig. 4. A ground partially ordered plan for which the white-knight clause is needed to verify plan correctness 

(example due to Mark Drummond). Each step’s name is in a box, with its preconditions and postconditions 

above and below the box. fin is the final situation, and init is the initial situation. 

criterion would not be able to recognize this fact. 22 

Since the MTC can be used to determine efficiently (in polynomial time) whether 

all the completions of an arbitrary partially ordered plan are correct, it can also be 
used as a basis for removing any unnecessary orderings in a given plan in polynomial 

time [ 1,191: repeatedly remove some (nontransitive) ordering relation from the plan, 
and check if all its completions are still correct. 23 Such “order generalization” could 
be useful if one wants to execute steps of the plan in parallel in order to improve 

the execution time. It could also be useful when one wants to separate independent 
subparts of the plan to facilitate storage compactions in case-based approaches (cf. 

[171). 

4.2.2. White-knight declobbering in goal achievement 

Although the white-knight declobbering clause is needed in the MTC, we pointed out 
in Section 4.1.3 that white-knight declobbering is not required to guide plan generation. 
In fact, Chapman’s own implementation of TWEAK [ 2, p. 3611, as well as many 

later partial-order planners such as SNLP [22] do not use white-knight declobbering 
clause in the goal achievement procedure. However, as Chapman remarks [2, p. 3591, 
avoiding the white-knight declobbering clause during planning means that the planner 
may terminate with somewhat more constrained plans. For the example in Fig. 4, a 
planner such as SNLP that does not use the white-knight declobbering clause will find 
one of two alternate plans: 

22 Historictrl Note: Although the term “white knight” became popular after Chapman’s work on TWEAK [ 2 1, 
Tate’s Nonlin was the first planner to use a white-knight clause to specify weakest conditions for establishment 

and declobbering. Nonlin’s Q&A procedure [33] says that a literal p is true at a step s in a partially ordered 

plan, if and only if ( I ) there exists a step n’ such that n’ < n, and n’ asserts p, and (2) there does not exist 

a step n” such that n” deletes p. and (2.1) either n” is unordered with respect to n or (2.2) there does not 

exist any step n”’ _( n which deletes p without a subsequent node w > n”’ asserting it back again. According 

to this criterion, the plan in Fig. 4 is found to be correct. In Nonlin, this check is done by ensuring that (I) 

for every branch of the plan that is coming into s, the last node in the branch that gives a value to p must 

be asserting p and (2) no branch parallel to s contains a node that deletes p, Unlike TWEAK, Nonlin did 

not deal with partially instantiated plans (however, O-PLAN [ 3 1, a successor of Nonlin, does deal with such 
plans). 

” Note that this involves removing existing orderings, without adding any new orderings. BSckstr6m [ I 1 
shows that if we also allow arbitrary addition and deletion of orderings, then the problem of finding the least 
constrained plan is NP-hard. 
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P,t. : al 4 bl < a2 + b2; 

Pkz : a2 4 62 i al 4 bl. 

Note that both of these plans are constrainments of the original plan. However, since the 
objective of partial-order planning is only to find a ground operator sequence, terminating 

with these constrainments in itself is not a problem, unless there is a concomitant loss 
of efficiency in planning. 24 

This gives rise to the question of whether the use of white-knight declobbering will 

improve or reduce the efficiency of plan generation of a partial-order planner. The use 
of white-knight declobbering as part of the goal achievement procedure does tend to 

increase the redundancy in the search space (in particular, the same ground operator 

sequence may be considered in more than one search branch of the planner)-but as 
we discuss in [ 14, 151, whether or not such redundancy leads to inefficiency depends 
on the tradeoffs between the search space redundancy vs. level of commitment made 
by the planner. Thus using the white-knight declobbering clause does not ipso facto 
make planning inefficient, as has been conjectured by some researchers (cf. [ 131). 
An important issue is whether the planner implements white-knight declobbering only 

through steps that already exist in the plan, or whether it also allows new steps to be 
introduced as white knights into the plan. In [ 1.51, we describe a planner called MP-I, 
which allows white-knight declobbering only via already existing steps. Our experiments 
show that this opportunistic declobbering leads to significant performance improvements 
in certain domains. 

4.3. Plan generation with more expressive action representations 

One unfortunate result of the misinterpretation of the role of the MTC in partial-order 
planning is the misconception that partial-order planning has more difficulty in scaling 
up to a more expressive action representation than does total-order planning. Not only 
did this belief slow down progress on planning with expressive action representations, it 
also inhibited some learning researchers from basing their work on partial-order planning 

frameworks [ 17,23,34]. 
As we noted earlier, planning can be seen as an iterative process, such that during 

each iteration the planner takes a plan, evaluates it to see if it is a solution, and refines 

24 A related question is whether the MTC, and in particular the white-knight declobbering clause, would be 

necessary in the goal achievement procedure if one wants to find optimal partially ordered plans (for example, 

to ensure optimal execution time, cf. 121 I). At first glance, it might seem that we must search in the space 

of all partially ordered plans to find the optimal partially ordered plan, and thus the white-knight declobbering 
clause would be necessary. However, this is not strictly required, since the unnecessary ordering constraints 

can be removed from plans in polynomial time (Section 4.2.1). In particular, suppose we defined the cost of 
each plan P to be the execution time that would be needed for P if all unnecessary ordering constraints were 

removed. If this cost were used as part of an admissible search strategy in a planner like SNLP [22] or even a 

total-order planner, then the planner would terminate with some plan PC such that PC is a constrainment of an 

optimal partially ordered plan Ps. We could then derive Ps from PC by once again removing all unnecessary 

ordering constraints from PC. 
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it further (using the goal achievement procedure) if it is not. The argument about 
the disadvantages of partial-order planning for expressive action representation is based 
on the complexity of each of these iterations. It starts with Chapman’s Intractability 
Theorem, which shows that if conditional steps are allowed, then necessary truth is 
NP-hard. ” The argument goes that since a planner must compute necessary truth each 
time it evaluates and refines a plan, the amount of time taken per iteration will increase 
drastically in partial-order planning. 

This reasoning is fallacious, since, as we noted earlier, determining necessary truth 
is not required in order to do partial-order planning. In particular, as we discussed 
in Section 4.1, a sound and complete partial-order planner will not have to compute 

necessary truth either for termination or for goal selection. Thus, the NP-hardness result 
is clearly irrelevant. Indeed, Pednault [ 27,281 provides a formal theory of partial-order 
planning in the presence of actions with conditional and quantified effects, 26 and his 
theory has served as the basis for a popular implementation called UCPOP [30], that 

takes only a polynomial amount of time per iteration. 
Moreover, even if one were to compute necessary truth during goal selection and 

termination, it is possible to devise partial-order planners in which each plan that is 
generated is constrained in such a way that necessary truth can be evaluated in polyno- 
mial time. One extreme example of this would be a planner that generates only ground 
linear plans, but there are however other types of constrainments in which the plans 
are partially ordered-for example, unambiguous constrainments (cf. [24] ), and safe 
constrainments (cf. [ 16,221 )-which avoid the extreme of searching with totally or- 
dered plans. All of these attempt to reduce the cost of plan evaluation and refinement 

by possibly increasing the search space size. 
In order to determine the overall time complexity of the planner, what really counts 

not the time per iteration, but the tradeoff between the time per iteration and the size 
of the space searched (i.e., the number of iterations), since the time complexity is 
the product of these two factors. In [ 16,201, we systematically classify the types of 
operations (called “tractability refinements”) used by various planners to ensure tractable 

plan evaluation and analyze the tradeoffs offered by them. 
Finally, it is also wrong to believe that planning itself is more difficult if conditional 

operators are allowed. Erol et al. [8] have analyzed how the complexity of planning 
varies under a wide variety of conditions, including whether or not function symbols, 
negative preconditions, or delete lists (i.e., negative postconditions) are allowed, whether 
or not the predicates are propositional (i.e., 0-ary), and whether the planning opera- 
tors are part of the input or fixed in advance. In all of these cases, the presence or 

absence of conditional operators made no difference in the complexity or decidability 
of planning. 

” However, as we discussed in Section 3.2.2, the NP-hardness depends as much on the universal executability 

of these steps as it does on the conditionality of their effects. 

” Instead of checking for necessary truth, Pednault’s theory of planning concentrates on adding a sufficient 

number of constraints (including steps, orderings, bindings, and secondary preconditions) to ensure necessary 
truth in the resulting plan. 
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5. Concluding remarks 

In this paper, we have discussed several misconceptions regarding the role of modal 
truth and the modal truth criterion (MTC) in planning. Along the way, we have also 
clarified and corrected several problems with Chapman’s terminology. 

First, we have presented the following results about modal truth and the modal truth 
criterion: 

(i) Contrary to Chapman’s statement, the principle of modal duality that is obeyed 
by all classical modal logics is not obeyed in TWEAK-style plans. The lack 

of duality between necessary truth and possible truth is related to the fact that 
modal truth of a literal in a situation of a plan requires that the plan’s actions 
be executable in order to produce that situation. To achieve modal duality, one 
needs universally executable plans. 

(ii) Even though necessary truth in plans can be determined in polynomial time as 

stated by Chapman, the same statement does not hold for possible truth. Instead, 
the problem of determining possible truth in plans is NP-hard. This is important 
because checking possible truth has several applications in plan projection [5] 
as well as plan generalization [ 191, 

(iii) As stated by Chapman, the MTC is correct only as a criterion for necessary truth 

(not as a criterion for possible truth). However, if we reinterpret it as a criterion 
for modal conditional truth (i.e., modal truth conditional on plan executability), 

then it is correct as a criterion for both necessary conditional truth and possible 
conditional truth. 

Second, we clarified the role of the MTC in plan generation vs. checking the correct- 
ness of a given plan, by emphasizing the peculiar predicament of partial-order planners: 

they search in the space of partially ordered partially instantiated plans, but need com- 
pleteness only in the space of totally ordered and totally instantiated plans. We showed 
that misunderstandings in this regard have been the root of several of the confusions 
regarding the role of the MTC: 

(i) Sound and complete partial-order planning is possible as long as the goal 
achievement procedure is based on a truth criterion that is consistent with the 

necessary and sufficient truth criterion for totally orderered plans. 
(ii) Although the MTC provides a sufficient basis for partial-order planning, it is 

not necessary for sound and complete partial-order planning. Specifically, it is 
possible to devise sound and complete partial-order planners whose termination, 

goal selection and goal achievement procedures do not depend upon Chapman’s 
MTC. 

(iii) Although the white-knight declobbering clause of the MTC is needed in order 
to provide both necessary and sufficient conditions for ensuring truth of a literal 
in a partially ordered plan, white-knight declobbering is not required for partial- 
order planning. Several sound and complete partial-order planners use demotion 
instead. 

(iv) Although Chapman proved that is NP-hard to verify necessary truth in plans 
whose steps have conditional effects, this does not necessarily imply (as has 
been conjectured elsewhere) that partial-order planners are any worse off than 
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total-order planners in dealing with actions that have conditional effects. There 
are two reasons for this: (1) partial-order planners do not have to compute 
necessary truth in order to be sound and complete, and (2) even if a partial- 
order planner does compute necessary truth, it can be sound and complete while 
only generating plans for which necessary truth can be computed in polynomial 
time. 

Because of the wide impact of Chapman’s paper, it is important to correct any 
misimpressions that may result from it. We hope readers will find this paper useful for 
that purpose. 

Appendix A. Proofs 

Lemma A.1. PARTLAL TRUTH is co-NP-hard. 

Proof. The proof is by reduction from the complement of 3-SAT (satisfiability with 
three literals per clause). In particular, let X = cl + c:! + . . . + c,, be a DNF formula 

over the Boolean variables x1, x2, . . . ,x,,, where each ci is a conjunct of three literals 

ci = lilli21ij. We encode X as a plan P$ and a ground atom sat(yes, yes, yes), such that 

every executable completion of Pi produces a final situation containing sat(yes, yes, yes) 
iff X is a tautology. Pi is the following plan (see Fig. A.l): 

l Initial state. P;‘s initial state SO is the empty set. 
l Steps. For each Boolean variable Xi, there are two steps, Seti and Unseti. 

- S&i has no preconditions, and has the following postconditions: 

-2; (yes), !ii ( no) ,~xi(nO),xi(yes). 

- Unset; has no preconditions, and has the following postconditions: 

Here, yes and no are constant symbols; the interpretations of xi(yes), Xi( no), 

X;( yes), and xi( no) are that the Boolean variable xi is true, not false, false, and 
not true, respectively. Thus, the interpretations of Seti and Unseti are that they 
make Xi true and false, respectively. 

_ There is a step Sep, which has no preconditions nor postconditions. Its only 
purpose is to separate the steps Seti and Unseti (defined above) from the steps 
Coni defined below. 

_ For each conjunct ci = Zilli21i3 in X, there is a step Coni. Corresponding to the 
literals in ci, Coni has preconditions Lil, Liz, Li3, as follows. Each Zij is either 
Xk Or q for SOltle d'k. If Zij = Xk, then Lij iS Xk(uij), where LJij iS a variable; 

*’ To prove his Intractability Theorem, Chapman also uses steps that have no preconditions and postconditions. 

However, this raises the question of whether TWEAK can ever create a plan such as Pi. It is easy to modify Pi 

so that TWEAK will construct it; here’s how. For each step N of Pi, add a new postcondition done( name( a) ) 

(recall that name(cl) is a constant symbol). For each ordering constraint ‘a + h’ of Pi, give h a new 

precondition done( name( (1) ) 
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Fig. A.1. An example of the plan P: in the case where X = X~~XJ + Tixzq. Each step’s name is in a box, 

with its preconditions and postconditions above and below the box. 

if lij = q, then _&j is Kk( Uij). Coni has one postcondition: sat(uil, Ui2, Uis). The 

interpretation of sat(yes, yes, yes) is that X is satisfied. For any other constant 
symbols u, u and w, sat(u, u, w) has no particular interpretation. Thus, the 
interpretation of Coni is that if ci = litZi21is is satisfied, then Coni asserts that X 

is satisfied. 
- There is one other step, Last, which has no preconditions and no postconditions. 

Last’s purpose is to provide a final step in the plan. 
l Constraints. 0 contains an ordering constraint ‘Seti 4 Sep’ for every Seti, an or- 

dering constraint ‘Unseti 4 Sep’ for every Unseti, and ordering constraints ‘Sep < 
Coni’ and ‘Coni 4 Last’ for every Coni. There are no other ordering constraints. 
There are no codesignation constraints; i.e., D = 0. 

Let P be any executable completion of P$, and 8 be the unique ground substitution 

that satisfies P’s codesignation constraints. In P, Sep’s input and output states are a 

set s of ground atoms corresponding to truth values for all the xi. More specifically, 
s=si US?U... U sn, where each Sk is either {&(yes),xk(no)} (meaning xk is false), 

or {& (yes), Xk (no)} (meaning xk is true). 
The input state for each Coni consists of some ground atoms of the form sat( u, u, w) , 

plus the set s described above. Since Coni is executable, each precondition Li,j of Coni 
codesignates with an atom in Coni’s input state. In particular, since each Lij is either 
Xk(Uij) Or &(Uij) for some k, it follows that Lij6 E Sk. Thus, either Uij6 = yes or 
Vii6 1 no, depending on whether Sk corresponds to a truth value for xk that makes Zij 
true, or one that makes I, false. Coni asserts sat(yes, yes, yes) iff s corresponds to a set 
of truth values that make lit, li2, and li3 all true. 

Thus, P produces a final state containing sat(yes,yes,yes) iff s corresponds to a 
set of truth values that makes at least one of the conjuncts ci = litli21ij true. Since 
s may correspond to any assignment of truth values to xl, x2, . . . ,x,,, this means that 
all executable completions of P; produce final states containing sat(yes, yes, yes) iff 
X = ct + c:! + + c,, is true for all assignments of truth values to x1, x2, . . . , x,. 0 
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Theorem 2. POSSIBLE TRUTH is NP-hard. 

Proof. Let Y = CICZ . . . c,, be a CNF formula over the Boolean variables yl, ~2,. . . , Y,~, 
with three literals in each disjunctive clause ci. Let X = ?Y. Using de Morgan’s laws, in 
linear time we can express X as a DNF formula over ~1, ~2,. . . , y,,, with three literals 
in each conjunct. 

Suppose Y is unsatisfiable. Then X is a tautology, so from the proof of Lemma A.1, 

every executable completion of Px produces a final state containing sat(yes,yes,yes). 
Thus, no executable completion of P$ produces a final state in which Tsat(yes, yes, yes) 

is true, so -sat.( yes, yes, yes) is not possibly true in P;‘s final situation. 
Suppose Y is satisfiable. Then X is not a tautology, so from the proof of Lemma 

A.1, there is an executable completion P of P$ that produces a final state that does 
not contain sat(yes, yes, yes). Thus Tsat(yes, yes, yes) is true in P’s final state, so it is 
possibly true in Px’s final situation. 0 

Remark A.2. The above proof makes use of the duality between satisfiability checking 
and tautology checking. However, it is also quite straightforward to prove the theorem 
without using this duality, by constructing a plan Qt and a ground atom sat( yes, . , yes) 

such that that some completion of QG produces sat( yes, . . . , yes) iff Y is satisfiable. Such 
a proof appears in [ 251. 

Theorem 4. If the language C contains only finitely many constant symbols, then 

NECESSARY TRUTH is co-NP-hard. 

Proof. In the proof of Lemma A.1, suppose we specify that the only constant symbols 
in the language .C are yes and no. Then every completion of P.$ is executable, and thus 
sat(yes,yes,yes) is necessarily true in fin iff the formula X is a tautology. 

Even if L contains finitely many additional constant symbols, we can still make 
sat(yes,yes,yes) necessarily true in fin iff the formula X is a tautology, by adding 
codesignation constraints to P; of the form u $ c for each constant symbol c other than 

yes or no, and each variable u appearing in the steps Con1 and Con2. Thus Lemma A.1 
shows that if L contains only finitely many constant symbols, then NECESSARY TRUTH 

is co-NP-hard even with ordinary “unconditional” steps. 0 
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