AN APPROACH TO ADDRESSING GEOMETRIC FEATURE
INTERACTIONS IN CONCURRENT DESIGN

Raghu Karinthi and Dana Nau
University of Maryland
College Park, Maryland

ABSTRACT

Concurrent engineering design requires the manufacturability
aspects to be considered during the process of designing a part.
One of the issues of interest in this context is that of geometric
feature interactions. Due to geometric interactions among the
various features of a machinable part, a machiable part could
have several interpretations as a collection of features and hav-
ing only one of them could be a drawback in generative process
planning. To address this problem, we have developed an al-
gebra of features. By performing operations in the algebra one
can obtain several feature interpretations of a machinable part
given one feature interpretation. A feature transformation sys-
tem based on the algebra has been implemented and integrated
with our Protosolid solid modeler [16] and with our EFHA pro-
cess planning system [15].

NOMENCLATURE

u* Regularized Union

N* Regularized Intersection
_* Regularized Subtraction
¢* Regularized Complement

T Truncation

I, Infinite Extension
I; Face Infinite Extension
M, Maximal Extension

M; Face Maximal Extension

This work was supported in part by an NSF Presidential Young
Ilwrwl.ignl.ur award for Dr. Nau with matching funds from Texas
Ingtpurients and General Motors Research Laboratories, NSF
Grant NSFD CDR-88003012 to the University of Maryland Sys-
tems Research Center, NSF Equipment grant CDA-8811952,
and NSF grant [RI-8907890.

Introduction

Many of the problems faced by modern industry are related to a
lack of coordination between design and manufacturing. Typical
problems include inconsistencies among process plans {for similar
designs, large discrepancies from optimal shop utilization, poor
product quality, and non-competitive costs. Recently, there has
been increasing awareness of the importance of taking manufac-
turing considerations into account during the design of the part,
rather than afterwards. This concept is known by a variety of
terms, such as “concurrent engineering”, “concurrent design and
manufacturing,” and “design for manufacturability.”

Such considerations will require CAD systems of the future to
incorporate interfaces to modules such as process planning sys-
terns, to evaluate the manufacturability of the design. Further-
more, it will be necessary for such process planning systems to
reason about geometric relationships among the various parts of
an object while the design is underway. To carry out such rea-
soning automatically will require extensive interaction between
the process planning system and the CAD system (presumably
a solid modeler) during design and process planning.

One of the primary problems in communicating between a solid
modeler and a process planning system is the derivation of machin-
able features from the solid model. Regardless of whether the
features are derived using feature extraction, design by features,
or some other approach, geometric interactions among the fea-
tures can create situations where there are several possible fea-
ture representations for the same part. This presents a problem
for generative process planning, since some of these representa-
tions may be feasible for manufacturing and some may not. The
problem is how to find these alternate interpretations.

For example, consider ! the part depicted in Figure 3. In this
example, the part has been described as the part resulting from
subtracting a rectangular pocket p;, a rectangular pocket p, and
a hole Ay, in that order, from a rectangular stock. Because of
the interaction of the hole k; with the pocket p,, the hole A; can
be extended into the pocket p;. Let hy be the extended hole.
Let the extension of the hole h; into the pocket p; be Az, Let
the extension of the pocket p; into the pocket p; be ps. The var-
ious possible feature interpretations of the part are {p1,ps, hy},
{p1,p3, b}, {p1, P2, ha}, {p1, ps, hs}, {p1,p2, h3} and {p1,p3, ha}.
Of the above feature interpretations {pi, ps, hy} is not feasible
from geometric considerations. From machining considerations,
the larger pocket is made first, and hence the interpretations
{p1,ps,h1} and {p1, ps, hs} are not good choices. Hence, the fi-
nal set of features used for machining would be the pocket py,
the pocket p, and one of the holes A;, hy and hs. The choice
of hy or hy or ks cannot be be made without considering the
parameters of the holes. The holes Ay, hy and ks have the same
diameter but different depths. The holes A; and A4 are located at
the bottom of a pocket, and hence are more difficult to position
than A3 which is located on a face of the stock. However, they
since their depth is less than that of A3 they are less expensive
to machine than hj.

To address problems such as the one described above, we have
developed an algebra of feature interactions. Given one valid
interpretation of a machinable part as a collection of machin-
able features, all other valid interpretations of the part as other
collections of machinable features can be derived through oper-
ations in the feature algebra. We have implemented a subset of
this feature algebra dealing with rectangular solids and cylin-
ders, as the basis of a geometric reasoning system for use in
communicating between a solid modeler and a process planning
system.

In some previous work [6, 7], we developed a rather limited
feature algebra for a small set of features, with the different
kinds of features and their interactions all described as special
cases. Since then, we have developed a unified mathematical
way to describe features and feature interactions, so that our
current feature algebra covers practically all features of interest
to manufacturing. The current paper presents the highlights of
this generalized feature algebra; reader is referred to [10] for a
more detailed presentation.

The Algebra of Features and Its Properties

An algebraic structure [11] is a set, with one or more operations
defined on the elements of that set. The feature algebra involves

!We wish to thank Dr. Guangming Zhang of the Mechanical Engineering
Department at the University of Maryland for some insightful discussions
on this and other examples.

the set of all possible features (where feature is as defined below),
and operations such as truncation and maximal extension (also
defined below).

Domain

A solid is a compact, regular and semi-analytic subset of E3,
Let us see the scope and significance of the above definition.
Regularity restricts a solid to be homogeneously three dimen-
sional. Even parts with sheet metal components have a finite
thickness, so this appears to be a very reasonable restriction.
Since the solids that are considered are of finite dimensions, they
are bounded and hence compact. The domain of semi-analytic
sets covers practically all the shapes of interest to manufactur-
ing. The reader may note that all planar polyhedra, cylinders,
cones, spheres, tori and a variety of sculptured surfaces are en-
compassed by this set. It includes concave features such as T-
slots, counter-bores and counter-sinks.

A patch is a regular, semi-analytic subset of the boundary of
a solid. Figure 4 illustrates some examples of patches. Given a
solid z and a patch p of z, the regularized complement of p is
defined as ¢*(p,z) = b(ps(z)) ~* p. From these definitions, we
can prove the following lemma.

Proposition 1 The set of all patches of a feature is closed un-
der regularized union, intersection, complement and difference.

A feature ¢ is any pair ¢ = (ps(z), patches(z)) such that ps(z)
is a solid and patches(z) is a partition of the boundary of ps(z)
into one or more patches, each of which is labeled as BLOCKED
or UNBLOCKED. For any patch p, we denote the label of
the patch by label(p). The intended interpretation of a feature
is as a solid ps(z) that is subtracted from a larger solid, with
the blocked and unblocked patches indicating boundaries of the
patch that separate metal from air or air from air, respectively.
For example, Figure 5 shows the BLOCKED and UNBLOCKED
patches for the features hq, hy and h3 shown in Figure 3.

Operations

Patch Classification Scheme

In order to describe the operations on features, one first needs
to understand the methodology for classifying the patches of
the boundary of one solid with respect to another solid. This
methodology was developed by Vanécek[16], who used it in the
context of performing set operations on planar polyhedra.

A patch x; of the boundary of a solid = is homogeneous with
respect to solid y if one or more of the classification relationships
holds:

1. z; IN y; i.e., the interior of x; lies in the interior of y.

2. z; OUT y; i.e., the interior of x; is outside of y.

2; WITH y; i.e., z; lies on the boundary of y, and both z
and y are on the same side of the boundary.

4; ANTI y; i.e., z; lies on the boundary of y, and = and
y are on the opposite sides of the boundary.

Given the above patch classification scheme, the boundary of
o solid @ can be partilioned into a s?t of patches {'P].[:‘:m‘.h that
cach pateh in P is homogeneous with rﬂ.'i]lt.'.l'l. to y. Thus, one
can obtain collections of patches #INy, xOUTy, »WITHy and
JANTIy given by the following definitions:

zINy = {p€ P|pINy}
tOUTy = {pe P|pOUTy}
sWITHy = {pe€ P|lpWITHy}

tANTIy = {p€ P|pANTIy}.

The operations in the feature algebra are defined in terms of
set operations on solids. Using the above classification sets, the
boundaries of x Uy, N*y, z —*y and y —* & can be computed
as given below. For any patch p, p~! is the same as p with the
sign of the normal to the patch at every point reversed.

WzUy) = zOUTyUyOUTzUzWITHy
blxn*y) = zINyUyINzUyWITHz
bz -*y) = zOUTyU (yINz)™' UzANTIy
by —"z) = yOUTzU («INy)™' UyANTIz.
Truncation
Given two features = and y, the truncation operation (7') is
defined as follows: z = 27y = {(u,v), where u = ps(z) —*

Ps(y) and v is a collection of patches satisfying the following
Properties:

1. the union of all the patches in v is b(u).

2. every patch in v that belongs to ps(z)OUTps(y) or
ps(2)ANTIps(y) is a subset of some patch of z.

Note that,
b(ps(z) —* ps(y)) = ps(z)OUTps(y) U (ps(y)INps(z))™" U
ps(z) ANTIps(y)

The labels of the patches of v are determined as follows:
For every patch p of v, if p € (ps(z)OUTps(y)) or
re (P’S(I)ANTIps(y)), let p; be the patch of & such that p C p;.

label(p) if p € ps(z)OUTps(y) or
p € ps(z)ANTIps(y) (1)
UNBLOCKED otherwise

label(p) =

Maximal Extension

In order to define the maximal extension operation, we need
to first define the infinite extension of a feature with respect
to a patch. To keep the discussion simple, we present here the
definiton of infinite extension only for convex solids. For a more
general definition, the reader is referred to [10]. Figure 6 illus-
trates some examples of infinite extension.

Let = be any feature and p; be any point on z for which there
exists a plane tangent to z at p;. Then H(p;,z) is the closed
half-space tangent to z at p; that contains z.

The infinite extension of & with respect to the patch pis

Z,(z) = ({H(pi,z)lpi € ' (p,).

Given two features x and vy, and a patch p on z, the maximal
extension of 2 in y with respect to a patch p (denoted by xMy)
is defined as follows:

(w0 if T,(z) # INVALID
=MpY =1 INVALID otherwise

where v = T,(z) N* (ps(z) U” ps(y)) and v is a collection of
patches satisfying the following properties:

1. the union of all patches in v is b(w).

9. every patch in v that belongs to (ps(z) U* ps(y))INZ,(x)
or (ps(z) U* ps(y))WITHZ,(z) is a subset of some patch

of ps(x) U* ps(y).
Note that

b(u) = Z,(x)IN(ps(z) U" ps(y)) U (ps(z) U" ps(y))INZ,(z) U
(ps(z) U™ ps(y)) WITHI,(z)

The labels of the patches of v are determined as follows: For

every patch pof v, if p € (ps(z)U*ps(y))INZ,(z) or p € (ps(z)U*

ps(y))WITHLZ,(z) let pr be the patch of ps(z)U*ps(y) such that

pCp.

label(p1) if p € {ps(z) U ps(y))INZ,(z) or
p € (ps(e) U™ ps(y)) WITHZ,(z)

UNBLOCKED otherwise

label(p) =

For the definition to be complete, the labels of the patches of
ps(z) U* ps(y) must be defined, given the labels of the patches
of x and y. As stated earlier,

b(ps(z) U" ps(y)) = ps(z)OUTps(y) U ps(y)OUTps(x) U
ps(z) WITHps(y)

Let us denote a arbitrary patch of b(ps(z) U* ps(y)) by p. If p
is a patch of ps(z)OUTps(y) or ps(z)WITHps(y), let p; be a
patch of @ such that p C py. If p is a patch of ps(y)OUTps(z)
or ps(z)WITHps(y), let p, be the patch of y such that p C p,.
Let an arbitrary patch of b(ps(z) U* ps(y)) be denoted by p and
the patch of z (if applicable) that is a superset of p by p; and
the patch of y (if applicable) that is a superset of p by p;.

The labels of the patches of b(ps(z) U*ps(y)) are defined below:

labgl(pl) if p € ps(z)OUTps(y)
label(ps) if p € ps(y)OUTps(z)
label(p) = { BLOCKED if p € ps(z)WITHps(y) and

label(p;) = label(p,) = BLOCKED

UNBLOCKED otherwise

Properties

From the above definitions, a number of useful properties can
be proved. Below are a few examples.

Proposition 2 Given a feature = and a patch p of z,
ps(z) C I(z).

Proposition 3 For any three features x, y and z, the following
result holds:

(ps(z) = ps(y)) =" ps(z) = (ps(z) —* ps(z)) —* ps(y).

Proposition 4 Given a feature z and a patch p of z, if T,(z) =
ps(z), then ps(zMpy) = ps(x), for any feature y.

Using the Algebra

The Features Algorithm

Given a set of features that describe a part, one would like to
generate alternate sets of features that describe the part. Any
set of features describing the part under consideration is called
a feature set. This section describes an algorithm for generating
alternate feature sets given one feature set. In this algorithm
(see Figure 1), F is the set of features generated at any stage,
and F is the union of all the features in F. Initially, F is the
starting set of features and I" = {F}. There are two additional
variables called CURRENT and NEW used in this algorithm.
Let ¥ be the set of applicable binary operations and X the set
of possible infinite extension operations.

246

F = {F};
CURRENT = F;
NEW =0
for each z in CURRENT for each Z; ¢ % &

. = I ;
while CURRENT # § do 16 B compnte 1)

for each FS in F do
for each (z,y) : t € FSand y € FS and z # y do

if (z € CURRENT) or (y € CURRENT) then
for each n € ¥ do

if zny = 2 then
if new-ps-member(z, F') then
for each Z; € &; compute Z;(2) ;

F = Starting set of features;

F=Fu{z};
NEW = NEW U {z};
end if ;

if (FS — {z})U{z}) ¢ F then
F=FU((FS - {z}) U {=));
end if ;
end if ;
if any = {21, 2,} then
for each u € {z,2,} do
if new-ps-member(u, F') then
for each I; € ¥; compute Z;(u);

F=FU{u};
NEW = NEW U {u};
end if ;
end for ;

if ((FS ~ {2}) U {21,z}) ¢ F then
F=FU(FS = {z})U {21, 22});
end if ;
end if ;
end for ;
end if ;
end for ;
end for ;
CURRENT = NEW;
NEW = 0;
end while .

Figure 1: The Features Algorithm

[n the algorithm shown in Figure 1 the function new-ps-member
(x,) returns true il ¥z € y ps(z) # ps(z) and false otherwise.
In this algorithm we have to determine ifif ey is a valid fealure
and if so, whether new-ps-member(ay, 'Y is Grie or [alse. The
l,rupnrt.ies of the feature algebra (sich as Lhe Propositions 2, 3
and 4) arve nsed in these two steps. I[it is possible to determine
if ey is INVALID or il new-ps-member(any, [y is true using
(he properties of the feature algebra, then one need nol do any
further computations. Otherwise, one has to compute a1y nsing
(he procedures for the operalions and then determine ilitisa
new fealure.

At first glance, the worst case complexity of the algorithm
wight appear Lo be exponential, because of the possibility of
combinatotial explosion if there are several mutually-interacting
features. However, geomelric locality dictates that each [eature
will interact with only a few of its neighbors, so there 18 o rea-
son to believe that significant exponential blowup would ever

0OCCUT.

Implementation

The features algorithm has been implemented on a restricted
domain consisting of rectangular solids and cylinders that have
their planar faces parallel to the faces of the stock, such as
holes, slots, shoulders, pockets, etc. Input to the algorithm is
taken from a feature-based design system built on top of our
Protosolid[16] solid modeler.

The implementation was done on a Texas Instruments Explorer
I1. The operations in the algebra are implemented as procedures
in Lisp, and the algebraic properties (such as Propositions 2, 38
and 4) as rules in Prolog. Whenever necessary, the features al-
gorithm either asserts facts into the Prolog data base or queries
it to determine the result of an operation on two features. If
the query cannot be answered, then the procedures for the op-
erations are invoked directly. Once the features algorithm has
terminated, we have several possible feature interpretations of
the part.

After these features have been produced, EFHA [15] (a succes-
sor to our SIPS process planning system[9]) can be invoked to
make process plans for the features. These results give us an
indication of which interpretation of the part is likely to be the
easiest to manufacture.

Example

Let us illustrate the workings of the algorithm with the ex-
ample discussed in Figure 3. In the beginning, we have ex-
actly one feature interpretation of the part, viz. {p1,p2,h1}-
Due to the interaction between the features, in the first iter-
ation we compute two additional features hy = hiMgyp, and
P3 = py M,p,, where a and b are the top faces of hy and p, re-
spectively. The additional feature interpretations added in this

iteration are {pi,ps, ha} and {p1,ps, h1}. During the second it-
eration we compute one more feature hg = hoM,p1, where ¢ is
the top face of hy. The additional feature interpretations added
are {p1,pz, hs} and {p1,ps, hs}. During the third iteration no
new features are generated and hence the algorithm terminates
after the third iteration. However, a new feature interpretation

{p1,p3, ha} is added due to the interaction between the features
hy and p;. As discussed earlier, this combination is not feasible
from geometric considerations.

For the example shown in Figure 3, the total processing time
for computing the alternative feature interpretations was 6.35
seconds. In this example, the total number of interactions (the
number of times an operator was applied) was 118, but only
three of the interactions resulted in new features. For this ex-
ample, 9 of these interactions were resolved via queries to the
Prolog implementation of the algebraic properties, without in-
voking the procedures to compute the operations.

When the same example was run without access to the algebraic
properties, the processing time decreased to 2.6 seconds. One
reason for this result could be that the Lisp code is compiled
and the Prolog runs interpretively. The other reason could be
that since the features and interactions considered right now are
rather simple, the procedures for the operations do not take a
significant amount of time. With more complex features and
interactions, access to the algebraic properties may turn out to
be more useful.

The procedures for computing the operations take advantage
of the nature of the features and interactions. Declaratively,
the operations for this sub-algebra can be expressed in terms
of set operations on solids. Therefore, another way to compute
the operations would be to convert them into set operations
on solids (computed by the solid modeler) and then test if the
result of the operation is a new feature. Using this method,
the time taken for computing alternate feature interpretations
for the example in Figure 3 is 138 seconds. This shows that
using the algebra is much more efficient than translating the
operations into equivalent set operations. The reason is that if
the result of an operation is not a valid feature there is no reason
to compute the shape of the solid and then realize it is not a valid
feature. Currently, we are working on a mathematical analysis
of the computational time taken by both methods.

In all of the cases above, the parameters of the features were
communicated to the EFHA process planning system which was
used to generate the process plans for the individual features.
The process plans and the (relative) costs of the cheapest process
plans for each feature are shown in Table 2.

Related Work

The popular approaches to CAD/CAM integration are auto-

Feature | Process Plan Cost

P Rough Face Mill 1.0
P2 Rough Face Mill L0 |
P3 Rough Face Mill 1.0

hy Twist Drill - Rough Bore — Finish Bore 9.0
ho Twist Drill —» Rough Ream — Finish Ream 11.0
ha Gun Drill — Rough Ream — Finish Ream 25.U

Figure 2: The Process Plans for the features in Figure 3

matic leature extraction and design by features. Most of the
research in feature extraction has not addressed the jssue of fea-
ture interactions. Some of the recent work such as Lhat of Srini-
vasan and Liu[14] and Joshi and Chang 5] accounts for certain
kinds of feature interactions. Elaborate systems ([8, 1]) based
on the design by features paradigm have been built for process
planuing that can translate from manuy facturing features to NC
code. But this paradigm requires the designer 1o account for
all the interactions among the features, The next paragraph
summarizes research that hag specifically addressed the issie of
feature interactions,

Nicholas Ide [4] has developed a system for feature based de-
sign using the PADL-2 solid modeler [2]. Ide's system bridges
the PADL-2 solid modeler with a prrocess planner developed
at the University of Maryland called SIPS [9]. In addition to
providing a design-features-interface this system also does {wo
types of checking, for local constraints (consistency in feature
parameters) and for geometric constraints (constraints requir-
ing geometric reasoning). A majority of the feature interactions
are either nol allowed or not checked for by this system (eg., a
hole cannot intersect any other feature). Hayes [3] has addressed
the problem of feature interactions in her Master's thesis, Her
program uses feature interactions fo determine precedence rela-
tions among features. The system is written jn OPS5 and uses
rules fo detect feature interactions of interest. Requicha and
Vanderbrande [13] have proposed the notion of engineering en-
vironments (analogous to programming environments) which are
tools useful for design and manufacturing engineers. They are
building a system kinown as the A1/SM test bed, which performs
certain kinds of geometric reasoning, combining the principles
of solid modeling, computational geometry and rule-based sys-
bems. This system, however, is not complete as of this writing;
so we do not know of its capabilities in detail, Michael Pratt[12]
has addressed several issues pertaining to feature interactions.
He has developed the notions of cffective volume of interaction
and actual volumie of interaction which are equivalent Lo Lhe
truncation operation. e has developed a graph showing the
relationships among features, His work add resses interactions
amaong profrusions and depressions. There are no equivalents of
the maximal extension and infinite extension in his frame work.

248

Summary and Conclusions

The primary issue addressed in this paper is the development,
of a way lo reason aboul, geomelric inferactions among featureg,
via an algebra of feature interactions. One of the primary mo-
tivations of Lhe feature algebra is to allow consideration of geo-
metric objects as several possible alternative collections of fea-
Lures. Based on our discussions with machinists, it appears thal
a machinable part cannot be interpreled as a unique set of fea-
tures. What seems more appropriale is to consider alternative
interpretalions, and generate plans to see which is better (or
feasible).

The kinds of reasoning done in the Machinist [3] system rep-
resent, significant steps in the development of ways to handle
feature interactions. However, this system does not use an n-
ambiguous representation of solid ohjects. For example, il the
Machinist program decides that some hole f needs to be made
hefore some slot s, it does not recognize Lhat this requires ma-
chining a hole of different dimensions than il were machined
after s—and yel such information may be necessary in order to
know whether it is possible to machine k. In the feature algebra
described in this paper, a feature includes a complete represen-
tation of a physical solid. Thus, it might be possible to add
additional sophistication to the operation of the Machinist pro-
gram by rewriting some of its rules in terms of operalions in the
feature alpebra.

Properties

As defined in this paper, the algebra is general enongh to en-
compass practically all shapes of features encountered in the
real world. Tt is not computationally feasible to implement. Lhe
operations in the algebra on this entire set of features. But
by restricting the algebra in different ways, one can obtain dif-
ferent sub-algebras which satisty the properties of the general
feature algebra, allow Lhe algebraic operations to be computed
eficiently, and include features of interest in practical prablems.
In this way, the operations in the algebra can be made more effi-
cienl, than set operations on solids, because they take advantage
of the special properties of the shapes and their interactions.

Conel uding Remarks

This work is being done with two long-term goals in mind: the
development of a practical infegrated system for designing metal
parts and planning their manufacture, and the invesligalion of
lundamental issues in representing and reasoning aboul (hree-
dimensional objects. We believe this work will have ulility not
only for antomated mannfacturing, but also for other problems
in geometric modeling and geometric reasoning.

lPl

h, h

S
Figure 3. A Sample Part with two pockets and a hole

AN\

2

2

L |
h

b,

b2

b3

Figure 4. Some examples of patches (shaded)

% Blocked

%

7

h; Unblocked

N

4"

h,
%

Figure 5, BLOCKED and UNBLOCKED patches.

249

To Infinity

17

Figure 6. Some examples of patches and infinite extension.

—ﬁ—»—

References

[1] S. L. Brooks and K. E. Hummel. Xcut: A rule-based expert
system for the automated process planning of machined

parts. Technical Report BDX-613-3768, Bendix Kansas
City Division, 1987.

(2] E. E. Hartquist and A. Marisa. PADL-2 Users Manual.

Production Automation Project, University of Rochester,
Rochester, New York, 1985,

[3] C. Hayes. Using goal interactions to guide planning. In
Proceedings of the AAAI-87; the Sizth National Conference
on Artificial Intelligence, pages 224-228, 1987.

[4] N. C. Ide. Integration of process planning and solid model-

ing through design by features. Master’s thesis, University
of Maryland, College Park, 1987.

[5] S. Joshi and T. C. Chang. Graph-based heuristics for
recognition of machined features from a 3d solid model.
Computer-Aided Design, 20(2):58-66, Mar 1088.

[6] R. R. Karinthi and D. S. Nau. Geometric reasoning as a

guide to process planning. In ASME International Com-
puters in Engineering Conference, July 1989,

[7] R. R. Karinthi and D. S. Nau. Using a feature algebra for

reasoning about geometric feature interactions. In Elevent
International Joint Conference on Artifi

cial Intelligence,
August 1989.

(8] T. Kramer and J. Jun. The design protocol, part editor,
and geometry library on the vertical workstation of the au-
tomated manuacturing research facility at the national bu-
reau of standards, 1987. Internal Report.

(9] D. S. Nau. Automated process planning using hierarchical
abstraction. Teras Instruments Technical Journal, pages
39-46, Winter 1987. Award Winner, Texas Instruments
1987 Call for papers on Industrial Automation,

[10] D. S. Nau and R. R. Karinthi. An algebraic approach to
feature interactions. Technical Report TR-89-101, Systems

Research Center, University of Maryland, College Park, nov
1989. Submitted for journal publication.

[11] C. Pinter. A Book of Abstract Algebra. McGraw-Hill Book
Company, 1982.

[12] M. J. Pratt. Form features and their applications in solid

modelling. In Tutorial paper on Advanced Topics in Solid
Modelling at SIGGRAPH 1987, July 1987.

250

[13] A. G. Requicha and Jan H.

Vandenbrande. Form features

for mechanical design and manufacturing. Technical Report,
IRIS 244, Institute for Robotics and Intelligent Systems,
Univerisity of Southern California, Los Angeles, October

1988.

[14] R. Srinivasan and C. R. Liuv. On some important geomet-

ric issues in generalive process planning. In Proceedings

of the Winler Annval Meets
Mechanical Engineers, Bosto

229-244, 1987.

ng of the American Society of
n, MA, December 1987, pages

[15] Scott Thompson. Environment for hierarchical abstraction:
A user guide, May 1989. Master's Scholarly paper.

[16] G. Vanecek Jr. Set Operations on Volumes Using Decom-

position Methods. PhD thesis
lege Park, 1989.

, University of Maryland, Col-

OF
SPATIAL REASONING FOR AUTOMATIC RECOGNITION
INTERACTING FORM FEATURES

Jan H. Vandenbrande and Ari§tides A. G. Requicha
.Programmable Automation Laboratc:jry
Computer Science Department eén o
Institute for Robotics and Intelllg.ent oys
University of Southerq Cal.lforma
Los Angeles, California

ABSTRACT

- :h as holes, slots and
Recognition of m‘ﬂcm;mgfflel?mf:t ;E::{an o avre of
pockets 1s cssenual_for the discs:sscs an experimental feature
meshasical g‘*?’;,s;rf‘ a blend of artificial intelligence (AT) aniﬂ:
recognizer t,_:] geometry techniques. The ‘-"-’-?D?'NZ:; o
‘.:Ump“mm:l in a rapid prototyping test bed conmsung_lh e
|mplcmcnlcc f™ Al environment tightly c_oupled wi =
I;/Q‘E)‘ilchgs.zlirda modeler. It is capable of f:'“dl)"g fga?;;{(e;\; \;:w
% ing slots), al :
i V'orizlmsetfaé:gi;fc:;Nn?alc‘:::::ss:;: g\.lwsl] as toleram:'ing :::11;
?):ﬁg:n;vr;?gléle data. A generate-and-test Slrlatcgiisizn::e oi’
Production rules generate hints or cme?i’hfmd:ci are assessed,
features, and post them on a blackboard. d ethrou.gh geometric
and those judged promising are test'tl‘:. roduces a complete
computations. The process continues until it It)lined in terms of
decomposition of the volume to be mac material removal
volumetric features that correspond to
operations.

INTRODUCTION

) jomatic

This paper discusses on-going TRSCHICH Dnullil:le rﬁgldels of
recognition of machinable form feﬂwr?.s . :Sures (or simply
mechanical parts. Machinable ‘mh_:merrlf-blf‘-f; the operations
“features™) in our work are solids kb);a iRetIuicha &
typically performed in 3~axi's_rnan:hmmg_cenlf:bki1d s i
Vandenbrande 1989]. Our ulum_ale goal is ‘m.‘gd either by a
shown in Figure 1. A geometric mOdcl.’ L]r Fdis analyzed by a
design-by-features system or by other mclh‘t)(_h- of the part into
feature finder, which produces a r.iecompomu'on.?j g el
volumetric machining features. These are passc .m,‘ﬁng each
Planner which selects processes and_ tocli‘s for. rfni::‘l'lﬂlitm. The
feature, and generates setup and fixturing n G;mded b 4
Operations prescribed in a process plan are ‘CXP!_ st tions
Operation planner, whose outpul is @ sequence ‘{])ﬁne tools and
executable by Numerically Controlled (NC) e ition is not
Tobots. (Some authors argue that feature WC%E and others
neCessary in design-by-features systems, butf“; res often are
think otherwise, because design (or functional) featu

Other Deslgn

Methods
DESIGN SPEC. ———F#| Design Features ———#=(EXPANDER

—FEATURE FINDER
MANUFACTURING
FEATURES

PROCESS PLANNER

|——»

PROCESS PLAN

= Proceases
+Sequencing

+ Setup
« Toole & Fixtures

OPERATION PLANNER
y

m Selup
Irp!nctr;,l?o’. Instructions

AN

Fig. 1 Integrated Design and Manufacturing System

| b}
3svd V1va JH1INoad 2 FEREG(o] Rell-TE Y o=]

SNOLLYDI4193dS INIWNOCHIANT ONINIHOVI

ic ' nbrande
dsines trom manfactuing feaues (L0100 3y of the
' soning about spati _ : he
::f;!i?:f;?;zn;nﬁ\ Figurcpl, and cons'fuuulzlsi 'Dllf: rs:; Slﬁjcmr:a%ﬁr
lifficulties in the development of intelligen Sype
dlfrlum'lfsl lesign and manufacturing. Feature U 1 g X
e avea i;’l which progress has been rc.lanve]y slow,
r?:gairsc }zlina;r;za intimately associated with spatial reasoning.
a

ition i sed
Most of the previous work on feature rf:cogmtlc;grlsc(l:ft .
seafching Boundary Representations (BReps)
on

